JP3795369B2 - Method for electrolytic deposition of metal or inorganic compound using organic solvent - Google Patents
Method for electrolytic deposition of metal or inorganic compound using organic solvent Download PDFInfo
- Publication number
- JP3795369B2 JP3795369B2 JP2001319761A JP2001319761A JP3795369B2 JP 3795369 B2 JP3795369 B2 JP 3795369B2 JP 2001319761 A JP2001319761 A JP 2001319761A JP 2001319761 A JP2001319761 A JP 2001319761A JP 3795369 B2 JP3795369 B2 JP 3795369B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- electrolytic deposition
- organic solvent
- cathode
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、電極,触媒,光触媒,硬化膜,表面保護等の作用を呈する機能性薄膜の形成に使用される金属又は無機化合物の電解析出方法に関する。
【0002】
【従来技術及び問題点】
金属イオンを含む溶液中で電解すると、金属イオンが電解還元されて溶液から陰極上に析出する。電気めっきは、この現象を利用した代表的な方法であり、Znめっき,Cuめっき,Snめっき等に従来から応用されている。また、陰極上で金属イオン以外の化学種が電気化学的な還元反応を受けると、溶液のpHが上昇し、溶解している金属イオンが酸化物や水酸化物として析出する。たとえば、Ti,Zr,Hf,V,Nb,Ta,Mo,W,Cr,Al等のバルブメタルを含む溶液を用いた電解では、バルブメタルが酸化物又は水酸化物となって陰極表面に析出し、耐食性の改善に有効な保護皮膜を形成する。
【0003】
何れの場合も、電解析出させる金属又は金属化合物となる金属イオンや錯イオンを含む溶液を必要とする。そのため、イオンとなって溶液に溶解しがたい金属種では、金属薄膜又は金属化合物薄膜の電解析出に適用できない。また、電解析出に使用した溶液に依然として電解反応で消費されなかった金属イオンや錯イオンが含まれているので、電解析出後に廃液処理が必要となるが、廃液処理には多大の負担がかかる。
【0004】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、ハロゲンを添加した有機溶媒を使用することにより、廃液処理の負担を軽減し、金属種の溶解度による制約を受けることなく、機能性薄膜を陰極表面に形成することを目的とする。
【0005】
本発明の電解析出方法は、その目的を達成するため、有機溶媒とハロゲンイオンからなる電解析出用溶液を用意し、金属又は合金製の陽極及び導電性陰極を電解析出用溶液に浸漬し、直流電解によって陽極から金属イオンを溶出させ、金属薄膜又は金属化合物薄膜として陰極に析出させることを特徴とする。
有機溶媒には、アセトン,メチルエチルケトン,ジメチルケトン,ジエチルケトン等のケトン類やメタノール,エタノール,プロパノール等のアルコール類、或いはこれらの混合物が使用される。有機溶媒にF,Cl,Br,I等のハロゲン元素を好ましくは10質量%以下の割合で添加することにより、電解析出用溶液を調製する。電解析出用溶液は、10質量%以下の水を含むことができる。
【0006】
陽極材料には種々の金属や合金を使用できるが、Ti,Zr,Hf,V,Nb,Ta,Mo,W,Cr,Alから選ばれたバルブメタル又はその合金を陽極に使用すると、バルブメタルが金属薄膜又は酸化物や水酸化物の皮膜となって陰極表面に堆積する。
金属,セラミック,ガラス,有機高分子から選ばれた1種又は2種以上の微粒子粉体を分散させた有機溶媒を使用して直流電解すると、金属又は金属化合物の析出と同時に微粒子粉体が共析し、微粒子粉体が分散した複合薄膜が形成される。この種の薄膜は、分散した微粒子粉体に応じて種々の機能を発現する。
【0007】
【作用】
本発明においては、ハロゲンを添加した有機溶媒を電解析出用溶液に使用し、陽極の金属又は合金を金属イオンや錯イオンとして溶出させ、金属又は金属化合物として陰極表面に析出させている。陰極表面に析出する金属又は金属化合物のソースを当初の電解析出用溶液が含んでいないので、従来の電気めっきにみられるような金属種の溶解度による制約を受けない。
添加したハロゲンは有機溶媒中でハロゲンイオンとなって存在し、一般に電気伝導性の小さな有機溶媒を支持電解質として使用することを可能にする。ハロゲン添加によって電気伝導性が付与された有機溶媒中で遷移金属を陽極として電気分解すると、通常の水性電解質を用いた電気めっきと同様に、陽極から溶出した金属イオンが有機溶媒中を移動して陰極表面に電解析出する。
【0008】
本発明は、バルブメタルの電解析出で従来法と顕著に相違する。
バルブメタルを陽極として有機溶媒中で電気分解すると、有機溶媒中に各種金属イオンが加水分解することなく安定的に存在できるため、バルブメタルであっても陽極溶解が容易に進行し、陰極表面に金属バルブメタルが電解析出する。また、水分を含む有機溶媒中でバルブメタルを電気分解すると、電気化学反応によってバルブメタルの表面に陽極酸化皮膜が生成するが,ハロゲン化物イオンの腐食作用によって陽極酸化皮膜が溶解するので,バルブメタルの酸化物が有機溶媒中の陰極に移動した後,陰極表面に電解析出する。
これに対し、バルブメタルを陽極として水性電解液中で陽極分解すると、バルブメタルの表面に化学的に安定な陽極酸化皮膜が形成され,バルブメタルは僅かに溶解するだけであり,陰極表面での電解析出が生じない。陽極酸化皮膜は強酸性の水溶液中では溶解するが、このとき金属イオンが加水分解反応を受けるので,水酸化物又は酸化物として沈殿し,陰極表面での電解析出は依然として生じない。
【0009】
金属の種類に拘らず、電解析出が可能なことも本発明の長所である。
水性溶媒を用いた電解析出では、金属の種類に応じて溶媒の水素イオン濃度を調整する必要があり、溶解条件を個別に検討することを余儀なくされる。他方、有機溶媒を用いた電解析出は、溶解度による制約を受けることなくあらゆる種類の金属に適用できる。また、バルブメタルの電解析出では、有機溶媒に対する水添加の有無によって析出物の酸化状態が制御される。たとえば、Tiを電解析出するとき、無水の有機溶媒では金属Tiが陰極に析出するが、水添加によって水和酸化物が陰極表面に析出する。
【0010】
電解析出用溶液には、電気化学的に溶解又は酸化溶解する金属や合金が陽極として浸漬される。金属薄膜を陰極表面に形成する場合、Au,Ag,Cu,Ni,Fe,Co,Zn,Sn,Pd等の遷移金属又はこれらの合金が使用される。金属化合物薄膜を陰極表面に形成する場合、Ti,Zr,Hf,V,Nb,Ta,Mo,W,Cr,Al等のバルブメタルが使用される。陰極は、導電性を呈するものである限り材質に特段の制約を受けるものではなく、金属,合金,黒鉛等を使用できる。メタライズ処理で導電性を付与した絶縁材料等も陰極に使用可能である。
【0011】
ハロゲンの添加により有機溶媒に電気伝導性が付与されるが、過剰量のハロゲンを添加すると金属化合物薄膜に多量のハロゲンが不純物として混入する。そのため、ハロゲン添加量を10質量%以下に規制することが好ましい。また、有機溶媒に水を含ませると、ハロゲンと同様に電気伝導性が発現するが、過剰量の水分は水の電気分解反応が主反応となるため好ましくない。そのため、水分を添加する場合には上限を10質量%以下に規制することが好ましい。
電解析出に際しては、1〜100V/cmの電圧を陽極と陰極に印加し、電流密度1mA〜1μA/cm2で直流電解することが好ましい。遷移金属等の陽極溶解しやすい金属は数ボルトの電圧印加で陰極に電解析出するが、バルブメタルでは表面に生じている絶縁性酸化皮膜の溶解に数十〜百ボルトの電圧を必要とする。
【0012】
微粒子粉体を有機溶媒に分散させた電解析出用溶液を使用すると、金属や金属化合物が溶液から陰極表面に析出する際に微粒子粉体が共析する。生成した薄膜は、単に有機溶媒に微粒子を分散させたスラリーを用いた電気泳動で成膜した場合に比較して密着性が良好である。密着性の向上は、陽極溶解した金属イオンが陰極析出する際に微粒子粉体の隙間を充填するように析出する結果であると推察される。
共析可能な微粒子粉体としては、遷移金属,希土類金属等の金属又は合金、各種金属の酸化物,窒化物,炭化物,炭窒化物,複合酸化物等のセラミック、ガラス、ポリスチレン,ポリ塩化ビニル,フッ素樹脂等の有機高分子がある。たとえば、ニッケル薄膜にアルミナ,チタニアを共析させると触媒活性が付与され、炭化ケイ素を共析させると耐磨耗性が付与された複合薄膜が得られる。
電解析出に使用された廃液は、低沸点の有機溶媒を主成分とする揮発しやすい溶液であり、有機溶媒に残留している金属イオンの濃度も極めて低い。そのため、従来法に比較して廃液処理にかかる負担も大幅に軽減される。
【0013】
【実施例1】
アセトン20mlにヨウ素20mgを溶解させた電解析出用溶液を用意した。1cm×1cmの純チタン板を陽極1,1cm×1cmの白金基板を陰極2として電解析出用溶液3に浸漬し(図1)、陽極1と陰極2との電極間距離を1cmに設定した。陽極1,陰極2に50Vの電圧を印加すると、陽極1/陰極2間に1mAの電流が流れ、陰極2の表面にチタン化合物が薄膜として析出した。このときの電解反応は、次のように考えられる。
【0014】
【0015】
陰極表面に堆積したチタン化合物薄膜は、膜厚が2μmで良好な密着性で白金基板に付着していた。このチタン化合物薄膜をEPMAで元素分析したところ、チタン,酸素,ヨウ素,炭素が含まれていることが判った(図2)。作製されたチタン化合物薄膜は、白色半透明の非晶質薄膜であり、アセトアルデヒドの気相分解反応に対して光触媒作用を呈した。
アセトン20mlにヨウ素20mgを添加することにより調製した電解析出用溶液を用いてチタン化合物薄膜を形成した後、電解析出用溶液から試験液をサンプリングし、液中の残留チタン濃度を測定した。チタン濃度の測定には、乾燥によってアセトンを蒸発除去した後、残留物を塩酸に溶解し、誘導プラズマ結合発光分析計で測定する方法を採用した。
【0016】
表1の測定結果にみられるように、電解析出用溶液の残留チタン濃度は大幅に低い値であった。因みに、1×10-2M (NH4)2TiO(C2O4)2と2.5×10-3M (COOH)2の混合水溶液(チタン濃度:1×10-2M)を用いてチタン酸化物を電解析出させた場合(Journal of Physical Chemistry B, vol.104 (2000), p4204)、電解析出で生じるチタン化合物の量が極めて少ないため電解析出後も混合水溶液のチタン濃度がほとんど変化しないものと考えられる。すなわち、残留チタン濃度は本発明例に比較して二桁以上高く、廃液処理に大きな負担がかかることになる。
【0017】
【0018】
【実施例2】
アセトン20ml,ヨウ素20mgの溶液に粒径0.1μmのSiO微粒子10mgを分散させることにより電解析出用溶液を調製した。電解析出用溶液に陽極1としてSUS304ステンレス鋼板,陰極2として白金基板を浸漬し、陽極1−陰極2に電圧50Vを印加して直流電解した。
電解析出を10分継続した後で、電解析出用溶液から陰極2を引き上げ、陰極表面を観察したところ、膜厚6μmの薄膜が陰極表面に形成されていた。作製された薄膜をEPMAで元素分析した結果、SiOに相当する元素分布をもつ電着膜がFeリッチの界面層を介して白金基板(陰極)に付着していることが判った。SiOの共析は、陽極1の溶解で生じたFeイオンが溶液中のSiO微粒子に吸着され、微粒子全体がプラスに帯電されて陰極2に電気泳動したことによるものと推察される。
作製された複合薄膜は、化学的安定性,耐薬品性,絶縁性等に優れたSiOの特性を活用し、表面保護特性が改善された機能薄膜として使用される。
【0019】
【発明の効果】
以上に説明したように、本発明においては、ハロゲンを添加した有機溶媒を電解析出用溶液に使用し、陽極側で金属又は合金を溶出させ、陰極側で金属又は金属化合物を析出させている。この方法によるとき、金属薄膜又は金属化合物薄膜のソースを含まない電解析出用溶液が使用されるため、金属種の溶解度に拘束されることなく、多種の金属或いはその化合物を薄膜として陰極表面に析出させることが可能となる。また、電解析出後の溶液に残留する金属イオンや錯イオンの濃度が低いため、廃液処理が本質的に不要となり、或いは廃液処理に要する負担も大幅に軽減される。
【図面の簡単な説明】
【図1】 実施例1で使用した電解析出装置の概略図
【図2】 実施例1で作製されたチタン化合物薄膜のEPMA分析結果を示すグラフ
【図3】 実施例2で作製されたSiO共析薄膜のEPMA分析結果を示すグラフ[0001]
[Industrial application fields]
The present invention relates to a method for electrolytic deposition of a metal or an inorganic compound used for forming a functional thin film exhibiting actions such as an electrode, a catalyst, a photocatalyst, a cured film, and surface protection.
[0002]
[Prior art and problems]
When electrolysis is performed in a solution containing metal ions, the metal ions are electrolytically reduced and deposited on the cathode from the solution. Electroplating is a typical method using this phenomenon, and has been conventionally applied to Zn plating, Cu plating, Sn plating and the like. Moreover, when chemical species other than metal ions undergo an electrochemical reduction reaction on the cathode, the pH of the solution rises, and dissolved metal ions are precipitated as oxides and hydroxides. For example, in electrolysis using a solution containing a valve metal such as Ti, Zr, Hf, V, Nb, Ta, Mo, W, Cr, Al, etc., the valve metal becomes oxide or hydroxide and is deposited on the cathode surface. And forming a protective film effective in improving the corrosion resistance.
[0003]
In either case, a solution containing a metal ion or complex ion to be a metal or metal compound to be electrolytically deposited is required. Therefore, a metal species that is difficult to be dissolved in a solution as ions cannot be applied to electrolytic deposition of a metal thin film or a metal compound thin film. Also, since the solution used for electrolytic deposition contains metal ions and complex ions that have not been consumed by the electrolytic reaction, waste liquid treatment is required after electrolytic deposition, but there is a great burden on waste liquid treatment. Take it.
[0004]
[Means for Solving the Problems]
The present invention has been devised to solve such problems. By using an organic solvent to which halogen is added, the burden of waste liquid treatment is reduced, and there is no restriction due to the solubility of metal species. An object is to form a functional thin film on the cathode surface.
[0005]
In order to achieve the object of the electrolytic deposition method of the present invention, an electrolytic deposition solution comprising an organic solvent and a halogen ion is prepared, and a metal or alloy anode and a conductive cathode are immersed in the electrolytic deposition solution. The metal ions are eluted from the anode by direct current electrolysis and deposited on the cathode as a metal thin film or a metal compound thin film.
As the organic solvent, ketones such as acetone, methyl ethyl ketone, dimethyl ketone, and diethyl ketone, alcohols such as methanol, ethanol, and propanol, or a mixture thereof are used. A solution for electrolytic deposition is prepared by adding a halogen element such as F, Cl, Br, or I to the organic solvent in a proportion of preferably 10% by mass or less. The electrolytic deposition solution can contain 10% by mass or less of water.
[0006]
Various metals and alloys can be used for the anode material. When a valve metal selected from Ti, Zr, Hf, V, Nb, Ta, Mo, W, Cr, and Al or an alloy thereof is used for the anode, the valve metal Deposits on the cathode surface as a metal thin film or oxide or hydroxide film.
When direct current electrolysis is performed using an organic solvent in which one or two or more fine particle powders selected from metals, ceramics, glass, and organic polymers are dispersed, the fine particle powders co-deposit with the precipitation of the metal or metal compound. And a composite thin film in which the fine particle powder is dispersed is formed. This type of thin film exhibits various functions depending on the dispersed fine particle powder.
[0007]
[Action]
In the present invention, an organic solvent to which halogen is added is used for the electrolytic deposition solution, and the metal or alloy of the anode is eluted as a metal ion or complex ion and deposited on the cathode surface as a metal or metal compound. Since the original electrolytic deposition solution does not contain a source of metal or metal compound deposited on the cathode surface, it is not restricted by the solubility of metal species as seen in conventional electroplating.
The added halogen exists as halogen ions in the organic solvent, and it is generally possible to use an organic solvent having a small electrical conductivity as the supporting electrolyte. When electrolysis is performed using a transition metal as an anode in an organic solvent to which electrical conductivity has been imparted by the addition of halogen, the metal ions eluted from the anode move through the organic solvent in the same manner as in electroplating using a normal aqueous electrolyte. Electrolytically deposited on the cathode surface.
[0008]
The present invention is significantly different from the conventional method in electrolytic deposition of valve metal.
Electrolysis in an organic solvent using a valve metal as an anode allows various metal ions to exist stably in the organic solvent without hydrolysis, so that anodic dissolution easily proceeds even on valve metals, Metal valve metal is electrolytically deposited. In addition, when the valve metal is electrolyzed in an organic solvent containing moisture, an anodized film is formed on the surface of the valve metal by an electrochemical reaction, but the anodized film is dissolved by the corrosive action of halide ions. After the oxides move to the cathode in the organic solvent, they are electrolytically deposited on the cathode surface.
On the other hand, when anodized in an aqueous electrolyte using the valve metal as an anode, a chemically stable anodic oxide film is formed on the surface of the valve metal, and the valve metal only slightly dissolves. Electrodeposition does not occur. The anodic oxide film dissolves in a strongly acidic aqueous solution, but at this time, metal ions undergo a hydrolysis reaction, so that they precipitate as hydroxides or oxides, and electrolytic deposition on the cathode surface does not occur yet.
[0009]
It is an advantage of the present invention that electrolytic deposition is possible regardless of the type of metal.
In electrolytic deposition using an aqueous solvent, it is necessary to adjust the hydrogen ion concentration of the solvent in accordance with the type of metal, and it is necessary to individually examine dissolution conditions. On the other hand, electrolytic deposition using an organic solvent can be applied to all kinds of metals without being restricted by solubility. In the electrolytic deposition of valve metal, the oxidation state of the deposit is controlled by the presence or absence of water addition to the organic solvent. For example, when Ti is electrolytically deposited, metal Ti is deposited on the cathode in an anhydrous organic solvent, but hydrated oxide is deposited on the cathode surface by addition of water.
[0010]
In the electrolytic deposition solution, an electrochemically dissolved or oxidized and dissolved metal or alloy is immersed as an anode. When the metal thin film is formed on the cathode surface, transition metals such as Au, Ag, Cu, Ni, Fe, Co, Zn, Sn, Pd, or alloys thereof are used. When the metal compound thin film is formed on the cathode surface, a valve metal such as Ti, Zr, Hf, V, Nb, Ta, Mo, W, Cr, Al or the like is used. The cathode is not particularly restricted by the material as long as it exhibits conductivity, and a metal, an alloy, graphite or the like can be used. An insulating material imparted with conductivity by metallization can also be used for the cathode.
[0011]
Addition of halogen imparts electrical conductivity to the organic solvent. However, when an excessive amount of halogen is added, a large amount of halogen is mixed as an impurity in the metal compound thin film. Therefore, it is preferable to restrict the halogen addition amount to 10% by mass or less. In addition, when water is included in the organic solvent, electrical conductivity is exhibited as in the case of halogen. However, an excessive amount of moisture is not preferable because an electrolysis reaction of water becomes a main reaction. Therefore, when adding moisture, the upper limit is preferably regulated to 10% by mass or less.
In electrolytic deposition, it is preferable to apply a voltage of 1 to 100 V / cm to the anode and the cathode and perform direct current electrolysis at a current density of 1 mA to 1 μA / cm 2 . Metals that easily dissolve in the anode, such as transition metals, are electrolytically deposited on the cathode when a voltage of several volts is applied, but in the case of valve metal, a voltage of several tens to hundred volts is required to dissolve the insulating oxide film formed on the surface. .
[0012]
When a solution for electrolytic deposition in which fine particle powder is dispersed in an organic solvent is used, the fine particle powder is co-deposited when a metal or metal compound is deposited from the solution onto the cathode surface. The produced thin film has better adhesion than when the film is formed by electrophoresis using a slurry in which fine particles are dispersed in an organic solvent. The improvement in adhesion is presumed to be a result of the anodic dissolved metal ions being deposited so as to fill the gaps in the fine particle powder when the cathode is deposited.
Examples of fine particles that can be co-deposited include metals and alloys such as transition metals and rare earth metals, ceramics such as oxides, nitrides, carbides, carbonitrides and composite oxides of various metals, glass, polystyrene, and polyvinyl chloride. There are organic polymers such as fluororesin. For example, when a nickel thin film is co-deposited with alumina and titania, catalytic activity is imparted, and when silicon carbide is co-deposited, a composite thin film imparted with wear resistance is obtained.
The waste liquid used for electrolytic deposition is an easily volatilized solution mainly composed of a low-boiling organic solvent, and the concentration of metal ions remaining in the organic solvent is extremely low. Therefore, the burden on waste liquid treatment is greatly reduced compared to the conventional method.
[0013]
[Example 1]
An electrolytic deposition solution in which 20 mg of iodine was dissolved in 20 ml of acetone was prepared. A 1 cm × 1 cm pure titanium plate was immersed in an
[0014]
[0015]
The titanium compound thin film deposited on the cathode surface had a thickness of 2 μm and adhered to the platinum substrate with good adhesion. Elemental analysis of this titanium compound thin film by EPMA revealed that it contained titanium, oxygen, iodine and carbon (FIG. 2). The produced titanium compound thin film was a white translucent amorphous thin film and exhibited a photocatalytic action on the gas phase decomposition reaction of acetaldehyde.
After forming a titanium compound thin film using the electrolytic deposition solution prepared by adding 20 mg of iodine to 20 ml of acetone, the test solution was sampled from the electrolytic deposition solution, and the residual titanium concentration in the solution was measured. The titanium concentration was measured by evaporating and removing acetone by drying, and then dissolving the residue in hydrochloric acid and measuring with an inductively coupled plasma emission spectrometer.
[0016]
As can be seen from the measurement results in Table 1, the residual titanium concentration of the electrolytic deposition solution was significantly low. Incidentally, a mixed aqueous solution (titanium concentration: 1 × 10 −2 M) of 1 × 10 −2 M (NH 4 ) 2 TiO (C 2 O 4 ) 2 and 2.5 × 10 −3 M (COOH) 2 was used. When titanium oxide is electrolytically deposited (Journal of Physical Chemistry B, vol.104 (2000), p4204) It is thought that the concentration hardly changes. That is, the residual titanium concentration is two orders of magnitude higher than that of the example of the present invention, and a large burden is imposed on the waste liquid treatment.
[0017]
[0018]
[Example 2]
An electrolytic deposition solution was prepared by dispersing 10 mg of SiO fine particles having a particle size of 0.1 μm in a solution of 20 ml of acetone and 20 mg of iodine. A SUS304 stainless steel plate as the anode 1 and a platinum substrate as the
After the electrolytic deposition was continued for 10 minutes, the
The produced composite thin film is used as a functional thin film having improved surface protection characteristics by utilizing the characteristics of SiO excellent in chemical stability, chemical resistance, insulation, and the like.
[0019]
【The invention's effect】
As described above, in the present invention, an organic solvent to which halogen is added is used for the electrolytic deposition solution, the metal or alloy is eluted on the anode side, and the metal or metal compound is deposited on the cathode side. . When this method is used, a solution for electrolytic deposition that does not contain a source of a metal thin film or a metal compound thin film is used. It can be deposited. Further, since the concentration of metal ions and complex ions remaining in the solution after electrolytic deposition is low, waste liquid treatment is essentially unnecessary, or the burden required for waste liquid treatment is greatly reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an electrolytic deposition apparatus used in Example 1. FIG. 2 is a graph showing the results of EPMA analysis of a titanium compound thin film produced in Example 1. FIG. 3 is SiO produced in Example 2. Graph showing EPMA analysis result of eutectoid thin film
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001319761A JP3795369B2 (en) | 2001-10-17 | 2001-10-17 | Method for electrolytic deposition of metal or inorganic compound using organic solvent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001319761A JP3795369B2 (en) | 2001-10-17 | 2001-10-17 | Method for electrolytic deposition of metal or inorganic compound using organic solvent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003129275A JP2003129275A (en) | 2003-05-08 |
JP3795369B2 true JP3795369B2 (en) | 2006-07-12 |
Family
ID=19137269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001319761A Expired - Fee Related JP3795369B2 (en) | 2001-10-17 | 2001-10-17 | Method for electrolytic deposition of metal or inorganic compound using organic solvent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3795369B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6065360B2 (en) * | 2011-12-07 | 2017-01-25 | Jfeスチール株式会社 | Manufacturing method of surface-treated steel sheet |
JP6471688B2 (en) * | 2013-03-19 | 2019-02-20 | ソニー株式会社 | Manufacturing method of plating film |
-
2001
- 2001-10-17 JP JP2001319761A patent/JP3795369B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003129275A (en) | 2003-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5008043B1 (en) | Anode for chlorine generation | |
TWI247052B (en) | Electrocatalytic coating with lower platinum group metals and electrode made therefrom | |
JP4916040B1 (en) | Electrolytic sampling anode and electrolytic sampling method using the anode | |
JP3810043B2 (en) | Chrome plating electrode | |
US6527939B1 (en) | Method of producing copper foil with an anode having multiple coating layers | |
JP5013438B2 (en) | Anode for electrowinning metal and electrowinning method | |
JP4516618B2 (en) | Anode for electrolytic collection of cobalt and electrolytic collection method | |
WO2009151044A1 (en) | Anodes for electrolytic winning of zinc and cobalt and method for electrolytic winning | |
EP1552041A2 (en) | Coatings for the inhibition of undesirable oxidation in an electrochemical cell | |
JP5522484B2 (en) | Electrolytic plating anode and electrolytic plating method using the anode | |
JP2011122183A5 (en) | ||
JP2009293117A (en) | Anode for use in electrowinning zinc, and electrowinning method | |
JP3795369B2 (en) | Method for electrolytic deposition of metal or inorganic compound using organic solvent | |
Ma et al. | Electrodeposition of nano-structured nickel–21% tungsten alloy and evaluation of oxygen reduction reaction in a 1% sodium hydroxide solution | |
Malyshev et al. | Electroreduction of tungsten oxide (VI) in molten salts with added metaphosphate | |
Weiser et al. | Platinum electrodeposition from a dinitrosulfatoplatinate (II) electrolyte | |
JP3658823B2 (en) | Electrode for electrolysis and method for producing the same | |
JP2908540B2 (en) | Chrome plating method | |
JPH0633488B2 (en) | Method of manufacturing cathode | |
JP2001073197A (en) | Anode for oxygen generation | |
Barmi et al. | Alternative low-cost composite coated anodes for base metal electrowinning | |
JPS62240778A (en) | Metallic electrode coated with carbonaceous substance and its production | |
JP2019081919A (en) | Electrolytic method | |
Bi | Electrodeposition, Characterization, Physicochemical Properties and Application of Lead Dioxide Coatings | |
JPH0860390A (en) | Electrolytic electrode and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050801 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060412 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090421 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100421 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |