JP6142199B2 - Method for regenerating anode for trivalent chromium plating - Google Patents
Method for regenerating anode for trivalent chromium plating Download PDFInfo
- Publication number
- JP6142199B2 JP6142199B2 JP2013122498A JP2013122498A JP6142199B2 JP 6142199 B2 JP6142199 B2 JP 6142199B2 JP 2013122498 A JP2013122498 A JP 2013122498A JP 2013122498 A JP2013122498 A JP 2013122498A JP 6142199 B2 JP6142199 B2 JP 6142199B2
- Authority
- JP
- Japan
- Prior art keywords
- trivalent chromium
- anode
- chromium plating
- electrode
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007747 plating Methods 0.000 title claims description 130
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims description 111
- 229910052804 chromium Inorganic materials 0.000 title claims description 109
- 239000011651 chromium Substances 0.000 title claims description 109
- 238000000034 method Methods 0.000 title claims description 66
- 230000001172 regenerating effect Effects 0.000 title claims description 16
- 238000011069 regeneration method Methods 0.000 claims description 33
- 230000008929 regeneration Effects 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 11
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims description 11
- 229910000457 iridium oxide Inorganic materials 0.000 claims description 11
- 229910052719 titanium Inorganic materials 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 11
- 239000003054 catalyst Substances 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 239000010955 niobium Substances 0.000 claims description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000003672 processing method Methods 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 7
- 235000002639 sodium chloride Nutrition 0.000 description 7
- 150000001845 chromium compounds Chemical class 0.000 description 6
- 229910001430 chromium ion Inorganic materials 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000008139 complexing agent Substances 0.000 description 3
- 239000006179 pH buffering agent Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- -1 alkali metal salts Chemical class 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- FTLYMKDSHNWQKD-UHFFFAOYSA-N (2,4,5-trichlorophenyl)boronic acid Chemical compound OB(O)C1=CC(Cl)=C(Cl)C=C1Cl FTLYMKDSHNWQKD-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- DOBUSJIVSSJEDA-UHFFFAOYSA-L 1,3-dioxa-2$l^{6}-thia-4-mercuracyclobutane 2,2-dioxide Chemical compound [Hg+2].[O-]S([O-])(=O)=O DOBUSJIVSSJEDA-UHFFFAOYSA-L 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- KSPIHGBHKVISFI-UHFFFAOYSA-N Diphenylcarbazide Chemical compound C=1C=CC=CC=1NNC(=O)NNC1=CC=CC=C1 KSPIHGBHKVISFI-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229940074994 mercuric sulfate Drugs 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910000370 mercury sulfate Inorganic materials 0.000 description 1
- 229910000372 mercury(II) sulfate Inorganic materials 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- UUWCBFKLGFQDME-UHFFFAOYSA-N platinum titanium Chemical compound [Ti].[Pt] UUWCBFKLGFQDME-UHFFFAOYSA-N 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 229940085605 saccharin sodium Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Description
本発明は、3価クロムめっき用アノードの再生処理方法に関する。 The present invention relates to a method for regenerating a trivalent chromium plating anode.
クロムめっきは、装飾用、工業用等の各種の分野で広く利用されており、従来から、主に、クロム成分として6価クロムを多量に含有する6価クロムめっき浴を用いてめっき処理が行われている。 Chromium plating is widely used in various fields such as decoration and industrial use. Conventionally, plating treatment has been performed mainly using a hexavalent chromium plating bath containing a large amount of hexavalent chromium as a chromium component. It has been broken.
しかしながら、6価クロムめっき浴を用いる場合には、めっき時に発生する6価クロムを含有するミストの有害性が問題となっており、作業環境の改善や排水処理の効率などを考慮して、毒性の少ない3価クロム化合物を用いた3価クロムめっき浴が普及してきている(下記非特許文献1等参照)。 However, when a hexavalent chromium plating bath is used, the toxicity of mist containing hexavalent chromium generated during plating is a problem, and it is toxic in consideration of improvement of the working environment and efficiency of wastewater treatment. A trivalent chromium plating bath using a trivalent chromium compound with a low content has been widespread (see Non-Patent Document 1 below).
しかしながら、3価クロムめっき浴を用いた3価クロムめっきでは、めっき処理の経過に伴って、めっき浴中に6価クロムが蓄積し、これがめっき速度やめっき皮膜の外観等に悪影響を与えることが知られている。 However, in trivalent chromium plating using a trivalent chromium plating bath, hexavalent chromium accumulates in the plating bath as the plating process progresses, which may adversely affect the plating speed and the appearance of the plating film. Are known.
このような問題に対応すべく、めっき液の組成を改良することや、イオン交換膜等でアノードを区画し3価クロムとアノードを直接接触することを防止したアノードボックスを採用することなどによって、6価クロムの生成を抑制する試みがなされてきた。しかしながら、めっき液の組成の改良には限界があり、アノードボックスの使用はボックス内部液の更新等の管理が煩雑である。 In order to cope with such problems, by improving the composition of the plating solution, or by adopting an anode box that prevents the trivalent chromium and the anode from coming into direct contact by partitioning the anode with an ion exchange membrane or the like, Attempts have been made to suppress the production of hexavalent chromium. However, there is a limit in improving the composition of the plating solution, and the use of the anode box requires complicated management such as renewal of the solution inside the box.
そこで、近年では3価クロムめっき用のアノードとして、導電性の電極基体上に、酸化イリジウム、Ir−Ta混合酸化物などの金属酸化物の被覆を施した不溶性電極等を用いることにより、3価クロムめっき浴中での6価クロムの生成を抑制する試みがなされている(下記特許文献1、2等参照)。 Therefore, in recent years, as an anode for trivalent chromium plating, an insoluble electrode or the like in which a conductive electrode substrate is coated with a metal oxide such as iridium oxide or an Ir-Ta mixed oxide is used. Attempts have been made to suppress the formation of hexavalent chromium in a chromium plating bath (see Patent Documents 1 and 2 below).
しかしながら、このような電極を用いた場合であっても、めっき処理を開始してしばらくの間は6価クロムの生成を抑制することができるが、長期間めっき処理を行うことによって6価クロムの生成を避けられないという問題がある。 However, even when such an electrode is used, the formation of hexavalent chromium can be suppressed for a while after the plating process is started. There is a problem that generation cannot be avoided.
本発明は、上記した従来技術の問題点に鑑みてなされたものであり、その主な目的は、3価クロムめっき浴中での6価クロムの生成を抑制するための有効な手段を提供することである。 The present invention has been made in view of the above-described problems of the prior art, and its main object is to provide an effective means for suppressing the formation of hexavalent chromium in a trivalent chromium plating bath. That is.
本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、3価クロムめっき処理を行うに従って3価クロムめっき用アノードの酸素発生電位が上昇し、これがアノード上で3価クロムを酸化し6価クロムを生成させる一因となることを見出した。そして、さらに研究を重ねた結果、めっき処理に用いた3価クロムめっき浴中において、通電方向を変更して、アノードを陰極として電解処理を行うことによって電極の酸素発生電位を低下させることができ、その結果、電解処理後のアノードを用いて、引き続き3価クロムめっき処理を行う場合に6価クロムの生成を抑制することが可能となることを見出し、ここに本発明を完成するに至った。 The present inventor has intensively studied to achieve the above-described object. As a result, it was found that as the trivalent chromium plating treatment was performed, the oxygen generation potential of the anode for trivalent chromium plating increased, which contributed to the oxidation of trivalent chromium on the anode to produce hexavalent chromium. As a result of further research, the oxygen generation potential of the electrode can be lowered by changing the energization direction in the trivalent chromium plating bath used for the plating treatment and performing the electrolytic treatment with the anode as the cathode. As a result, it has been found that it is possible to suppress the formation of hexavalent chromium when the trivalent chromium plating treatment is subsequently performed using the electrolytically treated anode, and the present invention has been completed here. .
即ち、本発明は、下記の3価クロムめっき用アノードの再生処理方法を提供するものである。
項1. 導電性の電極基体上に金属酸化物を含む被覆を施した不溶性電極からなる3価クロムめっき用アノードの再生処理方法であって、3価クロムめっき処理に使用したアノードを処理対象として、3価クロムめっき浴中において該アノードを陰極として電解処理を行うことを特徴とする3価クロムめっき用アノードの再生処理方法。
項2. 3価クロムめっき処理の停止中に、3価クロムめっき浴中で、陽極と陰極の通電方向を変更して電解処理を行うことを特徴とする上記項1に記載の3価クロムめっき用アノードの再生処理方法。
項3. 3価クロムめっき用アノードが、導電性の金属基体上に酸化イリジウムを含む被覆を施した不溶性電極である上記項1又は2のいずれかに記載の3価クロムめっき用アノードの再生処理方法。
項4. 3価クロムめっき用アノードが、チタン、タンタル、ジルコニウム、ニオブ又はこれらの合金からなる電極基体上に電極触媒として酸化イリジウムとともに、チタン、タンタル、ニオブ、ジルコニウム、スズ、アンチモン、ルテニウム、白金、コバルト、モリブデン及びタングステンからなる群より選ばれる少なくとも1種の金属又はその酸化物の被覆を施した不溶性電極である上記項1〜3のいずれかに記載の3価クロムめっき用アノードの再生処理方法。
項5. 3価クロムめっき用アノードが、チタンからなる電極基体上に電極触媒として酸化イリジウム及び酸化タンタルの混合酸化物の被覆を施した不溶性電極である上記項1〜4のいずれかに記載の3価クロムめっき用アノードの再生処理方法。
項6. 陰極電流密度0.1〜25A/dm2で電解処理を行う上記項1〜5のいずれかに記載の3価クロムめっき用アノードの再生処理方法。
That is, the present invention provides the following method for regenerating an anode for trivalent chromium plating.
Item 1. A method for regenerating a trivalent chromium plating anode comprising an insoluble electrode having a coating containing a metal oxide on a conductive electrode substrate, wherein the anode used for the trivalent chromium plating treatment is trivalent. A method for regenerating an anode for trivalent chromium plating, wherein the electrolytic treatment is performed using the anode as a cathode in a chromium plating bath.
Item 2. 2. The trivalent chromium plating anode according to item 1, wherein during the stop of the trivalent chromium plating treatment, the electrolytic treatment is carried out in a trivalent chromium plating bath by changing the energization direction of the anode and the cathode. Playback processing method.
Item 3. Item 3. The method for regenerating a trivalent chromium plating anode according to any one of Items 1 and 2, wherein the trivalent chromium plating anode is an insoluble electrode in which a conductive metal substrate is coated with iridium oxide.
Item 4. An anode for trivalent chromium plating is formed on an electrode substrate made of titanium, tantalum, zirconium, niobium or an alloy thereof together with iridium oxide as an electrode catalyst, titanium, tantalum, niobium, zirconium, tin, antimony, ruthenium, platinum, cobalt, Item 4. The method for regenerating a trivalent chromium plating anode according to any one of Items 1 to 3, which is an insoluble electrode coated with at least one metal selected from the group consisting of molybdenum and tungsten or an oxide thereof.
Item 5. The trivalent chromium plating according to any one of Items 1 to 4, wherein the anode for trivalent chromium plating is an insoluble electrode in which a mixed oxide of iridium oxide and tantalum oxide is coated as an electrode catalyst on an electrode substrate made of titanium. A method for regenerating the anode for plating.
Item 6. Cathode current density 0.1~25A / dm 2 in trivalent chromium plating anode regeneration processing method according to any one of claim 1-5 for performing electrolytic treatment.
以下、本発明について、詳細に説明する。 Hereinafter, the present invention will be described in detail.
3価クロムめっき用アノード
本発明の再生処理方法において処理対象となる3価クロムめっき用アノードは、3価クロムめっき処理において用いられる、導電性の電極基体上に金属酸化物を含む被覆を施した不溶性電極である。特に、このような不溶性電極としては、酸素発生電位が低いことから、導電性の電極基体上に電極触媒として酸化イリジウム等を含む被覆を施した不溶性電極が3価クロムめっき用アノードとして好ましく用いられている。本発明では、これらの不溶性電極をいずれも処理対象とすることができる。
Anode for trivalent chromium plating The anode for trivalent chromium plating to be treated in the regeneration treatment method of the present invention has a coating containing a metal oxide on a conductive electrode substrate used in the trivalent chromium plating treatment. It is an insoluble electrode. In particular, as such an insoluble electrode, since the oxygen generation potential is low, an insoluble electrode having a conductive electrode substrate coated with iridium oxide or the like as an electrode catalyst is preferably used as an anode for trivalent chromium plating. ing. In the present invention, any of these insoluble electrodes can be treated.
本発明の処理対象とすることができる不溶性電極についてより具体的に説明すると、例えば、チタン、タンタル、ジルコニウム、ニオブ又はこれらの合金からなる電極基体上に、電極触媒として酸化イリジウムとともに、チタン、タンタル、ニオブ、ジルコニウム、スズ、アンチモン、ルテニウム、白金、コバルト、モリブデン及びタングステンからなる群より選ばれる少なくとも1種の金属又はその酸化物の被覆を施した不溶性電極等を挙げることができる。 More specifically, the insoluble electrode that can be treated according to the present invention will be described. For example, on an electrode substrate made of titanium, tantalum, zirconium, niobium, or an alloy thereof, together with iridium oxide as an electrode catalyst, titanium, tantalum. And an insoluble electrode coated with at least one metal selected from the group consisting of niobium, zirconium, tin, antimony, ruthenium, platinum, cobalt, molybdenum and tungsten, or an oxide thereof.
中でも、チタンからなる電極基体上に、電極触媒として酸化イリジウム及び酸化タンタルの混合酸化物の被覆を施した不溶性電極が3価クロムめっき用アノードとして広く用いられている。本発明の再生処理方法をこの不溶性電極に適用する場合には、該不溶性電極を再生して繰り返し使用することが可能となり、該不溶性電極の優れた性能を長期間維持することができる。 In particular, an insoluble electrode obtained by coating an electrode base made of titanium with a mixed oxide of iridium oxide and tantalum oxide as an electrode catalyst is widely used as an anode for trivalent chromium plating. When the regeneration treatment method of the present invention is applied to this insoluble electrode, the insoluble electrode can be regenerated and used repeatedly, and the excellent performance of the insoluble electrode can be maintained for a long time.
3価クロムめっき浴
本発明の再生処理方法において適用できる3価クロムめっき浴は、水溶性3価クロム化合物をクロム成分として含有する水溶液からなるめっき浴であればよく、具体的な組成については特に限定されない。
Trivalent chromium plating bath The trivalent chromium plating bath applicable in the regeneration treatment method of the present invention may be a plating bath made of an aqueous solution containing a water-soluble trivalent chromium compound as a chromium component. It is not limited.
一般的に、3価クロムめっき浴には、水溶性3価クロム化合物に加えて、陰極反応界面でのpH上昇によるクロムの水酸化物などの生成を防止することを目的としてpH緩衝剤が添加され、更に、錯化剤、電導性塩、光沢剤などの各種の添加剤が添加されている。本発明の再生処理には、このような各種の添加剤を含む3価クロムめっき浴をいずれも用いることができる。 In general, in addition to water-soluble trivalent chromium compounds, pH buffering agents are added to trivalent chromium plating baths to prevent the formation of chromium hydroxide and the like due to pH increase at the cathode reaction interface. Furthermore, various additives such as a complexing agent, a conductive salt, and a brightening agent are added. For the regeneration treatment of the present invention, any trivalent chromium plating bath containing such various additives can be used.
該3価クロムめっき浴に含まれる水溶性3価クロム化合物としては、クロム成分として3価クロムを含む水溶性化合物であれば特に限定的ではなく、硫酸クロム、塩化クロム、硝酸クロム、酢酸クロムなどを例示できる。これらの水溶性3価クロム化合物は、通常、一種単独又は二種以上混合して添加される。3価クロム化合物の濃度については、一例を挙げると、3価クロムイオン濃度として1〜50g/L程度である。 The water-soluble trivalent chromium compound contained in the trivalent chromium plating bath is not particularly limited as long as it is a water-soluble compound containing trivalent chromium as a chromium component, such as chromium sulfate, chromium chloride, chromium nitrate, chromium acetate, Can be illustrated. These water-soluble trivalent chromium compounds are usually added singly or in combination of two or more. About a density | concentration of a trivalent chromium compound, if an example is given, it will be about 1-50 g / L as a trivalent chromium ion density | concentration.
pH緩衝剤としては、ホウ酸、ホウ酸ナトリウム、塩化アルミニウムなどを例示できる。これらのpH緩衝剤は、通常、一種単独又は二種以上混合して添加される。pH緩衝剤の濃度については、一例を挙げると、10〜100g/L程度である。 Examples of pH buffering agents include boric acid, sodium borate, and aluminum chloride. These pH buffering agents are usually added singly or in combination of two or more. About a density | concentration of a pH buffer agent, if an example is given, it will be about 10-100 g / L.
また、錯化剤としては、ギ酸、酢酸などのモノカルボン酸又はその塩;シュウ酸、マロン酸、マレイン酸などのジカルボン酸又はその塩;クエン酸、リンゴ酸、グリコール酸などのヒドロキシカルボン酸又はその塩等を例示でき、電導性塩としては、硫酸ナトリウム、塩化ナトリウム、塩化カリウム、硫酸カリウムなどのアルカリ金属塩;硫酸アンモニウム、塩化アンモニウムなどのアンモニウム塩等を例示でき、光沢剤としては、サッカリン、サッカリンナトリウム、ナフタレンスルホン酸、ナフタレンスルホン酸ナトリウム、ブチンジオール、プロパルギルアルコール等を例示できる。これらの添加剤は、通常、一種単独又は二種以上混合して添加される。これらの添加剤の濃度については特に限定的ではないが、一例を挙げると、錯化剤については5〜200g/L程度、電導性塩については10〜300g/L程度、光沢剤については0.5〜20g/L程度である。 Examples of complexing agents include monocarboxylic acids such as formic acid and acetic acid or salts thereof; dicarboxylic acids such as oxalic acid, malonic acid, and maleic acid; or salts thereof; hydroxycarboxylic acids such as citric acid, malic acid, and glycolic acid; Examples of the conductive salt include alkali metal salts such as sodium sulfate, sodium chloride, potassium chloride, and potassium sulfate; ammonium salts such as ammonium sulfate and ammonium chloride; and examples of the brightener include saccharin, Examples include saccharin sodium, naphthalene sulfonic acid, sodium naphthalene sulfonate, butynediol, propargyl alcohol and the like. These additives are usually added singly or in combination of two or more. The concentration of these additives is not particularly limited. For example, about 5 to 200 g / L for the complexing agent, about 10 to 300 g / L for the conductive salt, and about 0.1 to about the brightening agent. It is about 5 to 20 g / L.
本発明の再生処理で用いる3価クロムめっき浴のpHは、通常の3価クロムめっき処理時のpHと同様の範囲内でよく、通常、pH2〜5程度の範囲内である。 The pH of the trivalent chromium plating bath used in the regeneration treatment of the present invention may be in the same range as the pH during normal trivalent chromium plating treatment, and is usually in the range of about pH 2-5.
3価クロムめっき用アノードの再生処理方法
本発明の再生処理方法は、3価クロムめっき浴中において3価クロムめっき用アノードを陰極として、後述する条件で電解処理を行えばよい。通常は、3価クロムめっき処理中の3価クロムめっき浴中において、めっき操作を一旦停止し、通電方向を変更して、アノードを陰極として電解処理を行えばよい。この方法によれば、3価クロムめっき浴中において3価クロムめっき用アノードを陰極として電解処理を行うという極めて簡単な操作によってアノードの酸素発生電位を低下させることができ、6価クロムの生成を抑制することができる。
Method for Regenerating Trivalent Chromium Plating Anode The regeneration method of the present invention may be carried out by electrolytic treatment under the conditions described later, using the trivalent chromium plating anode as a cathode in a trivalent chromium plating bath. Usually, in the trivalent chromium plating bath during the trivalent chromium plating treatment, the plating operation is temporarily stopped, the energization direction is changed, and the electrolytic treatment is performed using the anode as the cathode. According to this method, the oxygen generation potential of the anode can be reduced by an extremely simple operation of performing an electrolytic treatment using a trivalent chromium plating anode as a cathode in a trivalent chromium plating bath, thereby producing hexavalent chromium. Can be suppressed.
本発明の再生処理方法では、3価クロムめっき用アノードを陰極として電解処理を行えばよく、陽極については特に限定はないが、通常は、3価クロムめっき処理におけるカソードである被めっき物を陽極として、そのまま電解処理を行えばよい。このように3価クロムめっき処理において用いた陽極と陰極の通電方向を変更して電解処理を行うという簡単な方法によって再生処理を行うことから、再生処理を行うために3価クロムめっき用アノードを取り外す等の手間が省け、効率的にアノードの再生処理を行うことができる。 In the regeneration treatment method of the present invention, the electrolytic treatment may be carried out using the trivalent chromium plating anode as the cathode, and the anode is not particularly limited. Usually, the object to be plated which is the cathode in the trivalent chromium plating treatment is the anode. Then, the electrolytic treatment may be performed as it is. Since the regeneration process is performed by a simple method of performing the electrolytic process by changing the energization direction of the anode and the cathode used in the trivalent chromium plating process, the trivalent chromium plating anode is used for the regeneration process. The anode can be efficiently regenerated by eliminating the trouble of removing it.
なお、被めっき物を陽極とする場合、被めっき物の種類によっては3価クロムめっき浴や被めっき物等に悪影響を及ぼすことがあるが、この場合には、必要に応じて、被めっき物に代えてカーボン、チタン−白金電極等の不溶性電極を陽極として電解処理を行ってもよい。また、不溶性電極を用いる場合には、再生処理時において3価クロムめっき浴中での6価クロムの生成を防止するために、上記した導電性の電極基体上に金属酸化物の被覆を施した不溶性電極を陽極として電解処理を行ってもよい。 In addition, when the object to be plated is used as an anode, depending on the type of object to be plated, the trivalent chromium plating bath, the object to be plated, etc. may be adversely affected. Instead of this, electrolytic treatment may be performed using an insoluble electrode such as a carbon or titanium-platinum electrode as an anode. In addition, when an insoluble electrode is used, a metal oxide coating is applied on the conductive electrode substrate described above in order to prevent the formation of hexavalent chromium in the trivalent chromium plating bath during the regeneration process. Electrolytic treatment may be performed using the insoluble electrode as an anode.
再生処理を行う場合の陰極電流密度については特に限定的ではないが、電流密度が極端に低い場合には良好な再生処理効果が得られず、再生処理後に短時間で酸素発生電位が上昇することがあるため好ましくない。このため、通常は0.1〜25A/dm2程度とすることが好ましく、1〜10A/dm2程度とすることがより好ましい。 The cathode current density when performing the regeneration process is not particularly limited, but if the current density is extremely low, a good regeneration process effect cannot be obtained, and the oxygen generation potential increases in a short time after the regeneration process. This is not preferable. Therefore, usually preferably set to 0.1~25A / dm 2 about, and more preferably to 1 to 10 A / dm 2 about.
再生処理を行う時間については特に限定的ではないが、処理時間が極端に短い場合には十分な再生処理効果が得られないことがあるため好ましくない。このため、通常は1〜30分程度の電解処理時間とすればよく、5〜20分程度の電解処理時間とすることが好ましい。 The time for performing the reproduction process is not particularly limited. However, when the processing time is extremely short, a sufficient reproduction process effect may not be obtained, which is not preferable. For this reason, what is necessary is just to set it as the electrolytic treatment time of about 1 to 30 minutes normally, and it is preferable to set it as the electrolytic treatment time of about 5 to 20 minutes.
再生処理時の3価クロムめっき浴の浴温については特に限定的ではなく、通常は、めっき処理を一旦停止して電解処理を行えばよく、3価クロムめっき処理時の処理温度と同様の範囲とすればよい。例えば、25〜60℃程度とすればよく、30〜55℃程度とすることが好ましい。 There is no particular limitation on the bath temperature of the trivalent chromium plating bath at the time of the regeneration treatment. Usually, the plating treatment may be temporarily stopped and the electrolytic treatment may be performed, and the same range as the treatment temperature at the time of the trivalent chromium plating treatment. And it is sufficient. For example, the temperature may be about 25 to 60 ° C, and preferably about 30 to 55 ° C.
上記した通り、本発明の再生処理方法では、3価クロムめっき処理中に、一旦めっき操作を停止して、陽極と陰極の通電方向を変更して再生処理を行うことができる。このように、3価クロムめっき処理中に陽極と陰極の通電方向を変更することによって、3価クロムめっき処理から再生処理へと簡単に切り替えることができるため、安定した3価クロムめっき処理を連続的に行うことが可能となる。 As described above, in the regeneration treatment method of the present invention, during the trivalent chromium plating treatment, the regenerating treatment can be performed by once stopping the plating operation and changing the energization direction of the anode and the cathode. In this way, by changing the energization direction of the anode and the cathode during the trivalent chrome plating process, it is possible to easily switch from the trivalent chrome plating process to the regeneration process. Can be performed automatically.
3価クロムめっき用アノードの再生処理を行う時期については特に限定的ではなく、作業環境、作業条件等に応じて適宜決めればよい。例えば、特定の条件において3価クロムめっき処理を行ったときに、6価クロムの蓄積が確認される基準が経験的に分かっているような場合には、その基準に基づいて3価クロムめっき処理と再生処理を切り替えればよい。このような基準については現場の作業条件等によって異なるが、例えば、めっき処理時間、総通電量等を基準とすることができる。なお、後述するように、3価クロムめっき浴中に6価クロムの蓄積が生じた場合や、3価クロムめっき用アノードの酸素発生電位が上昇した場合等を基準としてもよい。また、明確な基準によらずに、例えば、昼休み、夜間、休日等の3価クロムめっき処理の停止中に再生処理を行ってもよい。 The timing for regenerating the trivalent chromium plating anode is not particularly limited, and may be appropriately determined according to the working environment, working conditions, and the like. For example, when trivalent chromium plating treatment is performed under specific conditions, and a criterion for confirming the accumulation of hexavalent chromium is empirically known, the trivalent chromium plating treatment is performed based on the criterion. And the playback process may be switched. Such criteria vary depending on the working conditions at the site, but can be based on, for example, plating processing time, total energization amount, and the like. In addition, as described later, the case where hexavalent chromium is accumulated in the trivalent chromium plating bath, the case where the oxygen generation potential of the trivalent chromium plating anode is increased, or the like may be used as a reference. Moreover, you may perform a reproduction | regeneration process during the stop of trivalent chromium plating processes, such as a lunch break, nighttime, a holiday, etc. irrespective of a clear standard.
3価クロムめっき浴中に6価クロムの蓄積が生じた場合を本発明の再生処理を行う時期の目安とする場合、基準となる6価クロムイオンの濃度は目的とするめっき液の性能に応じて適宜決めればよい。通常、3価クロムめっき浴中の6価クロムイオン濃度が200ppm程度以上となると、3価クロムめっき処理のめっき速度やめっき皮膜の外観等に悪影響を及ぼすことがある。このため、3価クロムめっき浴中の6価クロムイオン濃度が200ppm程度以上となった場合に再生処理を行えばよいが、より高いめっき品質を望む場合には、100ppm程度以上となった時期を本発明の再生処理を行う時期の目安とすることが好ましい。3価クロムめっき浴中の6価クロム濃度は、ジフェニルカルバジドを用いた吸光度分析法等により測定することができる。 When the accumulation of hexavalent chromium in the trivalent chromium plating bath is used as a guideline for the timing of the regeneration treatment of the present invention, the standard concentration of hexavalent chromium ions depends on the performance of the intended plating solution. Can be determined as appropriate. Usually, when the hexavalent chromium ion concentration in the trivalent chromium plating bath is about 200 ppm or more, the plating rate of the trivalent chromium plating treatment, the appearance of the plating film, and the like may be adversely affected. For this reason, regeneration treatment may be performed when the hexavalent chromium ion concentration in the trivalent chromium plating bath is about 200 ppm or more. However, when higher plating quality is desired, the time when the concentration becomes about 100 ppm or more is set. It is preferable to use it as a guideline for performing the regeneration process of the present invention. The hexavalent chromium concentration in the trivalent chromium plating bath can be measured by an absorbance analysis method using diphenylcarbazide or the like.
また、上記した3価クロムめっき浴中の6価クロムイオン濃度を測定する方法だけでなく、3価クロムめっき用アノードの酸素発生電位を測定することによって本発明の再生処理を行う時期を決定してもよい。電極の酸素発生電位を測定する方法は特に限定されないが、例えば、簡易的な方法として、図1に示すような電位測定装置を用いて測定した電位を酸素発生電位の目安とすることができる。 Further, not only the method of measuring the hexavalent chromium ion concentration in the above-described trivalent chromium plating bath, but also the time for performing the regeneration treatment of the present invention is determined by measuring the oxygen generation potential of the anode for trivalent chromium plating. May be. The method for measuring the oxygen generation potential of the electrode is not particularly limited. For example, as a simple method, a potential measured using a potential measuring device as shown in FIG. 1 can be used as a measure of the oxygen generation potential.
具体的には図1に示すように、対極としてチタンを用い、水銀/硫酸第一水銀電極を参照電極として、25℃の98%硫酸中で、測定対象物を陽極として、電流密度が50A/dm2となるように一定電流を流した場合の3価クロムめっき用アノードの電位を測定すればよい。 Specifically, as shown in FIG. 1, using titanium as a counter electrode, using a mercury / mercuric sulfate electrode as a reference electrode, in 98% sulfuric acid at 25 ° C., using a measurement object as an anode, a current density of 50 A / the anode potential for trivalent chromium plating in passing a constant current so that the dm 2 may be measured.
上記した方法で測定した場合の未使用の3価クロムめっき用アノードの電位は、通常0.95V程度である。本発明者の研究によれば、上記した方法で測定した電位が0.97V程度以上の3価クロムめっき用アノードを用いると、3価クロムめっき浴中で6価クロムの生成が確認された。このため、たとえば、上記した方法で測定した電位が0.97V程度以上となった場合に再生処理を行えばよい。なお、より高いめっき品質を望む場合には、0.96V程度以上となった時期を本発明の再生処理を行う時期の目安とすればよい。 The potential of the unused trivalent chromium plating anode when measured by the above method is usually about 0.95V. According to the study of the present inventor, it was confirmed that hexavalent chromium was produced in a trivalent chromium plating bath when an anode for trivalent chromium plating having a potential measured by the above-described method of about 0.97 V or more was used. For this reason, for example, the regeneration process may be performed when the potential measured by the above method becomes about 0.97 V or more. In addition, when higher plating quality is desired, the time when it becomes about 0.96 V or more may be used as a guideline for the time when the regeneration process of the present invention is performed.
本発明の3価クロムめっき用アノードの再生処理方法によれば、3価クロムめっき浴中においてアノードを陰極として電解処理を行うという極めて簡単な方法によって、上昇した3価クロムめっき用アノードの酸素発生電位を低下させることができる。その結果、3価クロムめっき用アノードの性能を回復させて繰り返し使用することが可能となり、高価な3価クロムめっき用アノードを長期間継続して使用することができる。 According to the method for regenerating a trivalent chromium plating anode according to the present invention, the oxygen generation of the increased trivalent chromium plating anode can be achieved by a very simple method of performing an electrolytic treatment using the anode as a cathode in a trivalent chromium plating bath. The potential can be lowered. As a result, the performance of the trivalent chromium plating anode can be restored and used repeatedly, and the expensive trivalent chromium plating anode can be used continuously for a long period of time.
また、3価クロムめっき用アノードの性能を回復させることによって、3価クロムめっき浴中で6価クロムが生成することを抑制することができるため、3価クロムめっき浴を長期間使用することができ、安定した3価クロムめっき処理を行うことが可能となる。 In addition, by restoring the performance of the anode for trivalent chromium plating, it is possible to suppress the formation of hexavalent chromium in the trivalent chromium plating bath. This makes it possible to perform a stable trivalent chromium plating process.
さらに、3価クロムめっき処理中に陽極と陰極の通電方向を変更することにより3価クロムめっき処理から再生処理に簡単に切り替えることができるため、電極を取り外すことなく効率的にアノードの再生処理を行うことができ、連続的に安定した3価クロムめっき処理を行うことが可能となる。 Furthermore, by changing the energization direction of the anode and cathode during the trivalent chromium plating process, it is possible to easily switch from the trivalent chromium plating process to the regeneration process, so that the anode regeneration process can be performed efficiently without removing the electrode. It is possible to carry out a stable trivalent chromium plating process.
以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
実施例1〜4
チタンからなる電極基体上に酸化イリジウムを含む被覆を施した電極(TCPアノード、ペルメレック電極(株)製)をアノードとし、ニッケルめっき皮膜を形成した鉄鋼板を被めっき物として、下記表1に記載した実施例1〜4の3価クロムめっき浴中で、総通電量が約200Ah/Lとなるまで3価クロムめっき処理を行った。
Examples 1-4
Table 1 below shows an electrode having a coating containing iridium oxide on an electrode substrate made of titanium (TCP anode, manufactured by Permerek Electrode Co., Ltd.), and a steel plate on which a nickel plating film is formed as an object to be plated. In the trivalent chromium plating baths of Examples 1 to 4, trivalent chromium plating treatment was performed until the total energization amount was about 200 Ah / L.
次いで、処理対象として上記した3価クロムめっき処理で使用したアノードを用いて、以下の方法で再生処理を行った。再生処理方法としては、下記表1に記載した実施例1〜4の3価クロムめっき浴中で、上記したアノードを陰極とし、未使用のTCPアノード(ペルメレック電極(株)製)を陽極として、表1に記載した処理条件で電解処理を行った。 Next, regeneration treatment was performed by the following method using the anode used in the above trivalent chromium plating treatment as a treatment target. As a regeneration treatment method, in the trivalent chromium plating baths of Examples 1 to 4 described in Table 1 below, the above-described anode was used as a cathode, and an unused TCP anode (manufactured by Permerek Electrode Co., Ltd.) was used as an anode. Electrolytic treatment was performed under the treatment conditions described in Table 1.
上記した方法で再生処理を行った電極の内で、陰極として用いた電極について、再生処理前及び再生処理後に、以下の方法で電位を測定した。 Among the electrodes subjected to the regeneration treatment by the above-described method, the potential of the electrode used as the cathode was measured by the following method before and after the regeneration treatment.
処理対象アノードの電位の測定方法
処理対象アノードの電位の測定は、図1に示す電位測定装置を用いて、下記表2に示す条件で一定電流を流したときの電位をテスターにより測定し、得られた電位を酸素発生電位の目安とした。なお、この電位が低いほど、6価クロムの生成が起こりにくい電極であることを示す。
Method for Measuring the Potential of the Processed Anode The measurement of the potential of the treated anode was performed by measuring the potential when a constant current was passed under the conditions shown in Table 2 below with a tester using the potential measuring device shown in FIG. The obtained potential was used as a measure of the oxygen generation potential. In addition, it shows that it is an electrode with which the production | generation of hexavalent chromium hardly occurs, so that this electric potential is low.
上記した方法で測定した再生処理前及び再生処理後の電位を下記表3に示す。 Table 3 below shows the potentials measured by the above method before and after the regeneration process.
表3から明らかなように、実施例1〜4の3価クロムめっき浴中で電解処理を行った場合には、上記方法で測定した上記方法で測定した酸素発生電位の目安となる電位の低下が確認できた。上記した方法で測定した場合の未使用の3価クロムめっき用アノードの電位は0.95V程度であることから、本発明の再生処理方法によって、3価クロムめっき用アノードの酸素発生電位を新品と同程度にまで再生できたことが分かる。 As is apparent from Table 3, when electrolytic treatment was performed in the trivalent chromium plating baths of Examples 1 to 4, the potential decreased as a measure of the oxygen generation potential measured by the above method measured by the above method. Was confirmed. Since the potential of the unused trivalent chromium plating anode when measured by the above method is about 0.95 V, the oxygen generation potential of the trivalent chromium plating anode is determined to be new by the regeneration treatment method of the present invention. It turns out that it was able to reproduce to the same extent.
Claims (5)
3価クロムめっき処理に使用したアノードを処理対象として、3価クロムめっき浴中において該アノードを陰極として電解処理を行うことを特徴とする3価クロムめっき用アノードの再生処理方法。 A method for regenerating an anode for trivalent chromium plating comprising an insoluble electrode having a coating containing iridium oxide on a conductive electrode substrate,
A method for regenerating a trivalent chromium plating anode, comprising subjecting the anode used for the trivalent chromium plating treatment as an object to be treated and subjecting the anode to a cathode in a trivalent chromium plating bath.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013122498A JP6142199B2 (en) | 2013-06-11 | 2013-06-11 | Method for regenerating anode for trivalent chromium plating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013122498A JP6142199B2 (en) | 2013-06-11 | 2013-06-11 | Method for regenerating anode for trivalent chromium plating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014240506A JP2014240506A (en) | 2014-12-25 |
JP6142199B2 true JP6142199B2 (en) | 2017-06-07 |
Family
ID=52139895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013122498A Expired - Fee Related JP6142199B2 (en) | 2013-06-11 | 2013-06-11 | Method for regenerating anode for trivalent chromium plating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6142199B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3188361B2 (en) * | 1994-06-27 | 2001-07-16 | ペルメレック電極株式会社 | Chrome plating method |
JP3810043B2 (en) * | 1998-09-30 | 2006-08-16 | ペルメレック電極株式会社 | Chrome plating electrode |
US7780840B2 (en) * | 2008-10-30 | 2010-08-24 | Trevor Pearson | Process for plating chromium from a trivalent chromium plating bath |
JP2012251195A (en) * | 2011-06-02 | 2012-12-20 | Japan Carlit Co Ltd:The | Electrode for use in electrolysis, and method of producing the same |
-
2013
- 2013-06-11 JP JP2013122498A patent/JP6142199B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014240506A (en) | 2014-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105917031B (en) | Trivalent chromium-containing electroplating bath solution and method for depositing chromium | |
CN103741142B (en) | A kind of tin stripper based on hydrochloric acid-pink salt system and the method reclaiming stannum from waste tin stripper | |
JP5587895B2 (en) | Chromium plating method from trivalent chromium plating bath | |
JPH0813199A (en) | Chromium plating method | |
JP2006307344A (en) | Electroplating bath | |
JP6506983B2 (en) | Negative electrode for hydrogen generation and method for producing the same | |
JP2009235456A (en) | Solution for use in electrolytically treating trivalent-chromium plated film | |
JP2011140700A (en) | Chromium plating method | |
JP2010209456A (en) | Immersion treatment liquid for rust prevention of plated chromium film, and rust-preventing treatment method | |
JP6142199B2 (en) | Method for regenerating anode for trivalent chromium plating | |
JP2009149965A (en) | Silver-plating method | |
CA2959264A1 (en) | Trivalent chromium plating formulations and processes | |
EP1467001A1 (en) | METHOD FOR FORMING Re COATING FILM OR Re-Cr ALLOY COATING FILM THROUGH ELECTROPLATING | |
JP6332677B2 (en) | Trivalent chromium plating method | |
JP6142198B2 (en) | Method for regenerating anode for trivalent chromium plating | |
JP6300304B2 (en) | Electrolytic etching method | |
JP6347547B2 (en) | Washing wastewater electrodialysis apparatus and electrodialysis method | |
JP6517501B2 (en) | Strike copper plating solution and strike copper plating method | |
CN109072468B (en) | Method for monitoring the total amount of brightener in an acidic copper/copper alloy electroplating bath and controlled electroplating process | |
TWI702313B (en) | Chrome plating solution, electroplating method and manufacturing method of chrome plating solution | |
TW201606128A (en) | Electroless deposition of continuous palladium layer using complexed Co2+ metal ions or Ti3+ metal ions as reducing agents | |
JP4273085B2 (en) | Platinum-cobalt alloy plating solution and plating method | |
JP4993858B2 (en) | Tungsten-phosphorus alloy electroplating film | |
JP2009215581A (en) | Method of removing metallic impurities in trivalent chromium bath | |
JP5867178B2 (en) | Method for producing electrogalvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160309 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170321 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6142199 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |