JP2020134316A - Air dose calculation method using flying body - Google Patents

Air dose calculation method using flying body Download PDF

Info

Publication number
JP2020134316A
JP2020134316A JP2019028137A JP2019028137A JP2020134316A JP 2020134316 A JP2020134316 A JP 2020134316A JP 2019028137 A JP2019028137 A JP 2019028137A JP 2019028137 A JP2019028137 A JP 2019028137A JP 2020134316 A JP2020134316 A JP 2020134316A
Authority
JP
Japan
Prior art keywords
air
ground
measurement
air dose
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019028137A
Other languages
Japanese (ja)
Inventor
美雪 佐々木
Miyuki Sasaki
美雪 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2019028137A priority Critical patent/JP2020134316A/en
Publication of JP2020134316A publication Critical patent/JP2020134316A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

To provide a method and a device therefor capable of accurately measuring air dose near the ground without being affected by the situation of the measuring place such as undulations on the ground and the presence or absence of trees.SOLUTION: The air dose calculation method includes the steps of: obtaining measurement point data and calculation point data; calculating the detection probability for each measurement point and calculation point while considering the parameters of air attenuation, soil scattering attenuation, and forest attenuation derived for the measurement of radiation from the sky; calculating the radiation intensity value by repeating the calculation using the calculated detection probability value and following the ML-EM method; and converting the calculated radiation intensity value to the air dose rate using the air dose conversion factor.SELECTED DRAWING: Figure 1

Description

本発明は、無人ヘリコプターなどの飛行体を用いて、例えば地上1mの位置などの地上付近の空間放射線量を高精度に算出する方法に関する。 The present invention relates to a method of calculating the amount of spatial radiation near the ground, such as a position 1 m above the ground, with high accuracy by using a flying object such as an unmanned helicopter.

広大な領域にわたる地上付近の空間放射線量を、安全かつ効率的に測定する方法として、従来から無人ヘリコプターなどの飛行体を用いた空間線量算出方法が知られている(特許文献1及び2、並びに非特許文献1及び2を参照)。これらの方法では、飛行体に搭載された放射線検出器の検出値と飛行高度などを基に、地上1mの位置での空間線量を求め、その空間線量の大きさ別に色分けして実際の地図上に表示している。 As a method for safely and efficiently measuring the amount of air radiation near the ground over a vast area, a method for calculating air dose using an air vehicle such as an unmanned helicopter has been conventionally known (Patent Documents 1 and 2 and See Non-Patent Documents 1 and 2). In these methods, the air dose at a position 1 m above the ground is obtained based on the detection value of the radiation detector mounted on the flying object and the flight altitude, and the air dose is color-coded according to the magnitude of the air dose on the actual map. It is displayed in.

特開2014−145628号公報Japanese Unexamined Patent Publication No. 2014-145628 特開2014−145700号公報Japanese Unexamined Patent Publication No. 2014-145700

「原子力発電所事故後の無人ヘリコプターを用いた放射線測定」JAEA Research 2013−049"Radiation measurement using an unmanned helicopter after the nuclear power plant accident" JAEA Research 2013-049 Sanada Yukihisa, Kondo Atsuya, Sugita Takeshi et al. “Radiation monitoring using an unmanned helicopter in the evacuation zone around the Fukushima Daiichi nuclear power plant” EXPLORATION GEOPHYSICS, 45(1),p3−7, MAR 2014Sanada Yukihisa, Kondo Atsuya, Sugita Takeshi et al. "Radiation monitoring using an ununned helicopter in the evacuation zone around the Fukushima Daiichi nuclear power plant", EXPLORATION GEOPY, EXPLORATION GEOPY

しかし、上空からの放射線測定では、地上での直接測定と異なり、測定した値を地上1mでの空間線量の値に換算する必要がある。前述の従来方法では換算する際、地表は平坦で線源は均一に分布していると仮定して換算を行っている。よって地形の起伏がある場所や、線源の勾配が大きい場所、樹木等の遮蔽物がある場合には、仮定としている系とは異なるため、上空から測定した放射線測定値を地上1mの値に換算したとき実際の地上1mの位置での空間線量値と大きく異なる場合がある。 However, in the radiation measurement from the sky, unlike the direct measurement on the ground, it is necessary to convert the measured value into the value of the air dose at 1 m above the ground. In the above-mentioned conventional method, when converting, the conversion is performed on the assumption that the ground surface is flat and the radiation sources are uniformly distributed. Therefore, if there are undulations in the terrain, a place with a large gradient of the radiation source, or a shield such as a tree, the system is different from the assumed system, so the radiation measurement value measured from the sky is set to the value of 1 m above the ground. When converted, it may differ significantly from the actual air dose value at a position 1 m above the ground.

したがって、本発明の目的は、前述のような測定場所の状況に影響されず、地上付近の空間線量を高精度に測定できる方法を提供することにある。 Therefore, an object of the present invention is to provide a method capable of measuring an air dose near the ground with high accuracy without being influenced by the situation of the measurement place as described above.

本発明の方法は、上空から測定した放射線測定値を、地形情報を用いて地上1m空間線量値に換算を行うものである。放射線測定ポイント情報(測定計数率、測定座標及び高度)、換算値算出ポイントにおける放射線測定エリア周辺地形情報(DEM、DSM)を用いて計算を行う。計算は換算値算出ポイントで指定された座標においての空間線量率の算出が行われる。 The method of the present invention converts a radiation measurement value measured from the sky into a 1 m air dose value above the ground using topographical information. The calculation is performed using the radiation measurement point information (measurement count rate, measurement coordinates and altitude) and the topographical information (DEM, DSM) around the radiation measurement area at the conversion value calculation point. In the calculation, the air dose rate is calculated at the coordinates specified by the conversion value calculation point.

本発明の方法は、医療用画像再構成手法として開発されたML−EM(Maximum Likelihood Expectation Maximization)法を基本としたアルゴリズムで構成されている。本発明の特徴の一つは、ML−EM法における検出確率パラメータ(後述するCij)を、上空からの放射線測定用に最適化した点にある。 The method of the present invention is composed of an algorithm based on the ML-EM (Maximum Likelihood Expectation Maximization) method developed as a medical image reconstruction method. One of the features of the present invention is that the detection probability parameter (Cij described later) in the ML-EM method is optimized for radiation measurement from the sky.

本発明の方法は、基本的に、(1)測定ポイントデータと、計算ポイントデータを取得、(2)換算のための検出確率算出、(3)換算対象ポイントにおける放射線強度値算出、(4)放射線強度値から空間線量への換算の4つのステップからなる。さらに詳細に言えば、次のようになる。
(1)緯度、経度、高さ、測定計数率から成る測定ポイントデータと、緯度、経度、換算値算出ポイントにおける放射線測定エリア周辺地形情報(DEM、DSM)からなる計算ポイントデータを取得する。
(2)上空からの放射線測定用に導き出した、空気による減衰、土壌散乱による減衰、森林による減衰のパラメータを考慮して、それぞれの測定ポイントと計算ポイント毎に検出確率を計算する。
(3)上記(2)で算出した値を用いてML−EM法の手法に則り、繰り返し計算を実施する。
(4)上記(3)で算出した値を用いて、空間線量換算係数により空間線量率へと換算する。
The method of the present invention basically includes (1) acquisition of measurement point data and calculation point data, (2) calculation of detection probability for conversion, (3) calculation of radiation intensity value at conversion target point, and (4). It consists of four steps of conversion from radiation intensity value to air dose. More specifically, it looks like this:
(1) Acquire measurement point data consisting of latitude, longitude, height, and measurement count rate, and calculation point data consisting of latitude, longitude, and topography information around the radiation measurement area (DEM, DSM) at the conversion value calculation point.
(2) The detection probability is calculated for each measurement point and calculation point in consideration of the parameters of air attenuation, soil scattering attenuation, and forest attenuation derived for radiation measurement from the sky.
(3) Using the value calculated in (2) above, the calculation is repeated according to the method of the ML-EM method.
(4) Using the value calculated in (3) above, convert to the air dose rate by the air dose conversion coefficient.

より具体的には、本発明は、少なくともGPS及び放射線検出器を搭載している飛行体を用いて、地上から一定高度における空間線量を測定する方法であって、緯度、経度、高さ、前記放射線検出器からの測定計数率から成る測定ポイントデータと、緯度、経度、換算値算出ポイントにおける放射線測定エリア周辺地形情報から成る計算ポイントデータを取得する第1ステップ、取得した測定ポイントデータと計算ポイントデータの距離から空気減弱係数を求め、検出確率を算出する第2ステップ、算出された検出確率をML−EM法を表す式に導入し、繰り返し計算によって放射線強度を求める第3ステップ、及び求められた放射線強度を、空間線量換算係数を用いて空間線量率に換算する第4ステップを含む。本発明の別な観点によれば、前記飛行体は、少なくともGPS、放射線検出器、地上との間で各種データ通信を行う通信機と、前記各機器に接続され、内部メモリに記憶されたプログラムに従ってあらかじめ決められた処理を行うコンピュータを搭載している無人ヘリコプターであって、前記プログラムによって、前記第1から第4ステップが実行され、実行結果がリアルタイムで地上に設置されたコンピュータにデータ送信されるよう構成されている。 More specifically, the present invention is a method of measuring an air dose at a constant altitude from the ground using an air vehicle equipped with at least a GPS and a radiation detector, wherein the latitude, longitude, height, and the like are described. The first step to acquire the measurement point data consisting of the measurement count rate from the radiation detector and the calculation point data consisting of the topography information around the radiation measurement area at the latitude, longitude, and conversion value calculation points, the acquired measurement point data and calculation points. The second step of calculating the detection probability by calculating the air attenuation coefficient from the distance of the data, the third step of introducing the calculated detection probability into the formula expressing the ML-EM method, and calculating the radiation intensity by iterative calculation, and the determination. It includes a fourth step of converting the radiation intensity into an air dose rate using an air dose conversion coefficient. According to another aspect of the present invention, the air vehicle is connected to at least a communication device that performs various data communication with GPS, a radiation detector, and the ground, and a program connected to each device and stored in an internal memory. It is an unmanned helicopter equipped with a computer that performs predetermined processing according to the above, and the program executes the first to fourth steps, and the execution result is transmitted in real time to a computer installed on the ground. It is configured to.

地上に設置された前記コンピュータは、そのメモリに予め記憶されている地図データと、前記飛行体から地上に送られてきたデータとに基づいて、空間線量の大きさ別に色分けした空間線量地図データを作成し、地図とその場所の空間線量を表示装置にカラーで表示する。 The computer installed on the ground displays the air dose map data color-coded according to the magnitude of the air dose based on the map data stored in advance in the memory and the data sent from the flying object to the ground. Create and display the map and the air dose at that location in color on the display device.

本方法は、無人ヘリコプター等を用いて上空から測定した放射線測定値を、地形情報を用いて地上1m空間線量値に換算することを目的として開発されたもので、従来の換算方法に比べ、より地上で測定した値に近い値を導くことが出来る。放射線計数値と測定位置情報及び周辺地形情報から、換算対象ポイントにおける放射線強度を推定でき、また放射線強度と空間線量率との関係性から得られる空間線量換算計数を用いることで、空間線量値を求めることが出来る。また、上空からの放射線測定だけに限らず、3Dレーザー等で周辺地形情報を得ることができれば、地上測定、室内測定においても、本手法で放射線強度を推定できる。 This method was developed for the purpose of converting the radiation measurement value measured from the sky using an unmanned helicopter or the like into a 1 m air dose value above the ground using topographical information, and is more than the conventional conversion method. It is possible to derive a value close to the value measured on the ground. The radiation intensity at the conversion target point can be estimated from the radiation count value, measurement position information, and surrounding topography information, and the air dose value can be calculated by using the air dose conversion count obtained from the relationship between the radiation intensity and the air dose rate. You can ask. Further, if the surrounding topographical information can be obtained not only by the radiation measurement from the sky but also by a 3D laser or the like, the radiation intensity can be estimated by this method also in the ground measurement and the indoor measurement.

本発明の空間線量算出方法を説明するための模式図。The schematic diagram for demonstrating the air dose calculation method of this invention. 空気(距離)による減弱係数(PHITS計算結果)を示すグラフ。The graph which shows the attenuation coefficient (PHITS calculation result) by air (distance). 角度による減弱係数(PHITS計算結果)を示すグラフ。The graph which shows the attenuation coefficient (PHITS calculation result) by an angle. 森林による減弱係数を示すグラフ。A graph showing the attenuation coefficient by forests. 本発明の空間線量算出方法で使用する計算の流れの詳細説明図。Detailed explanatory view of the calculation flow used in the air dose calculation method of this invention. 歩行サーベイによる地上1m空間線量率測定結果と無人ヘリコプターによる上空からの放射線測定値地上1m換算結果(エリア1)を表す図。The figure which shows the 1m air dose rate measurement result above the ground by a walking survey and the radiation measurement value from the sky by an unmanned helicopter 1m conversion result (area 1). 歩行サーベイによる地上1m空間線量率測定結果と無人ヘリコプターによる上空からの放射線測定値地上1m換算結果(エリア2)を表す図。The figure which shows the 1m air dose rate measurement result above the ground by a walking survey and the radiation measurement value from the sky by an unmanned helicopter 1m conversion result (area 2). 図6のエリア1における、従来法による換算値と地上測定値の比較Comparison of the conversion value by the conventional method and the ground measurement value in area 1 of FIG. 図6のエリア1における、ML−EM法による換算値と地上測定値の比較Comparison of converted value by ML-EM method and ground measurement value in area 1 of FIG. 図6のエリア2における、従来法による換算値と地上測定値の比較Comparison of the conversion value by the conventional method and the ground measurement value in the area 2 of FIG. 図6のエリア2における、ML−EM法による換算値と地上測定値の比較Comparison of converted value by ML-EM method and ground measurement value in area 2 of FIG.

初めに、本発明の基本的考え方について図1を参照して説明する。図1は本発明の空間線量算出方法を模式的に示した図であって、紙面に向かって左側の図は、本発明で採用する空間線量算出方法の主要な流れを示している。また、紙面に向かって右側の図は、上述の空間線量算出方法で使用するパラメータを理解し易いように図解したものである。
<ML−EM法の適用>
本発明の最大の特徴は、無人ヘリコプターなどの移動体に搭載された放射線検出器を用いることによって上空で測定した放射線測定データを、医療分野においてPET検査等の画像再構成構成法として用いられるML−EM(Maximum Likelihood−Expectation Maximization)法を用いたアルゴリズムに上空放射線測定用のパラメータを組み込むことにより地上1mの高さの放射線測定値へと換算することにある。ここで、ML−EM法の遂次式は式(1)のように表される。

Figure 2020134316
First, the basic concept of the present invention will be described with reference to FIG. FIG. 1 is a diagram schematically showing the air dose calculation method of the present invention, and the figure on the left side facing the paper shows the main flow of the air dose calculation method adopted in the present invention. In addition, the figure on the right side of the paper is illustrated so that the parameters used in the above-mentioned air dose calculation method can be easily understood.
<Application of ML-EM method>
The greatest feature of the present invention is the ML used in the medical field as an image reconstruction method for PET examinations and the like by using radiation measurement data measured in the sky by using a radiation detector mounted on a moving body such as an unmanned helicopter. -EM (Maximum Likelihood-Expectation Maximization) method is used to incorporate parameters for aerial radiation measurement into a radiation measurement value at a height of 1 m above the ground. Here, the sequential equation of the ML-EM method is expressed as equation (1).
Figure 2020134316

ここで、kは繰り返し計算回数、jは計算ポイントの番号(メッシュ番号)、λjはjにおける計算推定値、Bはすべての計算ポイント数を表す。また、iは検出器の位置番号を示し、yiは位置iにおける放射線計数値、Nはすべての測定ポイント数である。Cijは検出効率を示す。Cijにはjからiまでの距離、jとiの角度、地形による遮蔽効果、森林による遮蔽効果を考慮したパラメータを用いた。Cijのパラメータ算出には、無人ヘリコプターによる放射線測定データの他、写真測量データ(DSM: Digital Surface Model 樹木や建物を含めた高さ)及び国土地理院の基板地図情報の地表面高度モデル(DEM: Digital Elevation Model 樹木や建物を含まない地表面の高さ)データを用いた。ML−EM法で使用する検出効率Cijは、次の式(2)によって求められる。

Figure 2020134316
Here, k is the number of repeated calculations, j is the number of calculation points (mesh number), λj is the estimated calculation value in j, and B is the number of all calculation points. Further, i indicates the position number of the detector, yi is the radiation count value at the position i, and N is the number of all measurement points. Cij indicates the detection efficiency. For Cij, parameters considering the distance from j to i, the angle between j and i, the shielding effect by the terrain, and the shielding effect by the forest were used. For the calculation of Cij parameters, in addition to radiation measurement data by an unmanned helicopter, photographic survey data (DSM: Digital Surface Model height including trees and buildings) and ground surface elevation model (DEM:) of the board map information of the National Land Research Institute. Digital Elevation Model Ground surface height excluding trees and buildings) data was used. The detection efficiency Cij used in the ML-EM method is obtained by the following equation (2).
Figure 2020134316

検出効率Cijは、測定ポイントと計算ポイントの距離から算出される、距離に応じた減弱係数f(x)、測定ポイントと計算ポイントの地面との角度から算出される、地面との角度に応じた減衰係数すなわち角度補正係数K(θ)、及び測定ポイントと樹高の関係から算出される、森林による減弱係数M(h)から求められる。距離に応じた減弱係数f(x)を式(3)及び(4)に示す。

Figure 2020134316
The detection efficiency Cij corresponds to the angle with the ground, which is calculated from the attenuation coefficient f (x) according to the distance calculated from the distance between the measurement point and the calculation point, and the angle between the measurement point and the ground at the calculation point. It is obtained from the attenuation coefficient, that is, the angle correction coefficient K (θ), and the attenuation coefficient M (h) due to the forest, which is calculated from the relationship between the measurement point and the tree height. The attenuation coefficient f (x) according to the distance is shown in equations (3) and (4).
Figure 2020134316

Figure 2020134316
Figure 2020134316

距離による減弱係数にはCs−137の放出する662keV点線源の距離に応じての全エネルギーカウントの光子の減衰をPHITSにより計算した結果を使用した。その距離による減弱係数f(x)の計算結果を図2に示す。図2において、横軸は測定ポイントiと計算ポイントj間の距離を、縦軸は減弱係数f(x)である。減弱係数f(x)は距離が200mまでは累乗近似、それ以降は指数近似とした。なおf(x)はガンマ線のエネルギーにより減衰率は異なるが、高度80m以下の測定ではx>500の値を計算する頻度は低い。よって今回は全てCs−137(662keV)のエネルギーでの減衰で計算した。角度に応じた減弱係数K(θ)を式(5)に示す。

Figure 2020134316
For the attenuation coefficient by distance, the result of calculating the photon attenuation of the total energy count according to the distance of the 662 keV dotted line source emitted by Cs-137 by PHITS was used. The calculation result of the attenuation coefficient f (x) based on the distance is shown in FIG. In FIG. 2, the horizontal axis is the distance between the measurement point i and the calculation point j, and the vertical axis is the attenuation coefficient f (x). The attenuation coefficient f (x) is a power approximation up to a distance of 200 m, and an exponential approximation thereafter. Although the damping factor of f (x) differs depending on the energy of gamma rays, the frequency of calculating the value of x> 500 is low in the measurement at an altitude of 80 m or less. Therefore, this time, all calculations were made by attenuation with energy of Cs-137 (662 keV). The attenuation coefficient K (θ) according to the angle is shown in the equation (5).
Figure 2020134316

角度による減弱係数にはCs−137の放出する662keV点線源の距離に応じての全エネルギーカウントの光子の減衰をPHITSにより計算した結果を使用した。角度による減弱係数K(θ)の計算結果を図3に示す。図3において、横軸は測定ポイントiと計算ポイントjから成るベクトルと、土壌表面との間の角度を、縦軸は減弱係数K(θ)である。減弱係数K(θ)はガウス近似とした。 For the attenuation coefficient by angle, the result of calculating the photon attenuation of the total energy count according to the distance of the 662 keV dotted line source emitted by Cs-137 by PHITS was used. The calculation result of the attenuation coefficient K (θ) depending on the angle is shown in FIG. In FIG. 3, the horizontal axis is the angle between the vector consisting of the measurement point i and the calculation point j and the soil surface, and the vertical axis is the attenuation coefficient K (θ). The attenuation coefficient K (θ) is a Gaussian approximation.

森林による減衰係数は複数の森林エリアにおいて上空からの測定と、地上からの測定を実施し、従来法による上空放射線測定値の地上1m換算値と地上1m測定値の比と、DEMとDSMから算出した樹高との関係から係数を得た。その際、樹高はiの直下半径20mにおけるjからiの森林(DSM)通過距離平均値とした。上空測定地上1m換算値と地上1m測定値の比と樹高の関係を図4に示す。図4において、横軸は測定ポイントから半径20m内の平均樹高で、縦軸は減弱係数M(h)である。この結果から、減弱係数M(h)は式(6)のように定義される。

Figure 2020134316
Attenuation coefficient due to forest is calculated from the ratio of 1m above ground conversion value and 1m above ground measurement value of the above-ground radiation measurement value by the conventional method, and DEM and DSM by measuring from the sky and from the ground in multiple forest areas. The coefficient was obtained from the relationship with the height of the tree. At that time, the tree height was taken as the average value of the forest (DSM) passage distances from j to i at a radius of 20 m directly below i. Figure 4 shows the relationship between the ratio of the 1m above-ground measurement value and the 1m above-ground measurement value and the tree height. In FIG. 4, the horizontal axis is the average tree height within a radius of 20 m from the measurement point, and the vertical axis is the attenuation coefficient M (h). From this result, the attenuation coefficient M (h) is defined as in the equation (6).

Figure 2020134316

これら計算式について、C言語を用いてプログラム化し、上空からの放射線測定データの解析を行った。詳しい計算の流れを図5に示す。 These calculation formulas were programmed using C language, and the radiation measurement data from the sky was analyzed. Figure 5 shows the detailed calculation flow.

解析範囲は、周辺からの影響を考慮し、測定ポイントから半径150mを解析範囲とした。また、比較対象として、従来用いられている平面モデルを仮定した解析を実施した。ML−EM法により得られた推定値の空間線量への換算は、従来法で得られた換算値とML−EM法で得られた推定値から線量換算係数を求め、地上1mの空間線量値へと換算した。それぞれの得られた値は市販のGISソフトウエア(ArC GIS, ESRI社製)を用いてクリギング法を用いて内挿し、コンター図を作成した。
<上空からの放射線測定手法>
上空から測定にあたっては、ヤマハ発動機(株)自律飛行型無人ヘリFAZER RG2を使用し、地上からの直達ガンマ線及び空気による散乱線を合わせた全計数率とγ線エネルギースペクトルを1秒間に1回連続測定した。また、放射線検出器はLaBr3(Ce)(Lanthanum Bromide)シンチレーション検出器を用いた。無人ヘリおよび放射線検出器の仕様をTable1及びTable2に示す。

Figure 2020134316
The analysis range was set to a radius of 150 m from the measurement point in consideration of the influence from the surroundings. In addition, as a comparison target, an analysis was performed assuming a conventionally used plane model. To convert the estimated value obtained by the ML-EM method to air dose, obtain the dose conversion coefficient from the converted value obtained by the conventional method and the estimated value obtained by the ML-EM method, and obtain the air dose value of 1 m above the ground. Converted to. Each of the obtained values was interpolated using a commercially available GIS software (ArC GIS, manufactured by ESRI) using the kriging method, and a contour diagram was created.
<Radiation measurement method from the sky>
When measuring from the sky, Yamaha Motor Co., Ltd. autonomous flight type unmanned helicopter FAZER RG2 is used, and the total count rate and γ-ray energy spectrum including the direct gamma rays from the ground and the scattered rays by air are measured once per second. Continuous measurement was performed. A LaBr3 (Ce) (Lanthanum Bromide) scintillation detector was used as the radiation detector. The specifications of the unmanned helicopter and the radiation detector are shown in Table 1 and Table 2.
Figure 2020134316

Figure 2020134316
Figure 2020134316

無人ヘリの飛行高度は、対地高度で50mを目安とした。上空で測定される放射線は、無人ヘリの直下を中心に直径約100m程度の円内のガンマ線量を平均化したものである。取得データは、放射線検出器で測定される1秒ごとのガンマ線のデータ(計数率)とエネルギースペクトル及びそれに対応するDGPS(差分全地球測位システム:Differential Global Positioning System)による位置情報である。 The flight altitude of the unmanned helicopter was set at 50 m above ground level. The radiation measured in the sky is an average of the gamma doses in a circle with a diameter of about 100 m centered directly under the unmanned helicopter. The acquired data is gamma ray data (counting rate) measured by a radiation detector every second, an energy spectrum, and position information by a corresponding DGPS (Differential Global Positioning System).

本発明にかかる方法の効果を検証するため、ML−EM法を使用しない従来の方法でも同様の測定を行った。
<従来法によるデータ解析方法>
上空で測定されたガンマ線計数率を地上1m高さでの空間線量率の値に換算するための係数を取得するために、測定地域内において比較的空間線量率が一定で平坦な場所に直径200mの円形のテストサイトを設定した。テストサイト内では、あらかじめNaIサーベイメータを用いて、地上から1m高さの空間線量率データを取得した。その後、テストサイトの中心から上空の対地高度50mで無人ヘリをホバリングさせ、この高度(基準高度)で取得されたガンマ線計数率とテストサイトの地上における空間線量率とを比較し、空間線量率換算係数(CD: Conversion factor: cps (μSv/h)−1)を算出した。さらに、テストサイト上空を対地高度10mから100mまで10 mごとにホバリングし、各高度におけるガンマ線計数率を測定し、高度ごとのガンマ線計数率から対地高度とガンマ線計数率との関係式を求め、高度補正係数(AF: Attenuation factor:m−1)を算出した。
In order to verify the effect of the method according to the present invention, the same measurement was performed by a conventional method that does not use the ML-EM method.
<Data analysis method by the conventional method>
In order to obtain a coefficient for converting the gamma ray counting rate measured in the sky into the value of the air dose rate at a height of 1 m above the ground, the diameter is 200 m in a flat place where the air dose rate is relatively constant in the measurement area. Set up a circular test site. At the test site, air dose rate data at a height of 1 m above the ground was acquired in advance using a NaI survey meter. After that, an unmanned helicopter was hovered at an altitude of 50 m above the center of the test site, and the gamma ray count rate acquired at this altitude (reference altitude) was compared with the air dose rate on the ground of the test site, and the air dose rate was converted. The coefficient (CD: Conversion space: cps (μSv / h) -1) was calculated. Furthermore, hovering over the test site from 10 m to 100 m above the ground level every 10 m, the gamma ray count rate at each altitude is measured, and the relational expression between the ground level and the gamma ray count rate is obtained from the gamma ray count rate for each altitude. The correction coefficient (AF: Attitude factor: m-1) was calculated.

実際のフライトで取得されたガンマ線計数率は、対地高度と基準高度のずれを高度補正係数AFにより補正し、空間線量率換算係数CDから地上1m高さでの空間線量率(μSv h−1)に換算した。なお、対地高度はGPSにより測位したGPSの高度から国土地理院が作成した10mメッシュの数値標高モデルDEM(Digital Elevation Model)データ及びジオイド高を差し引くことにより求めた。
<歩行サーベイによる地上線量率測定>
上空からのモニタリングデータの妥当性を評価するために地上において歩行サーベイを実施した。歩行サーベイには、原子力規制庁の「東京電力株式会社福島第一原子力発電所事故に伴う放射性物質の分布データの集約」で行われている歩行サーベイに用いられるKURAMA−II(Kyoto University RAdiation MApping system)を採用した。KURAMA−IIは、13mm×13mm×20mmのCsI(Tl)結晶を用いたCsI(Tl)シンチレーション検出器(浜松ホトニクス製C12137)及びCompactRIOで構成されており、様々なパラメータで空間線量率の補正が可能となっている。実際のデータ取得方法は、KURAMA−IIシステムとバッテリーを測定者が背負い、歩きながら3秒毎に測定した空間線量率データとGPSによる位置情報を取得した。
<換算結果>
ML−EM法による無人ヘリによる測定結果を再構築した結果について図6、図7に示す。従来法により作成したコンター図に比べて、線量率の勾配がくっきりと見えていることが分かる。
The gamma ray count rate acquired in the actual flight corrects the deviation between the altitude above ground level and the reference altitude by the altitude correction coefficient AF, and the air dose rate at a height of 1 m above the ground from the air dose rate conversion coefficient CD (μSv h-1). Converted to. The altitude to the ground was obtained by subtracting the digital elevation model DEM (Digital Elevation Model) data and geoid height of a 10 m mesh created by the Geospatial Information Authority of Japan from the GPS altitude determined by GPS.
<Measurement of ground dose rate by walking survey>
A walking survey was conducted on the ground to evaluate the validity of monitoring data from the sky. The walking survey includes the KURAMA-II (Kyoto University Radiation Mapping system) used in the walking survey conducted by the Nuclear Regulatory Agency's "Aggregation of distribution data of radioactive materials associated with the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc." )It was adopted. KURAMA-II is composed of a CsI (Tl) scintillation detector (C12137 manufactured by Hamamatsu Photonics) using CsI (Tl) crystals of 13 mm x 13 mm x 20 mm and CompactRIO, and can correct the air dose rate with various parameters. It is possible. In the actual data acquisition method, the measurer carried the KURAMA-II system and the battery on his back, and acquired the air dose rate data measured every 3 seconds while walking and the position information by GPS.
<Conversion result>
The results of reconstructing the measurement results of the unmanned helicopter by the ML-EM method are shown in FIGS. 6 and 7. It can be seen that the gradient of the dose rate is clearly visible compared to the contour diagram created by the conventional method.

図6は、森林と平地で構成されているエリア1における、歩行サーベイによる地上1m空間線量率測定結果と無人ヘリコプターによる上空からの放射線測定値地上1m換算結果を示す。無人ヘリコプターのフライト高度は50m、速度は2m/s、測定測線幅は10mである。図6から、従来法では森林部が樹木によって遮蔽され、低めの値となっているが、ML−EM法を用いた本発明の方法では、森林部の線量が従来法に比べてより地上値に近い値となっていることがわかる。 FIG. 6 shows the result of measuring the air dose rate of 1 m above the ground by a walking survey and the result of converting the radiation measured value from the sky by an unmanned helicopter into 1 m above the ground in the area 1 composed of forest and flat land. The flight altitude of the unmanned helicopter is 50 m, the speed is 2 m / s, and the measured line width is 10 m. From FIG. 6, in the conventional method, the forest part is shielded by trees and the value is low, but in the method of the present invention using the ML-EM method, the dose in the forest part is higher than the above-ground value as compared with the conventional method. It can be seen that the value is close to.

また、図7は、森林、住宅地、平地等で構成されているエリア2における、歩行サーベイによる地上1m空間線量率測定結果と無人ヘリコプターによる上空からの放射線測定値地上1m換算結果を示す。無人ヘリコプターのフライト高度は50m、速度は5m/s、測定測線幅は50mである。また、エリアは約1.7km×1.0km程の広さである。図7から、従来法では線量の低いエリアが周辺線量の影響を受けて高めの値となったが、ML−EM法を用いた本発明の方法では、より地上値に近く、線量が低い値として換算されていることがわかる。上述のマップの状態変化を定量的に評価するために、図8a、図8b及び図9a、図9bに地上測定値と比較した結果を示す。定量的な比較を実施するために、ここで相対偏差(RD)を以下の式(7)で定義する。

Figure 2020134316
Further, FIG. 7 shows the results of measuring the air dose rate of 1 m above the ground by a walking survey and the results of converting the radiation measured values from the sky by an unmanned helicopter into 1 m above the ground in the area 2 composed of forests, residential areas, flat areas, etc. The flight altitude of the unmanned helicopter is 50 m, the speed is 5 m / s, and the measured line width is 50 m. The area is about 1.7 km x 1.0 km. From FIG. 7, in the conventional method, the area where the dose is low is affected by the ambient dose and becomes a high value, but in the method of the present invention using the ML-EM method, the value is closer to the ground value and the dose is low. It can be seen that it is converted as. In order to quantitatively evaluate the state change of the above-mentioned map, the results of comparison with the ground measurement values are shown in FIGS. 8a, 8b, 9a, and 9b. In order to carry out a quantitative comparison, the relative deviation (RD) is defined here by the following equation (7).
Figure 2020134316

ここでiは測定ポイントを示し、Gは測定ポイントiにおける歩行サーベイの測定結果、Vは測定ポイントiにおける無人ヘリの測定結果を示している。歩行サーベイの測定結果と無人ヘリの測定結果をそれぞれの測定エリアごとに比較した結果及びRDの頻度分布について、図8a、図8b及び図9a、図9bに示す。RDの平均値をみると、従来法による換算結果に比べ、ML−EM法を用いた換算結果はより0に近づいている。この結果は、ML−EM法による換算が従来法よりも、地上値に近い数値に改善されていることを示している。 Here, i indicates the measurement point, G indicates the measurement result of the walking survey at the measurement point i, and V indicates the measurement result of the unmanned helicopter at the measurement point i. The results of comparing the measurement results of the walking survey and the measurement results of the unmanned helicopter for each measurement area and the frequency distribution of RD are shown in FIGS. 8a, 8b, 9a, and 9b. Looking at the average value of RD, the conversion result using the ML-EM method is closer to 0 than the conversion result by the conventional method. This result shows that the conversion by the ML-EM method is improved to a value closer to the ground value than the conventional method.

図8a及び図8bは、共にエリア1の、歩行サーベイによる地上1m空間線量率測定結果と無人ヘリコプターによる上空からの放射線測定値地上1m換算結果の比較を示している。図8aは従来法による換算値と地上測定値の比較を、図8bはML−EM法による換算値と地上測定値の比較を示す。 Both FIGS. 8a and 8b show a comparison between the measurement result of the air dose rate 1 m above the ground by the walking survey and the radiation measurement value 1 m above the ground conversion result by the unmanned helicopter in both areas 1. FIG. 8a shows a comparison between the converted value by the conventional method and the ground measured value, and FIG. 8b shows a comparison between the converted value by the ML-EM method and the ground measured value.

また、図9a及び図9bは、共にエリア2の、歩行サーベイによる地上1m空間線量率測定結果と無人ヘリコプターによる上空からの放射線測定値地上1m換算結果の比較を示している。図9aは従来法による換算値と地上測定値の比較を、図9bはML−EM法による換算値と地上測定値の比較を示す。

Figure 2020134316
Further, FIGS. 9a and 9b both show a comparison between the measurement result of the air dose rate 1 m above the ground by the walking survey and the radiation measurement value 1 m above the ground conversion result by the unmanned helicopter in the area 2. FIG. 9a shows a comparison between the converted value by the conventional method and the ground measured value, and FIG. 9b shows a comparison between the converted value by the ML-EM method and the ground measured value.

Figure 2020134316

正規化された平均二乗誤差NMSE(Normalized Mean Square Error)は、地上測定値と換算値を上の式(8)で計算し、値を算出する。この値が0に近いほど、地上測定値に近い値となる。エリア1とエリア2のいずれにおいても、ML−EM法を用いた本発明の方法による換算値の方が小さい値になっていることがわかる。 The normalized mean square error NMSE (Normalized Mean Square Error) calculates the ground measurement value and the converted value by the above equation (8). The closer this value is to 0, the closer to the ground measurement value. It can be seen that in both area 1 and area 2, the converted value by the method of the present invention using the ML-EM method is smaller.

yi…測定ポイントデータ
λj…計算ポイントデータ
f(x)…空気減弱係数
K(θ)…角度補正係数
M(h)…森林減弱係数
Cij…検出確率
λ…放射線強度
y ... Measurement point data λj ... Calculation point data
f (x)… Air attenuation coefficient
K (θ) ... Angle correction coefficient M (h) ... Forest attenuation coefficient Cij ... Detection probability λ ... Radiation intensity

Claims (8)

少なくともGPS及び放射線検出器を搭載している飛行体を用いて、地上から一定高度における空間線量を測定する方法であって、
緯度、経度、高さ、前記放射線検出器からの測定計数率から成る測定ポイントデータと、緯度、経度、換算値算出ポイントにおける放射線測定エリア周辺地形情報から成る計算ポイントデータを取得する第1ステップ、
取得した測定ポイントデータと計算ポイントデータの距離から空気減弱係数を求め、検出確率を算出する第2ステップ、
算出された検出確率をML-EM法を表す式に導入し、繰り返し計算によって放射線強度を求める第3ステップ、及び
求められた放射線強度を、空間線量換算係数を用いて空間線量率に換算する第4ステップ、
から成る飛行体による空間線量測定方法。
It is a method of measuring air dose at a certain altitude from the ground using an air vehicle equipped with at least GPS and a radiation detector.
The first step of acquiring measurement point data consisting of latitude, longitude, height, and measurement count rate from the radiation detector, and calculation point data consisting of topography information around the radiation measurement area at latitude, longitude, and conversion value calculation points.
The second step of calculating the detection probability by obtaining the air attenuation coefficient from the distance between the acquired measurement point data and the calculation point data,
The calculated detection probability is introduced into the formula expressing the ML-EM method, and the third step of calculating the radiation intensity by iterative calculation, and the calculated radiation intensity is converted into the air dose rate using the air dose conversion coefficient. 4 steps,
Air dosimetry method using an air vehicle consisting of.
請求項1に記載の方法において、前記第2ステップにおいて、測定ポイントと計算ポイントの地面との角度から角度補正係数を求め、前記検出確率を前記空気減弱係数と前記角度補正係数の積算値から求めることを特徴とする飛行体による空間線量測定方法。 In the method according to claim 1, in the second step, the angle correction coefficient is obtained from the angle between the measurement point and the ground of the calculation point, and the detection probability is obtained from the integrated value of the air attenuation coefficient and the angle correction coefficient. An air dose measurement method using an air vehicle, which is characterized in that. 請求項1に記載の方法において、前記第2ステップにおいて、測定ポイントと樹高の関係から森林減弱係数を求め、前記検出確率を前記空気減弱係数と前記森林減弱係数の積算値から求めることを特徴とする飛行体による空間線量測定方法。 The method according to claim 1 is characterized in that, in the second step, the forest attenuation coefficient is obtained from the relationship between the measurement point and the tree height, and the detection probability is obtained from the integrated value of the air attenuation coefficient and the forest attenuation coefficient. Air dose measurement method by the flying object. 請求項2に記載の方法において、前記第2ステップにおいて、測定ポイントと樹高の関係から森林減弱係数を求め、前記検出確率を前記空気減弱係数と前記角度補正係数と前記森林減弱係数の積算値から求めることを特徴とする飛行体による空間線量測定方法。 In the method according to claim 2, in the second step, the forest attenuation coefficient is obtained from the relationship between the measurement point and the tree height, and the detection probability is calculated from the integrated value of the air attenuation coefficient, the angle correction coefficient, and the forest attenuation coefficient. A method for measuring air dose by an air vehicle, which is characterized by obtaining. 請求項1乃至4のいずれかに記載の方法において、前記飛行体は、少なくともGPS、放射線検出器、地上との間で各種データ通信を行う通信機と、前記各機器に接続され、内部メモリに記憶されたプログラムに従ってあらかじめ決められた処理を行うコンピュータを搭載している無人ヘリコプターであって、前記プログラムによって、前記第1から第4ステップが実行され、実行結果がリアルタイムで地上に設置されたコンピュータにデータ送信されることを特徴とする飛行体による空間線量測定方法。 In the method according to any one of claims 1 to 4, the air vehicle is connected to at least a communication device that performs various data communication with GPS, a radiation detector, and the ground, and each device, and is stored in an internal memory. An unmanned helicopter equipped with a computer that performs predetermined processing according to a stored program. The program executes the first to fourth steps, and the execution result is a computer installed on the ground in real time. A method of measuring air dose by an air vehicle, characterized in that data is transmitted to a computer. 請求項5に記載の方法において、地上に設置された前記コンピュータは、予め記憶されている地図データと、前記飛行体から地上に送られてきたデータとに基づいて、空間線量の大きさ別に色分けした空間線量地図データを作成し、表示装置にカラー表示することを特徴とする飛行体による空間線量測定方法。 In the method according to claim 5, the computer installed on the ground is color-coded according to the magnitude of air dose based on the map data stored in advance and the data sent from the flying object to the ground. An air dose measurement method using an air vehicle, which is characterized in that the air dose map data is created and displayed in color on a display device. 少なくともGPS及び放射線検出器を搭載している飛行体を用いて、地上から一定高度における空間線量を測定する方法であって、
緯度、経度、高さ、前記放射線検出器からの測定計数率から成る測定ポイントデータと、緯度、経度、換算値算出ポイントにおける放射線測定エリア周辺地形情報から成る計算ポイントデータを取得し、
取得した測定ポイントデータと計算ポイントデータの距離から空気減弱係数を、測定ポイントと計算ポイントの地面との角度から角度補正係数を、測定ポイントと樹高の関係から森林減弱係数をそれぞれ求め、それらの積算値から検出確率を算出し、
算出された検出確率をML-EM法を表す式に導入し、繰り返し計算によって放射線強度を求め、
求められた放射線強度を、空間線量換算係数を用いて空間線量率に換算することを特徴とする飛行体による空間線量測定方法。
It is a method of measuring air dose at a certain altitude from the ground using an air vehicle equipped with at least GPS and a radiation detector.
The measurement point data consisting of latitude, longitude, height, and the measurement count rate from the radiation detector, and the calculation point data consisting of the topography information around the radiation measurement area at the latitude, longitude, and conversion value calculation points are acquired.
Obtain the air attenuation coefficient from the distance between the acquired measurement point data and the calculation point data, the angle correction coefficient from the angle between the measurement point and the ground of the calculation point, and the forest attenuation coefficient from the relationship between the measurement point and the tree height, and integrate them. Calculate the detection probability from the value and
The calculated detection probability is introduced into the formula expressing the ML-EM method, and the radiation intensity is calculated by iterative calculation.
An air dose measurement method using an air vehicle, characterized in that the obtained radiation intensity is converted into an air dose rate using an air dose conversion coefficient.
請求項7に記載の方法において、前記飛行体によって得られた空間線量率等のデータを地上に設置されたコンピュータに送信し、該コンピュータのメモリに予め記憶されている地図データと前記飛行体から地上に送られてきたデータとに基づいて、空間線量の大きさ別に色分けした空間線量地図データを作成し、前記地上に設置されたコンピュータの表示装置にカラー表示することを特徴とする飛行体による空間線量測定方法。 In the method according to claim 7, data such as an air dose rate obtained by the flying object is transmitted to a computer installed on the ground, and map data stored in advance in the memory of the computer and the flying object are used. Based on the data sent to the ground, the air dose map data color-coded according to the magnitude of the air dose is created and displayed in color on the display device of the computer installed on the ground. Air dose measurement method.
JP2019028137A 2019-02-20 2019-02-20 Air dose calculation method using flying body Pending JP2020134316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019028137A JP2020134316A (en) 2019-02-20 2019-02-20 Air dose calculation method using flying body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019028137A JP2020134316A (en) 2019-02-20 2019-02-20 Air dose calculation method using flying body

Publications (1)

Publication Number Publication Date
JP2020134316A true JP2020134316A (en) 2020-08-31

Family

ID=72262935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019028137A Pending JP2020134316A (en) 2019-02-20 2019-02-20 Air dose calculation method using flying body

Country Status (1)

Country Link
JP (1) JP2020134316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325795A (en) * 2021-12-31 2022-04-12 天津大学 Urban measuring point distribution and measuring value acquisition method in harmful radiation field
EP4332636A1 (en) * 2022-08-31 2024-03-06 AIT Austrian Institute of Technology GmbH Method for measuring dose rates of radioactive surfaces on the ground of a terrain

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257277A (en) * 2004-03-09 2005-09-22 Hitachi Ltd Radiation distribution monitor, radiation detector, and exposure control system
JP2011220719A (en) * 2010-04-05 2011-11-04 Toshiba Corp Nuclear medicine diagnosis device, medical image processor and medical image diagnosis device
JP2014145700A (en) * 2013-01-30 2014-08-14 Japan Atomic Energy Agency Method for measuring deposition quantity of radioactive cesium in vicinity of nuclear power facility
JP2016014579A (en) * 2014-07-02 2016-01-28 株式会社堀場製作所 Gamma camera adjusting device and gamma camera system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257277A (en) * 2004-03-09 2005-09-22 Hitachi Ltd Radiation distribution monitor, radiation detector, and exposure control system
JP2011220719A (en) * 2010-04-05 2011-11-04 Toshiba Corp Nuclear medicine diagnosis device, medical image processor and medical image diagnosis device
JP2014145700A (en) * 2013-01-30 2014-08-14 Japan Atomic Energy Agency Method for measuring deposition quantity of radioactive cesium in vicinity of nuclear power facility
JP2016014579A (en) * 2014-07-02 2016-01-28 株式会社堀場製作所 Gamma camera adjusting device and gamma camera system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐々木 美幸: "環境中の放射線可視化の最前線−ドローンを使った3次元画像の作成−", 平成29年度福島研究開発部門成果報告会, JPN7022003448, 14 February 2018 (2018-02-14), JP, ISSN: 0004976775 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325795A (en) * 2021-12-31 2022-04-12 天津大学 Urban measuring point distribution and measuring value acquisition method in harmful radiation field
EP4332636A1 (en) * 2022-08-31 2024-03-06 AIT Austrian Institute of Technology GmbH Method for measuring dose rates of radioactive surfaces on the ground of a terrain

Similar Documents

Publication Publication Date Title
Sanada et al. The aerial radiation monitoring in Japan after the Fukushima Daiichi nuclear power plant accident
Mochizuki et al. First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima
Pavlovsky et al. 3-D radiation mapping in real-time with the localization and mapping platform LAMP from unmanned aerial systems and man-portable configurations
Gong et al. Locating lost radioactive sources using a UAV radiation monitoring system
RU2620333C1 (en) Method of administration of aircraft radiation surveys with the use of a helicopter-free helicopter of a helicopter type
Chen et al. In-flight performance of the Advanced Radiation Detector for UAV Operations (ARDUO)
AU2014292775A1 (en) System and method for aerial surveying or mapping of radioactive deposits
Gabrlik et al. An automated heterogeneous robotic system for radiation surveys: Design and field testing
Van der Veeke et al. Footprint and height corrections for UAV-borne gamma-ray spectrometry studies
JP2020134316A (en) Air dose calculation method using flying body
KR101682088B1 (en) Device and method for processing 3-dimensional visualization of radiation source
JP2015526702A (en) How to map photon distribution in real time on site
Vargas et al. Comparison of airborne radiation detectors carried by rotary-wing unmanned aerial systems
JP6143219B2 (en) Measurement method of radioactive cesium deposition in the vicinity of nuclear facilities
Briechle et al. UAV-based detection of unknown radioactive biomass deposits in Chernobyl’s Exclusion Zone
Joshi et al. Measurement of the energy-dependent angular response of the ARES detector system and application to aerial imaging
Sasaki et al. Development of analysis method for airborne radiation monitoring using the inverse problem solutions
Murtha et al. Tomographic reconstruction of a spatially-extended source from the perimeter of a restricted-access zone using a SCoTSS compton gamma imager
Malins et al. Topographic effects on ambient dose equivalent rates from radiocesium fallout
Sasaki et al. Application of the forest shielding factor to the maximum-likelihood expectation maximization method for airborne radiation monitoring
Sanada et al. Comparison of Dose Rates from Four Surveys around the Fukushima Daiichi Nuclear Power Plant for Location Factor Evaluation
JP6419448B2 (en) Contamination distribution measuring device for measuring the distribution of contamination by radioactive materials
Kikawa et al. Radiation mapping using a double exponential attenuation model for UAV sensing in forest area
Kikawa et al. Landcover Based 3-Dimensional Inverse Distance Weighting for Visualization of Radiation Dose
Takeishi et al. Using two detectors concurrently to monitor ambient dose equivalent rates in vehicle surveys of radiocesium contaminated land

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230131