JP5309813B2 - Oxygen generating electrode - Google Patents

Oxygen generating electrode Download PDF

Info

Publication number
JP5309813B2
JP5309813B2 JP2008229122A JP2008229122A JP5309813B2 JP 5309813 B2 JP5309813 B2 JP 5309813B2 JP 2008229122 A JP2008229122 A JP 2008229122A JP 2008229122 A JP2008229122 A JP 2008229122A JP 5309813 B2 JP5309813 B2 JP 5309813B2
Authority
JP
Japan
Prior art keywords
electrode
oxygen
anode
metal
double oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008229122A
Other languages
Japanese (ja)
Other versions
JP2010059523A (en
Inventor
功二 橋本
善大 加藤
直和 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Ataka Engineering Co Ltd
Original Assignee
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Ataka Engineering Co Ltd filed Critical Daiki Ataka Engineering Co Ltd
Priority to JP2008229122A priority Critical patent/JP5309813B2/en
Publication of JP2010059523A publication Critical patent/JP2010059523A/en
Application granted granted Critical
Publication of JP5309813B2 publication Critical patent/JP5309813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、海水をはじめとする塩素イオンを含む水溶液の電解に陽極として使用し、塩素発生を抑制しつつ酸素を発生するための酸素発生用電極に関する。 The present invention relates to an oxygen generating electrode that is used as an anode for electrolysis of an aqueous solution containing chlorine ions including seawater and generates oxygen while suppressing chlorine generation.

海水の電解は、通常、陰極では水素と水酸化ナトリウムを発生させ、陽極では塩素を発生させ、発生した水酸化ナトリウムと塩素とから次亜塩素酸ナトリウムを生成させために行なわれる。この電解に用いる陽極としては、耐食性金属であるチタンを白金族金属の酸化物で被覆した電極が、高性能電極として用いられている。 The electrolysis of seawater is usually performed to generate hydrogen and sodium hydroxide at the cathode, generate chlorine at the anode, and generate sodium hypochlorite from the generated sodium hydroxide and chlorine. As an anode used for this electrolysis, an electrode obtained by coating titanium, which is a corrosion-resistant metal, with an oxide of a platinum group metal is used as a high-performance electrode.

これに対し、通常の水電解と同様に、海水から水素と酸素とを分離して得ることを目的とする海水電解においては、陰極で水素を発生し、陽極では塩素を発生せずに酸素のみを発生させる必要があるから、その目的に合致した、特殊な陽極が求められる。 On the other hand, as with normal water electrolysis, in seawater electrolysis, which aims to obtain hydrogen and oxygen from seawater, hydrogen is generated at the cathode and chlorine is not generated at the anode. Therefore, a special anode that meets the purpose is required.

本発明者らはさきに、特定の金属の塩を溶剤に溶解した溶液を、導電性の電極基体塗布し、乾燥後、大気中で加熱して塩を分解して酸化物に変えるという操作を繰り返した後、熱処理することによって、基体に密着した酸化物を活物質として有する電極を製作し、これが食塩水を電気分解する陽極として使用したとき、酸素発生に対しては高活性を示すが、塩素発生には不活性であることを見出し、すでに開示した(特許文献1)。特許文献1に開示の酸素発生用電極は、電極活物質である酸化物に、下記のふたつの態様がある。
(1)陽イオンとして、MoおよびWの1種または2種を0.2〜20モル%含み、残部Mnからなる酸化物
(2)陽イオンとして、MoおよびWの1種または2種を0.2〜20モル%とZnを1〜30%含み、残部Mnからなる酸化物を形成した後、高温で濃厚なアルカリ溶液に浸漬してZnを溶出させることによって、有効表面積を増大した酸化物
The inventors of the present invention previously applied a solution in which a salt of a specific metal is dissolved in a solvent, applied a conductive electrode substrate, dried, and then heated in the atmosphere to decompose the salt and convert it into an oxide. After repeating, heat treatment is performed to produce an electrode having an oxide adhered to the substrate as an active material, and when this is used as an anode for electrolyzing saline, it exhibits high activity against oxygen generation. It has been found that it is inert to chlorine generation (Patent Document 1). The oxygen generating electrode disclosed in Patent Document 1 has the following two modes in the oxide which is an electrode active material.
(1) An oxide comprising 0.2 to 20 mol% of Mo and W as a cation, and 0.2% by mole of Mn. (2) As a cation, 1 or 2 of Mo and W is 0. An oxide having an effective surface area increased by forming an oxide comprising 2 to 20 mol% and 1 to 30% of Zn and the balance being Mn, and then leaching Zn in a concentrated alkaline solution at a high temperature to elute Zn

上記した酸素発生用電極の発明は、金属塩の塗布に続く焼成においては、Mnは3価まで酸化されてMnとなることと、MnがMoまたはWを含むとさらに酸素発生効率が向上する、という知見にもとづいている。焼成法による電極の製作においては、焼成温度が低いと十分に結晶が成長せず、そのために電極の安定性が劣り、一方、高温で焼成した場合は、高次の酸化物が分解するため、Mnを3価以上に酸化することはできない。 In the invention of the electrode for oxygen generation described above, in the baking subsequent to the application of the metal salt, Mn is oxidized to trivalent to Mn 2 O 3 , and if Mn 2 O 3 contains Mo or W, oxygen is further added. It is based on the knowledge that the generation efficiency is improved. In the production of the electrode by the firing method, the crystal does not grow sufficiently when the firing temperature is low, and therefore the stability of the electrode is inferior. On the other hand, when firing at a high temperature, higher-order oxides decompose, Mn cannot be oxidized more than trivalent.

しかし、より高次のMn酸化物がより高い活性を示すことが期待できたため、焼成法に代えて、金属塩の溶液から電極基体上に酸化物を陽極析出させる方法を、発明者らは試みた。その結果、電極活物質が4価のMnを含み、適用することによって、海水などの塩化ナトリウムを含有する水溶液を電解したときに、塩素を発生せず酸素を発生することができる電極が製造できることを知り、この電極がさらに高活性を示すことを確認したので、これも開示した(特許文献2)。特許文献2に開示したものは、「MoおよびWの1種または2種を0.2〜20モル%含み、残部Mnからなる酸化物を、陽極析出法により導電性電極基体に被覆してなる、海水電解のための酸素発生用電極」であって、陽極析出法の採用に特色がある。 However, since higher order Mn oxides could be expected to show higher activity, the inventors tried a method of anodic deposition of oxides on the electrode substrate from a metal salt solution instead of the firing method. It was. As a result, when the electrode active material contains tetravalent Mn and is applied, an electrode capable of generating oxygen without generating chlorine when an aqueous solution containing sodium chloride such as seawater is electrolyzed can be manufactured. This was also disclosed (Patent Document 2) because it was confirmed that this electrode showed higher activity. What is disclosed in Patent Document 2 is that "a conductive electrode substrate is coated by an anodic deposition method with an oxide composed of 0.2 to 20 mol% of Mo and W and the balance Mn. Electrode for generating oxygen for seawater electrolysis ”, which is characterized by the use of an anodic deposition method.

関連する研究の成果として、この電極を陽極としイオン交換膜を電解質とした電解装置、この電極とダイオードを組み合わせた電極アセンブリー、および陽極の製造方法を開発して、これらも開示した(特許文献3、特許文献4および特許文献5)。さらに電極の改良を試み、Mn−Mo、Mn−WまたはMn−Mo−WにFeを加えた複酸化物を使用した電極が、沸騰直下までの高温を含む広い温度範囲にわたって、塩素イオンを含む溶液中で酸素発生用電極として有用であることを見出した(特許文献6)。また、複酸化物を陽極析出法により電着させるTi基板の調製法を始め、改良した電極製造法を提案した(特許文献7)。 As a result of related research, an electrolysis apparatus using this electrode as an anode and an ion exchange membrane as an electrolyte, an electrode assembly combining this electrode and a diode, and a method for manufacturing an anode have been developed (Patent Document 3). Patent Document 4 and Patent Document 5). Further improvement of the electrode was attempted, and the electrode using the double oxide obtained by adding Fe to Mn-Mo, Mn-W or Mn-Mo-W contains chlorine ions over a wide temperature range including high temperature up to just below the boiling point. It was found useful as an electrode for oxygen generation in a solution (Patent Document 6). In addition, an improved electrode manufacturing method has been proposed, including a method for preparing a Ti substrate in which a double oxide is electrodeposited by anodic deposition (Patent Document 7).

酸素発生用電極の改良をさらに進めた発明者らは、Mn−Mo、Mn−WまたはMn−Mo−WにSnを加えた複酸化物が、塩化物溶液中で酸素を発生させた結果として強酸性になった溶液中でも、すぐれた酸素発生効率と耐久性を備えていることを見出し、続いて特許出願した(特許文献8)。特許文献8の酸素発生用電極は、「導電性の電極基体上に、陽イオンの原子%で、Snが0.1〜3モル%、Moおよび(または)Wが、Snとの合計量で0.2〜20モル%を占め、残部がMnからなる複酸化物を、陽極析出法により生成させてなる電極」である。
特開平9−256181 特開平10−287991 特開平11−256383 特開平11−256384 特開平11−256385 特開2003−129267 特開2007−138254 特開2007−302925
The inventors who have further improved the electrode for oxygen generation, as a result of the double oxide of Sn added to Mn-Mo, Mn-W or Mn-Mo-W generated oxygen in the chloride solution. It was found that even a strongly acidic solution has excellent oxygen generation efficiency and durability, and subsequently applied for a patent (Patent Document 8). The electrode for oxygen generation in Patent Document 8 is “on an electroconductive electrode substrate, in atomic percent of cations, 0.1 to 3 mol% of Sn, and Mo and / or W in a total amount with Sn. An electrode that occupies 0.2 to 20 mol% and the balance of Mn is produced by anodic deposition.
JP-A-9-256181 JP-A-10-287991 JP-A-11-256383 JP-A-11-256384 JP-A-11-256385 JP 2003-129267 A JP2007-138254 JP2007-302925

一般に、電解反応による生成物の生成速度は電流密度に比例するため、所望の反応速度を達成するためには所定の電流密度を実現しなければならないが、高い密度で電流を流そうとすれば、過電圧が上昇して、陽極−陰極間の電圧を高めるおそれがある。いうまでもなく、陽極−陰極間の電圧が低いほど、エネルギー消費が少なく、高性能な電解システムということになる。酸素発生用陽極を用いる塩化物水溶液の電解も同様であって、所定の電流密度における陽極過電圧が低いことが望ましい。特許文献8に開示した複酸化物を活物質とする電極において、電極過電圧を低下させるには複酸化物の電導度を向上させる必要があることにかんがみ、発明者らは、複酸化物電極活物質の改善に努めた結果、Sbの添加が電導度の向上に有効であることを見出した。 In general, the rate of product formation by electrolytic reaction is proportional to the current density, so that a predetermined current density must be achieved in order to achieve the desired reaction rate. There is a possibility that the overvoltage rises and the voltage between the anode and the cathode is increased. Needless to say, the lower the voltage between the anode and cathode, the lower the energy consumption and the higher the performance of the electrolysis system. The same applies to the electrolysis of an aqueous chloride solution using an oxygen generating anode, and it is desirable that the anode overvoltage at a predetermined current density is low. In view of reducing the electrode overvoltage in the electrode using the double oxide disclosed in Patent Document 8 as an active material, it is necessary to improve the conductivity of the double oxide. As a result of efforts to improve the substance, it was found that the addition of Sb is effective in improving the conductivity.

本発明の目的は、上述の発明者らが得た最新の知見を活用し、海水の電解のような、塩素を含有する水溶液の電解に使用して、塩素を発生させることなく酸素を発生させ、かつ、陽極−陰極間の電圧を低く保ったまま所定の電流密度で電解を行なうことができ、結果としてエネルギー消費が少なく、高性能な電解システムを構成することができる酸素発生用電極を提供することにある。 The purpose of the present invention is to utilize the latest knowledge obtained by the above-mentioned inventors and to generate oxygen without generating chlorine by using it for electrolysis of an aqueous solution containing chlorine, such as electrolysis of seawater. In addition, an electrode for oxygen generation that can perform electrolysis at a predetermined current density while keeping the voltage between the anode and the cathode low, resulting in low energy consumption and high performance electrolysis system can be provided. There is to do.

本発明の酸素発生電極は、導電性金属基体の表面を、電極内層(A)となる金属複酸化物の層で被覆し、その上を電極外層(B)となる金属複酸化物の層で被覆してなる酸素発生電極であって、
(A)電極内層となる金属複酸化物を構成する金属が、Sn、Sb、MoおよびWの1種または2種、ならびにMnであり、その組成が、全陽イオンに対する原子%で、[Sn+Sb+MoおよびWの1種または2種]:0.2〜20%、そのうち、Sn:0.1〜3%、Sb:0.01〜1.3%であって、Mn:残部であり、
(B)電極外層となる金属複酸化物を構成する金属が、Sn、Moおよび(または)W、ならびにMnであり、その組成が、全陽イオンに対する原子%で、[Sn+MoおよびWの1種または2種]:0.2〜20%、そのうち、Sn:0.1〜3%であって、Mn:残部であり、
内層および外層となる金属複酸化物の層が、ともに陽極析出法により形成したものであることを特徴とする、塩素イオンを含む水溶液を電解して酸素を発生させるための酸素発生電極である。
In the oxygen generating electrode of the present invention, the surface of the conductive metal substrate is coated with a metal double oxide layer that becomes the inner electrode layer (A), and a metal double oxide layer that becomes the outer electrode layer (B) is formed thereon. A coated oxygen generating electrode,
(A) The metal constituting the metal double oxide serving as the inner layer of the electrode is one or two of Sn, Sb, Mo and W, and Mn, and the composition is atomic% relative to the total cation, [Sn + Sb + Mo And one or two of W]: 0.2 to 20%, of which Sn: 0.1 to 3%, Sb: 0.01 to 1.3%, and Mn: the balance,
(B) The metal constituting the metal double oxide serving as the outer layer of the electrode is Sn, Mo and / or W and Mn, and the composition is atomic% relative to the total cation, [1 type of Sn + Mo and W Or 2 types]: 0.2 to 20%, of which Sn: 0.1 to 3%, Mn: the balance,
An oxygen generating electrode for generating oxygen by electrolyzing an aqueous solution containing chlorine ions, wherein both the inner and outer metal double oxide layers are formed by anodic deposition.

本発明の酸素発生電極の電極活物質を構成する元素とその含有率を、表1に示す。
表1

Figure 0005309813
Table 1 shows the elements constituting the electrode active material of the oxygen generating electrode of the present invention and the contents thereof.
Table 1
Figure 0005309813

本発明に従う、導電性電極基体の上に、(Mo,W)−Sn−Sb−O系の電極内層と、(Mo,W)−Sn−O系の電極外層とを、ともに陽極析出法により設けることによって製作した酸素発生用電極は、酸性の塩素イオンを含む水溶液の電解において酸素発生の過電圧が低く、高い酸素発生効率を達成することができる。すなわち、本発明の電極は、酸素発生用電極として、省エネルギーな高性能電極である。 According to the present invention, an (Mo, W) -Sn-Sb-O-based electrode inner layer and a (Mo, W) -Sn-O-based electrode outer layer are both formed on the conductive electrode substrate by anodic deposition. The electrode for oxygen generation produced by providing it has low oxygen overvoltage in electrolysis of an aqueous solution containing acidic chlorine ions, and can achieve high oxygen generation efficiency. That is, the electrode of the present invention is an energy-saving high-performance electrode as an oxygen generation electrode.

本発明の電極を製造する方法の代表的な態様を、以下に説明する。海水のような塩素イオン含有水溶液中の電解において、塩素を発生させることなく、酸素を発生させる電極の導電体の材料としては、耐食性の高いTiまたはその合金が好適である。ただし、Tiに直接電極活物質を被覆した電極は、電極使用の過程で電極活物質とチタンの間にTiOからなる絶縁性の被膜が生じ、電極が短時間で使用不能となる。これを避けるため、TiOと同じ結晶構造の、例えば、IrOでTiを被覆し、これを導電体である電極基体として用いる。 A typical embodiment of the method for producing the electrode of the present invention will be described below. In electrolysis in a chlorine ion-containing aqueous solution such as seawater, Ti or an alloy thereof having high corrosion resistance is suitable as a material for an electrode conductor that generates oxygen without generating chlorine. However, in an electrode in which Ti is directly coated with an electrode active material, an insulating film made of TiO 2 is formed between the electrode active material and titanium in the process of using the electrode, and the electrode becomes unusable in a short time. In order to avoid this, Ti is coated with, for example, IrO 2 having the same crystal structure as that of TiO 2, and this is used as an electrode substrate which is a conductor.

電極内層(A)を構成する複酸化物の沈着は、所定量のMnSO、SnClおよびSbClとともに、NaWOおよびNaMoOの1種または2種を含む溶液に、硫酸を加えて所定のpHに調整し、これを温めて電解液とし、上記した電極基体を陽極として電解を行なう。それによって、(Mo,W)−Mn−Sn−Sb−O酸化物を得る。続いて、電極外層(B)を構成する複酸化物の陽極析出は、所定量のMnSOおよびSnClとともに、NaWOおよびNaMoOの1種または2種を含む溶液に、硫酸を加えて所定のpHに調整し、これを温めて電解液とし、上述のようにして得た電極内層を有する中間製品を陽極として電解を行なう。それによって、(Mn,Mo)−Sn−O酸化物を得れば、本発明の電極が完成する。 The deposition of the double oxide constituting the electrode inner layer (A) is performed by adding sulfuric acid to a solution containing one or two of Na 2 WO 4 and Na 2 MoO 4 together with a predetermined amount of MnSO 4 , SnCl 4 and SbCl 5. In addition, the pH is adjusted to a predetermined value, and this is heated to obtain an electrolytic solution, and electrolysis is performed using the above electrode substrate as an anode. Thereby, (Mo, W) -Mn-Sn-Sb-O oxide is obtained. Subsequently, anodic deposition of the double oxide constituting the outer electrode layer (B) is performed by adding sulfuric acid to a solution containing one or two of Na 2 WO 4 and Na 2 MoO 4 together with a predetermined amount of MnSO 4 and SnCl 4. Is added to adjust to a predetermined pH, and this is heated to obtain an electrolytic solution, and the intermediate product having the electrode inner layer obtained as described above is used as an anode for electrolysis. Accordingly, when the (Mn, Mo) -Sn-O oxide is obtained, the electrode of the present invention is completed.

つぎに、本発明の酸素発生用電極を構成するに各成分の作用と、組成の限定理由を説明する。
Mnは、本発明の電極の基本的な成分であって、海水のような塩素イオンを含有する水溶液の電解に当たって、酸素を発生させるために必要なMnOを形成する。
Next, the action of each component and the reason for limitation of the composition will be described for constituting the oxygen generating electrode of the present invention.
Mn is a basic component of the electrode of the present invention, and forms MnO 2 necessary for generating oxygen upon electrolysis of an aqueous solution containing chlorine ions such as seawater.

MoおよびWは、それ自体で十分に高い酸素発生活性を示す酸化物を生成するものではないが、MnOと共存することによって、塩素の発生を抑制し、酸素発生の効率を向上させるとともに、MnOが過マンガン酸まで酸化されて溶解することを防止する作用を有する。しかし、過剰にMoおよびWを添加すると、酸素発生効率はかえって低下してしまう。したがって、電極内層(A)を構成する複酸化物においては、MoおよびWの1種または2種の添加は、SnおよびSbとの合計で、陽イオン中の0.2〜20モル%に限定する必要がある。同様に、電極外層(B)を構成する複酸化物においては、MoおよびWの1種または2種の添加は、Snとの合計で、陽イオン中の0.2〜20モル%の範囲内にすべきである。 Mo and W do not themselves generate an oxide exhibiting sufficiently high oxygen generation activity, but coexist with MnO 2 to suppress generation of chlorine and improve the efficiency of oxygen generation, MnO 2 has a function of preventing the dissolving is oxidized to permanganate. However, if Mo and W are added excessively, the oxygen generation efficiency is rather lowered. Therefore, in the double oxide constituting the electrode inner layer (A), the addition of one or two of Mo and W is limited to 0.2 to 20 mol% in the cation in total with Sn and Sb. There is a need to. Similarly, in the double oxide constituting the outer electrode layer (B), the addition of one or two of Mo and W is within the range of 0.2 to 20 mol% in the cation in total with Sn. Should be.

Snは、Mn、MoおよびWと複酸化物を構成することによって、酸素発生の活性および耐久性を向上させる元素であるが、過剰に添加すると、酸素発生効率はかえって低下してしまう。したがってSnの添加は、陽イオン中の0.1〜3モル%に限定する必要がある。 Sn is an element that improves the activity and durability of oxygen generation by forming a double oxide with Mn, Mo, and W. However, if excessively added, the oxygen generation efficiency is lowered. Therefore, it is necessary to limit the addition of Sn to 0.1 to 3 mol% in the cation.

Sbは、酸化状態で酸化物中に含まれることによって酸化物の導電性を高めるのに有効な元素である。ただし、酸素発生自体には有効でない。過剰に添加しても効果は飽和するから、Sbの添加は、陽イオン中の0.01〜1.3モル%に限定する必要がある。Sbは、塩化物を含む溶液に直接接すると溶解するおそれがあるから、それを避けるため、電極内層(A)だけに存在させ、電極外層(B)には添加しない。この目的のため、陽極析出を二段階とし、外層にはSbを含まない酸化物を形成させるわけである。 Sb is an element effective for enhancing the conductivity of the oxide by being contained in the oxide in the oxidized state. However, it is not effective for oxygen generation itself. Since the effect is saturated even if it is added excessively, the addition of Sb must be limited to 0.01 to 1.3 mol% in the cation. Since Sb may be dissolved when in direct contact with a solution containing chloride, in order to avoid this, it is present only in the inner electrode layer (A) and is not added to the outer electrode layer (B). For this purpose, anodic deposition is performed in two stages, and an oxide containing no Sb is formed in the outer layer.

0.2M MnSO−0.003M NaMoO−0.006M SnCl−0.006M SbClからなる溶液に、硫酸を加えてpH=0.1に調整し、90℃に温めたものを電解液として使用し、IrOで被覆したTi電極下地を陽極として、600A/mの電流密度で、20分間のアノード電着を、溶液を更新して2回行なうことにより、電極内層(A)を形成した。EPMA分析の結果、得られた電極内層の陽イオン組成は、94.80モル%Mn−4.73モル%Mo−0.14モル%Sn−0.33モル%Sbであった。X線回折によれば、電極内層の物質は、Mo、SnおよびSbを固溶したMnO型単相酸化物、すなわち、Mn−Mo−Sn−Sb−Oからなる単相複酸化物であることが確認された。 A solution composed of 0.2M MnSO 4 −0.003M Na 2 MoO 4 −0.006M SnCl 4 −0.006M SbCl 5 was adjusted to pH = 0.1 by adding sulfuric acid, and warmed to 90 ° C. An electrode inner layer (A) was prepared by performing electrodeposition for 20 minutes twice at a current density of 600 A / m 2 using a Ti electrode substrate coated with IrO 2 as an anode and renewing the solution twice. ) Was formed. As a result of EPMA analysis, the cation composition of the obtained inner layer of the electrode was 94.80 mol% Mn-4.73 mol% Mo-0.14 mol% Sn-0.33 mol% Sb. According to X-ray diffraction, the material of the inner layer of the electrode is a MnO 2 type single-phase oxide in which Mo, Sn, and Sb are dissolved, that is, a single-phase double oxide composed of Mn—Mo—Sn—Sb—O. It was confirmed.

つづいて、上記の電解液においてSb成分を含まないもの、つまり、0.2M MnSO−0.003M NaMoO−0.006M SnClからなる溶液に、硫酸を加えてpH=0.1に調整し、90℃に温めたものを電解液として使用し、上記の電極基体上に電極内層(A)を形成したものを陽極として、600A/mの電流密度で、20分間のアノード電着を行なうことにより、電極外層(B)を形成した。EPMA分析の結果、得られた電極外層の陽イオン組成は、92.24モル%Mn−7.12モル%Mo−0.64モル%Snであった。X線回折によれば、電極外層の物質は、MoおよびSnを固溶したMnO型単相酸化物、すなわち、Mn−Mo−Sn−Oからなる単相複酸化物であり、電極内層と同じ構造の電極外層が連続して生成していることが確認された。 Subsequently, sulfuric acid is added to a solution containing no Sb component in the above electrolyte solution, that is, 0.2M MnSO 4 -0.003M Na 2 MoO 4 -0.006M SnCl 4 to obtain pH = 0.1. The electrode was heated to 90 ° C. and used as the electrolyte, and the electrode inner layer (A) formed on the electrode substrate was used as the anode, and the anode current was 20 minutes at a current density of 600 A / m 2. By performing deposition, an electrode outer layer (B) was formed. As a result of EPMA analysis, the cation composition of the obtained electrode outer layer was 92.24 mol% Mn-7.12 mol% Mo-0.64 mol% Sn. According to X-ray diffraction, the material of the outer electrode layer is a MnO 2 type single-phase oxide in which Mo and Sn are dissolved, that is, a single-phase double oxide composed of Mn—Mo—Sn—O. It was confirmed that the outer electrode layer having the same structure was continuously formed.

上記のようにして製造した本発明の陽極を使用し、pH=1の0.5M NaCl溶液中、種々の電流密度で定電流電解を行ない、酸素発生の分極曲線を測定した。分極曲線は、電流密度の対数が電位の上昇とともに直線的に増大し、1000A/mの電流密度における電位は、銀・塩化銀電極に参照して1.37Vであった。 Using the anode of the present invention produced as described above, constant current electrolysis was carried out at various current densities in a 0.5 M NaCl solution at pH = 1, and the polarization curve of oxygen evolution was measured. In the polarization curve, the logarithm of the current density increased linearly with increasing potential, and the potential at a current density of 1000 A / m 2 was 1.37 V with reference to the silver / silver chloride electrode.

比較例Comparative example

比較のため、Sbを含まず、0.2M MnSO−0.003M NaMoO−0.006M SnClからなる硫酸酸性溶液を電解液として使用し、Ti極下地をIrOで被覆したものを陽極として、90℃において、600A/mの電流密度で、溶液を更新しながら20分間のアノード電着を3回繰り返し、電極活物質全体がMn−Mo−Sn−Oの単相複酸化物からなる電極を製造した。この電極を陽極として使用し、上記のNaCl溶液を電解して、酸素発生の分極曲線を測定した。得られた分極曲線も、電流密度の対数が電位の上昇とともに直線的に増大し、1000A/mの電流密度における電位は、銀・塩化銀電極に参照して、1.42Vであった。したがって、本発明に従う、電極活物質内層にSbを含む電極は、比較例の電極に比べて1000A/mの電流密度における電位が50mV低く、省エネルギーな電極であるということができる。 For comparison, a sulfuric acid acidic solution composed of 0.2M MnSO 4 -0.003M Na 2 MoO 4 -0.006M SnCl 4 was used as an electrolyte solution and the Ti electrode substrate was coated with IrO 2 for comparison. The anode active electrodeposition was repeated three times for 20 minutes while renewing the solution at a current density of 600 A / m 2 at 90 ° C., and the entire electrode active material was a single phase double oxidation of Mn—Mo—Sn—O. The electrode which consists of a thing was manufactured. Using this electrode as an anode, the above NaCl solution was electrolyzed, and a polarization curve of oxygen generation was measured. Also in the obtained polarization curve, the logarithm of the current density increased linearly as the potential increased, and the potential at a current density of 1000 A / m 2 was 1.42 V with reference to the silver / silver chloride electrode. Therefore, it can be said that the electrode containing Sb in the electrode active material inner layer according to the present invention is an energy-saving electrode having a potential at a current density of 1000 A / m 2 lower by 50 mV than the electrode of the comparative example.

参考のため、pH=1の0.5M NaCl溶液を1000A/mの電流密度で1000クーロン電解した後、溶存した次亜塩素酸量をヨウ素滴定法で定量して、塩素の発生の有無を確認することを試みた。実施例、比較例ともに塩素の発生は全く検出されず、いずれも100%の酸素発生効率を示した。したがって、本発明の電極も比較例の電極も、低pH溶液の電解における酸素発生に対してはともに高活性な電極であること、その一方で、本発明の酸素発生用電極が省エネルギー電極であることが結論された。 For reference, a 0.5M NaCl solution at pH = 1 was electrolyzed at 1000 A / m 2 at a current density of 1000 coulomb, and the amount of dissolved hypochlorous acid was quantified by an iodometric titration method to determine whether chlorine was generated. Tried to confirm. In all of the examples and comparative examples, no chlorine was detected, and both showed oxygen generation efficiency of 100%. Therefore, the electrode of the present invention and the electrode of the comparative example are both highly active electrodes for oxygen generation in electrolysis of a low pH solution, while the oxygen generation electrode of the present invention is an energy saving electrode. It was concluded.

種々の割合のSbClとともに、0.2M MnSO−0.003M MnSO−0.006M NaMoO−0.006M SnClを含む90℃の硫酸酸性溶液を電解液として使用して、TiをIrOで被覆して得たた電極基体を陽極として、600A/mの電流密度で、溶液を更新しながら、20分間のアノード電着を2回繰り返した。種々の組成のMn−Mo−Sn−Sb−Oタイプの電極内層(A)を得た。得られた電極内層の陽イオン組成を、EPMAによって分析した。その結果を、表2に示す。 With SbCl 5 in various proportions, using 90 ° C. of sulfuric acid solution containing 0.2M MnSO 4 -0.003M MnSO 4 -0.006M Na 2 MoO 4 -0.006M SnCl 4 as the electrolyte, Ti The electrode substrate obtained by coating with IrO 2 was used as an anode, and anode electrodeposition for 20 minutes was repeated twice while renewing the solution at a current density of 600 A / m 2 . Mn—Mo—Sn—Sb—O type electrode inner layers (A) having various compositions were obtained. The cation composition of the obtained electrode inner layer was analyzed by EPMA. The results are shown in Table 2.

Sbを含まず、0.2M MnSO−0.003M NaMoO−0.006M SnClからなる溶液に硫酸を加えてpH=−0.1に調整し、90℃に温めたものを電解液として使用し、上で電極内層(A)を形成した電極を陽極として、600A/mの電流密度で、20分間のアノード電着を行ない、電極外層を形成した。EPMA分析の結果、得られた電極外層の陽イオン組成は92.23モル%Mn−7.14モル%Mo−0.63モル%Snであった。 Sb-free solution containing 0.2 M MnSO 4 -0.003 M Na 2 MoO 4 -0.006 M SnCl 4 was adjusted to pH = −0.1 by adding sulfuric acid and electrolyzed at 90 ° C. An electrode outer layer was formed by performing anode electrodeposition for 20 minutes at a current density of 600 A / m 2 using the electrode on which the electrode inner layer (A) was formed as an anode as an anode. As a result of EPMA analysis, the cation composition of the obtained electrode outer layer was 92.23 mol% Mn-7.14 mol% Mo-0.63 mol% Sn.

pH=1の0.5M NaCl溶液中、種々の電流密度で定電流電解を行ない、銀・塩化銀電極に参照して電位を測定し、酸素発生の分極曲線を得た。分極曲線は、電流密度の対数が電位とともに直線的に増大した。1000A/mの電流密度における電位を、表2にあわせて示す。pH=1の0.5M NaCl溶液を1000A/mの電流密度で1000クーロン電解した後、溶存した次亜塩素酸量をヨウ素滴定法で定量することにより、塩素の発生の有無を確認した結果、どの電極を用いた場合にも塩素の発生は検出されず、いずれも100%の酸素発生効率を示した。このことから、本発明の電極は酸性の塩素イオンを含む水溶液の電解において、酸素のみを発生する電極として、分極電位が低い省エネルギー電極であることがわかる。 Constant current electrolysis was carried out at various current densities in a 0.5 M NaCl solution at pH = 1, and the potential was measured with reference to a silver / silver chloride electrode to obtain a polarization curve for oxygen generation. In the polarization curve, the logarithm of the current density increased linearly with the potential. The potential at a current density of 1000 A / m 2 is shown in Table 2. Result of confirming the presence or absence of generation of chlorine by quantifying the amount of dissolved hypochlorous acid by iodine titration method after electrolysis of 0.5M NaCl solution of pH = 1 at a current density of 1000 A / m 2 at 1000 coulomb. No chlorine was detected when any electrode was used, and all showed oxygen generation efficiency of 100%. This shows that the electrode of the present invention is an energy-saving electrode having a low polarization potential as an electrode that generates only oxygen in electrolysis of an aqueous solution containing acidic chlorine ions.

表2 銀−塩化銀電極参照

Figure 0005309813
Table 2 * See silver-silver chloride electrode
Figure 0005309813

種々の割合のMnSO,NaWO,SnCl,SbClを含むpH=−0.1の硫酸酸性溶液を電解液として使用し、Ti電極下地をIrOで被覆したものを陽極として、90℃において、600A/mの電流密度で、20分間のアノード電着を、溶液を更新して2回行なうことにより、種々の組成のMn−W−Sn−Sb−Oタイプの電極内層(A)を得た。得られた電極内層の陽イオン組成を、EPMA分析によって求めた。その結果を、表3に示す。ついで、電極内層(A)の形成に用いた溶液からSbClを除板組成のものを電解液とし、pH=−0.1に調整し、90℃に昇温して、電極内層上への陽極析出を行なって、種々の組成のMn−W−Sn−O電極外層(B)を形成した。 A sulfuric acid solution having pH = −0.1 containing various ratios of MnSO 4 , Na 2 WO 4 , SnCl 4 , SbCl 5 was used as an electrolyte, and a Ti electrode substrate coated with IrO 2 was used as an anode. At 90 ° C., anodic electrodeposition for 20 minutes at a current density of 600 A / m 2 was performed twice by renewing the solution, whereby inner layers of Mn—W—Sn—Sb—O type electrodes having various compositions ( A) was obtained. The cation composition of the obtained electrode inner layer was determined by EPMA analysis. The results are shown in Table 3. Next, SbCl 5 was removed from the solution used for the formation of the electrode inner layer (A) as an electrolytic solution, adjusted to pH = −0.1, heated to 90 ° C., and applied onto the electrode inner layer. Anodic deposition was performed to form Mn—W—Sn—O electrode outer layers (B) having various compositions.

得られた本発明の電極を用い、pH=1の0.5M NaCl溶液中、種々の電流密度で定電流電解を行ない、銀・塩化銀電極に参照して電位を測定し、酸素発生の分極曲線を得た。分極曲線は、電流密度の対数が電位とともに直線的に増大するものであった。pH1の0.5M NaCl溶液1リットル中、1000A/mの電流密度で1000クーロンの電解を実施した後、溶存した次亜塩素酸量をヨウ素滴定法で定量し、塩素発生効率を求め、酸素発生効率を求めた。結果を表3にあわせて示す。この結果も、本発明の電極が、酸性の塩素イオンを含む水溶液の電解において酸素発生の過電圧が低く、高い酸素発生効率を示す高性能電極であることを示している。 Using the obtained electrode of the present invention, constant current electrolysis was carried out at various current densities in a 0.5 M NaCl solution at pH = 1, the potential was measured with reference to the silver / silver chloride electrode, and the polarization of oxygen generation A curve was obtained. The polarization curve was such that the logarithm of current density increased linearly with potential. After electrolysis of 1000 coulombs at a current density of 1000 A / m 2 in 1 liter of 0.5 M NaCl solution at pH 1, the amount of dissolved hypochlorous acid was quantified by an iodometric titration method to determine chlorine generation efficiency, The generation efficiency was determined. The results are shown in Table 3. This result also shows that the electrode of the present invention is a high-performance electrode that exhibits low oxygen overvoltage and high oxygen generation efficiency in electrolysis of an aqueous solution containing acidic chlorine ions.

表3

Figure 0005309813
Table 3
Figure 0005309813

Claims (2)

TiまたはTi合金からなる導電性の電極基体の表面を、電極内層(A)となる金属複酸化物の層で被覆し、さらにその上を、電極外層(B)となる金属複酸化物の層で被覆した構造の酸素発生用電極であって、
(A)電極内層となる金属複酸化物を構成する金属が、Sn、Sb、MoおよびWの1種または2種、ならびにMnであり、その組成が、全陽イオンに対する原子%で、[Sn+Sb+MoおよびWの1種または2種]:0.2〜20%、そのうち、Sn:0.1〜3%、Sb:0.01〜1.3%であって、Mn:残部であり、
(B)電極外層となる金属複酸化物を構成する金属が、Sn、Moおよび(または)W、ならびにMnであり、その組成が、全陽イオンに対する原子%で、[Sn+MoおよびWの1種または2種]:0.2〜20%、そのうち、Sn:0.1〜3%であって、Mn:残部であり、
電極内層および電極外層となる金属複酸化物の層が、ともに陽極析出法により形成したものであることを特徴とする、塩素イオンを含む水溶液を電解して酸素を発生させるための酸素発生用電極。
The surface of a conductive electrode substrate made of Ti or a Ti alloy is coated with a metal double oxide layer serving as an electrode inner layer (A), and further thereon, a metal double oxide layer serving as an electrode outer layer (B) An electrode for oxygen generation having a structure coated with
(A) The metal constituting the metal double oxide serving as the inner layer of the electrode is one or two of Sn, Sb, Mo and W, and Mn, and the composition is atomic% relative to the total cation, [Sn + Sb + Mo And one or two of W]: 0.2 to 20%, of which Sn: 0.1 to 3%, Sb: 0.01 to 1.3%, and Mn: the balance,
(B) The metal constituting the metal double oxide serving as the outer layer of the electrode is Sn, Mo and / or W and Mn, and the composition is atomic% relative to the total cation, [1 type of Sn + Mo and W Or 2 types]: 0.2 to 20%, of which Sn: 0.1 to 3%, Mn: the balance,
An electrode for oxygen generation for electrolyzing an aqueous solution containing chlorine ions to generate oxygen, characterized in that both metal inner and outer electrode layers are formed by anodic deposition. .
導電性の電極基体が、TiまたはTi合金製の電極下地に、IrO被覆を施したものである請求項1の酸素発生用電極。 2. The oxygen generating electrode according to claim 1, wherein the conductive electrode substrate is obtained by applying an IrO 2 coating to an electrode base made of Ti or a Ti alloy.
JP2008229122A 2008-09-05 2008-09-05 Oxygen generating electrode Expired - Fee Related JP5309813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008229122A JP5309813B2 (en) 2008-09-05 2008-09-05 Oxygen generating electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229122A JP5309813B2 (en) 2008-09-05 2008-09-05 Oxygen generating electrode

Publications (2)

Publication Number Publication Date
JP2010059523A JP2010059523A (en) 2010-03-18
JP5309813B2 true JP5309813B2 (en) 2013-10-09

Family

ID=42186634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229122A Expired - Fee Related JP5309813B2 (en) 2008-09-05 2008-09-05 Oxygen generating electrode

Country Status (1)

Country Link
JP (1) JP5309813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106367779A (en) * 2016-11-07 2017-02-01 南昌专腾科技有限公司 Titanium-based porous electrode material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1094891A (en) * 1976-03-15 1981-02-03 Diamond Shamrock Corporation Electrode coating method
JP3724096B2 (en) * 1997-02-17 2005-12-07 功二 橋本 Oxygen generating electrode and manufacturing method thereof
JP3810043B2 (en) * 1998-09-30 2006-08-16 ペルメレック電極株式会社 Chrome plating electrode
JP4992229B2 (en) * 2005-11-18 2012-08-08 功二 橋本 Method for producing oxygen generating electrode
JP4793086B2 (en) * 2006-05-09 2011-10-12 アタカ大機株式会社 Oxygen generating electrode
JP4972991B2 (en) * 2006-05-09 2012-07-11 アタカ大機株式会社 Oxygen generating electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106367779A (en) * 2016-11-07 2017-02-01 南昌专腾科技有限公司 Titanium-based porous electrode material and preparation method thereof

Also Published As

Publication number Publication date
JP2010059523A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
US4584084A (en) Durable electrode for electrolysis and process for production thereof
JP4972991B2 (en) Oxygen generating electrode
JP7250028B2 (en) Electrodes for electrochlorination processes
JPS6136075B2 (en)
JP2931812B1 (en) Electrode for electrolysis and method for producing the same
JP5686457B2 (en) Method for producing oxygen generating anode
JP4793086B2 (en) Oxygen generating electrode
US7914653B2 (en) Anode for electrochemical reaction
JP5309813B2 (en) Oxygen generating electrode
JP3724096B2 (en) Oxygen generating electrode and manufacturing method thereof
JP5359133B2 (en) Oxygen generating electrode
JPH0499294A (en) Oxygen generating anode and its production
EP2055807B1 (en) Oxygen Evolution Electrode
JP4193390B2 (en) Oxygen generating electrode
JP2010209420A (en) Method of manufacturing cathode with low hydrogen overvoltage
JP3236653B2 (en) Electrode for electrolysis
WO2022018962A1 (en) Oxygen-generating electrode
JPH02263989A (en) Electrode for generating chlorine and production thereof
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
JPH0631455B2 (en) Oxygen generating anode and its manufacturing method
JPH0238672B2 (en)
JP4752287B2 (en) Oxygen generating electrode and manufacturing method thereof
JP3677856B2 (en) Oxygen generating electrode
JPH0631454B2 (en) Oxygen generating anode and its manufacturing method
JP2024502947A (en) Electrolytic cells and self-cleaning electrochlorination systems for electrochlorination methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees