JP6139120B2 - プレストレスト鉄筋コンクリート柱部材の圧着接合構造およびプレストレスト鉄筋コンクリート梁部材と柱部材間の圧着接合構造 - Google Patents

プレストレスト鉄筋コンクリート柱部材の圧着接合構造およびプレストレスト鉄筋コンクリート梁部材と柱部材間の圧着接合構造 Download PDF

Info

Publication number
JP6139120B2
JP6139120B2 JP2012269769A JP2012269769A JP6139120B2 JP 6139120 B2 JP6139120 B2 JP 6139120B2 JP 2012269769 A JP2012269769 A JP 2012269769A JP 2012269769 A JP2012269769 A JP 2012269769A JP 6139120 B2 JP6139120 B2 JP 6139120B2
Authority
JP
Japan
Prior art keywords
column
tension
reinforced concrete
members
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012269769A
Other languages
English (en)
Other versions
JP2014114612A5 (ja
JP2014114612A (ja
Inventor
健好 是永
健好 是永
努 小室
努 小室
隆夫 甲斐
隆夫 甲斐
慎一郎 河本
慎一郎 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2012269769A priority Critical patent/JP6139120B2/ja
Publication of JP2014114612A publication Critical patent/JP2014114612A/ja
Publication of JP2014114612A5 publication Critical patent/JP2014114612A5/ja
Application granted granted Critical
Publication of JP6139120B2 publication Critical patent/JP6139120B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Joining Of Building Structures In Genera (AREA)

Description

本発明は、PCa(プレキャスト)部材間を緊張材によって緊張して圧着接合する圧着接合技術に関する。
PC(プレストレストコンクリート)技術として、PC部材(例えば特許文献1〜3)や、圧着接合工法(例えば、特許文献4〜7、非特許文献1)に関する技術が提案されている。
圧着接合工法は、重積載荷重かつ大スパンの物流倉庫等において多用されているコンクリート系の工法の1つである。圧着接合工法では、工場製作したPCa部材(柱や梁)を、現場でPC鋼材(PC鋼棒、PC鋼より線)によって圧着接合するものであり、構造架構はフルPCaのため、在来工法(場所打ち、PCa工法と場所打ちの併用)における型枠材や支保工が不要となり、現場工期を大幅に短縮できる。近年、この施工上の利点を活かして、物流倉庫だけでなく、低層構造物を中心に、工場、各種競技場、駐車場、ショッピングセンター等、広範な用途の大規模建物にも採用されている。
特許第4326518号公報 特開2009−197499号公報 特開2011−184871号公報 特開2002−4417号公報 特開2002−4418号公報 特開2007−16449号公報 特開2010−196430号公報
「プレストレスコンクリート設計施工基準・同解説」、日本建築学会編、1998年
ところで、現状の耐震設計では、一部の低層建物を除き、ラーメン構造骨組では建物全体崩壊形を前提とし、1階柱脚部、最上階柱頭部および2階以上の全ての梁端部に曲げ降伏ヒンジを形成させる設計体系となっており、部材端の曲げ降伏ヒンジには十分な変形性能およびエネルギー吸収能力が要求される。圧着接合工法を、建物全体崩壊形を想定した中層以上の高層建物に適用する際、上記の構造規範にも関連して、次のような問題点がある。
従来の圧着接合構造ではヒンジを想定する部位に存在する圧着目地を、PC鋼棒やPC鋼より線のみが貫通している。圧着接合に用いるPC鋼棒やPC鋼より線は、PCa部材に予め設置したシース管内に挿入され、シース管内のグラウト材を介して部材コンクリートに応力伝達されるが、PC鋼材は必ずしも付着性能が高くないため、地震時の繰り返し荷重によってPC鋼材とグラウト材の界面で付着劣化が進行する。そのため、圧着接合工法の骨組はエネルギー吸収能力に乏しい場合がある。
また、PC鋼材は引張強度が高く、部材終局時にPC鋼材が降伏しないケースがある。この場合、PC鋼材降伏前に部材端圧縮部のコンクリートが圧壊する場合があり、PC鋼材の引張特性を十分に活かした設計にはなっていない。しかも、PC鋼材は材料コストが安くはないことから、性能・コスト両面から不合理な設計に陥り易い。
本発明の目的は、圧着目地部を含む部材端ヒンジの変形性能およびエネルギ吸収能力を向上しつつ、工事費のコストダウンを図ることにある。
本発明によれば、柱部材間を緊張材によって緊張して圧着接合するプレストレスト鉄筋コンクリート柱部材の圧着接合構造において、前記柱部材間の圧縮目地部を跨いで配設された、鉄筋コンクリート用異形棒鋼である柱主筋を備え、全ての前記柱主筋はシース管に挿入されて配置され、前記緊張材を兼ねており、前記シース管には拡径部が設けられ、定着板、及びナットによって緊張力が導入された下層側の前記柱主筋が、当該拡径部内において、上層側の前記柱主筋と継ぎ手で接続されていることを特徴とするプレストレスト鉄筋コンクリート柱部材の圧着接合構造が提供される。
また、本発明によれば、プレストレスト鉄筋コンクリート梁部材と柱部材との間を第1の緊張材によって緊張して圧着接合するプレストレスト鉄筋コンクリート梁部材と柱部材間の圧着接合構造において、前記プレストレスト鉄筋コンクリート梁部材は、鉄筋コンクリート用異形鋼棒である第1および第2の梁主筋を備え、前記第1の梁主筋は、前記梁部材の長手方向の略全域に渡って配設されて第2の緊張材として機能し、その各端部は前記梁部材内に位置し、前記第2の梁主筋は、前記柱部材及び前記梁部材間の圧縮目地部を跨いで配設され、その一方端部は前記梁部材に、その他方端部は前記柱部材にそれぞれ位置し、前記第2の梁主筋はシース管に挿入されて配置され、前記第1の緊張材を兼ねることを特徴とするプレストレスト鉄筋コンクリート梁部材と柱部材間の圧着接合構造が提供される。
本発明によれば、圧着目地部を含む部材端ヒンジの変形性能およびエネルギ吸収能力を向上しつつ、工事費のコストダウンを図ることができる。
本発明の一実施形態に係る圧着接合構造を適用した架構を示す図。 (A)は実験例のせん断力−変形関係を示す図、(B)はPC鋼材の応力−ひずみ関係等を示す図。 (A)は図1の線I-Iに沿う断面図、(B)は従来例の断面図。 (A)は柱最上部の構造を示す説明図、(B)は柱中間の接続部の構造を示す説明図。 (A)は柱主筋応力の応力状態の説明図、(B)は柱中間の接続部の別例の構造を示す説明図。 (A)は図1の線II-IIに沿う断面図、(B)は図1の線III-IIIに沿う断面図、(C)は別例の断面図。 柱−梁接続部の構造を示す説明図。 梁の曲げモーメント分布の説明図。 目地部周辺の応力状態の説明図。 (A)上部の梁主筋の応力状態の説明図、(B)は下部の梁主筋の応力状態の説明図。
図1は本発明の一実施形態に係る圧着接合構造を適用した架構Aを示す図である。架構Aは、複数の柱1と、柱1間の梁2と、少なくとも梁2上の部分が現場打ちされるスラブコンクリート3とを含む。各柱1は複数のPCa柱部材10(以下、単に柱部材10と呼ぶ)を上下に接合して構成される。柱1の下部には、不図示の台座ブロックが設けられ、柱建て方の基準とされる。この台座ブロックに取り付く柱部材10は、本実施形態の場合、2層1節となっている。梁2はPCa梁部材20(以下、単に梁部材20と呼ぶ)から構成され、その各端部20bが柱1に接合される。梁部材20は、中間部20aと、その左右の端部20bとを含む。なお、梁2の柱1間の部分を複数のPCa部材を左右に接合して構成することも可能である。
柱部材10には柱主筋11が、梁部材20の端部20bには梁主筋21が、それぞれ設けられている。なお、図1においては、柱部材10及び梁部材20の部材内の構成として柱主筋11、梁主筋21のみを示しており、他の構成(補強鉄筋、シース管その他の部材)は省略している。この点は他の図も同様であり、説明な必要な範囲で他の構成を図示している。
柱主筋11及び梁主筋21は、鉄筋コンクリート用異形棒鋼であり、本実施形態ではこれを緊張材として用いて部材間の圧接接合を行うことを1つの特徴としている。PC鋼材は用いない。柱主筋11は柱部材11間の圧接接合に用い、梁主筋21は柱部材10−梁部材20間の圧接接合に用いる。
柱主筋11及び梁主筋21として、一般に市販されている電炉品の異形鉄筋(ねじ節タイプ)を使用することができ、例えば、降伏点強度が295N/mm2以上685N/mm2以下の異形鉄筋(SD295〜SD685)を用いることができる。
従来の圧着接合では、PC鋼材が利用されているが、既に述べた通り、PC鋼材は必ずしも付着性能が高くないため、地震時の繰り返し荷重によってPC鋼材とグラウト材の界面で付着劣化が進行する。そのため、圧着接合工法の骨組はエネルギー吸収能力に乏しい場合がある。図2(A)は発明者の実験結果を示しており、緊張材としてPC鋼材を用いて柱−梁接合部を圧着接合した場合のせん断力−変形関係を示している。
同図に示すように、PC鋼材を用いた圧着接合工法の骨組はエネルギー吸収能力の乏しいS字形の履歴性状となる。終局時の大変形域においてPC鋼材が降伏しておらず(鋼材降伏を前提とした終局耐力計算値に達していない)、引張強度の高いPC鋼材を十分活かしきれていない。
この理由は、普通強度の異形鉄筋(SD295,SD345)では、無応力状態から鉄筋が降伏するまで0.2%の伸びひずみで降伏するが、PC鋼材は引張強度が極めて高いため、予め緊張力が導入されていても鋼材が降伏するためには、図2(B)に示すように、PC鋼棒では0.3%程度、PC鋼より線では0.4〜0.5%という大きな伸びひずみが必要となるとともに、PC鋼材の付着劣化により、変形の増大に比べてひずみ量の増大割合が小さい点にあると考えることができる。
部材に長期的に引張力を導入するための緊張材は、PC鋼材が用いられてきたが、本実施形態は、これに代えて異形鉄筋を用いるものである。
一定の長さの鋼材に弾性範囲内で引張力が長期的に作用している状態において、最も注意しなければならない点は、その引張力が時間の経過とともに減退する現象(以下、レラグゼーション)と、鋼材が外見上ほとんど塑性変形を伴うことなく、突然脆性的に破断する現象(以下、遅れ破壊)である。
PC鋼材は、昭和30年頃から本格的に使用されるようになり、現在まで高品質化を目指し加工法・処理法などの製造技術の進歩により、前述したレラグゼーションと遅れ破壊に関しては十分な技術資料・実績を有している。
レラグゼーションに関して、「プレストレスコンクリート設計施工基準・同解説」(非特許文献1)では、PC鋼材のレラグゼーション係数(引張力減退率)について、PC鋼線・PC鋼より線で5%、PC鋼棒・異形PC鋼棒で3%、低レラグゼーションPC鋼線およびPC鋼より線で1.5%と規定されている。レラグゼーション係数はできるだけ小さい値が良いことは周知のことであるが、コンクリートのクリープ現象に伴う緊張材の引張力減退率に比べてできるだけ小さくするとともに、同規準に示される上限値5%程度に抑える必要がある。
遅れ破壊に関する研究は、古くから行われている。遅れ破壊の大きな要因の一つとして、鋼材腐食に伴い鋼材中の水素量増加が挙げられる。また、焼き入れ焼き戻し等を行った高強度の鋼材ではその感受性が高く(遅れ破壊しやすい)、冷間加工材では高応力レベルでもその感受性は低いということ、同じ鋼材でも引張応力が高いほど遅れ破壊の可能性が高くなること、等の知見が得られているが、大部分が高張力の高力ボルトやPC鋼材に関するものである。
遅れ破壊の現象解明には長期的な実証データ(曝露試験、促進試験等)が必要なため、高炉製品に比べて品質の劣る電炉品の高強度鉄筋(SD590、SD685)についての研究資料は従来皆無であった。しかし、ねじ節の異形鉄筋を緊張材として使用する際、前述したレラグゼーションと遅れ破壊に関する検証データが必要であり、出願人は業界で初めてその検証を行い、PC鋼材の代替品として、以下の理由により電炉品の高強度鉄筋が使用可能と結論付けている。
まず、高強度鉄筋はSD685までの範囲であれば、緊張材としての使用時応力は500N/mm2以下(部材内の鉄筋の有効緊張力)であり、PC鋼材に比べて常時引張応力が小さい。
また、コンクリートに予め圧縮力が作用しているプレストレストコンクリート造部材として使用する場合、常時荷重下でコンクリートの耐久性(中性化⇒鋼材腐食)上問題となる有害なひび割れ(0.3mm以上)は生じない。すなわち、鋼材に腐食の原因となる水と酸素が供給されない。
また、使用するコンクリートおよびグラウト材(シース管内)が比較的高強度のものであれば、それらの中性化速度は遅く、適正な品質管理状態では部材内の鋼材腐食はほとんど生じない。
更に、建築構造物は、外装材や仕上材等により直接外気と接することがなく、鋼材腐食の主原因となる塩害も起こりづらい。
以上の観点から、鉄筋のレラグゼーションについては事前に同試験を行って検証されていること、遅れ破壊については鋼材の腐食が生じない設計・施工条件の場合を前提とすれば、緊張材として鉄筋を利用可能であると結論づけた。なお、将来的に、SD685を超えるSD980等の高強度鉄筋も、レラグゼーションと遅れ破壊に関して十分な検証または鋼材の品質改善ができれば適用可能である。また、出願人は、部材の緊張材として異形鉄筋を用いる例を既に公表している(特許文献1)。
本実施形態は、圧着接合工法における緊張材として、PC鋼材に代えて異形棒鋼を用い、かつ、主筋として兼用するものであって、これにより圧着目地部を含む部材端ヒンジの変形性能およびエネルギ吸収能力を向上しつつ、工事費のコストダウンを図るものである。
<柱部材間の圧接接合>
柱部材10間の圧接接合構造(図1のJ1部分の接合構造)について説明する。図3(A)は図1の線I-Iに沿う断面図であり、柱主筋11周辺の構造を示している。柱主筋11は、シース管(例えばスパイラルシース管)12に挿入されて配置され、その周囲には補強鉄筋13が設けられている。シース管12内にはグラウト材(モルタル)が充填されている。
図3(B)は比較例として、緊張材としてPC鋼材を用いた場合の一例を示す断面図である。柱主筋11’とは別に、PC鋼材100及びシース管12を設ける必要があり、部品点数や部材作成時の設置の手間等の点で本実施形態のように柱主筋11を緊張材としてい利用する方が有利である。柱主筋11の強度は、設計想定応力に対して適宜設定される(例えば、SD295〜SD490)。
なお、本実施形態では、全ての柱主筋11を緊張材として用いる場合を想定するが、一部の柱主筋11を緊張材として用いてもよい。緊張材として用いない柱主筋11には、シース管12が不要となる。緊張材として用いない柱主筋11は、柱部材10間で接続してもよいし、接続しなくてもよい。接続する場合は公知の機械式継ぎ手を用いて接続することができる。例えば、鋼製スリーブに各柱主筋11の端部を挿入して、グラウト材を充填、固化させることにより行う。接続しない場合、各柱部材10内の柱主筋11は、その柱部材10内に埋没して外部にはみ出ない形態となる。この点は、後述する柱と梁の圧着接合においても同様である。
次に、J1部分の圧接接合構造について説明する。図4(A)は柱1の最上部の構造を示す説明図であり、図4(B)は柱1の中間部分の接続部(J1部分)の構造を示す。
図4(B)を参照して、柱部材10間は圧縮目地部41を介して接続される。下層側の柱部材10の柱主筋11は、圧縮目地部41を跨いで上層側の柱部材10に延設されている。シース管12の下端部は、継ぎ手17を挿入可能なように拡径部12aとなっている。継ぎ手17は例えば鋼製スリーブであり、下層側の柱主筋11の上端部と上層側の柱主筋11の下端部とが挿入される。シース管12内及び継ぎ手17内にはグラウト材(モルタル)16が充填される。
次に、施工手順について説明する。下層側の柱部材10を配設し、その上面に、圧縮目地部41の高さ調整用のスペーサを設置する。また、圧縮目地部41を構成するグラウト材(モルタル)を施工する際に、シース管12内にこれが流入しないように、シース管12の端部回りに流入防止措置を取る。
上層側の柱部材10をスペーサ上に下ろし、下層側の柱主筋11と上層側の柱主筋11とを継ぎ手17で接続し、シース管12の拡径部12a内に位置させる。圧縮目地部41を構成するグラウト材を、柱部材10間に注入する。
圧縮目地部41を構成するグラウト材が所定強度に達した段階で、柱主筋11の緊張作業を行う。図4(A)に示すように、柱1の最上部において柱主筋11の上端部には、定着板14、ナット15が設けられている。ナット15は柱主筋11に螺着可能である。
ジャッキと架台等を用いた公知の緊張力導入方法により、柱主筋11を引き上げ、柱主筋11に緊張力を導入する。なお、特に言及していないが、柱1の最下部において柱主筋11は例えば定着板、ナット等により、定着されている。また、定着板14、ナット15を不要とする公知の定着方法(特許文献3)も利用可能である。
柱主筋11を緊張させると、その状態を維持すべく、ナット15を締め込んでいく。シース管12内へのグラウト材16(モルタル)の注入は、最後に行ってもよいし、柱部材10を順次積んでいく過程で行ってもよい。
本実施形態のように、柱主筋11による圧着接合であれば、工事で柱部材10の仮緊張(建て方だけのための緊張)で仮設サポートを使用せずに、柱を自立させること(柱建て方の安定)ができ、施工の効率化および施工時の構造安全性向上等のメリットがある。この仮緊張は行わず、緊張力を管理する本緊張を行ってしまってもよく、その場合の方が多いと考えられる。本緊張した後には、いつでもシース12管内にグラウト材16を注入可能となる。
本実施形態では、このように、柱主筋11そのものが圧縮目地部41を貫通し、曲げに抵抗する仕組になっている。柱主筋11の初期緊張力を適宜設定することで、建物竣工時及びそれ以降においては、緊張力をほとんど消失させることも可能である。つまり、建物が建設され、完成されていくにしたがって、建物重力によって柱部材10が圧縮されることから、想定される建物重量に合わせて初期緊張力を設定する。
これにより、地震時には柱主筋11を圧縮・引張に偏りなく有効に働かせることができる。図5(A)は柱主筋11の応力状態の説明図である。緊張力導入時に作用している引張応力は、その柱部材10が負担する建物重量による柱部材10の圧縮によって、減少していく。建物竣工時、つまり、建物重量の確定時点で、柱主筋11の応力が略0となるように初期緊張力を設定すると、地震発生時には柱主筋11を圧縮・引張に偏りなく有効に働かせることができることになる。
建物が高層建物の場合、階層によって柱部材10が負担する建物重量に大きな差が生じる場合がある。この場合、複数階層単位で初期緊張力を異ならせることも可能である。図5(B)は柱1の中間部分の接続部(J1部分)の別の構造例を示す。
概説すると、接続部に、定着板14、ナット15を設けて、それよりも下層側の柱主筋11に対して緊張力を導入するものである。図5(B)の例では、下層側の柱部材10の上面付近において、定着板14、ナット15が設けられている。
施工手順としては、下層側の柱部材10を配設し、その上面付近に定着板14、ナット15を配設する。そして、柱主筋11を引き上げ、柱主筋11に緊張力を導入する。柱主筋11を緊張させると、その状態を維持すべく、ナット15を締め込んでいく。シース12管内へのグラウト材16の注入はこの段階で行ってもよいし、最後にまとめて行ってもよい。その後の手順は上記の施工手順と同じであり、下層側の柱部材10の上面にスペーサを設置する等して、上層側の柱部材10をスペーサ上に下ろすことになる。柱主筋11の緊張力は、建物上層部に行くほど小さくなる(支える建物重量が小さくなる)ため、下層部の既に導入済みの緊張力に影響を与えない。この方式であれば、柱1の部位によって柱主筋11の初期緊張力を異ならせることができ、建物竣工時に柱主筋11の引張・圧縮応力を0にすることが、より容易になる。
以上述べた通り、本実施形態では、緊張材として鉄筋コンクリート用異形棒鋼である柱主筋11を用いたことで、異形棒鋼はPC鋼材よりも付着性能が高いことから、圧着目地部41を含む柱部材10の端部のヒンジの変形性能およびエネルギー吸収能力を向上させることができる。更に、異形棒鋼はPC鋼材よりも安価であり、仮設サポートを使用せずに、柱を自立させることもできることから、工事費のコストダウンを図れる。
<柱−梁間の圧接接合>
柱部材10−梁部材20間の圧接接合構造(図1のJ2、J3部分の接合構造)について説明する。まず、3部分の圧接接合構造について説明する。図6(A)は図1の線II-IIに沿う断面図であり、梁部材20の中間部20aの断面構造を示す。図6(B)は図1の線III-IIIに沿う断面図であり、梁部材20の端部20bの断面構造を示す。
梁部材20は、その長手方向の略全域に渡って、複数の梁主筋23aが延在している。梁主筋23aは鉄筋コンクリート用異形棒鋼であり、中間部20aのみならず端部20bにも延在しているが、梁部材20内のみに延在し、外部にはみ出していない。梁主筋23aの周囲には補強鉄筋23bが設けられている。
なお、梁部材20の制作時に梁主筋23aを緊張材としてプレテンション方式でプレストレスを導入し、梁部材20をPCaPC部材とすることも可能である。その場合、梁主筋23aとしては、例えば、高強度鉄筋(SD490〜SD685)を用いることができる。
中間部20aは本実施形態の場合、I型の断面形状を有しているが方形の断面形状等、他の断面形状であってもよい。特に図示していないが、中間部20aの上下方向中央の薄肉部分には、その厚み方向に貫通する孔を複数個所に渡って形成し、その軽量化を図ることも可能である。
端部20bは中間部20aを上方向及び左右方向に拡幅した方形状の断面形状を有しており、その周縁部分に沿って梁主筋21が配設されている。梁主筋21は、端部20bを貫通して設けられており、端部20bの端面から柱部材10側へ突出するが、中間部20a内には設けられていない。
なお、本実施形態の場合、端部20bとして、中間部20aを上方向及び左右方向に拡幅した方形状の断面形状を有する構成としたが、これに限られず、例えば、図6(C)に例示する端部20b’のように中間部20aを上下方向(梁せい方向)に拡幅したI型の断面形状としてもよく、拡幅部分に梁主筋21を配設してもよい。
本実施形態の場合、柱部材10−梁部材20間の圧接接合は、梁主筋21を緊張材としたホッチキス形式による圧接接合としている。梁主筋21は、シース管(例えばスパイラルシース管)22に挿入されて配置される。シース管22内にはグラウト材(モルタル)が充填されている。
続いて、J3部分の圧接接合構造について説明する。図7はJ3部分の圧接接合構造の説明図である。梁部材20−柱部材10間は圧縮目地部42を介して接続される。梁主筋21は圧縮目地部42を跨いで柱部材10に延設されている。梁主筋23aは端部20b内でカットさせている。柱部材10には横孔が形成されており、梁部材20のシース管22と同心となるようにシース管22’が配設されている。梁主筋21はシース管22及び22’を貫通する。シース管22内にはグラウト材(モルタル)26が充填される。
梁主筋21の両端部には、定着板24、ナット25がそれぞれ設けられている。ナット25は柱主筋21に螺着可能である。本実施形態の場合、定着板24、ナット25が外部に露出しないように、端部2bの端面及び柱部材10の端面に、それぞれ、凹部27、凹部18が形成されており、定着板24、ナット25が凹部27、凹部18に収容されるようにしている。
次に、施工手順について説明する。柱部材10に仮設ブラケット4を設置し、仮設ブラケット4上に梁部材20を下ろす。梁主筋21をシース管22及び22’に通し、また、圧縮目地部42を構成するグラウト材(モルタル)を施工する際に、シース管22及び22’内にこれが流入しないように、シース管22及び22’の端部回りに流入防止措置を取る。更に梁主筋21の両端部に定着板24、ナット25をセットする。
圧縮目地部42となる梁部材20−柱部材10間の隙間を囲い、圧縮目地部42を構成するグラウト材を、この隙間に注入する。
圧縮目地部42を構成するグラウト材が所定強度に達した段階で、梁主筋21の緊張作業を行う。ジャッキと架台等を用いた公知の緊張力導入方法により、梁主筋21の一端側を引っ張り、梁主筋21に緊張力を導入する。梁主筋21を緊張させると、その状態を維持すべく、ナット25を締め込んでいく。その後、シース管22及び22’内へのグラウト材26(モルタル)を注入して施工が完了する。なお、定着板24、ナット25を不要とする公知の定着方法(特許文献3)も利用可能である。
このように、本実施形態では、また、緊張材として鉄筋コンクリート用異形棒鋼である梁主筋21を用いたことで、異形棒鋼はPC鋼材よりも付着性能が高いことから、圧着目地部42を含む梁部材20の端部のヒンジの変形性能およびエネルギー吸収能力を向上させることができる。更に、異形棒鋼はPC鋼材よりも安価であり、工事費のコストダウンを図れる。
梁主筋21の強度は、設計想定応力に対して適宜設定されるが、端部20bの下部の梁主筋21(例えば、図6(B)の下側4つの梁主筋21)は、端部20bの上部の梁主筋21(例えば、図6(B)の上側4つの梁主筋21)よりも低強度であることが好ましい。例えば、下部の梁主筋21はSD295〜SD490とし、上部の梁主筋21はSD490〜SD685とする。その理由は以下の通りである。
長スパンの梁部材では、常時荷重に対して、梁のモーメント分布に相反するように梁中央付近には梁下側に、梁両端部付近では梁上側に適正な緊張力を導入する必要がある。
一方、地震荷重に対しては、梁両端部の上部および下部の梁主筋で抵抗するが、上部では常時荷重用の緊張力が地震荷重によって大きく減退しないように高強度鉄筋を使用することが望ましくなる。それに対して、梁端部の下部の梁主筋は、主として地震荷重のみに抵抗するため、高強度鉄筋を使用しなくても大きな地震荷重を受けた状態で塑性化(鉄筋の降伏)した方が部材のエネルギー吸収能力向上し、合理的な設計が可能となる。
以上の点から、例えば、常時荷重に対する中央部20aの緊張力は、梁主筋23aを緊張材として梁部材20の製作時にプレストレスを導入して1次緊張とし、梁部材20の両端部20bについては梁主筋21を緊張材として建物施工時にプレストレスを導入して2次緊張とすることが好ましい。そして、下部の梁主筋21は相対的に低強度の鉄筋を、上部の梁主筋21は相対的に高強度の鉄筋を使用する。下部の梁主筋21は、技術的にはあえて緊張力を導入しなくても良い。ただし、施工時における架構Aの建方安定性確保と、以下に述べる建物竣工後以降の緊張力の消失が逆に構造的メリットとなる。
2次緊張の技術的な説明を、建物の施工時〜竣工時以降〜地震時における梁部材2のモーメント分布および断面コンクリートおよび鉄筋の応力性状を基に図8〜図10を参照して説明する。
図8(A)は、梁部材20−柱部材10の圧着接合時(2次緊張)の梁2の曲げモーメント分布を示す。図8(B)は、床スラブ3打設完了時における梁2の曲げモーメント分布を示す。
梁部材20−柱部材10の圧着接合時には、上記の通り、仮設ブラケット4を利用し、圧着目地部42のグラウト材の充填を行う。したがって、その時点の梁2の曲げモーメント分布は図8(A)のようになる。充填後、グラウト材が所定の強度に達した時点で梁主筋21の緊張作業を行い、圧着接合する。ここまでを1次工程と呼ぶ。1次工程までの梁部材20の圧縮目地部42周辺には、ほとんど曲げ応力は生じておらず、圧着目地部42周辺には梁主筋21の緊張による圧縮応力が主に生じている。
次に、仮設ブラケット4を取り外し、梁部材20の上部を含む床スラブコンクリート3を打設して柱1及び梁2とスラブ3を一体化する。この状態を2次工程と呼ぶ。2次工程以降は、圧縮目地部42周辺には図8(B)に示すように、上端引張・下端圧縮の曲げ応力が作用しており、建物竣工後には建物使用時の積載荷重により、梁端部20bの曲げ応力が積載荷重分だけ更に付加される。
図9は圧縮目地部42周辺の応力状態の説明図である。同図に示すように、1次工程の段階での圧縮目地部42周辺の断面コンクリート応力分布は、梁2の上部では、相対的に高強度の鉄筋である梁主筋21による大きな緊張力が作用し、梁2の下部では相対的に低強度の鉄筋である梁主筋21による小さい緊張力が作用するため、上部の圧縮応力が大きい台形状の分布となる。
一方、2次工程以降は、床スラブコンクリート3および積載荷重によって梁2の上部のコンクリートの圧縮応力は減少して無応力状態に近くなる(設計条件によっては僅かな引張応力となる場合ある。)。
図10(A)は上部の梁主筋21の、図10(B)は下部の梁主筋21の応力状態の説明図であり、応力履歴を示す。
圧縮応力を受けるコンクリートのクリープの進行によって梁2の端部20bが縮むことによって、梁主筋21の緊張力も減少するが、1次工程から2次工程までの期間が短く、2次工程以降は圧縮目地部42周辺において上部のコンクリートの応力が小さくなる。よって、図10(A)に示すように、上部の梁主筋21(相対的に高強度)の緊張力の減退は少なく、建物竣工後の常時荷重による図8(B)に示す梁2の圧縮目地部42周辺の曲げモーメントに十分抵抗できる緊張力を維持できる。
逆に、下部の梁主筋21(想定的に低強度)は、2次工程以降はコンクリートのクリープの進行が進み、図10(B)に示すように建物竣工時以降には緊張力がほとんど消失してしまう。
以上により、梁2の端部20bの上部の梁主筋21は常時荷重による曲げモーメントに抵抗するとともに、下部の梁主筋21は地震荷重による圧縮・引張に有効に働き、梁2のエネルギー吸収性能を向上させることができ、理想的な梁架構システムを実現できる。
<他の実施形態>
上記実施形態では、柱部材間及び梁部材−柱部材間の双方に、鉄筋コンクリート用異形棒鋼である主筋を緊張材として利用した圧縮接合構造を採用したが、いずれか一方のみとしたり、建物の接合部の一部に採用し、他は在来の場所打ち工法やプレキャスト工法と組み合わせることも勿論可能である。

Claims (3)

  1. 柱部材間を緊張材によって緊張して圧着接合するプレストレスト鉄筋コンクリート柱部材の圧着接合構造において、
    前記柱部材間の圧縮目地部を跨いで配設された、鉄筋コンクリート用異形棒鋼である柱主筋を備え、
    全ての前記柱主筋はシース管に挿入されて配置され、前記緊張材を兼ねており、
    前記シース管には拡径部が設けられ、定着板、及びナットによって緊張力が導入された下層側の前記柱主筋が、当該拡径部内において、上層側の前記柱主筋と継ぎ手で接続されていることを特徴とするプレストレスト鉄筋コンクリート柱部材の圧着接合構造。
  2. プレストレスト鉄筋コンクリート梁部材と柱部材との間を第1の緊張材によって緊張して圧着接合するプレストレスト鉄筋コンクリート梁部材と柱部材間の圧着接合構造において、
    前記プレストレスト鉄筋コンクリート梁部材は、鉄筋コンクリート用異形鋼棒である第1および第2の梁主筋を備え、
    前記第1の梁主筋は、前記梁部材の長手方向の略全域に渡って配設されて第2の緊張材として機能し、その各端部は前記梁部材内に位置し、
    前記第2の梁主筋は、前記柱部材及び前記梁部材間の圧縮目地部を跨いで配設され、その一方端部は前記梁部材に、その他方端部は前記柱部材にそれぞれ位置し、
    前記第2の梁主筋はシース管に挿入されて配置され、前記第1の緊張材を兼ねることを特徴とするプレストレスト鉄筋コンクリート梁部材と柱部材間の圧着接合構造。
  3. 前記緊張材の初期緊張力が、建物重量による前記柱部材の圧縮によって前記緊張材の緊張力が建物竣工時に消失するように、設定されていることを特徴とする請求項1に記載のプレストレスト鉄筋コンクリート柱部材の圧着接合構造。
JP2012269769A 2012-12-10 2012-12-10 プレストレスト鉄筋コンクリート柱部材の圧着接合構造およびプレストレスト鉄筋コンクリート梁部材と柱部材間の圧着接合構造 Active JP6139120B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269769A JP6139120B2 (ja) 2012-12-10 2012-12-10 プレストレスト鉄筋コンクリート柱部材の圧着接合構造およびプレストレスト鉄筋コンクリート梁部材と柱部材間の圧着接合構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269769A JP6139120B2 (ja) 2012-12-10 2012-12-10 プレストレスト鉄筋コンクリート柱部材の圧着接合構造およびプレストレスト鉄筋コンクリート梁部材と柱部材間の圧着接合構造

Publications (3)

Publication Number Publication Date
JP2014114612A JP2014114612A (ja) 2014-06-26
JP2014114612A5 JP2014114612A5 (ja) 2015-08-06
JP6139120B2 true JP6139120B2 (ja) 2017-05-31

Family

ID=51170912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269769A Active JP6139120B2 (ja) 2012-12-10 2012-12-10 プレストレスト鉄筋コンクリート柱部材の圧着接合構造およびプレストレスト鉄筋コンクリート梁部材と柱部材間の圧着接合構造

Country Status (1)

Country Link
JP (1) JP6139120B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5914624B1 (ja) * 2014-12-19 2016-05-11 旭コンクリート工業株式会社 コンクリート構造物
JP2019023381A (ja) * 2017-07-21 2019-02-14 大成建設株式会社 プレキャストコンクリート部材とその製造方法、及び道路橋
JP6647721B1 (ja) * 2019-04-19 2020-02-14 黒沢建設株式会社 無緊張pc鋼棒コンクリート柱梁構造

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269512U (ja) * 1985-10-23 1987-05-01
JP2815129B2 (ja) * 1993-07-22 1998-10-27 黒沢建設株式会社 プレテンションプレキャストコンクリート柱
JPH0790982A (ja) * 1993-09-28 1995-04-04 Kajima Corp 高強度rcプレストレス柱
JP2740475B2 (ja) * 1995-08-15 1998-04-15 黒沢建設株式会社 梁と柱の接合構造
JPH10183756A (ja) * 1996-12-20 1998-07-14 Kurosawa Kensetsu Kk 超耐久構造物
JP2001173088A (ja) * 1999-12-17 2001-06-26 Fuji Ps Corp 鉄筋コンクリートラーメン構造物
JP4000317B2 (ja) * 2004-02-05 2007-10-31 戸田建設株式会社 柱・梁接合部の構造
JP5185652B2 (ja) * 2008-02-22 2013-04-17 大成建設株式会社 プレキャストrc柱の製造方法およびrc柱

Also Published As

Publication number Publication date
JP2014114612A (ja) 2014-06-26

Similar Documents

Publication Publication Date Title
Wang et al. Quasi-static cyclic tests of precast bridge columns with different connection details for high seismic zones
Qian et al. Progressive collapse resistance of precast concrete beam-column sub-assemblages with high-performance dry connections
Huang et al. Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam
Lu et al. Experimental study on a precast beam-column joint with double grouted splice sleeves
US9765521B1 (en) Precast reinforced concrete construction elements with pre-stressing connectors
Massone et al. Load–Deformation responses of slender structural steel reinforced concrete walls
Li et al. Experimental comparisons of repairable precast concrete shear walls with a monolithic cast-in-place wall
Esmaeili et al. Introducing an easy-install precast concrete beam-to-column connection strengthened by steel box and peripheral plates
US11352790B2 (en) Method of introducing prestress to beam-column joint of PC structure in triaxial compression
Singhal et al. Anchorage behaviour of headed bars as connection system for precast reinforced concrete structural components
Chen et al. Experimental investigation on the seismic performance of large-scale interior beam-column joints with composite slab
Guan et al. Experimental evaluation of precast concrete beam-column connections with high-strength steel rebars
Ngo et al. Proposed new dry and hybrid concrete joints with GFRP bolts and GFRP reinforcement under cyclic loading: Testing and analysis
Marchisella et al. Experimental investigation of 3d RC exterior joint retrofitted with fully-fastened-haunch-retrofit-solution
CN116541918B (zh) 一种计算钢筋混凝土剪力墙的方法和一种新型剪力墙
CN111364611A (zh) 一种装配式预应力自复位节点
Li et al. Seismic behavior of encased CFT column base connections
Xue et al. Seismic behavior of precast 100 MPa grade HSC frames under reversed cyclic loading
Fang et al. Experimental evaluation on the seismic behavior of precast concrete shear walls with slip-friction devices
JP6139120B2 (ja) プレストレスト鉄筋コンクリート柱部材の圧着接合構造およびプレストレスト鉄筋コンクリート梁部材と柱部材間の圧着接合構造
KR20120119824A (ko) 프리캐스트 고성능 섬유시멘트 복합체를 이용한 철근 콘크리트 복합기둥공법
Cheng et al. Seismic performance of precast concrete walls with grouted sleeve connections using large-diameter bars
Zhu et al. Experimental investigation on shear capacity of steel reinforced concrete columns under combined torque
CN1987013A (zh) 钢管约束钢筋高强混凝土柱
Zhang et al. Experimental and numerical study on seismic performance of precast concrete hollow shear walls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170427

R150 Certificate of patent or registration of utility model

Ref document number: 6139120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250