JP6143219B2 - Measurement method of radioactive cesium deposition in the vicinity of nuclear facilities - Google Patents

Measurement method of radioactive cesium deposition in the vicinity of nuclear facilities Download PDF

Info

Publication number
JP6143219B2
JP6143219B2 JP2013015194A JP2013015194A JP6143219B2 JP 6143219 B2 JP6143219 B2 JP 6143219B2 JP 2013015194 A JP2013015194 A JP 2013015194A JP 2013015194 A JP2013015194 A JP 2013015194A JP 6143219 B2 JP6143219 B2 JP 6143219B2
Authority
JP
Japan
Prior art keywords
radioactive cesium
gamma ray
rate
count rate
ray count
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013015194A
Other languages
Japanese (ja)
Other versions
JP2014145700A (en
Inventor
建男 鳥居
建男 鳥居
幸尚 眞田
幸尚 眞田
義彦 斉藤
義彦 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2013015194A priority Critical patent/JP6143219B2/en
Publication of JP2014145700A publication Critical patent/JP2014145700A/en
Application granted granted Critical
Publication of JP6143219B2 publication Critical patent/JP6143219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、原子力発電所等の原子力施設において発生した放射能漏れ等の事故後に、原子力施設近隣の地表等に沈着した放射性セシウムの沈着量を精確に測定する方法に関する。   The present invention relates to a method for accurately measuring the amount of radioactive cesium deposited on the ground surface or the like in the vicinity of a nuclear facility after an accident such as a radioactive leak occurring in a nuclear facility such as a nuclear power plant.

例えば、原子力発電所の設置地域においては、不測の事態を避けるため、原子力発電所から周辺地域への放射能の拡散を観測するための装置が、多数設置されている。しかし、これらの観測装置は非常に高価であることから、通常想定外である原子力発電所の大規模事故を想定して、すべての原子力発電所周辺に網の目状にこれらの観測装置を設置することは現実的ではないし、実際問題として山林、河川、ビル等との関係でそのような設置は不可能である。   For example, in an area where a nuclear power plant is installed, in order to avoid unforeseen circumstances, many devices for observing the diffusion of radioactivity from the nuclear power plant to the surrounding area are installed. However, since these observation devices are very expensive, these observation devices are installed in the form of a mesh around all nuclear power plants, assuming a large-scale accident at a nuclear power plant that is not normally expected. It is not practical to do so, and as a matter of fact, such installation is impossible in relation to forests, rivers, buildings, etc.

このため、原子力発電所が万一、想定外の事態に至った場合に備え、これまで飛行機やヘリコプターに放射線測定器を搭載し、原子力発電所周辺の空間線量を測定し、その値から地表付近の放射線量を推定すると言う方法が提案されて来ている。例えば、特許文献1には、次のような発明が開示されている。   For this reason, in the unlikely event that a nuclear power plant reaches an unexpected situation, a radiation measuring instrument has been mounted on an airplane or helicopter, and the air dose around the nuclear power plant has been measured. There has been proposed a method for estimating the radiation dose. For example, Patent Document 1 discloses the following invention.

ヘリコプター搭載システムは、放射線探知器が上空での放射線強度や放射線方向および核汚染物質の組成を測定し、地図情報表示システムによって通信衛星からの位置信号で周辺の3次元地図画像を表示し、データ処理用コンピュータによって放射性物質を含む大気の位置と大きさを特定及び含まれる同位元素の組成を決定し、3次元画像でリアルタイム表示する。地上移動観測システムは、原子力施設の周辺地域に移動して放射線探知とそのデータ処理する。地上側基地システムは、気象データとヘリコプター搭載システムからの測定情報から放射性物質の拡散状況及び放射能汚染状況を3次元地図画像で表示および気象データから拡散予測を行う(特許文献1の要約書より抜粋)。   In the helicopter-mounted system, the radiation detector measures the radiation intensity and radiation direction in the sky, and the composition of nuclear pollutants, and the map information display system displays the surrounding 3D map image with the position signal from the communication satellite. The processing computer specifies the position and size of the atmosphere containing the radioactive substance, determines the composition of the isotope contained, and displays it in real time as a three-dimensional image. The ground mobile observation system moves to the surrounding area of the nuclear facility and processes radiation detection and data. The ground-side base system displays the diffusion status and radioactive contamination status of radioactive materials as a three-dimensional map image based on meteorological data and measurement information from the helicopter-mounted system, and performs diffusion prediction based on meteorological data (from the abstract of Patent Document 1) (Excerpt)

特開2001−153952号公報JP 2001-153952 A

しかし、この方法では、パイロットの被爆の関係で原子力発電所の直近の空間線量を測定することが出来ないという問題があった。また、この発明において、たとえ無人ヘリコプターを使用したとしても、空気によるガンマ線計数率の減衰を考慮していないため、地表の放射性セシウム沈着量の精確な測定が出来ないという問題がある。また、K−40,U系列などの天然放射線核種による影響なども考慮していないため、地表の放射性セシウム沈着量の精確な測定が出来ないという問題もある。   However, this method has a problem that it is impossible to measure the latest air dose at the nuclear power plant due to the exposure of the pilot. Further, in the present invention, even if an unmanned helicopter is used, there is a problem that it is impossible to accurately measure the amount of radioactive cesium deposition on the ground surface because attenuation of the gamma ray count rate due to air is not taken into consideration. Moreover, since the influence by natural radionuclides, such as K-40 and U series, is not considered, there is also a problem that the amount of radioactive cesium deposition on the ground surface cannot be accurately measured.

本発明の一つの観点にかかる原子力施設近隣の放射性セシウム沈着量の測定方法では、無人ヘリコプターに搭載された放射線検出器で検出されるガンマ線計数率を、空間線量率の値に換算するための空間線量率換算計数を予め算出し、記憶しておくと共に、予め特定された一地点における複数の対地高度とガンマ線計数率との関係から、空気によるガンマ線計数率の減弱係数を予め算出し、記憶しておき、前記無人ヘリコプターに搭載された放射線検出器およびGPSによって、ある対地高度で飛行中のある時点でのガンマ線計数率とその時点での位置情報を求め、予め求められている前記減弱係数を用いてその位置における地表1mの空間線量率を算出し、地表面における放射性セシウムの沈着量と地表1m高さでの空間線量率の換算計数から、地表面における放射性セシウムの沈着量を求めるステップを有する。   In the method for measuring radioactive cesium deposition in the vicinity of a nuclear facility according to one aspect of the present invention, a space for converting a gamma ray count rate detected by a radiation detector mounted on an unmanned helicopter into a value of an air dose rate. The dose rate conversion count is calculated and stored in advance, and the attenuation coefficient of the gamma ray count rate due to air is calculated and stored in advance from the relationship between a plurality of ground altitudes and the gamma ray count rate at one point specified in advance. A gamma ray count rate at a certain point in flight at a certain altitude and position information at that point are obtained by a radiation detector and GPS mounted on the unmanned helicopter, and the attenuation coefficient obtained in advance is calculated. Use this to calculate the air dose rate of the ground surface 1m at that position, and to convert the amount of radioactive cesium deposited on the ground surface and the air dose rate at the surface height of 1m Et al., Comprises the step of obtaining the deposition of radioactive cesium in the ground surface.

したがって、本発明の目的は、事故後の原子力施設近隣における空間線量率の測定に影響を与える要因を考慮することで、測定の精度を上げ、地表の放射性セシウムの沈着量をより一層精確に測定することができる方法を提供することにある。   Therefore, the purpose of the present invention is to increase the accuracy of the measurement by taking into account the factors affecting the measurement of the air dose rate in the vicinity of the nuclear facility after the accident, and to measure the deposition amount of radioactive cesium on the surface more accurately. It is to provide a way that can be done.

本発明では、事故後の原子力施設近隣における空間線量率の測定に影響を与える要因を様々な観点から考慮しているので、地表の放射性セシウム沈着量をこれまで以上に精確に測定することができる。特に、海や湖のように地表に沈着した放射性セシウムからの放射線の影響を受けない、すなわち原子力施設から直接受ける空間放射線量のみを測定し、その値を考慮して地表の放射性セシウム沈着量を計算によって求めることによって、原子力施設の近隣、例えば3km圏内においても地表の放射性セシウムから受ける空間線量率を精確に測定でき、結果として地表の放射性セシウムの沈着量も精確に測定することができる。   In the present invention, the factors affecting the measurement of the air dose rate in the vicinity of the nuclear facility after the accident are considered from various viewpoints, so that the amount of radioactive cesium deposition on the ground surface can be measured more accurately than before. . In particular, measure only the radiation dose not directly affected by radioactive cesium deposited on the surface of the sea or lake, that is, directly received from nuclear facilities, and consider the value to determine the amount of radioactive cesium deposited on the surface. By calculating, it is possible to accurately measure the air dose rate received from the radioactive cesium on the surface even in the vicinity of the nuclear facility, for example, within 3 km, and as a result, the amount of radioactive cesium deposited on the surface can also be accurately measured.

無人ヘリコプターで取得されたガンマ線量(計数率)を地上1m高さの空間線量率に換算する際の概略説明図。Schematic explanatory drawing at the time of converting the gamma dose (count rate) acquired with the unmanned helicopter into the air dose rate of 1 m above the ground. 地上上空と海上上空における、各放射性物質の沈着エネルギーと波高値との関係を示すグラフ。The graph which shows the relationship between the deposition energy and the crest value of each radioactive substance in the sky over the ground and the sea.

原子力施設近隣おける地表の放射性セシウム沈着量の測定にあたっては、ヤマハ発動機株式会社製の自律飛行型無人ヘリコプターRMAXG1を使用した。飛行高度は50-80m程度、測線間隔は80m(一部50mで実施)程度で飛行しながら、地上からのガンマ線及び直達線や散乱線によるガンマ線(計数率)とエネルギースペクトルを1秒間に1回連続測定した。また、放射線検出器はLaBr3(Ce)(ランタンブロマイド)シンチレーション検出器(1.5"Φ×1.5"×3本)を用いた。   The autonomous flight type unmanned helicopter RMAXG1 made by Yamaha Motor Co., Ltd. was used to measure the amount of radioactive cesium deposition on the ground surface near the nuclear facility. Gamma rays from the ground, gamma rays (counting rate) and energy spectra from direct rays and scattered rays and energy spectrum once per second while flying at a flight altitude of about 50-80m and a measurement interval of about 80m (partially conducted at 50m). Continuous measurement was performed. The radiation detector used was a LaBr3 (Ce) (lanthanum bromide) scintillation detector (1.5 "Φ x 1.5" x 3).

無人ヘリコプターを活用した、事故後の原子力施設から3km圏内の空間線量率及び放射性セシウムの沈着量の測定について以下に示す。   The measurement of air dose rate and radioactive cesium deposition within 3 km from the post-accident nuclear facility using an unmanned helicopter is shown below.

(1)無人ヘリコプターによる測定でのデータの取得方法
○無人ヘリコプターの飛行高度は対地高度で50〜80m程度であり、その測定値は、無人ヘリコプター下部の半径50〜80m程度(飛行高度により変化)の円内のガンマ線量を平均化したものである。
○無人ヘリコプターの軌跡幅(測線間隔)は、50mまたは80mとする。
○無人ヘリコプターの飛行速度は、8m/s(=28.8km/h)程度である。
○取得データは、放射線検出器で測定される1秒毎のガンマ線量のデータ(計数率) とエネルギースペクトル及びそれに対応するGPSによる位置情報を記録する。
(1) Data acquisition method by measurement with unmanned helicopter ○ The flight altitude of unmanned helicopter is about 50 to 80m at ground level, and the measured value is about 50 to 80m radius under unmanned helicopter (changes with flight altitude) The gamma dose in the circle is averaged.
○ The unmanned helicopter trajectory width (measurement interval) shall be 50 m or 80 m.
○ The flight speed of unmanned helicopters is about 8m / s (= 28.8km / h).
○ Acquired data records gamma dose data (count rate) measured by the radiation detector, energy spectrum, and corresponding GPS location information.

(2)無人ヘリコプターで取得された測定データの空間線量率への換算 (2) Conversion of measurement data obtained by unmanned helicopter to air dose rate

○無人ヘリコプターを用いた空間線量率、放射性セシウムの沈着量の解析のイメージを図1に示す。 ○ Figure 1 shows an image of analysis of air dose rate and radioactive cesium deposition using an unmanned helicopter.

○上空で測定されたガンマ線量を空間線量率の値に換算するための係数を算出するため、警戒区域内において空間線量率の勾配が小さく、平坦な場所をテストサイトとして設定し、Nalサーベイメータを用いて、テストサイトを中心とした半径100mの円内における地上から1m高さの空間線量率の平均値を求める。 ○ In order to calculate the coefficient for converting the gamma dose measured in the sky to the value of the air dose rate, set the Nal survey meter as a test site where the slope of the air dose rate is small and flat in the alert area. The average value of the air dose rate at a height of 1 m above the ground in a circle with a radius of 100 m centered on the test site is obtained.

○次に、無人ヘリコプターで、テストサイト上空の対地高度80m付近をホバリングし、この高度(基準高度)で取得されたガンマ線量(計数率)と上述したテストサイト周辺の地上における空間線量率とを比較し、空間線量率換算係数CD(cps/μSv/h)を算出する。 ○ Next, use an unmanned helicopter to hover near the ground altitude of 80m above the test site, and obtain the gamma dose (count rate) acquired at this altitude (reference altitude) and the air dose rate on the ground around the test site described above. The air dose rate conversion coefficient CD (cps / μSv / h) is calculated by comparison.

○その後、テストサイト上空の対地高度10mから100mまでを10m毎にホバリングし、各高度におけるガンマ線(計数率)を測定する。測定された高度毎のガンマ線計数率を基に、対地高度とガンマ線(計数率)との関係式を求め、空気によるガンマ線計数率の減弱係数μを算出する。 ○ After that, hover from 10m to 100m above the test site every 10m and measure the gamma rays (counting rate) at each altitude. Based on the measured gamma ray count rate for each altitude, a relational expression between ground altitude and gamma ray (count rate) is obtained, and an attenuation coefficient μ of the gamma ray count rate due to air is calculated.

○最後に、実際のフライトで取得されたガンマ線計数率を上述した空間線量率換算係数CDから空間線量率(μSv/h)に換算するとともに、対地高度と空気によるガンマ線量の減弱係数μにより、高度補正を行う。なお、対地高度はGPSにより測定した海抜高度から国土地理院が作成した10mメッシュの数値標高モデル(DEM: Digital Elevation Model)のデータを差し引いて、測定地点の対地高度を求める。 ○ Finally, the gamma ray count rate acquired in the actual flight is converted into the air dose rate (μSv / h) from the air dose rate conversion coefficient CD described above, and the gamma dose attenuation coefficient μ due to the ground altitude and air, Perform altitude correction. The ground altitude is calculated by subtracting the 10m mesh digital elevation model (DEM) data created by the Geospatial Information Authority from the altitude measured by GPS.

(3)無人ヘリコプターで取得された測定データの放射性セシウムの沈着量への換算  (3) Conversion of measurement data obtained by unmanned helicopters into radioactive cesium deposition

○警戒区域内で独立行政法人日本原子力研究開発機構がゲルマニウム半導体検出器を用いたin-situ測定の結果を基に、天然放射性核種(K-40、U系列、Th系列)による空間線量率の平均値(43±20nSv/h=誤差=標準偏差σ)を評価し、前に求められた空間線量率から、この値を差し引くことにより、放射性セシウム(Cs-134,137)のみによる空間線量率を算出する。 ○ Based on the results of in-situ measurements by the Japan Atomic Energy Agency using germanium semiconductor detectors in the alert area, the air dose rate due to natural radionuclides (K-40, U series, Th series) Evaluate the average value (43 ± 20nSv / h = error = standard deviation σ), and subtract this value from the previously obtained air dose rate to calculate the air dose rate using only radioactive cesium (Cs-134,137). To do.

○その後、文部科学省「ゲルマニウム半導体検出器を用いたin-situ測定法」(p.83-84)に記載されている緩衝深度(β=1.Og/cm*)の場合の地表面における放射性セシウムの沈着量と地上lm高さでの空間線量率の換算係数を使用し、地表面におけるセシウム134及びセシウム137の沈着量を算出する。無人ヘリコプターの検出器で測定されたガンマ線のエネルギースペクトルの例を図2に示す。図2において、紙面に向かって上側にあるスペクトルが地上高度80mでのもので、下側が海上高度100mのものを示している。 ○ After that, in the case of the buffer depth (β = 1.Og / cm *) described in the Ministry of Education, Culture, Sports, Science and Technology “In-situ measurement method using germanium semiconductor detector” (p.83-84) Using the amount of radioactive cesium deposited and the conversion factor of the air dose rate at the lm height above the ground, the amount of deposited cesium 134 and cesium 137 on the ground surface is calculated. An example of an energy spectrum of gamma rays measured by an unmanned helicopter detector is shown in FIG. In FIG. 2, the spectrum on the upper side of the drawing is that at an altitude of 80 m above the surface and the lower side is that at an altitude of 100 m.

(4)空間線量率及び放射性セシウムの沈着量の測定結果の一定時点への換算(減衰補正) (4) Conversion of measurement results of air dose rate and radioactive cesium deposition to a fixed point (attenuation correction)

○各地点の測定結果は測定日が異なるため、各測定地点における地上1m高さの空間線量率及び地表面への放射性セシウムの沈着量の値は、放射性セシウムの物理的減衰を考慮し、今回の原子力施設から3km圏内の無人ヘリコプターの測定最終日の値に換算する。 ○ Because the measurement results at each point differ on the measurement date, the air dose rate at a height of 1 m above the ground and the value of radioactive cesium deposition on the ground surface at each measurement point take into account the physical decay of radioactive cesium. Convert to the value of the last day of measurement of an unmanned helicopter within 3 km from the nuclear facility in Japan.

(5)無人ヘリコプターを活用した、空間線量率及び放射性セシウムの沈着量を記したマップの作成 (5) Creation of a map showing air dose rate and radioactive cesium deposition using an unmanned helicopter

○測定されていない地域の空間線量率及び放射性セシウムの沈着量の値は、各測定地点の空間線量率及び放射性セシウムの沈着量の測定結果を基に、内挿法(クリギング法)を用いて内挿補間する。 ○ The values of air dose rate and radioactive cesium deposition in areas not measured are calculated using the interpolation method (kriging method) based on the measurement results of the air dose rate and radioactive cesium deposition at each measurement point. Interpolate.

○空間線量率及び放射性セシウムの沈着量を記したマップの作成にあたっては、補間したデータを含め、文部科学省が実施している航空機モニタリングの空間線量率及び放射性セシウムの沈着量の大きさごとに色分けしてマッピングする。 ○ When creating a map that shows the air dose rate and radioactive cesium deposition amount, including the interpolated data, for each air dose rate and radioactive cesium deposition amount of the aircraft monitoring conducted by the Ministry of Education, Culture, Sports, Science and Technology Map by color coding.

Claims (4)

事故後の原子力施設から3km圏内の原子力施設近隣を飛行する無人ヘリコプターに搭載された放射線検出器で検出されるガンマ線計数率を空間線量率の値に換算するための空間線量率換算計数を、原子炉施設から3km以上離れたテストサイトにおいて予め算出し、記憶するステップと
前記テストサイトにおいて無人ヘリコプターによって測定された、予め特定された一地点における複数の対地高度とガンマ線計数率との関係から、空気によるガンマ線計数率の減弱係数を予め算出し、記憶するステップと
前記無人ヘリコプターに搭載された放射線検出器およびGPSによって、前記事故後の原子力施設から3km圏内を或る対地高度で飛行中の或る時点でのガンマ線計数率と、その時点での位置情報を求めるステップと
予め求められている前記減弱係数を用いてその位置における地表1mの空間線量率を算出するステップと
地表面における放射性セシウムの沈着量と地表1m高さでの空間線量率の換算計数を用いて、地表面における放射性セシウムの沈着量を算出するステップとから成る、
ことを特徴とする原子力施設近隣の放射性セシウム沈着量の測定方法。
The spatial dose rate conversion factor for converting the gamma-ray count rate detected by the radiation detector mounted on the unmanned helicopter to the value of the spatial dose rate to fly nuclear facilities nearby 3km Situated from nuclear facilities after the accident, a step of pre-calculated, stored in the test sites distant 3km above from the reactor facility,
From the relationship between a plurality of ground altitudes at one point specified in advance and a gamma ray count rate measured by an unmanned helicopter at the test site, calculating and storing in advance an attenuation coefficient of the gamma ray count rate due to air;
Using a radiation detector and GPS mounted on the unmanned helicopter, obtain a gamma ray count rate at a certain point during flight at a certain altitude within 3 km from the post-accident nuclear facility , and position information at that point. Steps ,
Calculating the spatial dose rate of surface 1m at that position by using the attenuation coefficients obtained in advance,
Calculating the amount of radioactive cesium deposited on the ground surface by using the amount of radioactive cesium deposited on the ground surface and the conversion count of the air dose rate at a height of 1 m above the ground surface .
A method for measuring the amount of radioactive cesium deposition in the vicinity of a nuclear facility.
請求項1に記載の測定方法において、前記原子力施設近隣を或る対地高度で飛行中の或る時点での前記ガンマ線計数率から、予め求められている天然放射線核種による空間線量率の影響を除去することを特徴とする原子力施設近隣の放射性セシウム沈着量の測定方法。 2. The measurement method according to claim 1, wherein an influence of an air dose rate caused by a natural radionuclide determined in advance is removed from the gamma ray count rate at a certain point in time while flying in the vicinity of the nuclear facility at a certain altitude. A method for measuring the amount of radioactive cesium deposition near a nuclear facility. 請求項1または2に記載の測定方法において、前記空気によるガンマ線計数率の減弱係数を、前記原子力施設近隣上空の対地高度10mから100mまでを10m毎にホバリングし、各高度におけるガンマ線計数率を測定し、測定された高度毎のガンマ線計数率を基に、対地高度とガンマ線計数率との関係式を求めることを特徴とする原子力施設近隣の放射性セシウム沈着量の測定方法。 In the method of claim 1, the attenuation coefficient of the gamma ray counting rate by the air, until 100m from AGL 10m of the nuclear facility close over hovering every 10m, measuring the gamma ray count rate at each altitude A method for measuring radioactive cesium deposition in the vicinity of a nuclear facility, wherein a relational expression between ground altitude and gamma ray count rate is obtained based on the measured gamma ray count rate at each altitude. 請求項1乃至3のいずれかに記載の測定方法において、前記原子力施設近隣を或る対地高度で飛行中の或る時点でのガンマ線計数率と、その時点での位置情報を求めるステップを、予め定めた飛行経路に沿って定期的に繰り返し行い、最終的に求められる地表の放射性セシウム沈着量の値を、その大きさごとに色分けしてマップ上に表示することを特徴とする原子力施設近隣の放射性セシウム沈着量の測定方法。The measurement method according to any one of claims 1 to 3, wherein a step of obtaining a gamma ray count rate at a certain point in time while flying in the vicinity of the nuclear facility at a certain altitude and a position information at that point in advance are provided. It repeats regularly along a defined flight path, and the final value of the amount of radioactive cesium deposition on the surface is displayed on a map with different colors and displayed on a map. A method for measuring the amount of radioactive cesium deposition.
JP2013015194A 2013-01-30 2013-01-30 Measurement method of radioactive cesium deposition in the vicinity of nuclear facilities Active JP6143219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013015194A JP6143219B2 (en) 2013-01-30 2013-01-30 Measurement method of radioactive cesium deposition in the vicinity of nuclear facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013015194A JP6143219B2 (en) 2013-01-30 2013-01-30 Measurement method of radioactive cesium deposition in the vicinity of nuclear facilities

Publications (2)

Publication Number Publication Date
JP2014145700A JP2014145700A (en) 2014-08-14
JP6143219B2 true JP6143219B2 (en) 2017-06-07

Family

ID=51426057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013015194A Active JP6143219B2 (en) 2013-01-30 2013-01-30 Measurement method of radioactive cesium deposition in the vicinity of nuclear facilities

Country Status (1)

Country Link
JP (1) JP6143219B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2596183C1 (en) * 2015-02-27 2016-08-27 Акционерное общество "Всероссийский научно-исследовательский институт по эксплуатации атомных электростанций" (АО "ВНИИАЭС") System for measuring at gamma-radiation contamination of environment caused by radioactive emission radiation-hazardous facilities
WO2017209316A1 (en) 2016-05-30 2017-12-07 전자부품연구원 Method and system for detecting remote radiation dose rate by using laser altimeter-based unmanned aerial vehicle
JP2019132632A (en) * 2018-01-30 2019-08-08 ソイルアンドロックエンジニアリング株式会社 Density measurement device and density measurement method
KR102051339B1 (en) * 2018-04-27 2019-12-04 한국원자력연구원 Movable apparatus for detecting radiation, method of detecting radiation movably and computer readable medium
JP2020134316A (en) * 2019-02-20 2020-08-31 国立研究開発法人日本原子力研究開発機構 Air dose calculation method using flying body

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166066A (en) * 1979-06-11 1980-12-24 Mitsubishi Electric Corp Environmental gamma-ray dosimeter
JPS61193091A (en) * 1985-02-22 1986-08-27 Asahi Koyo Kk Detecting method of dangerous natural slope
JPH0481684A (en) * 1990-07-25 1992-03-16 Hitachi Ltd Apparatus for measuring radioactivity
US5552983A (en) * 1994-03-02 1996-09-03 United Technologies Corporation Variable referenced control system for remotely operated vehicles
JP3129420B1 (en) * 1999-11-17 2001-01-29 三菱重工業株式会社 Separation and measurement method of radioactivity in the fluid in the pipe and the inner wall of the pipe
JP2001153952A (en) * 1999-11-26 2001-06-08 Nippon Anzen Hosho Keibi Kk System for grasping radioactive proliferation state
JP2001208848A (en) * 2000-01-27 2001-08-03 Aloka Co Ltd Radiation mesuring system and method
JP3709330B2 (en) * 2000-06-19 2005-10-26 株式会社日立製作所 Radioactive material diffusion prediction system
JP2012251918A (en) * 2011-06-06 2012-12-20 Kodaira Associates Kk Device for generating radioactivity amount distribution information

Also Published As

Publication number Publication date
JP2014145700A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
Sanada et al. The aerial radiation monitoring in Japan after the Fukushima Daiichi nuclear power plant accident
Connor et al. Airborne radiation mapping: overview and application of current and future aerial systems
Sanada et al. Aerial radiation monitoring around the Fukushima Dai-ichi nuclear power plant using an unmanned helicopter
Sanada et al. Temporal variation of dose rate distribution around the Fukushima Daiichi nuclear power station using unmanned helicopter
JP6143219B2 (en) Measurement method of radioactive cesium deposition in the vicinity of nuclear facilities
Sinclair et al. Aerial measurement of radioxenon concentration off the west coast of Vancouver Island following the Fukushima reactor accident
Tichý et al. Bayesian inverse modeling and source location of an unintended 131 I release in Europe in the fall of 2011
Chen et al. In-flight performance of the Advanced Radiation Detector for UAV Operations (ARDUO)
US9678228B2 (en) Method of real-time mapping of a distribution of photons in a site
Kumar et al. Advances in detection algorithms for radiation monitoring
Pacini et al. Cosmogenic isotope 7Be: A case study of depositional processes in Rio de Janeiro in 2008–2009
Sanderson et al. Validated Radiometric Mapping in 2012 of Areas in Japan Affected by the Fukushima-Daiichi Nuclear Accident.
Torii et al. Distribution of dose-rates and deposition of radioactive cesium by the airborne monitoring surveys
Mitchell et al. Gamma-ray and neutron background comparison of US metropolitan areas
Hendricks et al. An aerial radiological survey of the Nevada Test Site
Chen Demonstration of a new gamma spectrometer designed for radiometric surveying with an unmanned aircraft system
Cardarelli II et al. Environmental Protection Agency (EPA) airborne gamma spectrometry system for environmental and emergency response surveys
CN116858214B (en) Radionuclide distribution drawing system and drawing method
Bunn et al. Drones for Decommissioning
Sanada Experience for Fukushima Environmental Radiation Monitoring and Application for Preparedness of Post-accident
Martin et al. Low-Altitude Unmanned Aerial Vehicles as a Tool for the Remediation of Radiologically Contaminated Environments
Martin et al. Low-Altitude Unmanned Aerial Vehicles as a Tool for the Remediation of Radiologically Contaminated Environments–16257.
Wasiolek An Aerial Radiological Survey of the United States Department of Energy Rocky Flats Plant and Surrounding Area
Bucher et al. International intercomparison exercise of airborne gammaspectrometric systems of Germany, France and Switzerland in the framework of the Swiss exercise ARM07
Wasiolek et al. AMS/NRCan Joint Survey Report: Aerial Campaign

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170428

R150 Certificate of patent or registration of utility model

Ref document number: 6143219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250