JP6142198B2 - Method for regenerating anode for trivalent chromium plating - Google Patents

Method for regenerating anode for trivalent chromium plating Download PDF

Info

Publication number
JP6142198B2
JP6142198B2 JP2013115113A JP2013115113A JP6142198B2 JP 6142198 B2 JP6142198 B2 JP 6142198B2 JP 2013115113 A JP2013115113 A JP 2013115113A JP 2013115113 A JP2013115113 A JP 2013115113A JP 6142198 B2 JP6142198 B2 JP 6142198B2
Authority
JP
Japan
Prior art keywords
anode
chromium plating
trivalent chromium
regenerating
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013115113A
Other languages
Japanese (ja)
Other versions
JP2014234524A (en
Inventor
順一 片山
順一 片山
千秋 合田
千秋 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuno Chemical Industries Co Ltd
Original Assignee
Okuno Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Chemical Industries Co Ltd filed Critical Okuno Chemical Industries Co Ltd
Priority to JP2013115113A priority Critical patent/JP6142198B2/en
Publication of JP2014234524A publication Critical patent/JP2014234524A/en
Application granted granted Critical
Publication of JP6142198B2 publication Critical patent/JP6142198B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

本発明は、3価クロムめっき用アノードの再生処理方法に関する。   The present invention relates to a method for regenerating a trivalent chromium plating anode.

クロムめっきは、装飾用、工業用等の各種の分野で広く利用されており、従来から、主に、クロム成分として6価クロムを多量に含有する6価クロムめっき浴を用いてめっき処理が行われている。   Chromium plating is widely used in various fields such as decoration and industrial use. Conventionally, plating treatment has been performed mainly using a hexavalent chromium plating bath containing a large amount of hexavalent chromium as a chromium component. It has been broken.

しかしながら、6価クロムめっき浴を用いる場合には、めっき時に発生する6価クロムを含有するミストの有害性が問題となっていることから、作業環境の改善や排水処理の効率などを考慮して、毒性の少ない3価クロム化合物を用いた3価クロムめっき浴が普及してきている(下記非特許文献1等参照)。   However, in the case of using a hexavalent chromium plating bath, since the harmfulness of mist containing hexavalent chromium generated during plating is a problem, the work environment is improved and the efficiency of wastewater treatment is taken into consideration. A trivalent chromium plating bath using a trivalent chromium compound with little toxicity has become widespread (see Non-Patent Document 1 below).

しかしながら、3価クロムめっき浴を用いた3価クロムめっきでは、めっき処理の経過に伴って、めっき浴中に6価クロムが蓄積し、これがめっき速度やめっき皮膜の外観等に悪影響を与えることが知られている。   However, in trivalent chromium plating using a trivalent chromium plating bath, hexavalent chromium accumulates in the plating bath as the plating process progresses, which may adversely affect the plating speed and the appearance of the plating film. Are known.

このような問題に対応すべく、めっき液の組成を改良することや、イオン交換膜等でアノードを区画し3価クロムとアノードを直接接触することを防止したアノードボックスを採用することなどによって、6価クロムの生成を抑制する試みがなされてきた。しかしながら、めっき液の組成の改良には限界があり、アノードボックスの使用はボックス内部液の更新等の管理が煩雑である。   In order to cope with such problems, by improving the composition of the plating solution, or by adopting an anode box that prevents the trivalent chromium and the anode from coming into direct contact by partitioning the anode with an ion exchange membrane or the like, Attempts have been made to suppress the production of hexavalent chromium. However, there is a limit in improving the composition of the plating solution, and the use of the anode box requires complicated management such as renewal of the solution inside the box.

そこで、近年では3価クロムめっき用のアノードとして、導電性の電極基体上に、酸化イリジウム、Ir−Ta混合酸化物などの金属酸化物の被覆を施した不溶性電極等を用いることにより、3価クロムめっき浴中での6価クロムの生成を抑制する試みがなされている(下記特許文献1、2等参照)。   Therefore, in recent years, as an anode for trivalent chromium plating, an insoluble electrode or the like in which a conductive electrode substrate is coated with a metal oxide such as iridium oxide or an Ir-Ta mixed oxide is used. Attempts have been made to suppress the formation of hexavalent chromium in a chromium plating bath (see Patent Documents 1 and 2 below).

しかしながら、このような電極を用いた場合であっても、めっき処理を開始してしばらくの間は6価クロムの生成を抑制することができるが、長期間めっき処理を行うことによって6価クロムの生成を避けられないという問題がある。   However, even when such an electrode is used, the formation of hexavalent chromium can be suppressed for a while after the plating process is started. There is a problem that generation cannot be avoided.

特開平8−13199号公報JP-A-8-13199 特開2000−104199号公報JP 2000-104199 A

表面技術 vol.56, No.6, 302p(2005)Surface technology vol.56, No.6, 302p (2005)

本発明は、上記した従来技術の問題点に鑑みてなされたものであり、その主な目的は、3価クロムめっき浴中での6価クロムの生成を抑制するための有効な手段を提供することである。   The present invention has been made in view of the above-described problems of the prior art, and its main object is to provide an effective means for suppressing the formation of hexavalent chromium in a trivalent chromium plating bath. That is.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、3価クロムめっき処理を行うに従って3価クロムめっき用アノードの酸素発生電位が上昇し、これがアノード上で3価クロムを酸化し6価クロムを生成させる一因となることを見出した。そして、特定の再生処理液中において、3価クロムめっき処理に用いたアノードを陰極として電解処理を行うことによって、電極の酸素発生電位を低下させることができ、その結果、電解処理後のアノードを用いて3価クロムめっき処理を行った場合に6価クロムの生成を抑制することが可能となることを見出し、ここに本発明を完成するに至った。   The present inventor has intensively studied to achieve the above-described object. As a result, it was found that as the trivalent chromium plating treatment was performed, the oxygen generation potential of the anode for trivalent chromium plating increased, which contributed to the oxidation of trivalent chromium on the anode to produce hexavalent chromium. Then, by performing the electrolytic treatment using the anode used for the trivalent chromium plating treatment as a cathode in a specific regeneration treatment solution, the oxygen generation potential of the electrode can be lowered. It has been found that it is possible to suppress the formation of hexavalent chromium when the trivalent chromium plating treatment is performed, and the present invention has been completed here.

即ち、本発明は、下記の3価クロムめっき用アノードの再生処理方法を提供するものである。
項1. 導電性の電極基体上に金属酸化物を含む被覆を施した不溶性電極からなる3価クロムめっき用アノードの再生処理方法であって、無機酸及び/又は有機酸を含有するpHが3以下の酸性水溶液からなる再生処理液中において、3価クロムめっき処理に用いたアノードを陰極として、電解処理を行うことを特徴とする3価クロムめっき用アノードの再生処理方法。
項2. 再生処理液のpHが−1〜3である上記項1に記載の3価クロムめっき用アノードの再生処理方法。
項3. 3価クロムめっき用アノードが、導電性の金属基体上に酸化イリジウムを含む被覆を施した不溶性電極である上記項1又は2に記載の3価クロムめっき用アノードの再生処理方法。
項4. 3価クロムめっき用アノードが、チタン、タンタル、ジルコニウム、ニオブ又はこれらの合金からなる電極基体上に、電極触媒として酸化イリジウムとともに、チタン、タンタル、ニオブ、ジルコニウム、スズ、アンチモン、ルテニウム、白金、コバルト、モリブデン及びタングステンからなる群より選ばれる少なくとも1種の金属又はその酸化物の被覆を施した不溶性電極である上記項1〜3のいずれかに記載の3価クロムめっき用アノードの再生処理方法。
項5. 3価クロムめっき用アノードが、チタンからなる電極基体上に、電極触媒として酸化イリジウム及び酸化タンタルの混合酸化物の被覆を施した不溶性電極である上記項1〜4のいずれかに記載の3価クロムめっき用アノードの再生処理方法。
項6. 3価クロムめっき浴中の6価クロムイオン濃度が、100ppm以上となった場合の3価クロムめっき用アノードを処理対象とする上記項1〜5のいずれかに記載の3価クロムめっき用アノードの再生処理方法。
項7. 水銀/硫酸第一水銀電極を参照電極とし、98%硫酸150g/Lの水溶液を測定液として、電流密度50A/dmで測定した場合の電位が、0.96V以上となった場合の3価クロムめっき用アノードを処理対象とする上記項1〜5のいずれかに記載の3価クロムめっき用アノードの再生処理方法。
項8. 無機酸が硫酸である上記項1〜7のいずれかに記載の3価クロムめっき用アノードの再生処理方法。
項9. 陰極電流密度0.1〜40A/dmで電解処理を行う上記項1〜8のいずれかに記載の3価クロムめっき用アノードの再生処理方法。
That is, the present invention provides the following method for regenerating an anode for trivalent chromium plating.
Item 1. A method for regenerating a trivalent chromium plating anode comprising an insoluble electrode in which a coating containing a metal oxide is coated on a conductive electrode substrate, wherein the acid containing an inorganic acid and / or an organic acid has a pH of 3 or less. A method for regenerating an anode for trivalent chromium plating, comprising performing an electrolytic treatment in a regeneration treatment solution comprising an aqueous solution, using the anode used for the trivalent chromium plating as a cathode.
Item 2. Item 2. The method for regenerating an anode for trivalent chromium plating according to Item 1, wherein the pH of the regenerating solution is -1 to -3.
Item 3. Item 3. The method for regenerating a trivalent chromium plating anode according to Item 1 or 2, wherein the trivalent chromium plating anode is an insoluble electrode in which a conductive metal substrate is coated with iridium oxide.
Item 4. An anode for trivalent chromium plating is formed on an electrode substrate made of titanium, tantalum, zirconium, niobium or an alloy thereof, and with iridium oxide as an electrode catalyst, titanium, tantalum, niobium, zirconium, tin, antimony, ruthenium, platinum, cobalt Item 4. The method for regenerating a trivalent chromium plating anode according to any one of Items 1 to 3, which is an insoluble electrode coated with at least one metal selected from the group consisting of molybdenum and tungsten, or an oxide thereof.
Item 5. Item 3. The trivalent element according to any one of Items 1 to 4, wherein the trivalent chromium plating anode is an insoluble electrode in which an electrode base made of titanium is coated with a mixed oxide of iridium oxide and tantalum oxide as an electrode catalyst. A method for regenerating the anode for chromium plating.
Item 6. The anode for trivalent chromium plating according to any one of the above items 1 to 5, wherein the anode for trivalent chromium plating when the concentration of hexavalent chromium ions in the trivalent chromium plating bath is 100 ppm or more is treated. Playback processing method.
Item 7. Trivalent when the potential when measured at a current density of 50 A / dm 2 using a mercury / mercuric sulfate electrode as a reference electrode and an aqueous solution of 150 g / L of 98% sulfuric acid at a current density of 0.96 V or more. Item 6. The method for regenerating a trivalent chromium plating anode according to any one of Items 1 to 5, wherein the anode for chromium plating is a treatment target.
Item 8. Item 8. The method for regenerating a trivalent chromium plating anode according to any one of Items 1 to 7, wherein the inorganic acid is sulfuric acid.
Item 9. Cathode current density 0.1 to 40 A / dm 2 at either trivalent chromium plating anode regeneration processing method according to the claim 1 to 8 for performing electrolytic treatment.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

3価クロムめっき用アノード
本発明の再生処理方法において処理対象となる3価クロムめっき用アノードは、3価クロムめっき処理において用いられる、導電性の電極基体上に金属酸化物を含む被覆を施した不溶性電極である。特に、このような不溶性電極としては、導電性の電極基体上に電極触媒として酸化イリジウム等を含む被覆を施した不溶性電極は酸素発生電位が低いことから、3価クロムめっき用アノードとして好ましく用いられている。本発明では、これらの不溶性電極をいずれも処理対象とすることができる。
Anode for trivalent chromium plating The anode for trivalent chromium plating to be treated in the regeneration treatment method of the present invention has a coating containing a metal oxide on a conductive electrode substrate used in the trivalent chromium plating treatment. It is an insoluble electrode. In particular, as such an insoluble electrode, an insoluble electrode obtained by coating a conductive electrode substrate containing iridium oxide or the like as an electrode catalyst is preferably used as an anode for trivalent chromium plating because of its low oxygen generation potential. ing. In the present invention, any of these insoluble electrodes can be treated.

本発明の処理対象とすることができる不溶性電極についてより具体的に説明すると、例えば、チタン、タンタル、ジルコニウム、ニオブ又はこれらの合金からなる電極基体上に、電極触媒として酸化イリジウムとともに、チタン、タンタル、ニオブ、ジルコニウム、スズ、アンチモン、ルテニウム、白金、コバルト、モリブデン及びタングステンからなる群より選ばれる少なくとも1種の金属又はその酸化物の被覆を施した不溶性電極等を挙げることができる。   More specifically, the insoluble electrode that can be treated according to the present invention will be described. For example, on an electrode substrate made of titanium, tantalum, zirconium, niobium, or an alloy thereof, together with iridium oxide as an electrode catalyst, titanium, tantalum. And an insoluble electrode coated with at least one metal selected from the group consisting of niobium, zirconium, tin, antimony, ruthenium, platinum, cobalt, molybdenum and tungsten, or an oxide thereof.

中でも、チタンからなる電極基体上に、電極触媒として酸化イリジウム及び酸化タンタルの混合酸化物の被覆を施した不溶性電極が3価クロムめっき用アノードとして広く用いられている。本発明の再生処理方法をこの不溶性電極に適用する場合には、該不溶性電極を再生して繰り返し使用することが可能となり、該不溶性電極の優れた性能を長期間維持することができる。   In particular, an insoluble electrode obtained by coating an electrode base made of titanium with a mixed oxide of iridium oxide and tantalum oxide as an electrode catalyst is widely used as an anode for trivalent chromium plating. When the regeneration treatment method of the present invention is applied to this insoluble electrode, the insoluble electrode can be regenerated and used repeatedly, and the excellent performance of the insoluble electrode can be maintained for a long time.

再生処理液
本発明の再生処理方法において用いる再生処理液は、無機酸及び/又は有機酸を含有するpH3以下の水溶液であればよい。pHが低いほど再生処理液の電気伝導度が高くなり再生処理効果が向上することから、−1〜3程度の範囲内にあることが好ましく、−1〜1程度の範囲内にあることがより好ましい。なお、pHは25℃で測定した値である。
Regeneration Treatment Solution The regeneration treatment solution used in the regeneration treatment method of the present invention may be an aqueous solution containing an inorganic acid and / or an organic acid having a pH of 3 or less. The lower the pH is, the higher the electrical conductivity of the regeneration treatment liquid is and the regeneration treatment effect is improved. preferable. The pH is a value measured at 25 ° C.

無機酸及び有機酸の種類については特に限定的ではなく、無機酸としては、硫酸、塩酸、硝酸などを例示することができ、有機酸としては、クエン酸、リンゴ酸、乳酸などを例示することができる。これらの無機酸及び有機酸の中でも再生処理液の取扱いが容易であることから硫酸が好ましい。無機酸及び有機酸は上記したpHの範囲内となるように添加すればよい。例えば、無機酸として98%硫酸を用いる場合には、0.1〜200mL/L程度添加することによって、上記したpHの範囲に調整することができる。   The types of inorganic acid and organic acid are not particularly limited, and examples of the inorganic acid include sulfuric acid, hydrochloric acid, and nitric acid, and examples of the organic acid include citric acid, malic acid, and lactic acid. Can do. Of these inorganic acids and organic acids, sulfuric acid is preferred because the reprocessing solution is easy to handle. What is necessary is just to add an inorganic acid and an organic acid so that it may become in the above-mentioned pH range. For example, when 98% sulfuric acid is used as the inorganic acid, it can be adjusted to the above pH range by adding about 0.1 to 200 mL / L.

また、再生処理液は、電気伝導度が低いと浴電圧が上昇して電解中に浴温が上昇することがあるため、必要に応じて電導性塩を添加してもよい。電導性塩としては、硫酸ナトリウム、硫酸カリウム、塩化ナトリウム、塩化カリウム、硝酸カリウムなどのアルカリ金属塩;塩化アンモニウム、硫酸アンモニウムなどのアンモニウム塩等が挙げられる。これらの電導性塩は、一種単独又は二種以上混合して使用することができる。これらの電導性塩の中でも、電解処理時に電極表面の金属酸化物皮膜の剥離が生じにくい点においてアンモニウム塩を用いることが好ましい。電導性塩の添加量は要求される電気伝導度の範囲に応じて適宜決定すればよく、特に限定的ではないが、通常50〜400g/L程度とすればよい。   Moreover, since the bath voltage may increase when the electrical conductivity of the regenerating liquid is low and the bath temperature may increase during electrolysis, a conductive salt may be added as necessary. Examples of the conductive salt include alkali metal salts such as sodium sulfate, potassium sulfate, sodium chloride, potassium chloride, and potassium nitrate; ammonium salts such as ammonium chloride and ammonium sulfate. These conductive salts can be used singly or in combination of two or more. Among these conductive salts, it is preferable to use an ammonium salt in that the metal oxide film on the electrode surface is less likely to be peeled off during the electrolytic treatment. What is necessary is just to determine suitably the addition amount of electroconductive salt according to the range of the electrical conductivity requested | required, Although it does not specifically limit, What is necessary is just about 50-400 g / L normally.

3価クロムめっき用アノードの再生処理方法
前述した通り、本発明者の研究によって、3価クロムめっき浴中で6価クロムが生成する原因として、めっき処理を長期間行うことによって3価クロムめっき用アノードの酸素発生電位が上昇することによるものであることが見出された。
As described above, as a cause of the formation of hexavalent chromium in the trivalent chromium plating bath, the anode treatment for trivalent chromium plating can be performed for a trivalent chromium plating by performing plating for a long period of time. It has been found that this is due to an increase in the oxygen evolution potential of the anode.

本発明の再生処理方法によれば、上記した再生処理液中において、3価クロムめっき処理に用いたアノードを陰極として、後述する条件で電解処理を行うことによって酸素発生電位を低下させることができ、その結果、3価クロムめっき用アノードの性能を回復させ、6価クロムの生成を抑制することができる。   According to the regeneration treatment method of the present invention, the oxygen generation potential can be lowered by performing electrolytic treatment under the conditions described later, using the anode used for the trivalent chromium plating treatment as a cathode in the above-described regeneration treatment solution. As a result, the performance of the trivalent chromium plating anode can be recovered and the production of hexavalent chromium can be suppressed.

再生処理を行う時期については特に限定的ではなく、例えば、3価クロムめっき浴中に6価クロムの蓄積が生じた場合、3価クロムめっき用アノードの酸素発生電位が上昇した場合等に適宜、再生処理を行えばよい。   The timing for performing the regeneration treatment is not particularly limited. For example, when accumulation of hexavalent chromium occurs in the trivalent chromium plating bath, the oxygen generation potential of the anode for trivalent chromium plating increases, etc. A reproduction process may be performed.

3価クロムめっき浴中に6価クロムの蓄積が生じた場合を本発明の再生処理を行う時期の目安とする場合、基準となる6価クロムイオンの濃度は、目的とするめっき液の性能に応じて適宜決めればよい。   When the accumulation of hexavalent chromium in the trivalent chromium plating bath is used as a guideline for the timing of the regeneration treatment of the present invention, the standard concentration of hexavalent chromium ions depends on the performance of the intended plating solution. What is necessary is just to decide suitably according to.

通常、3価クロムめっき浴中の6価クロムイオン濃度が200ppm程度以上となると、3価クロムめっき処理のめっき速度やめっき皮膜の外観等に悪影響を及ぼすことがある。このため、3価クロムめっき浴中の6価クロムイオン濃度が200ppm程度以上となった場合に再生処理を行えばよいが、より高いめっき品質を望む場合には、100ppm程度以上となった時期を本発明の再生処理を行う時期の目安とすることが好ましい。3価クロムめっき浴中の6価クロム濃度は、ジフェニルカルバジドを用いた吸光度分析法等により測定することができる。   Usually, when the hexavalent chromium ion concentration in the trivalent chromium plating bath is about 200 ppm or more, the plating rate of the trivalent chromium plating treatment, the appearance of the plating film, and the like may be adversely affected. For this reason, regeneration treatment may be performed when the hexavalent chromium ion concentration in the trivalent chromium plating bath is about 200 ppm or more. However, when higher plating quality is desired, the time when the concentration becomes about 100 ppm or more is set. It is preferable to use it as a guideline for performing the regeneration process of the present invention. The hexavalent chromium concentration in the trivalent chromium plating bath can be measured by an absorbance analysis method using diphenylcarbazide or the like.

また、上記した3価クロムめっき浴中の6価クロムイオン濃度を測定する方法だけでなく、3価クロムめっき用アノードの酸素発生電位を測定することによっても本発明の再生処理を行う時期を決定することができる。電極の酸素発生電位を測定する方法は特に限定されないが、例えば、簡易的な方法として、図1に示すような電位測定装置を用いて測定した電位を酸素発生電位の目安とすることができる。   Further, not only the method for measuring the hexavalent chromium ion concentration in the trivalent chromium plating bath described above but also the time for performing the regeneration treatment of the present invention is determined by measuring the oxygen generation potential of the anode for trivalent chromium plating. can do. The method for measuring the oxygen generation potential of the electrode is not particularly limited. For example, as a simple method, a potential measured using a potential measuring device as shown in FIG. 1 can be used as a measure of the oxygen generation potential.

具体的には図1に示すように、対極としてチタンを用い、水銀/硫酸第一水銀電極を参照電極として、25℃の98%硫酸中で、測定対象物を陽極として、電流密度が50A/dmとなるように一定電流を流した場合の3価クロムめっき用アノードの電位を測定すればよい。 Specifically, as shown in FIG. 1, using titanium as a counter electrode, using a mercury / mercuric sulfate electrode as a reference electrode, in 98% sulfuric acid at 25 ° C., using a measurement object as an anode, a current density of 50 A / the anode potential for trivalent chromium plating in passing a constant current so that the dm 2 may be measured.

上記した方法で測定した場合の未使用の3価クロムめっき用アノードの電位は、通常0.95V程度である。本発明者の研究によれば、上記した方法で測定した電位が0.97V程度以上の3価クロムめっき用アノードを用いると、3価クロムめっき浴中で6価クロムの生成が確認された。このため、例えば、上記した方法で測定した場合の電位が0.97V程度以上となった場合に再生処理を行えばよい。なお、より高いめっき品質を望む場合には、0.96V程度以上となった時期を本発明の再生処理を行う時期の目安とすればよい。   The potential of the unused trivalent chromium plating anode when measured by the above method is usually about 0.95V. According to the study of the present inventor, it was confirmed that hexavalent chromium was produced in a trivalent chromium plating bath when an anode for trivalent chromium plating having a potential measured by the above-described method of about 0.97 V or more was used. For this reason, for example, the reproduction process may be performed when the potential measured by the above method becomes about 0.97 V or more. In addition, when higher plating quality is desired, the time when it becomes about 0.96 V or more may be used as a guideline for the time when the regeneration process of the present invention is performed.

なお、3価クロムめっき浴中に6価クロムの蓄積が生じた場合を、再生処理を行う時期の目安とする場合には、蓄積した6価クロムがめっき速度やめっき皮膜の外観等に悪影響を与えることがあり、さらには蓄積した6価クロムを3価クロムめっき浴から除去する手間等が生じることから、電極の酸素発生電位を測定することによって本発明の再生処理を行う時期を決定することが好ましい。   In addition, when the accumulation of hexavalent chromium in the trivalent chromium plating bath is used as a guideline for the timing of the regeneration treatment, the accumulated hexavalent chromium will adversely affect the plating speed and the appearance of the plating film. In addition, since it takes time to remove accumulated hexavalent chromium from the trivalent chromium plating bath, the timing for performing the regeneration treatment of the present invention is determined by measuring the oxygen generation potential of the electrode. Is preferred.

再生処理を行う場合の陰極電流密度については特に限定的ではないが、電流密度が極端に低い場合には良好な再生処理効果が得られず、再生処理後に短時間で酸素発生電位が上昇することがあるため好ましくない。このため、通常は0.1〜40A/dm程度とすればよく、0.5〜25A/dm程度とすることが好ましく、10〜15A/dm程度とすることがより好ましい。 The cathode current density when performing the regeneration process is not particularly limited, but if the current density is extremely low, a good regeneration process effect cannot be obtained, and the oxygen generation potential increases in a short time after the regeneration process. This is not preferable. Therefore, usually it is sufficient with 0.1 to 40 A / dm 2, preferably about be 0.5~25A / dm 2 about, and more preferably a 10~15A / dm 2 about.

再生処理を行う時間については特に限定的ではないが、処理時間が極端に短い場合には十分な再生処理効果が得られないことがあるため好ましくない。このため、通常は1〜30分程度の電解処理時間とすればよく、5〜20分程度の電解処理時間とすることが好ましい。   The time for performing the reproduction process is not particularly limited. However, when the processing time is extremely short, a sufficient reproduction process effect may not be obtained, which is not preferable. For this reason, what is necessary is just to set it as the electrolytic treatment time of about 1 to 30 minutes normally, and it is preferable to set it as the electrolytic treatment time of about 5 to 20 minutes.

再生処理液の液温については特に限定的ではないが、10〜70℃程度とすることが好ましく、25〜60℃程度とすることがより好ましい。   The temperature of the regenerating solution is not particularly limited, but is preferably about 10 to 70 ° C, and more preferably about 25 to 60 ° C.

再生処理に用いるアノードとしては、電気伝導性の不溶性電極であればよく、特に限定的ではないが、例えば、カーボン、チタン−白金電極などを使用できる。また、これらの不溶性電極を用いることなく、処理対象の3価クロムめっき用アノードを2本利用して、交互に陽極と陰極を入れ替えることによって効率よくアノードの再生処理を行うことができる。   The anode used for the regeneration treatment is not particularly limited as long as it is an electrically conductive insoluble electrode, and for example, a carbon, titanium-platinum electrode, or the like can be used. Also, without using these insoluble electrodes, the anode can be efficiently regenerated by alternately using the two trivalent chromium plating anodes to be treated and alternately switching the anode and the cathode.

本発明の3価クロムめっき用アノードの再生処理方法によれば、電解法という簡単な方法によって、上昇した3価クロムめっき用アノードの酸素発生電位を低下させることができる。その結果、3価クロムめっき用アノードの性能を回復させて再利用することが可能となり、高価な3価クロムめっき用アノードを長期間継続して使用することができる。   According to the regeneration treatment method for an anode for trivalent chromium plating of the present invention, the oxygen generation potential of the increased anode for trivalent chromium plating can be lowered by a simple method called electrolysis. As a result, the performance of the trivalent chromium plating anode can be recovered and reused, and the expensive trivalent chromium plating anode can be used continuously for a long period of time.

また、3価クロムめっき用アノードの性能を回復させることによって、3価クロムめっき浴中で6価クロムが生成することを抑制することができるため、3価クロムめっき浴を長期間使用することができ、安定した3価クロムめっき処理を行うことが可能となる。   In addition, by restoring the performance of the anode for trivalent chromium plating, it is possible to suppress the formation of hexavalent chromium in the trivalent chromium plating bath. This makes it possible to perform a stable trivalent chromium plating process.

電位測定装置の概略を示す図面。The figure which shows the outline of an electric potential measuring apparatus.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1〜5
処理対象として、3価クロムめっき処理に使用して酸素発生電位が上昇したアノードを用いて、以下の方法で再生処理を行った。処理対象のアノードは、チタンからなる電極基体上に、酸化イリジウムを含む被覆を施した電極(TCPアノード、ペルメレック電極(株)製)である。
Examples 1-5
A regeneration treatment was performed by the following method using an anode having an increased oxygen generation potential used for a trivalent chromium plating treatment as a treatment target. The anode to be treated is an electrode (TCP anode, manufactured by Permerek Electrode Co., Ltd.) on which an electrode substrate made of titanium is coated with iridium oxide.

再生処理方法としては、下記表1に記載した実施例1〜5の再生処理液を用い、各再生処理液中に、上記したアノードをそれぞれ2本浸漬し、一方を陽極とし、他方を陰極として、表1に記載した処理条件で電解処理を行った。   As a regeneration treatment method, the regeneration treatment liquids of Examples 1 to 5 described in Table 1 below were used. In each regeneration treatment liquid, two of the above-described anodes were immersed, one as an anode and the other as a cathode. The electrolytic treatment was performed under the treatment conditions described in Table 1.

Figure 0006142198
Figure 0006142198

処理対象アノードの電位の測定方法
処理対象アノードの電位の測定は、図1に示す電位測定装置を用いて、下記表2に示す条件で一定電流を流したときの電位をテスターにより測定し、得られた電位を酸素発生電位の目安とした。なお、この電位が低いほど、6価クロムの生成が起こりにくい電極であることを示す。
Method for Measuring the Potential of the Processed Anode The measurement of the potential of the treated anode was performed by measuring the potential when a constant current was passed under the conditions shown in Table 2 below with a tester using the potential measuring device shown in FIG. The obtained potential was used as a measure of the oxygen generation potential. In addition, it shows that it is an electrode with which the production | generation of hexavalent chromium hardly occurs, so that this electric potential is low.

Figure 0006142198
Figure 0006142198

上記した方法で測定した再生処理前及び再生処理後の電位を下記表3に示す。   Table 3 below shows the potentials measured by the above method before and after the regeneration process.

Figure 0006142198
Figure 0006142198

表3から明らかなように、実施例1〜5の再生処理液を用いて電解処理を行った場合には、上記方法で測定した酸素発生電位の目安となる電位の低下が確認できた。上記した方法で測定した場合の未使用の3価クロムめっき用アノードの電位は0.95V程度であることから、本発明の再生処理方法によって3価クロムめっき用アノードの酸素発生電位を新品と同程度にまで再生できたことが分かる。   As is apparent from Table 3, when electrolytic treatment was performed using the regeneration treatment liquids of Examples 1 to 5, it was possible to confirm a decrease in potential that was a measure of the oxygen generation potential measured by the above method. Since the potential of the unused trivalent chromium plating anode when measured by the above-described method is about 0.95 V, the oxygen generation potential of the trivalent chromium plating anode is the same as that of a new one by the regeneration treatment method of the present invention. It turns out that it was able to reproduce to the extent.

Claims (8)

導電性の電極基体上に酸化イリジウムを含む被覆を施した不溶性電極からなる3価クロムめっき用アノードの再生処理方法であって、
無機酸及び/又は有機酸を含有するpHが3以下の酸性水溶液からなる再生処理液中において、3価クロムめっき処理に用いたアノードを陰極として、電解処理を行うことを特徴とする3価クロムめっき用アノードの再生処理方法。
A method for regenerating an anode for trivalent chromium plating comprising an insoluble electrode having a coating containing iridium oxide on a conductive electrode substrate,
A trivalent chromium characterized in that an electrolytic treatment is carried out using a cathode used for a trivalent chromium plating treatment as a cathode in a regeneration treatment solution comprising an acidic aqueous solution containing an inorganic acid and / or an organic acid and having a pH of 3 or less. A method for regenerating the anode for plating.
再生処理液のpHが−1〜3である請求項1に記載の3価クロムめっき用アノードの再生処理方法。 The method for regenerating an anode for trivalent chromium plating according to claim 1, wherein the pH of the regenerating solution is -1 to 3. 3価クロムめっき用アノードが、チタン、タンタル、ジルコニウム、ニオブ又はこれらの合金からなる電極基体上に、電極触媒として酸化イリジウムとともに、チタン、タンタル、ニオブ、ジルコニウム、スズ、アンチモン、ルテニウム、白金、コバルト、モリブデン及びタングステンからなる群より選ばれる少なくとも1種の金属又はその酸化物の被覆を施した不溶性電極である請求項1又は2に記載の3価クロムめっき用アノードの再生処理方法。 An anode for trivalent chromium plating is formed on an electrode substrate made of titanium, tantalum, zirconium, niobium or an alloy thereof, and with iridium oxide as an electrode catalyst, titanium, tantalum, niobium, zirconium, tin, antimony, ruthenium, platinum, cobalt The method for regenerating a trivalent chromium plating anode according to claim 1 or 2 , wherein the anode is an insoluble electrode coated with at least one metal selected from the group consisting of molybdenum and tungsten, or an oxide thereof. 3価クロムめっき用アノードが、チタンからなる電極基体上に、電極触媒として酸化イリジウム及び酸化タンタルの混合酸化物の被覆を施した不溶性電極である請求項1〜のいずれかに記載の3価クロムめっき用アノードの再生処理方法。 The trivalent chromium plating anode according to any one of claims 1 to 3 , wherein the trivalent chromium plating anode is an insoluble electrode obtained by coating a mixed oxide of iridium oxide and tantalum oxide as an electrode catalyst on an electrode substrate made of titanium. A method for regenerating the anode for chromium plating. 3価クロムめっき浴中の6価クロムイオン濃度が、100ppm以上となった場合の3価クロムめっき用アノードを処理対象とする請求項1〜のいずれかに記載の3価クロムめっき用アノードの再生処理方法。 The anode for trivalent chromium plating according to any one of claims 1 to 4 , wherein the anode for trivalent chromium plating when the concentration of hexavalent chromium ions in the trivalent chromium plating bath is 100 ppm or more is treated. Playback processing method. 水銀/硫酸第一水銀電極を参照電極とし、98%硫酸150g/Lの水溶液を測定液として、電流密度50A/dmで測定した場合の電位が、0.96V以上となった場合の3価クロムめっき用アノードを処理対象とする請求項1〜のいずれかに記載の3価クロムめっき用アノードの再生処理方法。 Trivalent when the potential when measured at a current density of 50 A / dm 2 using a mercury / mercuric sulfate electrode as a reference electrode and an aqueous solution of 150 g / L of 98% sulfuric acid at a current density of 0.96 V or more. The method for regenerating a trivalent chromium plating anode according to any one of claims 1 to 4 , wherein the chromium plating anode is a treatment target. 無機酸が硫酸である請求項1〜のいずれかに記載の3価クロムめっき用アノードの再生処理方法。 The method for regenerating a trivalent chromium plating anode according to any one of claims 1 to 6 , wherein the inorganic acid is sulfuric acid. 陰極電流密度0.1〜40A/dmで電解処理を行う請求項1〜のいずれかに記載の3価クロムめっき用アノードの再生処理方法。 Cathode current density 0.1 to 40 A / dm 2 in claims 1 to 7 either trivalent chromium plating anode regeneration processing method according to the performing the electrolytic process.
JP2013115113A 2013-05-31 2013-05-31 Method for regenerating anode for trivalent chromium plating Expired - Fee Related JP6142198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013115113A JP6142198B2 (en) 2013-05-31 2013-05-31 Method for regenerating anode for trivalent chromium plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013115113A JP6142198B2 (en) 2013-05-31 2013-05-31 Method for regenerating anode for trivalent chromium plating

Publications (2)

Publication Number Publication Date
JP2014234524A JP2014234524A (en) 2014-12-15
JP6142198B2 true JP6142198B2 (en) 2017-06-07

Family

ID=52137451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013115113A Expired - Fee Related JP6142198B2 (en) 2013-05-31 2013-05-31 Method for regenerating anode for trivalent chromium plating

Country Status (1)

Country Link
JP (1) JP6142198B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188361B2 (en) * 1994-06-27 2001-07-16 ペルメレック電極株式会社 Chrome plating method
JP3810043B2 (en) * 1998-09-30 2006-08-16 ペルメレック電極株式会社 Chrome plating electrode
US7780840B2 (en) * 2008-10-30 2010-08-24 Trevor Pearson Process for plating chromium from a trivalent chromium plating bath

Also Published As

Publication number Publication date
JP2014234524A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
JP4404871B2 (en) Electroplating bath
WO2013038927A1 (en) Chlorine-generating positive electrode
KR102524693B1 (en) Electrode for electrolytic process
JPH0813199A (en) Chromium plating method
JP5522484B2 (en) Electrolytic plating anode and electrolytic plating method using the anode
WO2011111391A1 (en) Method for passivating stainless steel
JP6506983B2 (en) Negative electrode for hydrogen generation and method for producing the same
JP5669995B1 (en) Method and apparatus for processing Au-containing iodine-based etching solution
JP6142198B2 (en) Method for regenerating anode for trivalent chromium plating
JP6347547B2 (en) Washing wastewater electrodialysis apparatus and electrodialysis method
JP6142199B2 (en) Method for regenerating anode for trivalent chromium plating
JP4273085B2 (en) Platinum-cobalt alloy plating solution and plating method
ES2733771T3 (en) Method for monitoring the total amount of brighteners present in an acid-coated copper or copper alloy bath and controlled coating process
RU2577402C1 (en) Anode for extracting oxygen and method of making same
WO2015093297A1 (en) Electrolytic etching method and electrolytic etching fluid
JP5309813B2 (en) Oxygen generating electrode
JP6580428B2 (en) How to remove harmful nitrogen from wastewater
JP2014031533A (en) Plating method
JP3795369B2 (en) Method for electrolytic deposition of metal or inorganic compound using organic solvent
JP6167254B1 (en) Method of recovering Au from iodine-based etching waste liquid and regenerating the etching solution
JP5867178B2 (en) Method for producing electrogalvanized steel sheet
UA121730C2 (en) MANUFACTURING METHOD OF CATHODE FOR ALKALINE ELECTROLYSIS OF WATER
JP2015134960A (en) Copper strike plating solution
US8801916B2 (en) Recovery method of nickel from spent electroless nickel plating solutions by electrolysis
UA138388U (en) METHOD OF MANUFACTURE OF CATHOD FOR ALKALINE ELECTROLYSIS OF WATER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R150 Certificate of patent or registration of utility model

Ref document number: 6142198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees