JPS6120863A - Simplified analysis of vanadium - Google Patents

Simplified analysis of vanadium

Info

Publication number
JPS6120863A
JPS6120863A JP14056684A JP14056684A JPS6120863A JP S6120863 A JPS6120863 A JP S6120863A JP 14056684 A JP14056684 A JP 14056684A JP 14056684 A JP14056684 A JP 14056684A JP S6120863 A JPS6120863 A JP S6120863A
Authority
JP
Japan
Prior art keywords
vanadium
color
reagent
sample
develops
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14056684A
Other languages
Japanese (ja)
Inventor
Taketoshi Furusawa
古沢 武敏
Toshiyuki Ikekado
池角 敏由貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOURIYOU ENG KK
Mitsubishi Heavy Industries Ltd
Original Assignee
CHIYOURIYOU ENG KK
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOURIYOU ENG KK, Mitsubishi Heavy Industries Ltd filed Critical CHIYOURIYOU ENG KK
Priority to JP14056684A priority Critical patent/JPS6120863A/en
Publication of JPS6120863A publication Critical patent/JPS6120863A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To detect easily vanadium by injecting an aq. vanadium soln. reagent into a column carrying a reagent which develops a color by reacting with vanadium and analyzing the same by a chromatograph. CONSTITUTION:A heavy oil is subjected to an oxygen plasma-low temp. ashing treatment and the ash content is drawn and is dissolved in hydrochloric acid to obtain a vanadium-contg. sample in the case of detecting the vanadium in, for example, the heavy oil. The reagent which develops a color by reacting with vanadium, for example, N-benzoylhydroxylamine, diphenylamine or sodium tungstate is deposited on a silica gel or ion exchange resin and is packed into a column. The vanadium in the sample develops a color when the aq. sample soln. is injected into the column and is chromatographed. The length of the color- formed part thereof is measured. The easy detection of the vanadium is thus made possible simply by measuring the length of the color formation in the chromatograph.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はバナジウム(、V )の簡易分析法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a simple analytical method for vanadium (,V).

(従来の技術) ボイラや舶用機関の燃料として使用されている重油は燃
費低減や軽質油の需要増大のため、常圧蒸留残留油、減
圧蒸留残油から接触分解法。
(Conventional technology) In order to reduce fuel consumption and increase demand for light oil, heavy oil used as fuel for boilers and marine engines is processed using the catalytic cracking method from atmospheric distillation residual oil and vacuum distillation residual oil.

熱分解法により軽質油を採った後の残油に一部軽質油が
混合された粗悪重油が多くなってきた。
There has been an increase in the amount of inferior heavy oil, which is a mixture of some light oil in the residual oil after light oil is extracted by pyrolysis.

特に陸上の公害規制強化によりこれら粗悪重油の用途に
おける大型舶用ディーゼル機関や大型ボイラの燃料油の
占める割合は増大しつつある。
In particular, due to the tightening of pollution regulations on land, the proportion of fuel oil for large marine diesel engines and large boilers in the use of these inferior heavy oils is increasing.

これらの粗悪重油は原油中の硫黄分やバナジウム、ニッ
ケル等の金属分が濃縮されており、これらの性状に起因
して種々のトラブルが数多く発生している。
These poor-quality heavy oils are enriched with sulfur and metals such as vanadium and nickel in crude oil, and many problems occur due to these properties.

燃料油中にバナジウム分が多くなると低融点のバナジウ
ム化合物の生成による高温腐食が発生する。これらのト
ラブル會未然に防止するため、使用燃料油中のバナジウ
ム量を把握し、的確な対策をたてる必要がある。
When the vanadium content increases in fuel oil, high-temperature corrosion occurs due to the formation of vanadium compounds with low melting points. In order to prevent these troubles from occurring, it is necessary to understand the amount of vanadium in the fuel oil used and take appropriate measures.

燃料油中のバナジウムの分析uJP工やA8TMでは灰
化した後その灰分全酸に溶解した後、吸光光度法や原子
吸光光度法により行われているが、これらの方法では測
定精度に良いが装置が複雑かつ高価であり、相当な化学
的ダl識と時間全要する欠点がある。
Analysis of vanadium in fuel oil is carried out using spectrophotometry or atomic absorption spectrophotometry after ashing and dissolving the ash in total acid in UJP and A8TM, but although these methods have good measurement accuracy, they require limited equipment. The drawback is that it is complex and expensive, requiring considerable chemical knowledge and time.

(発明が解決しようとする問題点) 本発明は上記のような欠点を解消し、短時間でかつ化学
的知識を余り必要とせずに現場的に燃料油中のバナジウ
ム濃度の概略値を求めうる方法全提供することにあり・
それに対応!−た腐食抑制剤の添加や温度制御等を行な
うことによりバナジウムに起因するトラブルを未然に防
止するために本発明になされたものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned drawbacks, and makes it possible to obtain an approximate value of vanadium concentration in fuel oil on-site in a short time and without requiring much chemical knowledge. There are ways to provide all
Respond to that! The present invention was made in order to prevent troubles caused by vanadium by adding a corrosion inhibitor and controlling the temperature.

(問題点を解決するための手段) 不発明にバナジウムと反応する発色試薬を担持させた微
粒子を充填した透明な材質管にバナジウム全含有する試
料水溶液を注入し、反応によって生じたクロマトグラム
の長さから、バナジウム濃度を簡易に求めることを特徴
とするバナジウムの簡易分析方法である。
(Means for solving the problem) Inventively, an aqueous sample solution containing vanadium is injected into a transparent material tube filled with fine particles carrying a coloring reagent that reacts with vanadium, and the length of the chromatogram produced by the reaction is measured. This is a simple analysis method for vanadium, which is characterized by the simple determination of vanadium concentration.

本発明は、ディーゼル・ボイラ等の燃料油。The present invention relates to fuel oil for diesel boilers, etc.

用水・排水、及び金属・非金属材料中のバナジウムの簡
易定量に有利に適用することができる。
It can be advantageously applied to simple quantitative determination of vanadium in water, wastewater, and metal/nonmetal materials.

実施例1 ガラス管(内径4■]の一端に少量の石英綿を詰めた後
、60へ100メツシユのシリカゲルを充填し、これに
N−ベンゾイルヒドロキシで溶解しfc溶液約2ゴを注
入し、シリカゲルに含浸させる。過剰のN−ベンゾイル
ヒドロキシルアミン溶液を空気で押し出した後、ガラス
管の両端全バーナーで溶封しておく。
Example 1 After filling one end of a glass tube (inner diameter 4 mm) with a small amount of quartz wool, the 60 was filled with 100 mesh of silica gel, into which about 2 g of fc solution dissolved with N-benzoyl hydroxy was injected. Impregnate into silica gel. After pushing out the excess N-benzoylhydroxylamine solution with air, both ends of the glass tube are melt-sealed with a burner.

酸素プラズマ−低温灰化処理によって得られた燃料油の
灰分t−(1+1)塩酸30−に静解する。この溶液2
−を注射器に採取した後、前記カラムの両端を切断し、
一端から一定速度で注入する。担持された発色試薬はバ
ナジウムと反応し、赤紫色の発色帯を生成する。この発
色帯ノ長さ全各種濃度のメタバナジン酸アンモニウム(
NH4TO,)標準溶液について求めた発色帯の長さと
比較して濃度を求める。
The ash content of the fuel oil obtained by oxygen plasma-low temperature ashing treatment is t-(1+1), which is decomposed into hydrochloric acid 30-. This solution 2
- after collecting into a syringe, cutting both ends of the column,
Inject at a constant rate from one end. The supported coloring reagent reacts with vanadium to produce a reddish-purple colored band. Ammonium metavanadate (ammonium metavanadate) at various concentrations throughout the length of this coloring band (
NH4TO,) The concentration is determined by comparing it with the length of the color band determined for the standard solution.

メタバナジン酸アンモニウムで得られたバナジウム濃度
と発色帯の長さの関係を第1図に、また標準油2種とビ
スブレーキング油1種につ第  1  表 (単位はPpm as V) 実施例(2) ガラス管(内径4爲ンの一端に少量の石英綿を詰めfc
後、80〜100メツシユの低架橋度の陰イオン交換樹
脂(DowθX1,0j型)全充填し、これiC(1+
2 )りん酸2ゴとα5Mタングステン酸ナトリウム(
Na、WO4−2H2016,52を水100ゴに溶解
したものン1−の混合溶液上注入し、樹脂粒に秋着させ
る。過剰のN液は空気で押し出し使用するまでガラス管
の両端全バーナで溶封しておく。
The relationship between the vanadium concentration and the length of the color band obtained with ammonium metavanadate is shown in Figure 1, and Table 1 shows the relationship between the vanadium concentration obtained with ammonium metavanadate and the length of the color band, and Table 1 (unit: Ppm as V). 2) Glass tube (inner diameter 4mm, one end filled with a small amount of quartz wool fc
After that, an anion exchange resin with a low crosslinking degree of 80 to 100 meshes (DowθX1,0j type) was completely filled, and this
2) Digo phosphate and α5M sodium tungstate (
A mixture of Na and WO4-2H2016,52 dissolved in 100 g of water is injected onto the solution and allowed to adhere to the resin particles. Excess N liquid is pushed out with air, and the glass tube is melt-sealed at both ends with burners until use.

イオン交換樹脂に吸着された試薬はバナジウム(V)k
反応して黄色を示す。この黄色帯の長さにより試料中の
バナジウム濃度を求める。
The reagent adsorbed on the ion exchange resin is vanadium (V)k.
It reacts and shows a yellow color. The vanadium concentration in the sample is determined from the length of this yellow band.

以上、実施例’?6げて本発明全説明したが、担持させ
る発色試薬としては実施例の他に第2表に示すものが可
能であり、試薬を担持させる微粒子としては、シリカゲ
ル、イオン交換樹脂以外にアルミナなども使用すること
ができる。
Above are the examples'? Although the present invention has been fully explained in Section 6, in addition to the examples, the coloring reagents shown in Table 2 can be supported, and the fine particles supporting the reagents include alumina, etc. in addition to silica gel and ion exchange resin. can be used.

また微粒子を充填する透明材質管として′は、ガラス管
以外に透明なプラスチック管も同様に使用することがで
きる。
In addition to the glass tube, a transparent plastic tube can also be used as the transparent material tube filled with the fine particles.

第  2  表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図はメタバナジン酸アンモニウムで得られたバナジ
ウム濃度と発色帝の長さの関係金示すグラフである。 復代理人  内 1)  明 復代理人  萩 原 亮 − 第1図 バナジウム農度(PP”)
FIG. 1 is a graph showing the relationship between the vanadium concentration obtained with ammonium metavanadate and the length of the chromophore. Sub-agents 1) Meifuku agent Ryo Hagiwara - Figure 1 Vanadium agricultural production (PP”)

Claims (1)

【特許請求の範囲】[Claims] バナジウムと反応する発色試薬を担持させた微粒子を充
填した透明な材質管にバナジウムを含有する試料水溶液
を注入し、反応によつて生じたクロマトグラムの長さか
らバナジウム濃度を簡易に求めることを特徴とするバナ
ジウムの簡易分析方法。
A sample aqueous solution containing vanadium is injected into a transparent material tube filled with fine particles carrying a coloring reagent that reacts with vanadium, and the vanadium concentration can be easily determined from the length of the chromatogram produced by the reaction. A simple analysis method for vanadium.
JP14056684A 1984-07-09 1984-07-09 Simplified analysis of vanadium Pending JPS6120863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14056684A JPS6120863A (en) 1984-07-09 1984-07-09 Simplified analysis of vanadium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14056684A JPS6120863A (en) 1984-07-09 1984-07-09 Simplified analysis of vanadium

Publications (1)

Publication Number Publication Date
JPS6120863A true JPS6120863A (en) 1986-01-29

Family

ID=15271662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14056684A Pending JPS6120863A (en) 1984-07-09 1984-07-09 Simplified analysis of vanadium

Country Status (1)

Country Link
JP (1) JPS6120863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912873A (en) * 1989-02-17 1990-04-03 Shell Oil Company Removal of polar impurities from diesel and jet fuel
JP2015075439A (en) * 2013-10-10 2015-04-20 三菱重工業株式会社 Component analysis method for low-ash sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912873A (en) * 1989-02-17 1990-04-03 Shell Oil Company Removal of polar impurities from diesel and jet fuel
JP2015075439A (en) * 2013-10-10 2015-04-20 三菱重工業株式会社 Component analysis method for low-ash sample

Similar Documents

Publication Publication Date Title
Thompson et al. Determination of organic nitrogen. Control of variables in the use of Nessler's reagent
Jacobs et al. Continuous sampling and ultramicrodetermination of nitrogen dioxide in air
Vijan et al. Semi-automated determination of lead by hydride generation and atomic-absorption spectrophotometry
Thomas et al. Automatic apparatus for determination of nitric oxide and nitrogen dioxide in atmosphere
Ensafi et al. Flow-injection simultaneous determination of iodate and periodate by spectrophotometric and spectrofluorometric detection
Syty Determination of sulfide by evolution of hydrogen sulfide and absorption spectrometry in the gas phase
Powers et al. Arsenic in naphthas
Schmall et al. Determination of Panthenol and Pantothenates in multivitamin preparations
Stratton et al. Colorimetric determination of arsenic in water with silver diethyldithiocarbamate
JPS6120863A (en) Simplified analysis of vanadium
Sharma et al. Direct determination of mercury in blood by use of sodium borohydride reduction and atomic absorption spectrophotometry.
Yamane et al. Flow injection determination of trace vanadium with catalytic photometric detection
EP0075467A1 (en) Method for analyzing total trace nitrogen
Baltisberger et al. The differentiation of submicrogram amounts of inorganic and organomercury in water by flameless atomic absorption spectrometry
Kass et al. Spectrophotometric determination of sulphur dioxide and hydrogen sulphide in gas phase by sequential injection analysis technique
Nordschow et al. Automatic measurements of hydrogen peroxide utilizing a xylenol orange-titanium system
Ingram Rapid micro combustion methods for the determination of elements in organic compounds
Siemer et al. Application of the carbon rod atomizer to the determination of mercury in the gaseous products of oxygen combustion of solid samples
Marshall et al. Mercury displacement detection for the determination of picogram amounts of sulfite ion or sulfur dioxide by atomic spectrometry
Van Grondelle et al. The combustion—coulometric determination of sulphur in gaseous and liquid organic products
Temmerman et al. Optimization and evaluation of reduction-aeration/amalgamation for the analysis of mercury in drinking-water by cold-vapour atomic absorption spectrometry (CVAAS)
Hobbs Gas analysis
Long et al. Removal of phosphine from acetylene
Cali et al. Combustion-Amperometric Titration of Traces of Halogen in Petroleum Products
Jones et al. Colorimetric determination of nitromethane in presence of other nitroparaffins