JP6419448B2 - Contamination distribution measuring device for measuring the distribution of contamination by radioactive materials - Google Patents

Contamination distribution measuring device for measuring the distribution of contamination by radioactive materials Download PDF

Info

Publication number
JP6419448B2
JP6419448B2 JP2014062157A JP2014062157A JP6419448B2 JP 6419448 B2 JP6419448 B2 JP 6419448B2 JP 2014062157 A JP2014062157 A JP 2014062157A JP 2014062157 A JP2014062157 A JP 2014062157A JP 6419448 B2 JP6419448 B2 JP 6419448B2
Authority
JP
Japan
Prior art keywords
radiation detector
radiation
dose rate
contamination
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014062157A
Other languages
Japanese (ja)
Other versions
JP2015184189A (en
Inventor
実 谷垣
実 谷垣
信浩 佐藤
信浩 佐藤
小林 康浩
康浩 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2014062157A priority Critical patent/JP6419448B2/en
Publication of JP2015184189A publication Critical patent/JP2015184189A/en
Application granted granted Critical
Publication of JP6419448B2 publication Critical patent/JP6419448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明は、放射性物質による汚染分布を測定するための汚染分布測定装置に関する。   The present invention relates to a contamination distribution measuring apparatus for measuring a contamination distribution due to radioactive substances.

福島第1原子力発電所で発生した大規模な放射性物質の漏洩事故のような原子力災害が発生した場合、漏れ出した放射性物質は半径数十km〜数百km(あるいはそれ以上)の広範囲の地域に拡散する。このような原子力災害が発生した場合、空間線量率の分布を示すマップ(以下、放射線量率マップと呼ぶ)を作製することは、拡散した放射性物質がどこにどのくらい分布しているかを推定するため、及び、住民の被曝管理や放射性物質の拡散状況を推定するために重要であり、住民の避難区域や屋内退避区域を画定したり、住民が無用の被曝をしないように種々の規制区域を設けたりするために有用である。また、放射線量率マップの作製することは、除染計画や被害を受けた地域の環境修復の計画等を立てる上でも非常に重要である。放射性物質による環境汚染(以下、単に汚染ともいう)への対処は、1)放射性物質の環境中の分布の把握、2)的確な除染作業、3)除染の確認、検証、という手順を踏むことが一般的であるからである。   When a nuclear disaster such as a large-scale radioactive material leakage accident occurred at the Fukushima Daiichi Nuclear Power Station, the leaked radioactive material has a wide area with a radius of tens to hundreds of kilometers (or more). To spread. When such a nuclear disaster occurs, creating a map showing the distribution of the air dose rate (hereinafter referred to as the radiation dose rate map) estimates where and how much the diffused radioactive material is distributed. It is important to manage the exposure of residents and to estimate the diffusion status of radioactive materials, and to define evacuation areas and indoor evacuation areas for residents, and to establish various restricted areas to prevent residents from being exposed to unnecessary exposure. Useful to do. The creation of a radiation dose rate map is also very important in planning decontamination plans and environmental restoration plans for damaged areas. To deal with environmental pollution caused by radioactive substances (hereinafter also simply referred to as pollution), the following procedures are required: 1) grasping the distribution of radioactive substances in the environment, 2) accurate decontamination work, 3) confirmation and verification of decontamination. This is because it is common to step on.

なお、空間線量率(又は放射線量率)とは、対象とする空間の単位時間当たりの放射線量のことである。放射線の量を、物質が放射線から吸収したエネルギー量(吸収線量)で測定する場合、空間線量率は、吸収線量の単位であるGy(グレイ)を用いてGy/h(グレイ/時)で表される。あるいは、放射線の量を、生体の被曝の影響による生物学的影響の大きさ(線量当量)で測定する場合、空間線量率は、線量当量の単位であるSv(シーベルト)を用いてSv/h(シーベルト/時)で表される。なお、線量当量は、吸収線量に生体への影響に応じた係数をかけることにより求められる。   The air dose rate (or radiation dose rate) is the radiation dose per unit time of the target space. When the amount of radiation is measured by the amount of energy absorbed by the substance (absorbed dose), the air dose rate is expressed in Gy / h (gray / hour) using Gy (gray) which is the unit of absorbed dose. Is done. Alternatively, when the amount of radiation is measured by the magnitude of the biological effect (dose equivalent) due to the effects of exposure to the living body, the air dose rate is calculated using Sv (sievert), which is a unit of dose equivalent. It is expressed in h (sievert / hour). The dose equivalent is obtained by multiplying the absorbed dose by a coefficient corresponding to the influence on the living body.

放射線は目に見えず、また放射性物質の化学的挙動は天然に存在する安定同位体などと同じである。そのため、放射性物質の環境中の分布を測定するためには、放射線検出器を用いる必要がある。ここで、除染を行うためには、特に、地表における放射性物質の分布を測定することが重要になるが、地表における放射性物質の分布を精確に測定するためには、放射線検出器をどのように設置すべきかが問題となる。   Radiation is not visible, and the chemical behavior of radioactive materials is the same as naturally occurring stable isotopes. Therefore, in order to measure the distribution of radioactive substances in the environment, it is necessary to use a radiation detector. Here, in order to perform decontamination, it is particularly important to measure the distribution of radioactive materials on the surface of the earth, but in order to accurately measure the distribution of radioactive materials on the surface of the earth, how to use a radiation detector The problem is whether it should be installed.

従来行われている放射性物質の分布を測定する方法として、以下の1)〜3)の方法などが挙げられる。
1)地表付近(地表から1cmあるいは5cm離れた距離)に放射線検出器を配置する。
2)測定対象の地表部分の周囲を遮蔽物で囲い、その中に放射線検出器を入れて測定する。
3)地表付近(地表から1cmあるいは5cm離れた距離)と地表から一定の高さ(50cm〜1m)の位置に放射線検出器を配置し、2つの検出器の差を読む。
第1の方法は最も基本的な測定方法である。また、第2、第3の測定方法は、非特許文献1,2にも記載されている測定方法であり、福島県や環境省などが除染時の放射性物質の分布を確認するため、あるいは、除染後の放射性物質の分布を検証のための標準的な測定方法として推奨している。
The following methods 1) to 3) are examples of methods for measuring the distribution of radioactive substances that have been performed conventionally.
1) A radiation detector is arranged near the ground surface (a distance of 1 cm or 5 cm away from the ground surface).
2) Surround the surface of the surface to be measured with a shield, and put a radiation detector in it to measure.
3) A radiation detector is arranged near the ground surface (distance 1 cm or 5 cm away from the ground surface) and at a certain height (50 cm to 1 m) from the ground surface, and the difference between the two detectors is read.
The first method is the most basic measurement method. The second and third measurement methods are those described in Non-Patent Documents 1 and 2, for Fukushima Prefecture and the Ministry of the Environment to confirm the distribution of radioactive substances at the time of decontamination, or It is recommended as a standard measurement method for verification of the distribution of radioactive material after decontamination.

特開2013−242180号公報JP2013-242180A

福島県「生活空間における放射線量低減化対策に係る手引き」Fukushima "Guide for radiation dose reduction measures in living spaces" 環境省「平成25年除染等工事共通仕様書(第4版)」Ministry of the Environment “2013 Decontamination and Construction Common Specifications (4th Edition)”

上述の第1から第3の測定方法においては、いずれも、地表間近に放射線検出器を配置している。これは、地表間近に放射線検出器を近づけると、地表における汚染からの放射線の寄与が増えることを利用している。この場合、地表からの汚染により地表付近の空間線量率は上昇するため、汚染の度合いは相応の精度で把握できる。地表が平らな場合、地表間近で放射線検出器を一定の高さ(例えば、非特許文献2では地表から1cm)に保ちながら移動させる事で、連続的な測定も可能である。しかし、現実の環境、例えば公園、宅地、田畑などで作業する場合、地表間近に検出器を配置して測定する事は非常に難しい。石や土の塊、作物、草木等の障害物、法面や段差といった地形の問題があるからである。地表が平らではない場所で、地表から1cm(又は5cm)の高さを保ちながら移動しつつ連続的な測定を行う事は事実上不可能であるといえる。そのため、ある地点で放射線検出器の高さを調整して測定し、次の地点へ移動して放射線検出器の高さを調整して測定するという手順を繰り返すことになる。   In any of the first to third measurement methods described above, the radiation detector is disposed close to the ground surface. This takes advantage of the fact that radiation contribution from contamination on the surface increases when the radiation detector is brought close to the surface. In this case, since the air dose rate near the surface increases due to contamination from the ground surface, the degree of contamination can be grasped with appropriate accuracy. When the ground surface is flat, continuous measurement is possible by moving the radiation detector close to the ground surface while keeping the radiation detector at a certain height (for example, 1 cm from the ground surface in Non-Patent Document 2). However, when working in an actual environment such as a park, a residential land, or a field, it is very difficult to place a detector close to the ground surface for measurement. This is because there are terrain problems such as stones, blocks of soil, crops, plants and other obstacles, slopes and steps. In a place where the ground surface is not flat, it can be said that it is practically impossible to perform continuous measurement while moving from the ground surface while maintaining a height of 1 cm (or 5 cm). Therefore, the procedure of adjusting and measuring the height of the radiation detector at a certain point, moving to the next point, adjusting the height of the radiation detector, and measuring is repeated.

一般に環境中の空間線量率を測定する放射線検出器は指向性を持たない。そのため、地表の間近に放射線検出器を配置した場合、地表に分布する放射性物質からだけでなく、周囲の木や建物などの汚染からの影響も受けてしまう。そのためより正確に測定しようとすると上述の第2の方法のように、地表に分布する放射性物質からの放射線を効率的に選択して放射線検出器に入射させることができるように、放射線検出器の周囲を遮蔽する必要がある。ここで、γ線を遮蔽するためには、原子番号の大きな元素を多く含む材料を用いることが好ましい。そのため、上述の遮蔽体として、一般には鉛ブロック等が用いられる。鉛ブロックは、γ線に対する遮蔽効果は高いが、比重が大きいため、鉛ブロックの移動や設置に大きな労力を要する。   Generally, radiation detectors that measure air dose rates in the environment are not directional. For this reason, when a radiation detector is arranged close to the ground surface, it is affected not only by radioactive materials distributed on the ground surface but also by contamination of surrounding trees and buildings. Therefore, in order to measure more accurately, as in the second method described above, radiation from the radioactive material distributed on the ground surface can be efficiently selected and incident on the radiation detector. It is necessary to shield the surroundings. Here, in order to shield γ rays, it is preferable to use a material containing many elements having a large atomic number. Therefore, a lead block or the like is generally used as the above-described shield. The lead block has a high shielding effect against γ rays, but has a large specific gravity, and therefore requires a lot of labor to move and install the lead block.

これらの事情から、従来の手法では測定しようとする区画についてくまなく移動しつつ連続的に測定することは困難である。そのため、区画を面的に測定することに代えて、当該区画での放射線量上昇の原因と想定される場所を作業監督者などと協議しながら決定し、それらの地点での測定を以て区画の確認を終えたこととしている場合が一般的である(非特許文献2参照)。この場合には、適切な地点の選定には除染に関して経験を積んだ者があたる必要がある。しかしながら、区画内におけるどの地点を選択すべきかについては、明確な指標があるわけではなく、除染作業者らの勘に頼ることになる。さらに、除染作業者自身はもちろん、対象区画の所有者や周辺の住民などからも除染し残しがないのかといった不安がある。また状況が変化して異なる地点が除染後の線量上昇の原因になった場合にそれを把握できるのか、という疑問が残る。   Under these circumstances, it is difficult to measure continuously while moving all over the section to be measured by the conventional method. Therefore, instead of measuring the area in a plane, determine the location that is supposed to cause the radiation dose increase in the area in consultation with the work supervisor, etc., and confirm the area by measuring at those points. Is generally completed (see Non-Patent Document 2). In this case, it is necessary to have someone who has experience in decontamination to select an appropriate point. However, there is no clear indicator as to which point in the compartment should be selected, and relies on the intuition of decontamination workers. Furthermore, there is concern that there will be no decontamination from the owner of the target section or the residents in the vicinity as well as the decontamination operator himself. In addition, the question remains as to whether the situation can be grasped when the situation changes and causes a dose increase after decontamination.

また、上記第3の方法に関連して、特許文献1には、棒状の機器支持ロッドと、機器支持ロッドの、高さの異なる位置に取り付けられた2つの放射線検出器と、GPS受信機と、送信機とを備えるガンマプロッタHが開示されている。機器支持ロッドの、地表約1000mm及び地表付近の2カ所にそれぞれ放射線検出器が取り付けられており、これらの測定値及びGPS受信機によって取得された現在位置情報とが関連づけられて、送信機によりサーバに送信される。特許文献1に記載のガンマプロッタHにおいては、2つの放射線検出器が機器支持ロッドの高さの異なる2つの位置に固定されているため、機器支持ロッドを地表に対して垂直に維持したまま移動することにより、上記第3の測定方法に基づいた空間線量率の測定を、移動しつつ連続的に行うことができる。しかしながら、特許文献1に記載のガンマプロッタHにおいても、一方の放射線検出器が地表付近に配置されていることには変わりないため、石や土の塊、作物、草木等の障害物、法面や段差のような平らでない地形について測定を行うことは非常に困難である。   In relation to the third method, Patent Document 1 discloses a rod-shaped device support rod, two radiation detectors mounted at different positions on the device support rod, and a GPS receiver. A gamma plotter H comprising a transmitter is disclosed. Radiation detectors are attached to the device support rod at approximately 1000 mm on the ground surface and at two locations near the ground surface. These measured values and the current position information acquired by the GPS receiver are associated with each other, and a server is connected by the transmitter. Sent to. In the gamma plotter H described in Patent Document 1, since the two radiation detectors are fixed at two positions having different heights of the device support rod, the device support rod is moved while being kept perpendicular to the ground surface. Thus, the measurement of the air dose rate based on the third measurement method can be continuously performed while moving. However, even in the gamma plotter H described in Patent Document 1, since one radiation detector is not located near the ground surface, it is an obstacle such as a stone, a lump of soil, a crop, a plant, or a slope. It is very difficult to make measurements on uneven terrain such as bumps and bumps.

本発明の目的は、石や土の塊、作物、草木等の障害物、法面や段差のような平らでない地形においても、容易に、移動しつつ連続的に空間線量率の測定を行って、放射性物質による汚染分布を測定することができる可搬型の汚染分布測定装置を提供することである。   The object of the present invention is to measure the air dose rate continuously while moving easily even on obstacles such as stones, blocks of soil, crops, vegetation, etc., and uneven terrain such as slopes and steps. Another object of the present invention is to provide a portable contamination distribution measuring device capable of measuring the contamination distribution due to radioactive substances.

本発明の態様に従えば、放射性物質による汚染分布を測定するための汚染分布測定装置であって、
空間線量率を測定する第1の放射線検出器及び第2の放射線検出器と、
向き以外の向きから第1の放射線検出器に入射する放射線を遮蔽するように、第1の放射線検出器を覆って配置される第1の遮蔽体と、
前記第1向きから第2の放射線検出器に入射する放射線を遮蔽し、前記第1向き以外の向きからの放射線は入射するように、第2の放射線検出器の、前記第1向きに対向する面を覆って配置される第2の遮蔽体とを備える汚染分布測定装置が提供される。
According to an aspect of the present invention, there is provided a contamination distribution measuring device for measuring a contamination distribution due to radioactive substances,
A first radiation detector and a second radiation detector for measuring an air dose rate;
A first shield disposed over the first radiation detector so as to shield radiation incident on the first radiation detector from an orientation other than the orientation;
The second radiation detector is opposed to the first direction so as to shield radiation incident on the second radiation detector from the first direction and to enter radiation from directions other than the first direction. A contamination distribution measuring device is provided comprising a second shield disposed over the surface.

本発明の汚染分布測定装置において、第1の遮蔽体が、所定の向き以外の向きから第1の放射線検出器に入射する放射線を遮蔽するように、第1の放射線検出器を覆っているので、第1の放射線検出器に所定の向き(例えば地表方向)に指向性を持たせることができる。これにより、所定向き以外の方向から第1の放射線検出器に入射する成分(後述の間接線成分)を抑えつつ、所定向きから第1の放射線検出器に入射する成分(後述の直接線成分)を効率よく測定できる。さらに、第2の遮蔽体が、所定の向きから第2の放射線検出器に入射する放射線を遮蔽するように、第2の放射線検出器の、前記所定の向きに対向する面を覆っている。これにより、所定向きから第2の放射線検出器に入射する直接線成分を抑えつつ、第2の放射線検出器に入射する間接線成分を効率よく測定することができる。これらの2つの放射線検出器によって測定される空間線量率の測定値から、所定向きから第1の放射線検出器に入射する直接線成分のみを抽出することができ、所定の向きの直下に存在する放射性物質による汚染を特定することができる。   In the contamination distribution measuring apparatus of the present invention, the first shield covers the first radiation detector so as to shield radiation incident on the first radiation detector from a direction other than the predetermined direction. The first radiation detector can have directivity in a predetermined direction (for example, the surface direction). Thereby, a component (described later direct line component) that is incident on the first radiation detector from a predetermined direction while suppressing a component incident on the first radiation detector from a direction other than the predetermined direction (described later indirect line component). Can be measured efficiently. Further, the second shield covers the surface of the second radiation detector that faces the predetermined direction so as to shield the radiation incident on the second radiation detector from the predetermined direction. Thereby, the indirect line component incident on the second radiation detector can be efficiently measured while suppressing the direct line component incident on the second radiation detector from a predetermined direction. From the measured values of the air dose rate measured by these two radiation detectors, only a direct line component incident on the first radiation detector can be extracted from a predetermined direction and exists immediately below the predetermined direction. It is possible to identify contamination by radioactive materials.

本発明によれば、除染時の放射性物質の分布を容易に確認することができるとともに、除染後の放射性物質の分布を容易に検証することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to confirm the distribution of the radioactive substance at the time of decontamination, distribution of the radioactive substance after decontamination can be verified easily.

図1は本実施形態に係る放射性物質による汚染分布を測定するための測定原理を示す概略図である。FIG. 1 is a schematic view showing a measurement principle for measuring a contamination distribution by a radioactive substance according to the present embodiment. 図2は汚染分布測定装置1の概略図である。FIG. 2 is a schematic diagram of the contamination distribution measuring apparatus 1. 図3は第1放射線検出器10の概略図である。FIG. 3 is a schematic view of the first radiation detector 10. 図4はKURAMAシステム1の概略図である。FIG. 4 is a schematic diagram of the KURAMA system 1. 図5はNaIシンチレーション検出器10の概略図である。FIG. 5 is a schematic diagram of the NaI scintillation detector 10. 図6は3次元マップ上に空間線量率の大きさによって色分けされたマーカーを表示した空間線量率マップの一例である。FIG. 6 is an example of an air dose rate map displaying markers color-coded according to the size of the air dose rate on a three-dimensional map. 図7は、2次元マップ上に空間線量率の大きさによって色分けされたマーカが表示された空間線量率マップの一例である。FIG. 7 is an example of an air dose rate map in which markers color-coded according to the size of the air dose rate are displayed on a two-dimensional map. 図8はKURAMA−IIシステム200の概略図である。FIG. 8 is a schematic diagram of the KURAMA-II system 200. 図9はパルス波高スペクトルの一例である。FIG. 9 shows an example of a pulse height spectrum. 図10は汚染分布測定システム200A全体をリュックに詰めた状態で、人が背負っている状態を示す写真である。FIG. 10 is a photograph showing a state in which a person is carrying the entire pollution distribution measuring system 200A in a state where the whole is packed in a backpack. 図11は実証実験を行った福島県A市のマップである。FIG. 11 is a map of A city in Fukushima Prefecture where the demonstration experiment was conducted. 図12(a)は、第1放射線検出器10で測定された空間線量率をプロットしたものであり、図12(b)は、第2放射線検出器20で測定された空間線量率をプロットしたものである。FIG. 12A is a plot of the air dose rate measured by the first radiation detector 10, and FIG. 12B is a plot of the air dose rate measured by the second radiation detector 20. Is. 図13(a)は、運動広場および駐車場付近において第1放射線検出器10で測定された空間線量率をプロットしたものであり、図13(b)は同じ場所において第2放射線検出器20で測定された空間線量率をプロットしたものである。FIG. 13 (a) is a plot of the air dose rate measured by the first radiation detector 10 in the vicinity of the exercise plaza and the parking lot, and FIG. 13 (b) is the second radiation detector 20 at the same location. The measured air dose rate is plotted. 図14(a)は、集会所の中庭および道路をはさんで反対側の駐車場付近において第1放射線検出器10で測定された空間線量率をプロットしたものであり、図14(b)は同じ場所において第2放射線検出器20で測定された空間線量率をプロットしたものである。FIG. 14A is a plot of the air dose rate measured by the first radiation detector 10 in the vicinity of the parking lot on the opposite side across the courtyard and road of the meeting place, and FIG. The air dose rate measured with the 2nd radiation detector 20 in the same place is plotted. 図15(a)は、集会所前を通る道路の路側部分において第1放射線検出器10で測定された空間線量率をプロットしたものであり、図15(b)は同じ場所において第2放射線検出器20で測定された空間線量率をプロットしたものである。FIG. 15A is a plot of the air dose rate measured by the first radiation detector 10 at the roadside portion of the road passing in front of the meeting place, and FIG. 15B is the second radiation detection at the same location. The air dose rate measured by the vessel 20 is plotted. 図16は、運動公園およびその周辺の測定についての経時変化をプロットしたものである。FIG. 16 is a plot of changes over time for the measurements of the athletic park and its surroundings. 図17は、運動公園およびその周辺の測定について、局所成分Φを評価した空間線量率マップである。Figure 17 is a sports park and the measurement of its periphery is air dose rate map of evaluating the local component [Phi L. 図18は、集会所周辺の測定について、局所成分Φを評価した空間線量率マップである。Figure 18 is a measurement of the peripheral meeting place, a spatial dose rate map of evaluating the local component [Phi L. 図19は、集会所前を通る道路の測定について、局所成分Φを評価した空間線量率マップである。FIG. 19 is an air dose rate map in which the local component Φ L is evaluated for the measurement of the road passing in front of the meeting place. 図20は、果樹園における局所成分Φのマップである。FIG. 20 is a map of the local component Φ L in the orchard. 図21は、Ge検出器で測定された134Csと137Csの総量(Bq)と、第1放射線検出器10により測定された空間線量率とのプロットである。FIG. 21 is a plot of the total amount (Bq) of 134 Cs and 137 Cs measured by the Ge detector and the air dose rate measured by the first radiation detector 10. 図22は、Ge検出器で測定された134Csと137Csの総量(Bq)と、第2放射線検出器20により測定された空間線量率とのプロットである。FIG. 22 is a plot of the total amount (Bq) of 134 Cs and 137 Cs measured with the Ge detector and the air dose rate measured with the second radiation detector 20. 図23は、Ge検出器で測定された134Csと137Csの総量(Bq)と、局所成分Φとのプロットである。Figure 23 is a total amount of 134 Cs and 137 Cs measured by the Ge detector and (Bq), is a plot of the local component [Phi L.

まず、本実施形態に係る放射性物質による汚染分布を測定するための汚染分布測定装置1について、その測定原理について説明した後、具体的な構成について詳細に説明する。
<測定原理の概略>
First, after describing the measurement principle of the contamination distribution measuring apparatus 1 for measuring the contamination distribution due to radioactive substances according to the present embodiment, a specific configuration will be described in detail.
<Outline of measurement principle>

一般に、環境中のある点における空間線量率Φは、その点の直下の汚染源からの放射線に起因する空間線量率Φと、周囲の汚染源からの放射線に起因する空間線量率Φとの和として、以下の数式のように表される(図1参照)。 In general, the air dose rate Φ at a point in the environment is the sum of the air dose rate Φ L due to radiation from the source immediately below that point and the air dose rate Φ F due to radiation from surrounding sources. As shown in the following mathematical formula (see FIG. 1).

Figure 0006419448
Figure 0006419448

ここで、空間線量率Φの原因となる汚染源は、遠方を含む周囲の様々な箇所に分布している。そのため、広範な環境汚染が発生しているとすると、空間線量率Φには、汚染源から放出された放射線が直接放射線検出器に入射する成分(以下、直接線成分ともいう)だけではなく、例えば、建物や木などの周囲の構造物、地表、大気による反射及び/又は散乱を受けて放射線検出器に入射する成分(以下、間接線成分ともいう)も多く含まれていると考えられる。間接線成分は、特定の方向から放射線検出器に入射するのではなく、あらゆる方向から放射線検出器に入射することになる。このことから、空間線量率Φは比較的一様な放射線場と近似する事が可能である。以下の説明において、「空間線量率Φ」を「空間線量率の均一成分Φ」、あるいは単に「均一成分Φ」とも称する。 Here, the contamination sources that cause the air dose rate Φ F are distributed in various places around the place including a distant place. Therefore, assuming that a wide range of environmental pollution has occurred, the air dose rate Φ F includes not only a component in which the radiation emitted from the contamination source directly enters the radiation detector (hereinafter also referred to as a direct line component), For example, it is considered that many components (hereinafter also referred to as indirect line components) that are incident on a radiation detector after being reflected and / or scattered by surrounding structures such as buildings and trees, the ground surface, and the atmosphere. The indirect line component does not enter the radiation detector from a specific direction but enters the radiation detector from all directions. From this, the air dose rate Φ F can be approximated to a relatively uniform radiation field. In the following description, also referred to as "uniform components [Phi F spatial dose rate""spatial dose rate [Phi F" a, or simply "homogeneous component [Phi F".

一方、測定対象である直下の汚染源は近距離である事から、空間線量率Φにおいては直接線成分が大部分を占めていると考えられる。言い換えると、直下の汚染源から放射線検出器へ直接入射する放射線が空間線量率Φを構成していると考えられる。以下の説明において、「空間線量率Φ」を「空間線量率の局所成分Φ」、あるいは、単に「局所成分Φ」とも称する。汚染分布を測定するためには、局所成分Φを精確に測定することが重要であるが、広範な汚染が発生している場合、直下に存在する汚染源の放射性物質の総量は周囲の放射性物質の総量に比べると少ないため、直下の汚染源に放射線検出器を十分近づけないと直下の汚染源の放射性物質の寄与を十分に判別することができない。例えば、均一に表面だけが汚染された地表を想定した場合には、高さ1mで測定された空間線量率における、直下から半径1mの範囲の地表の汚染の寄与は10%程度にしかならない。このように、放射線検出器を地表から高い位置に配置した場合には、周囲の汚染源からの放射線に起因する均一成分Φに対する、直下の汚染源からの放射線に起因する局所成分Φの比率が低くなってしまい、精確に局所成分Φを測定することが困難となる。それゆえ、従来の方法では、均一成分Φに対する、局所成分Φの比率がなるべく高くなるように、地表付近に放射線検出器を配置していた。 On the other hand, pollution sources directly below to be measured since it is a short distance, in the air dose rate [Phi L considered direct ray component is the majority. In other words, radiation incident directly from the contamination source immediately below the radiation detector is considered to constitute a spatial dose rate [Phi L. In the following description, "spatial dose rate [Phi L" to "local components of the spatial dose rate [Phi L", or simply referred to as "local component [Phi L". In order to measure the contamination distribution, it is important to accurately measure the local component Φ L. However, when extensive contamination occurs, the total amount of radioactive material from the source of contamination immediately below is the surrounding radioactive material. Therefore, the contribution of the radioactive material of the direct contamination source cannot be sufficiently determined unless the radiation detector is sufficiently close to the contamination source immediately below. For example, when assuming a ground surface that is uniformly contaminated only on the surface, the contribution of contamination of the ground surface in the range from immediately below to a radius of 1 m in the air dose rate measured at a height of 1 m is only about 10%. As described above, when the radiation detector is arranged at a high position from the ground surface, the ratio of the local component Φ L caused by the radiation from the immediately lower contamination source to the uniform component Φ F caused by the radiation from the surrounding contamination source is it becomes low, precisely it is difficult to measure the local component [Phi L. Therefore, in the conventional method, the radiation detector is arranged near the ground surface so that the ratio of the local component Φ L to the uniform component Φ F is as high as possible.

これに対して、本発明においては、局所成分Φにおける直接線成分の寄与が大きいことを鑑み、これを効率よく測定するために、地表方向に指向性を持った放射線検出器(以下、放射線検出器Aと呼ぶ)を用意することとした。具体的には、地表方向以外の方向からの放射線が放射線検出器Aに入射しないように、放射線検出器Aの地表と対向する面を除く部分を覆う遮蔽体を放射線検出器Aの周りに配置することとした。しかしながら、地表方向に指向性を持つ放射線検出器Aにおいても、均一成分Φの一部が混入しているはずである。なぜならば、放射線検出器Aには、遮蔽体により覆われていない部分があり、この遮蔽体により覆われていない部分の立体角Ωに相当する分の均一成分Φは、放射線検出器Aによって測定されることになるからである。また、遮蔽体はγ線やX線などの放射線を完全に遮蔽するとは限らない。例えば、遮蔽体の厚さが十分でない場合においては、一部の放射線は遮蔽体を透過して放射線検出器Aに入射する。これらのことを考慮すると、放射線検出器Aに遮蔽体をとりつけた場合における遮蔽率をQとしたとき、放射線検出器Aにより検出される空間線量率Φは、以下の数式(数2)によって表すことができる。なお、遮蔽率Qは、全立体角から均等に放射線が入射したと仮定した場合に、遮蔽体によって遮蔽される割合を表すものであり、放射線検出器Aの、遮蔽体により覆われていない部分の立体角Ωと遮蔽体を透過する放射線の透過確率とに依存する。なお、遮蔽体が十分に厚く、γ線等の透過確率がゼロに近い場合には、下記数式における(1−Q)の値は、立体角Ωとほぼ同じになる。 In contrast, in the present invention, in view of the contribution of the direct ray components in the local component [Phi L is large, this in order to efficiently measure the radiation detector having a directivity in the surface direction (hereinafter, the radiation It was decided to prepare a detector A). Specifically, a shield covering the portion of the radiation detector A other than the surface facing the ground surface is disposed around the radiation detector A so that radiation from directions other than the ground surface does not enter the radiation detector A. It was decided to. However, even in the radiation detector A having directivity in the ground surface direction, a part of the uniform component Φ F should be mixed. This is because the radiation detector A has a portion that is not covered by the shield, and the uniform component Φ F corresponding to the solid angle Ω A of the portion that is not covered by the shield is the radiation detector A. It is because it will be measured by. Further, the shield does not always completely shield radiation such as gamma rays and X-rays. For example, when the thickness of the shield is not sufficient, part of the radiation passes through the shield and enters the radiation detector A. Considering these, when the shielding rate when the shielding body is attached to the radiation detector A is Q, the air dose rate Φ A detected by the radiation detector A is expressed by the following equation (Equation 2). Can be represented. The shielding rate Q represents the ratio of shielding by the shield when it is assumed that the radiation is uniformly incident from all solid angles, and the portion of the radiation detector A that is not covered by the shield. Depending on the solid angle Ω A and the transmission probability of the radiation passing through the shield. Note that the shield is sufficiently thick, when transmission probability of γ-rays is close to zero, the value of (1-Q) in the following equation is substantially the same as the solid angle Omega A.

Figure 0006419448
Figure 0006419448

ここで、遮蔽体の遮蔽率Qは、遮蔽体の形状及び材質に基づいて計算したり、シミュレーションを行ったりすることにより算出することができるため、均一成分Φを精確に求めることができれば、放射線検出器Aにより測定される空間線量率Φと均一成分Φに基づいて、測定対象となる局所成分Φを求めることができる。そこで、放射線検出器Aと別に、指向性の無い放射線検出器Bを用意し、均一成分Φを決定することを考える。放射線検出器Bが指向性を持たない場合には、放射線検出器Bによって測定される空間線量率Φは、上述のように均一成分Φと局所成分Φとの和となる。しかし、地表に均一に汚染源が分布している場合における、地表から1m離した位置での測定における、直下から半径1mの範囲の地表の汚染の寄与の例から分かるように、放射線検出器Bの高さが1m程度であれば、放射線検出器Bによって測定される空間線量率Φに含まれる局所成分Φは均一成分Φに比べて小さいため、これを無視しても差し支えない。つまり、放射線検出器Bを用いて測定される空間線量率Φは、主に、周囲の汚染源からの放射線に起因する均一成分Φにほぼ等しいことがわかる。このことから、指向性のない放射線検出器Bを地表から離して配置することにより、均一成分Φを測定することができる。 Here, since the shielding rate Q of the shield can be calculated based on the shape and material of the shield or by performing a simulation, if the uniform component Φ F can be accurately obtained, Based on the air dose rate Φ A and the uniform component Φ F measured by the radiation detector A, the local component Φ L to be measured can be obtained. Therefore, consider that a radiation detector B having no directivity is prepared separately from the radiation detector A and the uniform component Φ F is determined. When the radiation detector B does not have directivity, the air dose rate Φ B measured by the radiation detector B is the sum of the uniform component Φ F and the local component Φ L as described above. However, as can be seen from the example of the contribution of contamination of the ground surface in the range of 1 m radius from the bottom in the measurement at a position 1 m away from the ground surface when the pollution source is uniformly distributed on the ground surface, the radiation detector B If the height is about 1 m, the local component Φ L included in the air dose rate Φ B measured by the radiation detector B is smaller than the uniform component Φ F , and thus can be ignored. That is, it can be seen that the air dose rate Φ B measured using the radiation detector B is almost equal to the uniform component Φ F mainly caused by radiation from the surrounding contamination sources. From this, the uniform component Φ F can be measured by disposing the radiation detector B having no directivity away from the ground surface.

さらに、後述のように、放射線検出器Bを遮蔽体の直上に置くことにより、直下の地表の汚染からの直接線成分を効率よく遮蔽することができる。言い換えると、放射線検出器Bによって測定される空間線量率Φに含まれる局所成分Φをさらに小さく抑えることができる。この状態で高さ一定のまま放射線検出器A、Bを移動させることにより、地表の汚染物質の分布を把握することができる。 Furthermore, as will be described later, by placing the radiation detector B directly above the shield, it is possible to efficiently shield direct line components from contamination of the ground surface directly below. In other words, the local component Φ L included in the air dose rate Φ B measured by the radiation detector B can be further reduced. In this state, by moving the radiation detectors A and B while keeping the height constant, the distribution of contaminants on the ground surface can be grasped.

なお、上述のように遮蔽体の遮蔽率Qは、計算やシミュレーションにより求めることもできるが、発明者らは以下のような方法により、実験的に遮蔽率Qを求めることができることを見いだした。局所成分Φがほぼゼロである場所において測定を行った場合には、放射線検出器Aによって測定される空間線量率Φは(1−Q)×Φとなり、放射線検出器Bによって測定される空間線量率ΦはΦとなる。ここで、空間線量率Φに対する空間線量率Φの比(Φ/Φ)を計算すると、(1−Q)となる。このことから、放射性物質による汚染がない直下にはない場所において、放射線検出器Aによって測定される空間線量率Φと放射線検出器Bによって測定される空間線量率Φとを測定して両者の比を計算することにより、実験的に遮蔽体の遮蔽率Qを求めることができる。
<汚染分布測定装置1の概略>
As described above, the shielding rate Q of the shielding body can be obtained by calculation or simulation, but the inventors have found that the shielding rate Q can be obtained experimentally by the following method. When the measurement is performed at a location where the local component Φ L is almost zero, the air dose rate Φ A measured by the radiation detector A is (1−Q) × Φ F and is measured by the radiation detector B. The air dose rate Φ B is Φ F. Here, when calculating the ratio of the spatial dose rate Φ A (Φ A / Φ B ) for the spatial dose rate [Phi B, a (1-Q). From this, the air dose rate Φ A measured by the radiation detector A and the air dose rate Φ B measured by the radiation detector B are measured at a place not directly below where there is no contamination by radioactive substances. By calculating the ratio, it is possible to experimentally obtain the shielding rate Q of the shielding body.
<Outline of contamination distribution measuring apparatus 1>

次に、本実施形態に係る汚染分布測定装置1の具体的な構成について、図面を参照しつつ説明する。図2に示すように、汚染分布測定装置1は、第1放射線検出器10と、第2放射線検出器20と、第1放射線検出器10に入射する放射線の立体角を制限するコリメータ30とを主に備える。第1放射線検出器10と第2放射線検出器20とは同じ構造を有しているので、以下、第1放射線検出器10を例に挙げて説明する。   Next, a specific configuration of the contamination distribution measuring apparatus 1 according to the present embodiment will be described with reference to the drawings. As shown in FIG. 2, the contamination distribution measuring apparatus 1 includes a first radiation detector 10, a second radiation detector 20, and a collimator 30 that limits the solid angle of radiation incident on the first radiation detector 10. Prepare mainly. Since the first radiation detector 10 and the second radiation detector 20 have the same structure, the first radiation detector 10 will be described below as an example.

第1放射線検出器10は、後述のKURAMA−IIシステム200において用いられている放射線検出器と同じものである。第1放射線検出器10はCsIシンチレーション検出器であり、図3に示されるように、CsI結晶11と、CsI結晶11に光学的に接続された光電子増倍管、MPPC(Multi−Pixel Photon Counter)等の受光素子12と、受光素子12からの出力されるパルス信号を出力するパルス信号出力部13とを有する。なお、本実施形態においては、受光素子12としてMMPCを採用している。MMPCは複数のガイガーモードAPD(アバランシェ フォトダイオード)のピクセルを含む、常温で使用できる小型の光半導体素子であり、光電子増倍管と比較して低電圧で動作可能であるとともに、磁場の影響を受けにくいという優れた特性を有している。   The first radiation detector 10 is the same as the radiation detector used in the KURAMA-II system 200 described later. The first radiation detector 10 is a CsI scintillation detector. As shown in FIG. 3, the CsI crystal 11, a photomultiplier tube optically connected to the CsI crystal 11, MPPC (Multi-Pixel Photon Counter). And a pulse signal output unit 13 that outputs a pulse signal output from the light receiving element 12. In the present embodiment, MMPC is adopted as the light receiving element 12. MMPC is a small-sized optical semiconductor element that can be used at room temperature, including multiple Geiger mode APD (avalanche photodiode) pixels. It can be operated at a lower voltage than a photomultiplier tube, and the influence of a magnetic field can be reduced. It has excellent characteristics that it is difficult to receive.

コリメータ30は厚さ約1cmの有底の略円筒形の鉛によって構成されており、第1放射線検出器10の、CsI結晶11の前面11a(CsI結晶11の受光素子12とは反対側の面)を除いて、第1放射線検出器10を取り囲むように配置されている。第1放射線検出器10の、CsI結晶11の前面11aから入射する放射線(γ線やX線)はコリメータ30により遮られることはないが、それ以外の方向からの放射線は、コリメータ30により遮蔽される。   The collimator 30 is made of a substantially cylindrical lead with a bottom having a thickness of about 1 cm, and the first radiation detector 10 has a front surface 11a of the CsI crystal 11 (a surface opposite to the light receiving element 12 of the CsI crystal 11). ) Except for the first radiation detector 10. Radiation (γ rays and X-rays) incident from the front surface 11 a of the CsI crystal 11 of the first radiation detector 10 is not blocked by the collimator 30, but radiation from other directions is blocked by the collimator 30. The

図2に示されるように、コリメータ30と第1放射線検出器10とを組み合わせた状態で、第1放射線検出器10の、CsI結晶11の前面11aが地表側(図2の下側)を向くように配置される。そして、第2放射線検出器20は、コリメータ30の上方に15cm〜30cm程度離れた状態で配置される。このように、第2放射線検出器20をコリメータ30の上方に配置することにより、第2放射線検出器20に入射する直下の地表の汚染からの直接線成分を効率よく遮蔽することができる。なお、第2放射線検出器20とコリメータ30との間の距離は必要に応じて適宜調整することが可能である。例えば、コリメータ30と第2放射線検出器20とが接触するように配置してもよく、互いの距離を15cm以下、あるいは30cm以上にしてもよい。   As shown in FIG. 2, in a state where the collimator 30 and the first radiation detector 10 are combined, the front surface 11a of the CsI crystal 11 of the first radiation detector 10 faces the ground surface side (the lower side in FIG. 2). Are arranged as follows. The second radiation detector 20 is disposed above the collimator 30 in a state of being separated by about 15 cm to 30 cm. Thus, by arranging the second radiation detector 20 above the collimator 30, it is possible to efficiently shield the direct line component from the contamination of the ground surface directly incident on the second radiation detector 20. In addition, the distance between the 2nd radiation detector 20 and the collimator 30 can be adjusted suitably as needed. For example, the collimator 30 and the second radiation detector 20 may be disposed so as to contact each other, and the distance between them may be 15 cm or less, or 30 cm or more.

第1放射線検出器10には、コリメータ30が取り付けられているため、第1放射線検出器10のCsI結晶11の前面11a以外から入射する放射線をコリメータ30により遮蔽することができる。そして、上述のように、第1放射線検出器10のCsI結晶11の前面11aを地表に向けることにより、周囲の汚染源からの放射線に起因する均一成分Φをコリメータ30により低下させつつ、直下の汚染源からの放射線に起因する局所成分Φを効率よく測定することができる。言い換えると、周囲の汚染源からの放射線に起因する均一成分Φに対する、直下の汚染源からの放射線に起因する局所成分Φの比率を高めることができる。 Since the collimator 30 is attached to the first radiation detector 10, radiation incident from other than the front surface 11 a of the CsI crystal 11 of the first radiation detector 10 can be shielded by the collimator 30. Then, as described above, by directing the front surface 11a of the CsI crystal 11 of the first radiation detector 10 to the ground surface, the collimator 30 reduces the uniform component Φ F caused by the radiation from the surrounding contamination sources, while The local component Φ L resulting from the radiation from the contamination source can be measured efficiently. In other words, it is possible to increase the ratio of the local component Φ L caused by the radiation from the immediately lower contamination source to the uniform component Φ F caused by the radiation from the surrounding contamination source.

そして、コリメータ30のさらに上方に配置された第2放射線検出器20においては、第1放射線検出器10の場合とは逆に、コリメータ30により、直下の汚染源からの放射線に起因する局所成分Φを低くしつつ、周囲の汚染源からの放射線に起因する均一成分Φを効率的に測定することができる。言い換えると、周囲の汚染源からの放射線に起因する均一成分Φに対する、直下の汚染源からの放射線に起因する局所成分Φの比率を低く抑えることができる。 In the second radiation detector 20 arranged further above the collimator 30, the local component Φ L caused by the radiation from the contamination source immediately below is collimated by the collimator 30, contrary to the case of the first radiation detector 10. It is possible to efficiently measure the uniform component Φ F caused by the radiation from the surrounding contamination sources while reducing the. In other words, the ratio of the local component Φ L caused by the radiation from the immediately lower contamination source to the uniform component Φ F caused by the radiation from the surrounding contamination source can be kept low.

このように、本実施形態のコリメータ30は、第1放射線検出器10に対しては、CsI結晶11の前面11aを除いて、第1放射線検出器10を取り囲むように配置されているので、周囲の汚染源からの放射線に起因する均一成分Φを低く抑える機能を有している。同時に、第2放射線検出器20に対しては、CsI結晶11の前面11aを地表から遮るように配置されているので、直下の汚染源からの放射線に起因する局所成分Φを低く抑える機能を有している。そして、第1放射線検出器10により測定された空間線量率から、第2放射線検出器20により測定された空間線量率に第1放射線検出器10の立体角をかけた値を引くことによって、直下の汚染源からの放射線に起因する局所成分Φを算出することができる。 Thus, since the collimator 30 of this embodiment is arrange | positioned with respect to the 1st radiation detector 10 so that the 1st radiation detector 10 may be enclosed except the front surface 11a of the CsI crystal | crystallization 11, It has a function of suppressing the uniform component Φ F caused by radiation from the contamination source. At the same time, the second radiation detector 20 is arranged so as to shield the front surface 11a of the CsI crystal 11 from the ground surface, so that it has a function of suppressing the local component Φ L caused by radiation from the contamination source immediately below. doing. Then, the air dose rate measured by the first radiation detector 10 is subtracted by subtracting a value obtained by multiplying the air dose rate measured by the second radiation detector 20 by the solid angle of the first radiation detector 10. It is possible to calculate the local component Φ L caused by radiation from the contamination source.

ここで、本実施形態の汚染分布測定装置1においては、コリメータ20を取り付けた放射線検出器10を、必ずしも地表付近に密着させるように配置する必要がなく、例えば、地表から1m程度離した状態で測定を行うことができる。そのため、現実の環境(例えば公園、宅地、田畑など)で測定を行う場合において、例えば、石や土の塊、作物、草木等の障害物、法面や段差などがあって地表面が平らでない場所においても容易に測定を行うことができる。   Here, in the contamination distribution measuring apparatus 1 of the present embodiment, the radiation detector 10 to which the collimator 20 is attached does not necessarily have to be placed in close contact with the vicinity of the ground surface. For example, in a state of being separated from the ground surface by about 1 m. Measurements can be made. Therefore, when measuring in an actual environment (for example, parks, residential land, fields), the ground surface is not flat due to obstacles such as stones, blocks of soil, crops, vegetation, slopes, steps, etc. Measurement can be easily performed even at a place.

本実施形態の汚染分布測定装置1は、単独でも使用することができるが、本発明者の1人が中心となって京都大学において開発された空間線量率マップを作製するためのシステムであるKURAMA−IIシステム200と組み合わせて使用することができる。なお、KURAMAとは、「Kyoto University RAdiation MApping」の略である。   Although the contamination distribution measuring apparatus 1 of this embodiment can be used alone, KURAMA is a system for producing an air dose rate map developed at Kyoto University led by one of the inventors. It can be used in combination with the -II system 200. Note that KURAMA is an abbreviation of “Kyoto University Radiation Mapping”.

ここで、KURAMA−IIシステム200は、本発明者の1人が中心となって開発したKURAMAシステム100を改良したものである。そこで、KURAMA−IIシステム200について説明する前に、先ず、その基となったKURAMAシステム100について説明し、次に、KURAMA−IIシステム200についてKURAMAシステム100との違いを中心に説明する。
<KURAMAシステム100の概略>
Here, the KURAMA-II system 200 is an improvement of the KURAMA system 100 developed by one of the inventors. Therefore, before describing the KURAMA-II system 200, first, the KURAMA system 100 as a basis thereof will be described, and then, the KURAMA-II system 200 will be described focusing on differences from the KURAMA system 100.
<Outline of KURAMA System 100>

図4に示されるように、KURAMAシステム100は空間線量率を測定する放射線測定器としてのNaIシンチレーション検出器110と、全地球測位システム(GPSシステム)を利用して現在位置の情報を取得するGPSユニット120(位置情報取得機構)と、NaIシンチレーション検出器110及びGPSユニット120により取得されたデータ(線量率データ及び位置データ)を処理するデータ処理システム130と、NaIシンチレーション検出器110からのアナログ出力をA/D変換してデータ処理システム130に取り込むためのインターフェースユニット140と、データ処理システム130により処理されたデータを後述のサーバ190に送信するデータ送信ユニット150とを主に備える。   As shown in FIG. 4, the KURAMA system 100 uses a NaI scintillation detector 110 as a radiation measuring device for measuring an air dose rate, and a GPS that acquires current position information using a global positioning system (GPS system). A unit 120 (position information acquisition mechanism), a data processing system 130 for processing data (dose rate data and position data) acquired by the NaI scintillation detector 110 and the GPS unit 120, and an analog output from the NaI scintillation detector 110 Are mainly provided with an interface unit 140 for A / D converting the data into the data processing system 130 and a data transmission unit 150 for transmitting data processed by the data processing system 130 to a server 190 described later.

図5に示されるように、NaIシンチレーション検出器110は、発光中心としてのタリウム(Tl)がドープされたNaI結晶111及びNaI結晶111に光学的に接続された光電子増倍管(不図示)が内部に配置された円筒形状の測定部112と、光電子増倍管に所定の電圧を印加する高圧電源や光電子増倍管からの出力信号を成形し波高分別するための電子回路が配置された本体部113と、測定部112及び本体部113を電気的に接続するケーブル114とを主に備える。本体部113には、測定された、単位時間あたりの放射線(γ線又はX線)の線量(空間線量率)を表示するメータ113a、NaIシンチレーション検出器110の測定レンジを切り替えるレンジスイッチ113b、測定された空間線量率に対応したアナログ電圧信号を出力する出力部113c等が設けられている。   As shown in FIG. 5, the NaI scintillation detector 110 includes a NaI crystal 111 doped with thallium (Tl) as an emission center and a photomultiplier tube (not shown) optically connected to the NaI crystal 111. A main body in which a cylindrical measuring unit 112 disposed inside and a high-voltage power source for applying a predetermined voltage to the photomultiplier tube and an electronic circuit for shaping an output signal from the photomultiplier tube and classifying the wave height are arranged Unit 113 and cable 114 that electrically connects measurement unit 112 and main body unit 113 are mainly provided. The main body 113 includes a meter 113a that displays a measured dose (air dose rate) of radiation (γ rays or X-rays) per unit time, a range switch 113b that switches a measurement range of the NaI scintillation detector 110, and a measurement An output unit 113c for outputting an analog voltage signal corresponding to the air dose rate thus provided is provided.

ここで、NaI結晶111の内部にγ線、X線などの放射線が入射した場合、NaI結晶111を構成する原子と放射線との相互作用により、高エネルギーの電子が放出されることがある。放出された高エネルギーの電子は、周りの原子を励起させつつエネルギーを失うが、励起された周りの原子からはシンチレーション光が発せられる。言い換えると、放出された高エネルギーの電子の運動エネルギーがシンチレーション光に変換される。このシンチレーション光の光量は、放出された電子の運動エネルギーの大きさに依存し、放出された電子の運動エネルギーの大きさは、NaI結晶111を構成する原子と放射線との相互作用の大きさに依存する。このことから、NaI結晶111から発せられるシンチレーション光の光量を測定することにより、γ線、X線などの放射線がNaI結晶111を構成する原子との相互作用によって結晶内部で失ったエネルギーの大きさを求めることができる。具体的には、NaI結晶111から発せられたシンチレーション光の光量を、NaI結晶111に光学的に接続された不図示の光電子増倍管により測定する。光電子増倍管からの出力信号は、本体部113に配置された電子回路により信号処理され、空間線量率が求められる。測定された空間線量率がメータ113aに表示されるとともに出力部113cから空間線量率の大きさに応じたアナログ電圧信号(例えば、0〜10mV)が出力される。   Here, when radiation such as γ rays or X-rays is incident on the inside of the NaI crystal 111, high energy electrons may be emitted due to the interaction between the atoms constituting the NaI crystal 111 and the radiation. The emitted high-energy electrons lose energy while exciting surrounding atoms, but scintillation light is emitted from the excited surrounding atoms. In other words, the kinetic energy of the emitted high-energy electrons is converted into scintillation light. The amount of this scintillation light depends on the magnitude of the kinetic energy of the emitted electrons, and the magnitude of the kinetic energy of the emitted electrons depends on the magnitude of the interaction between the atoms constituting the NaI crystal 111 and the radiation. Dependent. From this, by measuring the amount of scintillation light emitted from the NaI crystal 111, the magnitude of energy lost inside the crystal due to the interaction of radiation such as γ rays and X-rays with the atoms constituting the NaI crystal 111. Can be requested. Specifically, the amount of scintillation light emitted from the NaI crystal 111 is measured by a photomultiplier tube (not shown) optically connected to the NaI crystal 111. The output signal from the photomultiplier tube is subjected to signal processing by an electronic circuit disposed in the main body 113, and the air dose rate is obtained. The measured air dose rate is displayed on the meter 113a, and an analog voltage signal (for example, 0 to 10 mV) corresponding to the magnitude of the air dose rate is output from the output unit 113c.

インターフェースユニット140は、出力部113cから出力されるアナログ電圧信号を増幅するオペアンプ141と、オペアンプ141により増幅されたアナログ電圧信号をデジタル信号に変換するAD変換器142とを主に備える。なおオペアンプ141は、例えば0〜10mVの低電圧のアナログ電圧信号を0−10Vのアナログ電圧信号に増幅する。   The interface unit 140 mainly includes an operational amplifier 141 that amplifies the analog voltage signal output from the output unit 113c, and an AD converter 142 that converts the analog voltage signal amplified by the operational amplifier 141 into a digital signal. The operational amplifier 141 amplifies a low voltage analog voltage signal of, for example, 0 to 10 mV to an analog voltage signal of 0 to 10 V.

インターフェースユニット140のAD変換器142によりAD変換された、空間線量率に関する情報を含むデジタル信号(以下、空間線量率信号と呼ぶ)と、現在位置の情報を含むGPSユニット120からの出力信号(以下、GPS出力信号と呼ぶ)とがデータ処理システム130に入力される。データ処理システム130は、空間線量率信号とGPS出力信号から、現在位置に関する情報(測定位置データ)を抽出するとともに、その位置での空間線量率データを抽出する。そして、測定位置データ(例えば、緯度情報及び経度情報)と空間線量率データとを関連付けて空間線量率マップデータ(放射線量率マップデータ)を作成し、これをテキストファイルに記録する。このテキストファイルには、1〜10秒間隔で、空間線量率マップデータ(すなわち、測定位置データ及びその位置における空間線量率データ)が追加更新される。   A digital signal (hereinafter, referred to as an air dose rate signal) that is AD-converted by the AD converter 142 of the interface unit 140 and that includes information on the air dose rate, and an output signal (hereinafter referred to as a GPS signal) that includes information on the current position. , Referred to as a GPS output signal) is input to the data processing system 130. The data processing system 130 extracts information on the current position (measurement position data) from the air dose rate signal and the GPS output signal, and extracts air dose rate data at the position. Then, air dose rate map data (radiation dose rate map data) is created by associating measurement position data (for example, latitude information and longitude information) with air dose rate data, and this is recorded in a text file. In this text file, air dose rate map data (that is, measurement position data and air dose rate data at that position) is additionally updated at intervals of 1 to 10 seconds.

空間線量率マップデータが順次記載されたテキストファイルは、データ送信ユニット150によりサーバ190に送信される。サーバ190上に置かれたファイルは、他のユーザとの間で共有することも可能である。   The text file in which the air dose rate map data is sequentially described is transmitted to the server 190 by the data transmission unit 150. Files placed on the server 190 can also be shared with other users.

上述のように、テキストファイルには、測定位置データと、それに関連付けられた空間線量率データとが記載されているので、これを用いて空間線量率マップを作製することができる。具体的には、例えば白地図を用意して、白地図上の測定位置に対応する箇所に、空間線量率の大きさによって色分けされたマーカー(例えばドットなど)を表示してもよい。あるいは、等高線マップを作製してもよい。   As described above, since the measurement position data and the air dose rate data associated therewith are described in the text file, the air dose rate map can be created using this data. Specifically, for example, a white map may be prepared, and markers (for example, dots, etc.) color-coded according to the magnitude of the air dose rate may be displayed at locations corresponding to the measurement positions on the white map. Alternatively, a contour map may be created.

また、測定位置データ及び空間線量率データを、電子地図データ(例えば、Google社のGoogle Earth(登録商標)等)と組み合わせることも可能である。この場合には、上述のようなGoogle社のGoogle Earth(登録商標)を用いて、3次元マップ上に空間線量率の大きさによって色分けされたマーカが表示された空間線量率マップ(図6参照)や、2次元マップ上に空間線量率の大きさによって色分けされたマーカが表示された空間線量率マップ(図7参照)などの、視覚的に分かり易い空間線量率マップを形成することができる。
<KURAMA−IIシステム200の概略>
Further, the measurement position data and the air dose rate data can be combined with electronic map data (for example, Google Earth (registered trademark) of Google). In this case, using the Google Earth (registered trademark) as described above, the air dose rate map in which markers color-coded according to the size of the air dose rate are displayed on the three-dimensional map (see FIG. 6). ) And an air dose rate map (see FIG. 7) in which markers colored by the size of the air dose rate are displayed on a two-dimensional map can be formed. .
<Outline of KURAMA-II System 200>

さらに、本発明者が中心となって、上記KURAMAシステム100を、単に空間線量率のデータを収集するだけでなく、γ線のエネルギー測定も同時に行えるように改良し、以下のようなKURAMA−IIシステム200を開発した。   Furthermore, led by the present inventor, the above-described KURAMA system 100 has been improved not only to collect air dose rate data but also to be able to simultaneously measure γ-ray energy, and the following KURAMA-II System 200 was developed.

以下、図8を参照しつつ、KURAMA−IIシステム200について説明する。なお、上述のKURAMAシステム1と相違する点について説明することとし、共通する構成要素については同一の参照符号を付してその説明を省略する。   Hereinafter, the KURAMA-II system 200 will be described with reference to FIG. Note that the difference from the above-described KURAMA system 1 will be described, and the same components are denoted by the same reference numerals and description thereof will be omitted.

図8に示すように、KURAMA−IIシステム200は、CsIシンチレーション検出器210と、GPSユニット120と、データ処理システム130と、インターフェースユニット240と、データ送信ユニット150と、コントローラ260とを有する。後述のように、インターフェースユニット140は、National Instrument社のCompact RIOシステムにより実現されている。また、前述のKURAMAシステム100においては、データ処理システム130はネットブックと呼ばれる軽量、小型のノート型パソコンにおいて起動するプログラムにより実現されていた。KURAMA−IIシステム200においては、インターフェースユニット240を構成するCompact RIOシステムに搭載される小型のPCモジュールにおいて起動するプログラムにより実現されている。また、GPSユニット120及びデータ送信ユニット150も、PCモジュールに対して、USBなどを介して取り付けられる小型モジュールである。また、コントローラ260も、同じPCモジュールにより実現されている。つまり、KURAMA−IIシステム200は、実質的には、インターフェースユニット240、データ処理システム130、コントローラ260等を構成するCompact RIOシステムと、CsIシンチレーション検出器210と、GPSユニット120及びデータ送信ユニット150等の小型モジュールとによって構成されている。そして、これらの各装置(ユニット)は同一の筐体の中に配置することも可能である。そのため、KURAMAシステム100に比べて、格段に携帯性に優れているとともに、ユーザーが各ユニットの接続作業を行う必要がほとんどないため、誤接続などのトラブルの発生を抑えることができる。   As shown in FIG. 8, the KURAMA-II system 200 includes a CsI scintillation detector 210, a GPS unit 120, a data processing system 130, an interface unit 240, a data transmission unit 150, and a controller 260. As will be described later, the interface unit 140 is realized by a Compact RIO system of National Instrument. In the above-described KURAMA system 100, the data processing system 130 is realized by a program that is activated on a light-weight and small notebook personal computer called a netbook. The KURAMA-II system 200 is realized by a program that is activated in a small PC module mounted on the Compact RIO system that constitutes the interface unit 240. The GPS unit 120 and the data transmission unit 150 are also small modules that are attached to the PC module via a USB or the like. The controller 260 is also realized by the same PC module. That is, the KURAMA-II system 200 substantially includes a Compact RIO system that constitutes the interface unit 240, the data processing system 130, the controller 260, the CsI scintillation detector 210, the GPS unit 120, the data transmission unit 150, and the like. And a small module. These devices (units) can be arranged in the same housing. Therefore, compared with the KURAMA system 100, it is remarkably excellent in portability, and since it is almost unnecessary for the user to connect each unit, it is possible to suppress the occurrence of troubles such as erroneous connection.

また、KURAMA−IIシステム200においては、NaIシンチレーション検出器110に代えて、CsIシンチレーション検出器210を採用している。その理由は以下の通りである。一般に、物質とγ線との相互作用は、物質を構成する元素の原子番号が大きくなるほど大きくなることが知られている。ここで、Naの原子番号は11であるのに対して、Csの原子番号は55であることから、NaIシンチレーション検出器とCsIシンチレーション検出器とを比べると、CsIシンチレーション検出器の方がγ線に対する感度が高いと言える。そのため、KURAMA−IIシステム200においては、NaIシンチレーション検出器110に代えてCsIシンチレーション検出器210を採用することにより、γ線に対する感度を維持しつつ、システム全体をKURAMAシステム1と比べてさらに小型軽量化することができた。   In the KURAMA-II system 200, a CsI scintillation detector 210 is employed instead of the NaI scintillation detector 110. The reason is as follows. In general, it is known that the interaction between a substance and γ rays increases as the atomic number of the element constituting the substance increases. Here, the atomic number of Na is 11, whereas the atomic number of Cs is 55. Therefore, when comparing the NaI scintillation detector and the CsI scintillation detector, the CsI scintillation detector is more γ-rayed. It can be said that the sensitivity to is high. Therefore, in the KURAMA-II system 200, by adopting the CsI scintillation detector 210 instead of the NaI scintillation detector 110, the entire system is smaller and lighter than the KURAMA system 1 while maintaining the sensitivity to γ rays. I was able to.

インターフェースユニット240は、パルス信号出力部213から出力されるパルス信号を増幅するアンプ(パルスシェーピングアンプ)241と、アンプ141の出力信号(アナログ信号)をデジタル信号(デジタル値)に変換するAD変換器242と、FPGA243と、CPU244とを有する。なお、FPGA243とはField Programmable Gate Arrayの略であり、製造後に購入者や設計者が構成を設定できる集積回路である。KURAMA−IIシステム200においては、インターフェースユニット140として、National Instrument社製のCompact RIOシステムを採用している。上述のアンプ241、AD変換器242、FPGA243、CPU244は、Compact RIOシステムに搭載されるモジュールとして実装されている。なお、前述のように、CPU244は、Compact RIOシステムに搭載されるPCモジュールにより実現されており、このPCモジュールはデータ処理システム130及びコントローラ260を兼ねている。ここで、Compact RIOシステムは、再構成可能な組込制御、集録システムであり、例えば、LabVIEW(登録商標)を用いて各モジュールを直接制御するプログラムを容易に作製することができる。また、KURAMA−IIシステム200においては、FPGA243を用いることにより、AD変換器242から出力されるデジタル信号に基づいて、パルスのピーク高さの波高弁別、及びノイズレベルのディスクリミネーションをソフトウェア的に実現している。FPGA243により得られたパルスのピーク高さに関する情報はCPU244へ送られ、CPU244は、図9に示されるようなパルス波高スペクトルを作製することができる。   The interface unit 240 includes an amplifier (pulse shaping amplifier) 241 that amplifies the pulse signal output from the pulse signal output unit 213, and an AD converter that converts the output signal (analog signal) of the amplifier 141 into a digital signal (digital value). 242, FPGA 243, and CPU 244. Note that FPGA 243 is an abbreviation for Field Programmable Gate Array, and is an integrated circuit that can be configured by a purchaser or designer after manufacturing. In the KURAMA-II system 200, a Compact RIO system manufactured by National Instrument is adopted as the interface unit 140. The above-described amplifier 241, AD converter 242, FPGA 243, and CPU 244 are mounted as modules mounted on the Compact RIO system. As described above, the CPU 244 is realized by a PC module mounted on the Compact RIO system, and this PC module also serves as the data processing system 130 and the controller 260. Here, the Compact RIO system is a reconfigurable embedded control and acquisition system. For example, a program for directly controlling each module using LabVIEW (registered trademark) can be easily created. Further, in the KURAMA-II system 200, by using the FPGA 243, based on the digital signal output from the AD converter 242, the peak height discrimination of the pulse and the noise level discrimination are performed by software. Realized. Information on the peak height of the pulse obtained by the FPGA 243 is sent to the CPU 244, and the CPU 244 can create a pulse height spectrum as shown in FIG.

また、KURAMA−IIシステム200においては、複数の放射線検出器を用いることもできる。さらに、KURAMA−IIシステム200は、徒歩用の構成として、バッテリーで駆動するように構成でき、且つ、GPSとして高精度のDGPS(ディファレンシャルGPS)を利用することもできる。徒歩用に構成されたKURAMA−IIシステム(以下、歩行型KURAMA−IIシステムという)は軽量で可搬性に優れており、例えば、人が背負って徒歩で移動しつつ測定することができる。
<汚染分布測定システム200Aの概要及びその検証実験>
In the KURAMA-II system 200, a plurality of radiation detectors can also be used. Further, the KURAMA-II system 200 can be configured to be driven by a battery as a configuration for walking, and a high-precision DGPS (differential GPS) can also be used as a GPS. A KURAMA-II system configured for walking (hereinafter referred to as a walking KURAMA-II system) is lightweight and excellent in portability, and for example, can be measured while a person is walking on the back.
<Outline of contamination distribution measurement system 200A and its verification experiment>

本発明者らは、バッテリーで駆動するように構成し、且つ、GPSとして高精度のDGPS(ディファレンシャルGPS)を採用した歩行型KURAMA−IIシステム200において、CsIシンチレーション検出器210に代えて、上記汚染分布測定装置1を組み込むことにより、汚染分布測定システム200Aを作製した。汚染分布測定システム200Aは上述の汚染分布測定装置1を備えているため、容易に、直下の汚染源からの放射線に起因する局所成分Φを算出することができる。また、歩行型KURAMA−IIシステム200を採用しているため、移動しつつ測定を行うことにより、容易に汚染分布のマッピングを測定することができる。例えば、図10の写真に示されるように、汚染分布測定システム200A全体をリュックに詰めた状態で、人が背負って測定を行うことができる。 In the walking type KURAMA-II system 200 that is configured to be driven by a battery and adopts a high-precision DGPS (differential GPS) as a GPS, the present inventors replace the CsI scintillation detector 210 with the above contamination. By incorporating the distribution measuring apparatus 1, a contamination distribution measuring system 200A was produced. Since the contamination distribution measuring system 200A includes the above-described contamination distribution measuring apparatus 1, it is possible to easily calculate the local component Φ L caused by radiation from the contamination source immediately below. Further, since the walking type KURAMA-II system 200 is employed, the mapping of the contamination distribution can be easily measured by performing measurement while moving. For example, as shown in the photograph of FIG. 10, a person can carry out measurement while carrying the entire contamination distribution measuring system 200A in a backpack.

本実施形態にかかる汚染分布測定システム200Aを実証するために、本発明者らは福島県A市において、汚染分布測定システム200Aの測定試験を行った。図11に示される、運動広場および駐車場、集会所、集会所前の道路において、汚染分布測定システム200Aをリュックに詰めて背負った状態で、測定者が徒歩で移動することにより測定を行った。なお、歩行型KURAMA−IIシステムを採用しているので、測定中に、付き添い者がPC上のGoogle Earth(登録商標)でほぼリアルタイムでモニタすることができる。また、測定者自身も例えばタブレット端末を利用することにより、端末の画面上に表示されるグラフと数値で現在位置の緯度経度や2台の放射線検出器10、20の測定値をリアルタイムでモニタすることができる。   In order to demonstrate the contamination distribution measurement system 200A according to the present embodiment, the present inventors conducted a measurement test of the contamination distribution measurement system 200A in A city, Fukushima Prefecture. In the exercise plaza and the parking lot, the meeting place, and the road in front of the meeting place shown in FIG. 11, the measurement was performed by the measurer moving on foot with the contamination distribution measurement system 200 </ b> A packed in the backpack and carrying it. . In addition, since the walking type KURAMA-II system is adopted, an attendant can monitor in real time with Google Earth (registered trademark) on a PC during measurement. Further, the measurer himself also uses a tablet terminal, for example, to monitor the latitude and longitude of the current position and the measured values of the two radiation detectors 10 and 20 in real time using graphs and numerical values displayed on the terminal screen. be able to.

図12(a)、(b)は、コリメータ30により地表方向に指向性を持たせている第1放射線検出器10で測定された空間線量率と、指向性を持たない第2放射線検出器20で測定された空間線量率とをプロットしたものである。これによれば、第1放射線検出器10の空間線量率はあまり上がらないのに第2放射線検出器20の空間線量率が高くなっているように見える場所がみられる。このことは、空間線量率が直下の汚染源からの寄与以外に大きく左右される可能性を示唆している。すなわち、直下の地表が汚染されていない場合であっても、例えばその近くにある建物や木などが汚染していることによって、均一成分Φが高くなっていることがありうると考えられる。 FIGS. 12A and 12B show the air dose rate measured by the first radiation detector 10 having directivity in the ground direction by the collimator 30 and the second radiation detector 20 having no directivity. Is a plot of the air dose rate measured in. According to this, although the air dose rate of the 1st radiation detector 10 does not rise so much, the place where the air dose rate of the 2nd radiation detector 20 seems to be high is seen. This suggests that the air dose rate may be greatly influenced by the contribution other than the direct source. That is, even when the ground surface immediately below is not contaminated, it is considered that the uniform component Φ F may be high due to, for example, contamination of buildings or trees nearby.

図13(a)、(b)は、運動広場および駐車場付近において測定された空間線量率をプロットしたものである。ここで、図13(a)はコリメータ30により地表方向に指向性を持たせている第1放射線検出器10により測定された空間線量率をプロットしたものであり、図13(b)は指向性を持たない第2放射線検出器20により測定された空間線量率をプロットしたものである。なお、運動広場内は中央部に芝が植えられており、すでに除染がなされて日常的に利用されている。周辺部についてはまだ除染が終わっていない。これを反映して、図13(a)、(b)において、運動広場内の空間線量率は駐車場付近に比べて低くなっていることがわかる。   FIGS. 13A and 13B are plots of the air dose rate measured in the vicinity of the exercise plaza and the parking lot. Here, FIG. 13A plots the air dose rate measured by the first radiation detector 10 having directivity in the ground surface direction by the collimator 30, and FIG. 13B shows the directivity. The air dose rate measured by the 2nd radiation detector 20 which does not have is plotted. There is a lawn planted in the center of the sports plaza, which has already been decontaminated and used on a daily basis. The decontamination of the surrounding area is not yet complete. Reflecting this, in FIGS. 13A and 13B, it can be seen that the air dose rate in the exercise square is lower than that in the vicinity of the parking lot.

図14(a)、(b)は、集会所の中庭および道路をはさんで反対側の駐車場付近において測定された空間線量率をプロットしたものである。図14(a)はコリメータ30により地表方向に指向性を持たせている第1放射線検出器10により測定された空間線量率をプロットしたものであり、図14(b)は指向性を持たない第2放射線検出器20により測定された空間線量率をプロットしたものである。なお、集会所の中庭は、未舗装であり、部分的に草に覆われたり小石に覆われたりしている。   FIGS. 14A and 14B are plots of air dose rates measured in the vicinity of the parking lot on the opposite side across the courtyard of the meetinghouse and the road. FIG. 14A is a plot of the air dose rate measured by the first radiation detector 10 having directivity in the ground direction by the collimator 30, and FIG. 14B does not have directivity. The air dose rate measured by the second radiation detector 20 is plotted. The courtyard's courtyard is unpaved and partially covered with grass or pebbles.

図15(a)、(b)は、集会所前を通る道路の路側部分において測定された空間線量率をプロットしたものである。図15(a)はコリメータ30により地表方向に指向性を持たせている第1放射線検出器10により測定された空間線量率をプロットしたものであり、図15(b)は指向性を持たない第2放射線検出器20により測定された空間線量率をプロットしたものである。なお、道路は舗装されており、集会所前から150mくらい南に下った辺りから樹木の生えた山の縁あるいは山に挟まれた状態が続く。   FIGS. 15A and 15B are plots of air dose rates measured at the roadside portion of the road passing in front of the meeting place. FIG. 15A is a plot of the air dose rate measured by the first radiation detector 10 having directivity in the ground direction by the collimator 30, and FIG. 15B has no directivity. The air dose rate measured by the second radiation detector 20 is plotted. In addition, the road is paved, and the state where it is sandwiched between the edge of the mountain where the tree grows or the mountain continues about 150m south from the meeting place.

以上の測定結果から地表の汚染に関する考察を行なった。図13〜15を見ると、放射線検出器10、20によって測定される空間線量率は、よく似た傾向を示すものの、おおむね第1放射線検出器10において測定される空間線量率が、第2放射線検出器20により測定される空間線量率より低いことが分かる。これは、放射線検出器10のCsI結晶11の前面11aが地表面に向けられているとともに、放射線検出器10のCsI結晶11の前面11aを除く部分が、鉛製のコリメータ30により覆われている事に起因すると考えられる。   From the above measurement results, the surface contamination was considered. 13 to 15, the air dose rate measured by the radiation detectors 10 and 20 shows a similar tendency, but the air dose rate measured by the first radiation detector 10 is almost equal to the second radiation. It can be seen that the air dose rate measured by the detector 20 is lower. This is because the front surface 11a of the CsI crystal 11 of the radiation detector 10 is directed to the ground surface, and the portion other than the front surface 11a of the CsI crystal 11 of the radiation detector 10 is covered with a lead collimator 30. It is thought to be caused by things.

図16は、運動公園およびその周辺の測定についての経時変化をプロットしたものである。下側のグラフは、放射線検出器10、20の測定値の経時変化を示し、上側のグラフは、第2放射線検出器20の測定値に対する第1放射線検出器10の測定値の比率の経時変化を示している。   FIG. 16 is a plot of changes over time for the measurements of the athletic park and its surroundings. The lower graph shows the change over time of the measurement values of the radiation detectors 10 and 20, and the upper graph shows the change over time of the ratio of the measurement values of the first radiation detector 10 to the measurement values of the second radiation detector 20. Is shown.

これを見ると、放射線検出器10、20により測定される空間線量率の測定値は、全体的にはよく似た挙動を示しており、第2放射線検出器20の測定値に対する第1放射線検出器10の測定値の比率はおおむね0.4〜0.5程度であることがわかる。第1放射線検出器10に取り付けられているコリメータ30による遮蔽により、上および側方からのγ線が7〜8割阻止されていると考えられる。このことを考慮すれば、直下に汚染がなく、均一成分Φだけが測定されるような状況であれば、第1放射線検出器10と第2放射線検出器20の測定値の比率が0.4〜0.5程度となることは理解できる。つまり、本測定の条件においては、上述の数式(数2)における(1−Q)の値は0.4〜0.5程度となることがわかった。 When this is seen, the measured value of the air dose rate measured by the radiation detectors 10 and 20 generally shows a similar behavior, and the first radiation detection with respect to the measured value of the second radiation detector 20. It can be seen that the ratio of the measured values of the vessel 10 is about 0.4 to 0.5. It is considered that 70 to 80% of gamma rays from above and from the side are blocked by shielding by the collimator 30 attached to the first radiation detector 10. Considering this, if there is no contamination immediately below and only the uniform component Φ F is measured, the ratio of the measurement values of the first radiation detector 10 and the second radiation detector 20 is 0. It can be understood that it is about 4 to 0.5. That is, under the conditions of this measurement, it was found that the value of (1-Q) in the above mathematical formula (Formula 2) is about 0.4 to 0.5.

なお、図16をみると、第2放射線検出器20の測定値に対する第1放射線検出器10の測定値の比率が大きく増加しているところが見られる。このことは、その時点において、指向性を持たない第2放射線検出器20の測定値の増加率に比べて、地表方向に指向性を有する第1放射線検出器10の測定値の増加率が大きくなっていることを意味している。言い換えると、地表からの寄与が大きくなっていること、すなわち、その時点において、直下に汚染があったことを意味している。例えば、図16における10時半を挟んだ10分間の測定値に着目すると、第2放射線検出器20では10時半前と10時半後にほぼ同じ高さのピークが観測されている。これに対して、第2放射線検出器20の測定値に対する第1放射線検出器10の測定値の比率をみると、10時半前には高さ約0.6のピークが見られるのに対して、10時半を過ぎてからは目立ったピークは見られず、約0.4で推移している。これと同様の変動は10時50〜55分頃、11時〜11時10分過ぎなどでも確認される。また、第1放射線検出器10の測定値が第2放射線検出器20の測定値とほぼ同じかそれ以上になっている地点もあり、地表からの寄与が極めて高い地点の存在も伺える。   In addition, when FIG. 16 is seen, the place where the ratio of the measured value of the 1st radiation detector 10 with respect to the measured value of the 2nd radiation detector 20 is increasing greatly is seen. This is because the increase rate of the measurement value of the first radiation detector 10 having directivity in the ground surface direction is larger than the increase rate of the measurement value of the second radiation detector 20 having no directivity at that time. It means that In other words, it means that the contribution from the surface of the earth has increased, that is, there was contamination immediately below. For example, paying attention to the measurement value for 10 minutes with 10:30 in FIG. 16, the second radiation detector 20 observes peaks having almost the same height before 10:30 and after 10:30. On the other hand, when the ratio of the measurement value of the first radiation detector 10 to the measurement value of the second radiation detector 20 is seen, a peak of about 0.6 height is seen before 10:30. Thus, after 10:30, no noticeable peak was seen, and it remained at about 0.4. Similar fluctuations can be confirmed at around 10:50 to 55, even after 11:00 to 11:10. In addition, there are points where the measurement value of the first radiation detector 10 is substantially the same as or higher than the measurement value of the second radiation detector 20, and it can be seen that there are points where the contribution from the ground surface is extremely high.

これらをふまえ、上述の数式(数2)に示した関係式から、局所成分Φを評価したものが図17である。なお、第2放射線検出器20の測定値に対する第1放射線検出器10の測定値の比率が0.4であるとして評価を行った。上述のように、第2放射線検出器20の測定値に対する第1放射線検出器10の測定値の比率はおおむね0.4〜0.5であったが、その中でも、当該比率が0.4となるのは第1放射線検出器10の測定値に対して地上からの寄与が最も少ない場合であると考えられ、測定点に均一場のみ存在する場合に一番近いと考えられるためである。 Based on these, FIG. 17 shows an evaluation of the local component Φ L from the relational expression shown in the above mathematical formula (Formula 2). In addition, it evaluated that the ratio of the measured value of the 1st radiation detector 10 with respect to the measured value of the 2nd radiation detector 20 was 0.4. As described above, the ratio of the measurement value of the first radiation detector 10 to the measurement value of the second radiation detector 20 was approximately 0.4 to 0.5. Among these, the ratio was 0.4. This is because it is considered that the contribution from the ground is the smallest with respect to the measurement value of the first radiation detector 10, and is considered to be the closest when only a uniform field exists at the measurement point.

図17に示した地表汚染の評価を一般的な空間線量率マップで得られる図13と比べると、下の(A)〜(D)のように、単純な空間線量率マップとは異なった傾向が読み取れる。
(A)運動広場内の測定経路上には大きな汚染は存在しない。
(B)運動広場東側の南北方向経路では空間線量率は高いにも関わらず大きな汚染の存在は示唆されない。
(C)運動公園西側の法面は比較的汚染が集積する一方、同じ法面のコンクリート階段は汚染が低い。
(D)運動公園隣接の駐車場には小さなホットスポットが存在し、駐車場内の汚染の度合いもまだらになっている。
このような結果は、しばしば除染を実施しても思ったように空間線量率が下がらないといわれている場合をうまく説明できる可能性がある。例えば、(B)の傾向は、空間線量率の高い場所であっても、その原因は地表にある汚染ではないことを示唆している。空間線量率が高くなっている運動広場東側の南北方向経路は、側溝の上であり、従来であれば汚染した土砂が集積していると推定されて除染対象となりがちであるが、ここを除染しても線量率は下がらない可能性が高いことになる。
When the evaluation of the surface contamination shown in FIG. 17 is compared with FIG. 13 obtained by a general air dose rate map, as shown in the following (A) to (D), a tendency different from a simple air dose rate map Can be read.
(A) There is no major contamination on the measurement path in the exercise plaza.
(B) Although the air dose rate is high in the north-south direction route on the east side of the exercise square, there is no suggestion of large contamination.
(C) The slope on the west side of the athletic park is relatively contaminated, while the concrete staircase with the same slope is less polluted.
(D) There is a small hot spot in the parking lot adjacent to the athletic park, and the degree of contamination in the parking lot is mottled.
Such a result may well explain the case where it is often said that the air dose rate will not decrease as expected even after decontamination. For example, the tendency of (B) suggests that the cause is not contamination on the ground surface even in a place where the air dose rate is high. The north-south direction route on the east side of the exercise square where the air dose rate is high is on the gutter, and if it is conventionally estimated that contaminated earth and sand are accumulated, it tends to be decontaminated. There is a high possibility that the dose rate will not decrease even after decontamination.

同じ手法を集会所と道路について当てはめた結果が図18及び19に示されている。図18の集会所では比較的汚染が均一に分布しているが、車の出入り口に相当する部分の汚染が低くなっている。これは出入り口は車や人が繰り返し通る事で汚染土が削れて除去されてしまっているためと考えられる。また、図19では道路が全区間にわたって線量率が上がっているにもかかわらず、道路部分の半分くらいは運動公園並みに地表からの寄与が低い。これは、地表に汚染が存在するのではなく、道路に迫っている山の汚染が道路上の空間線量率を押し上げている可能性が高いことを示唆している。また、地表の寄与が高いところがみられるが、これらは山からの汚染土の湧き出しが側溝や未舗装道路の表面にたまっている可能性があると考えられる。   The results of applying the same technique to meetinghouses and roads are shown in FIGS. Although the contamination is relatively uniformly distributed in the meeting place of FIG. 18, the contamination corresponding to the entrance / exit of the car is low. This is thought to be because the contaminated soil has been removed and removed by repeated passage of cars and people at the doorway. In addition, in FIG. 19, although the road has an increased dose rate over the entire section, the contribution from the ground surface is as low as about athletic parks in about half of the road portion. This suggests that the contamination of the mountains approaching the road is likely to increase the air dose rate on the road, rather than the surface being contaminated. In addition, there are places where the contribution of the ground surface is high, but it is thought that there is a possibility that the outflow of contaminated soil from the mountain is accumulated on the surface of gutters and dirt roads.

以上説明してきたように、本実施形態に係る汚染分布測定システム200Aを用いることによって、地表の汚染の分布状況を把握するために有効な情報が得られることがわかった。上述のように、汚染分布測定システム200Aは検出器をリュックサックの中に入れた状態で、測定者が背負って測定を行うことができる。そのため少なくとも一つの放射線検出器を地表付近に配置して行わなければならない従来の測定と比べて、きわめて容易に測定を行うことができる。本実施形態に係る汚染分布測定システム200Aを用いることにより、除染前の計画策定や除染後の効果確認を容易に行うことができ、除染作業の効率化や確実性の向上に大きく寄与することができる。   As described above, it has been found that by using the contamination distribution measurement system 200A according to the present embodiment, effective information can be obtained for grasping the distribution state of contamination on the ground surface. As described above, the contamination distribution measuring system 200 </ b> A can be measured by the measurer carrying the detector in a rucksack. Therefore, the measurement can be performed very easily as compared with the conventional measurement in which at least one radiation detector is arranged near the ground surface. By using the contamination distribution measuring system 200A according to the present embodiment, it is possible to easily perform the planning before decontamination and the effect confirmation after decontamination, and greatly contribute to the improvement of the efficiency and certainty of the decontamination work. can do.

さらに、本発明者らは本実施形態に係る汚染分布測定システム200Aで測定した局所成分Φと、実際の表土の一部をサンプリングして測定した汚染密度との比較を行い、本実施形態に係る汚染分布測定システム200Aの有用性を検証する実験を行った。 Furthermore, the present inventors compare the local component Φ L measured by the contamination distribution measurement system 200A according to the present embodiment with the contamination density measured by sampling a part of the actual topsoil, and the present embodiment An experiment was conducted to verify the usefulness of the contamination distribution measurement system 200A.

福島県B市のある果樹園において、上述の手順と同様のやり方で局所成分Φを測定し、図20に示されるような局所成分Φのマップを作成した。そして、局所成分Φの高い地点及び低い地点を含むように、6つの代表地点を選択した。選択された代表地点は図20において四角のマーカーで表示されている。なお、各マーカーの近傍に示されている数字は、汚染分布測定システム200Aによる測定地点を識別するための識別番号である。 In an orchard in B city, Fukushima Prefecture, the local component Φ L was measured in the same manner as described above, and a map of the local component Φ L as shown in FIG. 20 was created. Then, to include the high point and low point of the local component [Phi L, it was selected six representative points. The selected representative points are displayed with square markers in FIG. The numbers shown in the vicinity of each marker are identification numbers for identifying measurement points by the contamination distribution measurement system 200A.

各代表地点において、表土をサンプルとして数百gずつ採取し、サンプルから放出されるγ線をGe検出器により測定して、134Csと137Csの総量(Bq)を求めた。なお、Ge検出器はエネルギー分解能が高く、サンプル中の134Csと137Csのベクレル数を個別に評価することもできる。しかしながら、汚染分布測定システム200Aにおける空間線量率測定では、134Csからのγ線が空間線量率へ与える寄与と137Csからのγ線が空間線量率へ与える寄与とを個別に評価していない。そこで、汚染分布測定システム200Aで測定される空間線量率との比較を行うため、Ge検出器で134Csと137Csの総量を求めることとした。 At each representative point, hundreds of grams were collected using topsoil as a sample, and γ-rays emitted from the sample were measured with a Ge detector to determine the total amount (Bq) of 134 Cs and 137 Cs. Note that the Ge detector has high energy resolution, and the number of becquerels of 134 Cs and 137 Cs in the sample can be individually evaluated. However, in the air dose rate measurement in the contamination distribution measurement system 200A, the contribution of γ rays from 134 Cs to the air dose rate and the contribution of γ rays from 137 Cs to the air dose rate are not individually evaluated. Therefore, in order to make a comparison with the air dose rate measured by the contamination distribution measurement system 200A, the total amount of 134 Cs and 137 Cs is determined by the Ge detector.

図21にGe検出器で測定された134Csと137Csの総量(Bq)と、コリメータ30により地表方向に指向性を持たせている第1放射線検出器10により測定された空間線量率とのプロットが示されている。図22にGe検出器で測定された134Csと137Csの総量(Bq)と、指向性を持たない第2放射線検出器20により測定された空間線量率とのプロットが示されている。これらをみると、第1放射線検出器10または第2放射線検出器20を単独に用いて空間線量率を測定した場合には、実際に地表からサンプリングした表土に含まれる134Csと137Csの総量との間に、あまり良い相関がみられないことが分かった。これに対して、図23には、Ge検出器で測定された134Csと137Csの総量(Bq)と上述の方法により算出した局所成分Φとのプロットが示されている。これを見ると、第1放射線検出器10または第2放射線検出器20を単独に用いて空間線量率を測定した場合に比べ、上述の手順で求めた局所成分Φの方が明らかに、実際に地表からサンプリングした表土に含まれる134Csと137Csの総量と良い相関を示すことが分かった。このことは、上述の手順で求めた局所成分Φが実際の表土に含まれる134Csと137Csの総量(Bq)を評価するために有用であることを示している。但し、6つの代表地点のうち2つの代表地点(166と367)が相関から外れているように見えるなど、局所成分Φと表土に含まれる134Csと137Csの総量との間には十分よい相関が認められるとまでは言えない。この理由としては、汚染分布測定システム200Aの測定値は第1放射線検出器10の視野の範囲(半径1m程度)の汚染の平均を見ている一方、採取した表土は採取点の半径10〜20cm程度であり、視野の範囲内の汚染のムラを反映していると考えられる。発明者らの知見によれば、第1放射線検出器10の視野の範囲で複数の地点で表土をサンプリングして、その汚染密度の平均を評価する事で改善されると考えられる。 FIG. 21 shows the total amount (Bq) of 134 Cs and 137 Cs measured by the Ge detector and the air dose rate measured by the first radiation detector 10 having directivity in the ground direction by the collimator 30. A plot is shown. FIG. 22 shows a plot of the total amount (Bq) of 134 Cs and 137 Cs measured by the Ge detector and the air dose rate measured by the second radiation detector 20 having no directivity. When these are seen, when the air dose rate is measured using the first radiation detector 10 or the second radiation detector 20 alone, the total amount of 134 Cs and 137 Cs contained in the topsoil actually sampled from the ground surface. It was found that there was not a very good correlation with. On the other hand, FIG. 23 shows a plot of the total amount (Bq) of 134 Cs and 137 Cs measured by the Ge detector and the local component Φ L calculated by the above method. Looking at this, the local component Φ L obtained by the above-described procedure is clearly more practical than the case where the air dose rate is measured using the first radiation detector 10 or the second radiation detector 20 alone. It was found that there was a good correlation with the total amount of 134 Cs and 137 Cs contained in the topsoil sampled from the ground surface. This indicates that the local component Φ L obtained by the above-described procedure is useful for evaluating the total amount (Bq) of 134 Cs and 137 Cs contained in the actual topsoil. However, two representative points (166 and 367) of the six representative points seem to be out of correlation. For example, it is sufficient between the local component Φ L and the total amount of 134 Cs and 137 Cs included in the topsoil. It cannot be said that a good correlation is observed. The reason for this is that while the measured value of the contamination distribution measuring system 200A looks at the average contamination in the field of view of the first radiation detector 10 (with a radius of about 1 m), the collected topsoil has a sampling point radius of 10 to 20 cm. This is considered to be a reflection of uneven contamination within the field of view. According to the knowledge of the inventors, it can be improved by sampling the topsoil at a plurality of points within the range of the field of view of the first radiation detector 10 and evaluating the average contamination density.

上記実施形態において、コリメータ30は鉛により形成されていたが、必ずしも鉛によって形成されていなくてもよい。上述のように原子番号が大きな元素を多く含む方が放射線の遮蔽効果は高くなることを鑑みると、鉛で形成することが好ましいが、軽量化のために、例えば鉄などでコリメータを作成してもよい。また、コリメータ30の形状も必要に応じて適宜変更しうる。また、上記実施形態においてコリメータ30は、第1放射線検出器の地表に対向する面以外の部分を覆うとともに、第2放射線検出器20の地表に対向する面を地表から遮蔽していたが、本発明はこのような構成には限られない。例えば、第1放射線検出器の地表に対向する面以外の部分を覆うコリメータと、第2放射線検出器20の地表に対向する面を地表から遮蔽するコリメータとを別に設けることもできる。   In the above embodiment, the collimator 30 is formed of lead, but it is not necessarily formed of lead. In view of the fact that the radiation shielding effect is higher when the element having a large atomic number includes a larger amount as described above, it is preferable to form it with lead, but for weight reduction, for example, a collimator is made with iron or the like. Also good. In addition, the shape of the collimator 30 can be changed as needed. In the above embodiment, the collimator 30 covers a portion other than the surface facing the ground surface of the first radiation detector and shields the surface facing the ground surface of the second radiation detector 20 from the ground surface. The invention is not limited to such a configuration. For example, a collimator that covers a portion other than the surface facing the ground surface of the first radiation detector and a collimator that shields the surface facing the ground surface of the second radiation detector 20 from the ground surface can be provided separately.

上記実施形態において、第1放射線検出器10はコリメータ30により地表方向に指向性を持つように構成されていたが、指向性を持たせる方向は、汚染を検出したい方向に向けられていればよく、必ずしも地表方向には限らない。例えば、ビルの壁面などの、地表面とは異なる面について測定を行いたい場合には、その面を向いた方向に指向性を持たせるように、コリメータを配置すればよい。   In the above embodiment, the first radiation detector 10 is configured to have directivity in the ground surface direction by the collimator 30, but the direction in which the directivity is provided only needs to be directed to the direction in which contamination is desired to be detected. It is not necessarily limited to the surface direction. For example, when it is desired to perform measurement on a surface different from the ground surface, such as a wall surface of a building, a collimator may be arranged so as to have directivity in the direction facing the surface.

上記実施形態において、放射線検出器としてCsIシンチレーション検出器を用いていたが、本発明は必ずしもこのような構成には限られない。例えば、NaIシンチレーション検出器やBaFシンチレーション検出器のような他のシンチレーション検出器を用いることもできる。あるいは、GM管などのガス検出器や、Ge検出器のような半導体検出器を用いることもできる。 In the above embodiment, the CsI scintillation detector is used as the radiation detector, but the present invention is not necessarily limited to such a configuration. For example, other scintillation detectors such as a NaI scintillation detector or a BaF 2 scintillation detector can be used. Alternatively, a gas detector such as a GM tube or a semiconductor detector such as a Ge detector can be used.

上記実施形態において、移動する測定者が汚染分布測定システム200Aを携帯していたが、本発明はこのような構成には限られない。例えば、汚染分布測定システム200Aを、車、自転車、オートバイなどの他の移動手段に搭載して、移動しつつ測定を行うこともできる。   In the above embodiment, the moving measurer carries the contamination distribution measurement system 200A, but the present invention is not limited to such a configuration. For example, the contamination distribution measuring system 200A can be mounted on other moving means such as a car, a bicycle, a motorcycle, and the measurement can be performed while moving.

1 汚染分布測定装置
10 第1放射線検出器
20 第2放射線検出器
30 コリメータ
200A 汚染分布測定システム
DESCRIPTION OF SYMBOLS 1 Contamination distribution measuring apparatus 10 1st radiation detector 20 2nd radiation detector 30 Collimator 200A Contamination distribution measuring system

Claims (5)

放射性物質による汚染分布を測定するための汚染分布測定装置であって、
空間線量率を測定する第1の放射線検出器及び第2の放射線検出器と、
第1向き以外の向きから第1の放射線検出器に入射する放射線を遮蔽するように、第1の放射線検出器を覆って配置される第1の遮蔽体と、
前記第1向きから第2の放射線検出器に入射する放射線を遮蔽し、前記第1向き以外の向きからの放射線は入射するように、第2の放射線検出器の、前記第1向きに対向する面を覆って配置される第2の遮蔽体とを備える汚染分布測定装置。
A contamination distribution measuring device for measuring the distribution of contamination by radioactive substances,
A first radiation detector and a second radiation detector for measuring an air dose rate;
A first shield disposed over the first radiation detector so as to shield radiation incident on the first radiation detector from a direction other than the first direction;
The second radiation detector is opposed to the first direction so as to shield radiation incident on the second radiation detector from the first direction and to enter radiation from directions other than the first direction. A contamination distribution measuring device comprising: a second shield disposed over the surface.
前記第1の遮蔽体は前記第2の遮蔽体を兼ねており、
前記第2の放射線検出器は、前記第1向きに関して、前記第1の遮蔽体を挟んで前記第1の放射線検出器と反対側に配置されていることを特徴とする請求項1に記載の汚染分布測定装置。
The first shield also serves as the second shield,
The said 2nd radiation detector is arrange | positioned on the opposite side to the said 1st radiation detector on both sides of the said 1st shielding body regarding the said 1st direction. Contamination distribution measuring device.
さらに、現在位置に関する位置データを取得する位置情報取得手段と、
前記第1、第2の放射線検出器によって測定される空間線量率データ及び当該線量率データが測定された地点における位置データを関連付けて放射線量率マップデータを作成するマップデータ作成手段と、
前記第1、第2の放射線検出器、前記位置情報取得手段、及び前記マップデータ作成手段を制御して、前記放射線量率マップデータの自動収集を行わせる制御手段とを備える請求項1又は2に記載の汚染分布測定装置。
Furthermore, position information acquisition means for acquiring position data relating to the current position;
Map data creation means for creating radiation dose rate map data by associating the air dose rate data measured by the first and second radiation detectors and the position data at the point where the dose rate data was measured;
3. A control unit that controls the first and second radiation detectors, the position information acquisition unit, and the map data generation unit to automatically collect the radiation dose rate map data. The contamination distribution measuring device described in 1.
前記第1の遮蔽体は、前記第1向きに反対の第2向きから前記第1の放射線検出器に入射する放射線及び前記第1向きと直交する任意の第3向きから前記第1の放射線検出器に入射する放射線を遮蔽するように、前記第1の放射線検出器を覆って配置され、The first shield detects the radiation incident on the first radiation detector from a second direction opposite to the first direction and the first radiation detection from an arbitrary third direction orthogonal to the first direction. Disposed over the first radiation detector so as to shield radiation incident on the vessel;
前記第2の放射線検出器は、前記第2向き及び前記任意の第3向きに関して全指向性を有するように構成されていることを特徴とする請求項1〜3のいずれか一項に記載の汚染分布測定装置。The said 2nd radiation detector is comprised so that it may have omni-directionality regarding the said 2nd direction and the said arbitrary 3rd direction, The Claim 1 characterized by the above-mentioned. Contamination distribution measuring device.
前記第2の放射線検出器には、前記第2向き及び前記任意の第3向きから前記第2の放射線検出器に入射する放射線を遮蔽する遮蔽体が設けられていないことを特徴とする請求項4に記載の汚染分布測定装置。The second radiation detector is not provided with a shield that shields radiation incident on the second radiation detector from the second direction and the arbitrary third direction. 4. The contamination distribution measuring device according to 4.
JP2014062157A 2014-03-25 2014-03-25 Contamination distribution measuring device for measuring the distribution of contamination by radioactive materials Active JP6419448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062157A JP6419448B2 (en) 2014-03-25 2014-03-25 Contamination distribution measuring device for measuring the distribution of contamination by radioactive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062157A JP6419448B2 (en) 2014-03-25 2014-03-25 Contamination distribution measuring device for measuring the distribution of contamination by radioactive materials

Publications (2)

Publication Number Publication Date
JP2015184189A JP2015184189A (en) 2015-10-22
JP6419448B2 true JP6419448B2 (en) 2018-11-07

Family

ID=54350874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062157A Active JP6419448B2 (en) 2014-03-25 2014-03-25 Contamination distribution measuring device for measuring the distribution of contamination by radioactive materials

Country Status (1)

Country Link
JP (1) JP6419448B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109901212B (en) * 2019-01-01 2023-05-26 中国人民解放军63653部队 Platform system for radionuclide scanning measurement and decontamination
KR102250686B1 (en) * 2020-12-11 2021-05-11 (주)액트 Three-dimensional distribution measurement imaging device and image measurement method for the internal radiation of nuclear power plant concrete structures

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152278A (en) * 1976-06-14 1977-12-17 Nippon Atom Ind Group Co Ltd Environmental radiant ray measuring method of surrounding site of atomic power plant etc.
JPS6461679A (en) * 1987-09-02 1989-03-08 Mitsubishi Atomic Power Ind Method for measuring radioactive nuclide
JPH03185383A (en) * 1989-12-15 1991-08-13 Power Reactor & Nuclear Fuel Dev Corp Method for measuring radiation
JP4616463B2 (en) * 2000-12-04 2011-01-19 アロカ株式会社 Radiation detector
JP5955546B2 (en) * 2011-12-26 2016-07-20 国立大学法人京都大学 Radiation dose rate map data collection system
JP5963165B2 (en) * 2012-05-18 2016-08-03 国立研究開発法人日本原子力研究開発機構 Portable radiation measuring apparatus and radiation measuring method using the same
JP5643864B2 (en) * 2013-03-04 2014-12-17 株式会社堀場製作所 Radiation measurement apparatus and radiation measurement program

Also Published As

Publication number Publication date
JP2015184189A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
Sanada et al. The aerial radiation monitoring in Japan after the Fukushima Daiichi nuclear power plant accident
Saito et al. Summary of temporal changes in air dose rates and radionuclide deposition densities in the 80 km zone over five years after the Fukushima Nuclear Power Plant accident
Golikov et al. External exposure of the population living in areas of Russia contaminated due to the Chernobyl accident
Pavlovsky et al. 3-D radiation mapping in real-time with the localization and mapping platform LAMP from unmanned aerial systems and man-portable configurations
Kock et al. Comparison of airborne and terrestrial gamma spectrometry measurements-evaluation of three areas in southern Sweden
JP2013032926A (en) Method for measuring radiation dose rate and method for creating radiation dose rate map
Bailiff et al. Retrospective luminescence dosimetry: development of approaches to application in populated areas downwind of the Chernobyl NPP
RU2620333C1 (en) Method of administration of aircraft radiation surveys with the use of a helicopter-free helicopter of a helicopter type
Mabit et al. 137 Cs: a widely used and validated medium term soil tracer
JP6419448B2 (en) Contamination distribution measuring device for measuring the distribution of contamination by radioactive materials
Tyler In situ and airborne gamma-ray spectrometry
Beogo et al. Assessment of radiological hazards from soil samples in the Northeastern area of Burkina Faso
JP6574550B2 (en) γ-ray energy spectrum measurement method
Yamaguchi Investigations on radioactive substances released from the Fukushima Daiichi nuclear power plant
JP5955546B2 (en) Radiation dose rate map data collection system
Horng et al. In situ measurements of gamma-ray intensity from radon progeny in rainwater
Sanderson et al. Validated Radiometric Mapping in 2012 of Areas in Japan Affected by the Fukushima-Daiichi Nuclear Accident.
Miyahara et al. Use of knowledge and experience gained from the Fukushima Daiichi nuclear power station accident to establish the technical basis for strategic off-site response
Pornnumpa et al. Investigation of absorbed dose rate in air by a car-borne survey in Namie Town, Fukushima Prefecture
Orosun et al. Natural radionuclide and radiological impact assessment of teak plantation, University of Ilorin, Kwara State
Tsorxe Baseline Measurements Of Natural Radioactivity At The Texas A&M Engineering Extension Service-Disaster City
Amwaalanga et al. Assessment of natural radioactivity levels and radiation hazards in shore sediments from the Zambezi River, Namibia
Simonucci et al. Drone mapping radioactivity in emergency situation
Nielsen et al. Thule-2007-Investigation of radioactive pollution on land
Martin et al. Low-Altitude Unmanned Aerial Vehicles as a Tool for the Remediation of Radiologically Contaminated Environments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181010

R150 Certificate of patent or registration of utility model

Ref document number: 6419448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250