JP6138642B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP6138642B2
JP6138642B2 JP2013195516A JP2013195516A JP6138642B2 JP 6138642 B2 JP6138642 B2 JP 6138642B2 JP 2013195516 A JP2013195516 A JP 2013195516A JP 2013195516 A JP2013195516 A JP 2013195516A JP 6138642 B2 JP6138642 B2 JP 6138642B2
Authority
JP
Japan
Prior art keywords
flow rate
absorption liquid
heat
pipe
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013195516A
Other languages
Japanese (ja)
Other versions
JP2015059733A (en
Inventor
青山 淳
淳 青山
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP2013195516A priority Critical patent/JP6138642B2/en
Priority to CN201410474753.6A priority patent/CN104457011B/en
Publication of JP2015059733A publication Critical patent/JP2015059733A/en
Application granted granted Critical
Publication of JP6138642B2 publication Critical patent/JP6138642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/002Generator absorber heat exchanger [GAX]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/005Regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は吸収冷凍機に関し、特に効率を改善した吸収冷凍機に関する。   The present invention relates to an absorption refrigerator, and more particularly to an absorption refrigerator having improved efficiency.

吸収冷凍機は、吸収液に吸収させる冷媒が、液体から気体に相変化する際の気化熱を冷水から奪うことで、冷水を冷却する。吸収冷凍機は、冷媒を蒸発させる蒸発器と、蒸発器で発生した冷媒の蒸気を濃度が高い吸収液(濃溶液)で吸収する吸収器と、冷媒を吸収した濃度が低い吸収液(希溶液)を加熱して冷媒を離脱させる再生器と、再生器で離脱した冷媒の蒸気を凝縮させて蒸発器に搬送される冷媒液とする凝縮器とを主要構成機器として備えている。吸収冷凍機では、効率向上のため、再生器から吸収器へ搬送される濃溶液と、吸収器から再生器へ搬送される希溶液とで熱交換を行わせる溶液熱交換器が設けられるのが一般的である。吸収冷凍機には、再生器における希溶液の加熱源として蒸気(熱源蒸気)を用いるものがある。   The absorption refrigerator cools cold water by removing the heat of vaporization from the cold water when the refrigerant to be absorbed by the absorption liquid changes phase from liquid to gas. The absorption refrigerator is composed of an evaporator that evaporates the refrigerant, an absorber that absorbs the vapor of the refrigerant generated in the evaporator with an absorbing liquid (concentrated solution) having a high concentration, and an absorbing liquid (diluted solution) that absorbs the refrigerant. And a condenser that condenses the vapor of the refrigerant separated by the regenerator and uses it as a refrigerant liquid that is conveyed to the evaporator. In order to improve efficiency, the absorption refrigerator is provided with a solution heat exchanger that performs heat exchange between the concentrated solution transported from the regenerator to the absorber and the dilute solution transported from the absorber to the regenerator. It is common. Some absorption refrigerators use steam (heat source steam) as a heating source for a dilute solution in a regenerator.

熱源蒸気を用いる吸収冷凍機の効率をさらに向上させるため、再生器において希溶液を加熱することに伴って熱源蒸気が凝縮して生じるドレン液からも熱を回収するものがある。このような吸収冷凍機として、希溶液にドレン液の熱を回収させるドレン熱回収器と、希溶液と濃溶液とで熱交換を行わせる溶液熱交換器とを並列に設置し、ドレン熱回収器に供給される希溶液流量を制御する流量制御機構を設け、吸収冷凍機の負荷が減少するのに応じてドレン熱回収器に供給される希溶液流量を減少させるように制御するものがある(例えば、特許文献1参照。)。   In order to further improve the efficiency of an absorption refrigerator that uses heat source vapor, there is one that also recovers heat from a drain liquid that is generated by condensation of the heat source vapor as the dilute solution is heated in the regenerator. As such an absorption refrigerator, a drain heat recovery unit that recovers the heat of the drain liquid in the dilute solution and a solution heat exchanger that performs heat exchange between the dilute solution and the concentrated solution are installed in parallel to recover the drain heat. There is a flow rate control mechanism that controls the flow rate of the dilute solution supplied to the storage unit, and controls to reduce the flow rate of the dilute solution supplied to the drain heat recovery device as the load on the absorption refrigerator decreases. (For example, refer to Patent Document 1).

特開2009−287805号公報JP 2009-287805 A

しかしながら、特許文献1に記載の吸収冷凍機は、吸収冷凍機の負荷が減少した部分負荷運転時に効率を向上させることができるに留まり、全負荷付近における運転時に、例えば吸収器に供給される冷却水の温度が低下する等により循環する吸収液の流量が減少する場合は、ドレン液の流量に見合った熱量を回収できなくなる。   However, the absorption refrigerator described in Patent Document 1 can only improve efficiency during partial load operation in which the load of the absorption refrigerator is reduced, and cooling supplied to the absorber, for example, during operation near the full load. When the flow rate of the circulating absorption liquid decreases due to a decrease in the temperature of the water, for example, it becomes impossible to recover the amount of heat corresponding to the flow rate of the drain liquid.

本発明は上述の課題に鑑み、全負荷付近における運転で冷却水の温度が定格運転時よりも低くなった場合の効率を改善した吸収冷凍機を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide an absorption refrigerator that has improved efficiency when the temperature of cooling water is lower than that during rated operation during operation near full load.

上記目的を達成するために、本発明の第1の態様に係る吸収冷凍機は、例えば図1に示すように、相変化を伴う冷媒と、冷媒が混合した吸収液とのサイクルによって熱を移動させる吸収冷凍機1であって;第1の吸収液Swと熱源蒸気Hとを導入し、熱源蒸気Hが保有する熱で第1の吸収液Swを加熱して第1の吸収液Swから冷媒Vgを蒸発させることで第1の吸収液Swよりも濃度が高い第2の吸収液Saを生成する再生器30と;再生器30に導入される第1の吸収液Swを流す吸収液熱交換管18Aと;再生器30に導入される第1の吸収液Swを流す吸収液熱回収管18Bであって、吸収液熱交換管18Aに対して並列に配置された吸収液熱回収管18Bと;吸収液熱交換管18Aに配設された熱交換器81であって、吸収液熱交換管18Aを流れる第1の吸収液Swと、再生器30から導出された第2の吸収液Saとで熱交換を行わせる熱交換器81と;吸収液熱回収管18Bに配設された熱回収器82であって、吸収液熱回収管18Bを流れる第1の吸収液Swに、再生器30で熱源蒸気Hが凝縮して生じたドレン液Dの熱を回収させる熱回収器82と;吸収液熱回収管18Bに配設された絞り機構85であって、定格流量よりも大きい最大流量を通過させる絞り機構85と;吸収液熱交換管18Aを流れる第1の吸収液Swの流量と、吸収液熱回収管18Bを流れる第1の吸収液Swの流量との割合を調節する流量調節機構84であって、熱回収器82に導入されるドレン液Dの流量の熱回収器82に導入される第1の吸収液Swの流量に対する比の増加に伴って、吸収液熱回収管18Bを流れる第1の吸収液Swの流量の吸収液熱交換管18Aを流れる第1の吸収液Swの流量に対する比が増加するように、割合の調節を行う流量調節機構84とを備える。   In order to achieve the above object, the absorption refrigerator according to the first aspect of the present invention transfers heat by a cycle of a refrigerant accompanying phase change and an absorbing liquid mixed with the refrigerant, as shown in FIG. A first absorption liquid Sw and a heat source vapor H, and the first absorption liquid Sw is heated with heat held by the heat source vapor H to generate a refrigerant from the first absorption liquid Sw. A regenerator 30 that generates a second absorbent liquid Sa having a higher concentration than the first absorbent liquid Sw by evaporating Vg; and an absorbent liquid heat exchange that flows the first absorbent liquid Sw introduced into the regenerator 30 An absorption liquid heat recovery pipe 18B for flowing the first absorption liquid Sw introduced into the regenerator 30, and an absorption liquid heat recovery pipe 18B arranged in parallel with the absorption liquid heat exchange pipe 18A; A heat exchanger 81 disposed in the absorption liquid heat exchange pipe 18A, wherein the absorption liquid heat exchange A heat exchanger 81 for exchanging heat between the first absorbent Sw flowing through the pipe 18A and the second absorbent Sa derived from the regenerator 30, and heat disposed in the absorbent heat recovery pipe 18B A heat recovery unit 82 for recovering the heat of the drain liquid D generated by condensation of the heat source vapor H in the regenerator 30 to the first absorption liquid Sw flowing through the absorption liquid heat recovery pipe 18B; A throttle mechanism 85 disposed in the absorption liquid heat recovery pipe 18B, which allows a maximum flow rate larger than the rated flow rate to pass; a flow rate of the first absorption liquid Sw flowing through the absorption liquid heat exchange pipe 18A; A flow rate adjusting mechanism 84 that adjusts the ratio of the flow rate of the first absorbent liquid Sw flowing through the absorbent heat recovery pipe 18B to the heat recovery unit 82 having the flow rate of the drain liquid D introduced into the heat recovery unit 82. With an increase in the ratio of the first absorbing liquid Sw introduced to the flow rate A flow rate adjustment mechanism 84 that adjusts the ratio so that the ratio of the flow rate of the first absorbent liquid Sw flowing through the absorbent liquid heat recovery pipe 18B to the flow rate of the first absorbent liquid Sw flowing through the absorbent liquid heat exchange pipe 18A increases. With.

このように構成すると、冷却水の温度が定格運転時よりも低くなって循環する吸収液の流量が減少し、熱回収器に導入されるドレン液の流量の熱回収器に導入される第1の吸収液の流量に対する比が増加した場合に、吸収液熱回収管を流れる第1の吸収液の流量を最大で最大流量まで増加させてドレン液から回収する熱量を増加させることが可能となり、吸収冷凍機の効率を改善することができる。   If comprised in this way, the temperature of cooling water will become lower than at the time of rated operation, the flow volume of the absorption liquid which circulates will reduce, and the 1st introduced into the heat recovery device of the flow volume of the drain liquid introduced into a heat recovery device. When the ratio of the absorption liquid to the flow rate of the absorption liquid increases, it is possible to increase the amount of heat recovered from the drain liquid by increasing the flow rate of the first absorption liquid flowing through the absorption liquid heat recovery pipe up to the maximum flow rate, The efficiency of the absorption refrigerator can be improved.

また、本発明の第2の態様に係る吸収冷凍機は、例えば図1を参照して示すと、上記本発明の第1の態様に係る吸収冷凍機1において、絞り機構85がオリフィスである。   Moreover, when the absorption refrigerator according to the second aspect of the present invention is shown, for example, with reference to FIG. 1, in the absorption refrigerator 1 according to the first aspect of the present invention, the throttle mechanism 85 is an orifice.

このように構成すると、絞り機構の設置及び調節(交換)が簡便になる。   If comprised in this way, installation and adjustment (exchange) of an aperture mechanism will become easy.

また、本発明の第3の態様に係る吸収冷凍機は、例えば図1に示すように、上記本発明の第1の態様又は第2の態様に係る吸収冷凍機1において、熱交換器81の下流側の吸収液熱交換管18Aを流れる第1の吸収液Swの温度を検出する交換温度検出器51と;熱回収器82の下流側の吸収液熱回収管18Bを流れる第1の吸収液Swの温度を検出する回収温度検出器52と;交換温度検出器51で検出された温度と回収温度検出器52で検出された温度との差が所定の範囲になるように流量調節機構84を制御する制御装置60とを備える。   Moreover, the absorption refrigerator which concerns on the 3rd aspect of this invention, for example, as shown in FIG. 1, in the absorption refrigerator 1 which concerns on the said 1st aspect or 2nd aspect of this invention, of the heat exchanger 81, is shown. An exchange temperature detector 51 for detecting the temperature of the first absorbent liquid Sw flowing through the downstream absorbent heat exchanger tube 18A; and a first absorbent liquid flowing through the absorbent heat recovery pipe 18B downstream of the heat collector 82; A recovery temperature detector 52 for detecting the temperature of Sw; and a flow rate adjusting mechanism 84 so that the difference between the temperature detected by the replacement temperature detector 51 and the temperature detected by the recovery temperature detector 52 falls within a predetermined range. And a control device 60 for controlling.

このように構成すると、簡便に適切な流量配分を行うことができる。   If comprised in this way, appropriate flow volume distribution can be performed simply.

本発明によれば、冷却水の温度が定格運転時よりも低くなって循環する吸収液の流量が減少し、熱回収器に導入されるドレン液の流量の熱回収器に導入される第1の吸収液の流量に対する比が増加した場合に、吸収液熱回収管を流れる第1の吸収液の流量を最大で最大流量まで増加させてドレン液から回収する熱量を増加させることが可能となり、吸収冷凍機の効率を改善することができる。   According to the present invention, the temperature of the cooling water is lower than that during the rated operation, the flow rate of the circulating absorption liquid is reduced, and the first flow rate of the drain liquid introduced into the heat recovery unit is introduced into the heat recovery unit. When the ratio of the absorption liquid to the flow rate of the absorption liquid increases, it is possible to increase the amount of heat recovered from the drain liquid by increasing the flow rate of the first absorption liquid flowing through the absorption liquid heat recovery pipe up to the maximum flow rate, The efficiency of the absorption refrigerator can be improved.

本発明の実施の形態に係る吸収冷凍機の模式的系統図である。1 is a schematic system diagram of an absorption refrigerator according to an embodiment of the present invention. ドレン液の流量と、ドレン熱回収器及び溶液熱交換器に導入される希溶液流量の割合との関係を示すグラフである。It is a graph which shows the relationship between the flow volume of a drain liquid, and the ratio of the dilute solution flow volume introduce | transduced into a drain heat recovery device and a solution heat exchanger. 冷却水入口温度をパラメータとした吸収冷凍機の負荷率と熱源蒸気の消費率との関係を示すグラフであり、(A)は負荷率の低下に伴ってドレン熱回収器に導入される希溶液の流量の溶液熱交換器に導入される希溶液の流量に対する比を低下させた場合のグラフ、(B)は吸収冷凍機の冷却水の入口温度の低下に伴ってドレン熱回収器に導入される希溶液の流量の溶液熱交換器に導入される希溶液の流量に対する比を増加させた場合のグラフである。It is a graph which shows the relationship between the load factor of the absorption refrigerator which used the cooling water inlet temperature as a parameter, and the consumption rate of heat source steam, (A) is a dilute solution introduced into a drain heat recovery device with a load factor fall. (B) is a graph when the ratio of the flow rate to the flow rate of the dilute solution introduced into the solution heat exchanger is lowered, and (B) is introduced into the drain heat recovery device as the cooling water inlet temperature of the absorption chiller decreases. It is a graph at the time of increasing the ratio with respect to the flow volume of the dilute solution introduce | transduced into the solution heat exchanger of the flow volume of a dilute solution. 流量調節機構の変形例を示す部分系統図である。It is a partial systematic diagram which shows the modification of a flow volume adjustment mechanism. (A)はパラレルフローの二重効用吸収冷凍機の溶液側の部分系統図、(B)はリバースフローの二重効用吸収冷凍機の溶液側の部分系統図である。(A) is a partial system diagram on the solution side of a double-effect absorption refrigerator of a parallel flow, and (B) is a partial system diagram on the solution side of a double-effect absorption refrigerator of a reverse flow.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1を参照して、本発明の実施の形態に係る吸収冷凍機1を説明する。図1は、吸収冷凍機1の模式的系統図である。吸収冷凍機1は、吸収冷凍サイクルを行う主要構成機器として、吸収器10と、蒸発器20と、再生器30と、凝縮器40とを備えている。また、吸収冷凍機1は、制御装置60を備えている。吸収冷凍機1は、吸収液に対して冷媒が相変化をしながら循環することで熱移動を行わせ、被冷却媒体である冷水Cの温度を低下させる機器である。以下の説明において、吸収液に関し、吸収冷凍サイクル上における区別を容易にするために、性状や吸収冷凍サイクル上の位置に応じて、「希溶液Sw」、「濃溶液Sa」等と呼称するが、性状等を不問にするときは総称して「溶液S」ということとする。また、冷媒に関し、吸収冷凍サイクル上における区別を容易にするために、性状や吸収冷凍サイクル上の位置に応じて、「蒸発器冷媒蒸気Ve」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、溶液S(吸収剤と冷媒との混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられているが、これに限らず他の冷媒、溶液(吸収剤)の組み合わせで使用してもよい。 First, with reference to FIG. 1, the absorption refrigerator 1 which concerns on embodiment of this invention is demonstrated. FIG. 1 is a schematic system diagram of the absorption refrigerator 1. The absorption refrigerator 1 includes an absorber 10, an evaporator 20, a regenerator 30, and a condenser 40 as main components that perform an absorption refrigeration cycle. In addition, the absorption refrigerator 1 includes a control device 60. The absorption refrigerator 1 is a device that causes heat transfer by circulating the refrigerant while undergoing a phase change with respect to the absorption liquid, and reduces the temperature of the cold water C that is a medium to be cooled. In the following description, the absorption liquid is referred to as “dilute solution Sw”, “concentrated solution Sa”, etc., depending on the properties and the position on the absorption refrigeration cycle, in order to facilitate discrimination on the absorption refrigeration cycle. When the properties and the like are not asked, they are collectively referred to as “solution S”. Further, regarding the refrigerant, in order to facilitate the distinction on the absorption refrigeration cycle, the “evaporator refrigerant vapor Ve”, “regenerator refrigerant vapor Vg”, “refrigerant liquid Vf” are selected according to the property and the position on the absorption refrigeration cycle. However, when the property or the like is unquestioned, it is generally referred to as “refrigerant V”. In the present embodiment, an LiBr aqueous solution is used as the solution S (mixture of the absorbent and the refrigerant), and water (H 2 O) is used as the refrigerant V. You may use it in the combination of a solution (absorbent).

吸収器10は、蒸発器20で発生した蒸発器冷媒蒸気Veを第2の吸収液としての濃溶液Saで吸収する機器である。吸収器10は、冷却水Qを流す冷却水流路としての冷却管11と、濃溶液Saを冷却管11の外面に向けて散布する濃溶液散布ノズル12とを、吸収器缶胴17の内部に有している。濃溶液散布ノズル12は、散布した濃溶液Saが冷却管11に降りかかるように、冷却管11の上方に配設されている。なお、濃溶液散布ノズル12は、スプレーノズル以外の、冷却管11の外面に濃溶液Saを供給することができる装置(例えば、毛細管現象を利用した滴下装置等)で構成されていてもよい。吸収器10は、散布された濃溶液Saが蒸発器冷媒蒸気Veを吸収することで濃度の低下した第1の吸収液としての希溶液Swを吸収器缶胴17の下部に貯留すると共に、濃溶液Saが蒸発器冷媒蒸気Veを吸収した際に発生した吸収熱を冷却水Qが奪うように構成されている。冷却管11には、吸収冷凍機1外の冷却塔(不図示)で冷却された冷却水Qを導入する冷却水入口管11aが一端に接続されている。冷却管11の他端には、冷却水連絡管58が接続されている。冷却水入口管11aには、冷却管11に導入される冷却水Qの温度を検出する冷却水温度検出器としての冷却水温度計15が設けられている。冷却水温度計15は、制御装置60と信号ケーブルで接続されており、検出した冷却水Qの温度を信号として制御装置60に送信することができるように構成されている。   The absorber 10 is a device that absorbs the evaporator refrigerant vapor Ve generated in the evaporator 20 with the concentrated solution Sa as the second absorbing liquid. The absorber 10 includes a cooling pipe 11 serving as a cooling water flow path through which the cooling water Q flows and a concentrated solution spray nozzle 12 that sprays the concentrated solution Sa toward the outer surface of the cooling pipe 11 inside the absorber can body 17. Have. The concentrated solution spray nozzle 12 is disposed above the cooling pipe 11 so that the sprayed concentrated solution Sa falls on the cooling pipe 11. In addition, the concentrated solution spraying nozzle 12 may be configured by a device (for example, a dropping device using a capillary phenomenon) that can supply the concentrated solution Sa to the outer surface of the cooling tube 11 other than the spray nozzle. The absorber 10 stores the dilute solution Sw as the first absorbent having a reduced concentration due to the sprayed concentrated solution Sa absorbing the evaporator refrigerant vapor Ve in the lower portion of the absorber can body 17. The cooling water Q is configured to take away heat absorbed when the solution Sa absorbs the evaporator refrigerant vapor Ve. A cooling water inlet pipe 11 a for introducing cooling water Q cooled by a cooling tower (not shown) outside the absorption refrigerator 1 is connected to one end of the cooling pipe 11. A cooling water communication pipe 58 is connected to the other end of the cooling pipe 11. The cooling water inlet pipe 11 a is provided with a cooling water thermometer 15 as a cooling water temperature detector that detects the temperature of the cooling water Q introduced into the cooling pipe 11. The cooling water thermometer 15 is connected to the control device 60 with a signal cable, and is configured to be able to transmit the detected temperature of the cooling water Q as a signal to the control device 60.

蒸発器20は、冷水Cの熱で冷媒液Vfを蒸発させて蒸発器冷媒蒸気Veを発生させることにより冷水Cを冷却する機器である。蒸発器20は、冷水Cを流す冷水流路としての蒸発管21と、冷媒液Vfを蒸発管21の外面に向けて散布する冷媒液散布ノズル22とを、蒸発器缶胴27の内部に有している。冷媒液散布ノズル22は、散布した冷媒液Vfが蒸発管21に降りかかるように、蒸発管21の上方に配設されている。なお、冷媒液散布ノズル22は、スプレーノズル以外の、蒸発管21の外面に冷媒液Vfを供給することができる装置(例えば、毛細管現象を利用した滴下装置等)で構成されていてもよい。また、蒸発器20は、蒸発器缶胴27の下部に貯留されている冷媒液Vfを冷媒液散布ノズル22に導く冷媒液管28と、冷媒液管28内の冷媒液Vfを冷媒液散布ノズル22に送る冷媒ポンプ29とを有している。蒸発器20は、蒸発管21の外面に散布された冷媒液Vfが蒸発して蒸発器冷媒蒸気Veとなるための気化熱を、蒸発管21内を流れる冷水Cから奪うことで冷水Cを冷却し、散布された冷媒液Vfのうち蒸発しなかった冷媒液Vfが蒸発器缶胴27の下部に貯留されるように構成されている。   The evaporator 20 is a device that cools the cold water C by evaporating the refrigerant liquid Vf with the heat of the cold water C to generate an evaporator refrigerant vapor Ve. The evaporator 20 has an evaporator pipe 21 serving as a cold water flow path through which the cold water C flows, and a refrigerant liquid spray nozzle 22 that sprays the refrigerant liquid Vf toward the outer surface of the evaporator pipe 21 inside the evaporator can body 27. doing. The refrigerant liquid spray nozzle 22 is disposed above the evaporation pipe 21 so that the sprayed refrigerant liquid Vf falls on the evaporation pipe 21. The refrigerant liquid spray nozzle 22 may be configured by an apparatus (for example, a dripping apparatus using a capillary phenomenon) that can supply the refrigerant liquid Vf to the outer surface of the evaporation pipe 21 other than the spray nozzle. Further, the evaporator 20 includes a refrigerant liquid pipe 28 that guides the refrigerant liquid Vf stored in the lower portion of the evaporator can body 27 to the refrigerant liquid spray nozzle 22, and the refrigerant liquid Vf in the refrigerant liquid pipe 28. And a refrigerant pump 29 to be sent to 22. The evaporator 20 cools the cold water C by taking the heat of vaporization for evaporating the refrigerant liquid Vf sprayed on the outer surface of the evaporator pipe 21 to become the evaporator refrigerant vapor Ve from the cold water C flowing in the evaporator pipe 21. The refrigerant liquid Vf that has not evaporated out of the sprayed refrigerant liquid Vf is stored in the lower portion of the evaporator can body 27.

本実施の形態では、吸収器10と蒸発器20とは隣接して配置されており、吸収器缶胴17の上部と蒸発器缶胴27の上部とが連通している。このような構成により、蒸発器缶胴27の内部で発生した蒸発器冷媒蒸気Veを吸収器缶胴17の内部に導くことができるようになっている。   In the present embodiment, the absorber 10 and the evaporator 20 are disposed adjacent to each other, and the upper part of the absorber can body 17 and the upper part of the evaporator can body 27 communicate with each other. With such a configuration, the evaporator refrigerant vapor Ve generated inside the evaporator can body 27 can be guided to the inside of the absorber can body 17.

再生器30は、希溶液Swを導入し、加熱することで、希溶液Sw中の冷媒Vを離脱させ、濃溶液Saを生成する機器である。再生器30において、希溶液Swから離脱した冷媒Vは蒸気の状態であり、この冷媒Vの蒸気を再生器冷媒蒸気Vgということとする。再生器30は、希溶液Swを加熱する加熱部31と、導入した溶液Sを貯留する再生器缶胴37とを有している。加熱部31は、再生器缶胴37の内部に配設されている。加熱部31は、熱源蒸気Hを導入する熱源蒸気管32が接続されており、導入した熱源蒸気Hが保有する熱で、溶液Sを加熱することができるように構成されている。また、加熱部31には、熱源蒸気Hが溶液Sに熱を与えたことで凝縮して生じたドレン液Dを排出するドレン管33が接続されている。   The regenerator 30 is a device that introduces the diluted solution Sw and heats it to release the refrigerant V in the diluted solution Sw to generate a concentrated solution Sa. In the regenerator 30, the refrigerant V separated from the dilute solution Sw is in a vapor state, and the vapor of the refrigerant V is referred to as a regenerator refrigerant vapor Vg. The regenerator 30 includes a heating unit 31 that heats the diluted solution Sw and a regenerator can body 37 that stores the introduced solution S. The heating unit 31 is disposed inside the regenerator can body 37. The heating unit 31 is connected to a heat source steam pipe 32 that introduces the heat source steam H, and is configured to be able to heat the solution S with heat held by the introduced heat source steam H. In addition, a drain pipe 33 that discharges a drain liquid D generated by condensation of the heat source vapor H by applying heat to the solution S is connected to the heating unit 31.

凝縮器40は、再生器30で希溶液Swから蒸発した再生器冷媒蒸気Vgを導入し冷却して凝縮させ、蒸発器20に送る冷媒液Vfを生成する機器である。凝縮器40は、冷却水Qの流路を形成する部材である凝縮管41を、凝縮器缶胴47の内部に有している。凝縮管41の一端には、一端が冷却管11に接続されている冷却水連絡管58の他端が接続されている。凝縮管41の他端には、吸収冷凍機1外の冷却塔(不図示)に向けて冷却水Qを導出する冷却水出口管41bが接続されている。冷却水出口管41bを流れる冷却水Qは、冷却塔(不図示)で冷却されて冷却水入口管11aに供給されるように構成されている。   The condenser 40 is a device that introduces the regenerator refrigerant vapor Vg evaporated from the dilute solution Sw in the regenerator 30, cools and condenses, and generates the refrigerant liquid Vf to be sent to the evaporator 20. The condenser 40 has a condenser pipe 41, which is a member that forms a flow path of the cooling water Q, inside the condenser can body 47. One end of the condensing pipe 41 is connected to the other end of a cooling water communication pipe 58 whose one end is connected to the cooling pipe 11. The other end of the condensing pipe 41 is connected to a cooling water outlet pipe 41b for leading the cooling water Q toward a cooling tower (not shown) outside the absorption refrigerator 1. The cooling water Q flowing through the cooling water outlet pipe 41b is cooled by a cooling tower (not shown) and supplied to the cooling water inlet pipe 11a.

凝縮器缶胴47は、再生器缶胴37に近接して配設されている。本実施の形態では、再生器缶胴37の上部と凝縮器缶胴47の上部とは、再生器冷媒蒸気流路35を介して連通している。凝縮器40は、再生器冷媒蒸気流路35を介して再生器30から再生器冷媒蒸気Vgを導入し、凝縮管41を流れる冷却水Qに再生器冷媒蒸気Vgの熱を奪わせて、再生器冷媒蒸気Vgを凝縮させて冷媒液Vfにするように構成されている。本実施の形態では、凝縮器缶胴47及び再生器缶胴37は、蒸発器缶胴27及び吸収器缶胴17の上方に配設されている。凝縮器缶胴47の底部又は下部と蒸発器缶胴27とは、凝縮冷媒液管48で接続されており、凝縮器缶胴47内の冷媒液Vfを位置ヘッド及び両者の内圧の差で蒸発器缶胴27内に導くことができるように構成されている。   The condenser can body 47 is disposed in the vicinity of the regenerator can body 37. In the present embodiment, the upper part of the regenerator can body 37 and the upper part of the condenser can body 47 communicate with each other via the regenerator refrigerant vapor channel 35. The condenser 40 introduces the regenerator refrigerant vapor Vg from the regenerator 30 via the regenerator refrigerant vapor flow path 35, causes the cooling water Q flowing through the condenser pipe 41 to take the heat of the regenerator refrigerant vapor Vg, and regenerates it. The refrigerant vapor Vg is condensed into the refrigerant liquid Vf. In the present embodiment, the condenser can body 47 and the regenerator can body 37 are disposed above the evaporator can body 27 and the absorber can body 17. The bottom or lower portion of the condenser can body 47 and the evaporator can body 27 are connected by a condensed refrigerant liquid pipe 48, and the refrigerant liquid Vf in the condenser can body 47 is evaporated by the difference between the position head and the internal pressure of both. It is configured so that it can be guided into the can body 27.

吸収器缶胴17の底部又は下部と、再生器缶胴37とは、希溶液管18で接続されている。希溶液管18には、溶液ポンプ19が配設されている。希溶液管18は、溶液ポンプ19の下流側で、吸収液熱交換管としての交換希溶液管18Aと、吸収液熱回収管としての回収希溶液管18Bと、の2つに分岐している。交換希溶液管18A及び回収希溶液管18Bは、再生器缶胴37の上流側で統合されている。吸収冷凍機1は、溶液ポンプ19により、吸収器缶胴17の希溶液Swを再生器缶胴37内に搬送することができるように構成されている。再生器缶胴37内では、導入された希溶液Swが、入口から出口に移動するに連れて希溶液Sw中から冷媒Vが離脱して濃度が上昇するようになっている。   The bottom or lower portion of the absorber can body 17 and the regenerator can body 37 are connected by a dilute solution tube 18. A solution pump 19 is disposed in the dilute solution pipe 18. The dilute solution pipe 18 branches into two parts, an exchange dilute solution pipe 18A as an absorption liquid heat exchange pipe and a recovered dilute solution pipe 18B as an absorption liquid heat recovery pipe on the downstream side of the solution pump 19. . The exchange dilute solution pipe 18 </ b> A and the recovered dilute solution pipe 18 </ b> B are integrated upstream of the regenerator can body 37. The absorption refrigerator 1 is configured so that the dilute solution Sw in the absorber can body 17 can be conveyed into the regenerator can body 37 by the solution pump 19. In the regenerator can body 37, as the introduced dilute solution Sw moves from the inlet to the outlet, the refrigerant V is detached from the dilute solution Sw to increase the concentration.

再生器缶胴37の濃溶液Saが導出される部分と、吸収器10の濃溶液散布ノズル12とは、濃溶液管38で接続されている。吸収冷凍機1は、溶液ポンプ19によって希溶液Swが再生器缶胴37に搬送され、再生器缶胴37内で冷媒Vが離脱して生成された濃溶液Saが、濃溶液管38を介して濃溶液散布ノズル12に導入されるように構成されている。交換希溶液管18A及び濃溶液管38には、交換希溶液管18Aを流れる希溶液Swと濃溶液管38を流れる濃溶液Saとの間で熱交換を行わせる熱交換器としての溶液熱交換器81が挿入されて配置されている。回収希溶液管18B及びドレン管33には、ドレン管33を流れるドレン液Dの熱を、回収希溶液管18Bを流れる希溶液Swに回収させて希溶液Swの温度を上昇させる熱回収器としてのドレン熱回収器82が挿入されて配置されている。   A portion where the concentrated solution Sa of the regenerator can body 37 is led out and the concentrated solution spray nozzle 12 of the absorber 10 are connected by a concentrated solution tube 38. In the absorption refrigerator 1, the dilute solution Sw is conveyed to the regenerator can body 37 by the solution pump 19, and the concentrated solution Sa generated by the release of the refrigerant V in the regenerator can body 37 is passed through the concentrated solution tube 38. And is introduced into the concentrated solution spray nozzle 12. In the exchange dilute solution tube 18A and the concentrated solution tube 38, solution heat exchange as a heat exchanger that performs heat exchange between the dilute solution Sw flowing in the exchange dilute solution tube 18A and the concentrated solution Sa flowing in the concentrated solution tube 38 is performed. A device 81 is inserted and arranged. The recovered dilute solution pipe 18B and the drain pipe 33 serve as a heat recovery unit that recovers the heat of the drain liquid D flowing through the drain pipe 33 into the dilute solution Sw flowing through the recovered dilute solution pipe 18B and raises the temperature of the dilute solution Sw. The drain heat recovery device 82 is inserted and arranged.

また、回収希溶液管18Bには、ドレン熱回収器82よりも上流側に、最小流量オリフィス83と、絞り機構としての最大流量オリフィス85とが、希溶液Swの流れ方向に見てこの順で配設されている。最小流量オリフィス83は、回収希溶液管18Bにおける最小流量の希溶液Swを流す口径に形成されている。ここで、最小流量は、最低限確保することが必要な希溶液Swの流量である。最大流量オリフィス85は、回収希溶液管18Bにおける最大流量の希溶液Swを流す口径に形成されている。ここで、最大流量は、定格流量よりも大きく、例えば冷却水Qの入口温度との関係で回収希溶液管18Bを流れることを許容する最大の流量である。定格流量は、吸収冷凍機1が定格運転を行っている際に、回収希溶液管18Bを流れる希溶液Swの最適な流量である。定格運転は、想定された使用条件で吸収冷凍機1が運転することであり、想定された使用条件として、冷却水Qの入口温度、冷水Cの出口温度、熱源蒸気Hの圧力等が挙げられる。   Further, in the recovered dilute solution pipe 18B, a minimum flow orifice 83 and a maximum flow orifice 85 as a throttling mechanism are arranged upstream from the drain heat recovery device 82 in this order as viewed in the flow direction of the dilute solution Sw. It is arranged. The minimum flow rate orifice 83 is formed to have a diameter through which the dilute solution Sw having the minimum flow rate in the recovered dilute solution pipe 18B flows. Here, the minimum flow rate is a flow rate of the dilute solution Sw that needs to be secured at a minimum. The maximum flow orifice 85 is formed to have a diameter through which the dilute solution Sw having the maximum flow rate in the recovered dilute solution pipe 18B flows. Here, the maximum flow rate is larger than the rated flow rate, and is the maximum flow rate that allows the recovered dilute solution pipe 18B to flow in relation to the inlet temperature of the cooling water Q, for example. The rated flow rate is an optimum flow rate of the dilute solution Sw that flows through the recovered dilute solution pipe 18B when the absorption refrigerator 1 is performing the rated operation. The rated operation is that the absorption refrigerator 1 is operated under the assumed use conditions. Examples of the assumed use conditions include the inlet temperature of the cooling water Q, the outlet temperature of the cold water C, and the pressure of the heat source steam H. .

また、回収希溶液管18Bには、最小流量オリフィス83を迂回するように、バイパス管18Bbが設けられている。バイパス管18Bbは、最大流量の希溶液Swを流すことができる口径に形成されている。バイパス管18Bbには、流量調節機構としての希溶液流量制御弁84が配設されている。希溶液流量制御弁84は、開度を調節することにより、回収希溶液管18Bを流れる希溶液Swの流量を、最小流量と最大流量との間で任意に調節することができるように構成されている。希溶液流量制御弁84の開度を調節することで、交換希溶液管18Aを流れる希溶液Swの流量と、回収希溶液管18Bを流れる希溶液Swの流量との割合を調節することができるように構成されている。   The recovered diluted solution pipe 18B is provided with a bypass pipe 18Bb so as to bypass the minimum flow orifice 83. The bypass pipe 18Bb is formed to have a diameter that allows the dilute solution Sw having the maximum flow rate to flow. The bypass pipe 18Bb is provided with a dilute solution flow rate control valve 84 as a flow rate adjusting mechanism. The dilute solution flow control valve 84 is configured to be able to arbitrarily adjust the flow rate of the dilute solution Sw flowing through the recovered dilute solution pipe 18B between the minimum flow rate and the maximum flow rate by adjusting the opening degree. ing. By adjusting the opening of the diluted solution flow rate control valve 84, the ratio between the flow rate of the diluted solution Sw flowing through the exchange diluted solution tube 18A and the flow rate of the diluted solution Sw flowing through the recovered diluted solution tube 18B can be adjusted. It is configured as follows.

溶液熱交換器81より下流側の交換希溶液管18Aには、溶液熱交換器81から導出された希溶液Swの温度を検出する交換温度検出器としての交換温度計51が設けられている。交換温度計51は、制御装置60と信号ケーブルで接続されており、検出した希溶液Swの温度を信号として制御装置60に送信することができるように構成されている。ドレン熱回収器82より下流側の回収希溶液管18Bには、ドレン熱回収器82から導出された希溶液Swの温度を検出する回収温度検出器としての回収温度計52が設けられている。回収温度計52は、制御装置60と信号ケーブルで接続されており、検出した希溶液Swの温度を信号として制御装置60に送信することができるように構成されている。   An exchange thermometer 51 serving as an exchange temperature detector for detecting the temperature of the dilute solution Sw derived from the solution heat exchanger 81 is provided in the exchange dilute solution pipe 18 </ b> A downstream of the solution heat exchanger 81. The exchange thermometer 51 is connected to the control device 60 with a signal cable, and is configured to be able to transmit the detected temperature of the diluted solution Sw as a signal to the control device 60. A recovery thermometer 52 as a recovery temperature detector that detects the temperature of the diluted solution Sw led out from the drain heat recovery device 82 is provided in the recovery diluted solution pipe 18B downstream of the drain heat recovery device 82. The recovery thermometer 52 is connected to the control device 60 through a signal cable, and is configured to transmit the detected temperature of the diluted solution Sw as a signal to the control device 60.

制御装置60は、吸収冷凍機1の動作を制御する機器である。制御装置60は、溶液ポンプ19及び冷媒ポンプ29と、それぞれ信号ケーブルで接続されており、これらの発停を制御することができるように構成されている。また、制御装置60は、冷却水温度計15から冷却水Qの温度の信号を受信することができるように構成されている。また、制御装置60は、交換温度計51及び回収温度計52のそれぞれから、希溶液Swの温度の信号を受信することができるように構成されている。また、制御装置60は、希溶液流量制御弁84と信号ケーブルで接続されており、希溶液流量制御弁84の開度を調節することができるように構成されている。また、制御装置60は、後述する吸収冷凍機1の作用で説明するような吸収冷凍機1の制御を行うことができるように構成されている。   The control device 60 is a device that controls the operation of the absorption refrigerator 1. The control device 60 is connected to the solution pump 19 and the refrigerant pump 29 by signal cables, respectively, and is configured to be able to control the start and stop of these. Further, the control device 60 is configured to receive a signal of the temperature of the cooling water Q from the cooling water thermometer 15. Further, the control device 60 is configured to be able to receive a temperature signal of the dilute solution Sw from each of the replacement thermometer 51 and the recovery thermometer 52. The control device 60 is connected to the dilute solution flow control valve 84 through a signal cable, and is configured to be able to adjust the opening degree of the dilute solution flow control valve 84. Moreover, the control apparatus 60 is comprised so that control of the absorption refrigerator 1 as demonstrated by the effect | action of the absorption refrigerator 1 mentioned later can be performed.

引き続き図1を参照して、吸収冷凍機1の作用を説明する。まず、吸収冷凍機1の定常運転時の作用を説明する。吸収冷凍機1の定常運転時は、制御装置60からの指令により、溶液ポンプ19及び冷媒ポンプ29がそれぞれ稼働している。冷媒V側のサイクルについて見ると、再生器冷媒蒸気流路35を介して再生器30から凝縮器40に導入された再生器冷媒蒸気Vgは、凝縮管41を流れる冷却水Qに冷却されて凝縮し、冷媒液Vfとなって凝縮器缶胴47の下部に貯留される。再生器冷媒蒸気Vgを冷却した冷却水Qは、温度が上昇して冷却水出口管41bから導出され、冷却塔(不図示)に供給される。凝縮器缶胴47内の冷媒液Vfは、凝縮冷媒液管48を介して蒸発器缶胴27内に導入される。   With continued reference to FIG. 1, the operation of the absorption refrigerator 1 will be described. First, the operation at the time of steady operation of the absorption refrigerator 1 will be described. During the steady operation of the absorption refrigerator 1, the solution pump 19 and the refrigerant pump 29 are respectively operated according to commands from the control device 60. Looking at the cycle on the refrigerant V side, the regenerator refrigerant vapor Vg introduced from the regenerator 30 to the condenser 40 via the regenerator refrigerant vapor channel 35 is cooled and condensed by the cooling water Q flowing through the condenser pipe 41. The refrigerant liquid Vf is stored in the lower portion of the condenser can body 47. The cooling water Q that has cooled the regenerator refrigerant vapor Vg rises in temperature, is led out from the cooling water outlet pipe 41b, and is supplied to a cooling tower (not shown). The refrigerant liquid Vf in the condenser can body 47 is introduced into the evaporator can body 27 via the condensed refrigerant liquid pipe 48.

凝縮器缶胴47から蒸発器缶胴27に導入された冷媒液Vfは、冷媒液散布ノズル22から散布されて蒸発しなかった冷媒液Vfと混合して蒸発器缶胴27の下部に貯留される。蒸発器缶胴27内の冷媒液Vfは、冷媒ポンプ29により、冷媒液管28を流れて冷媒液散布ノズル22に至る。冷媒液散布ノズル22に至った冷媒液Vfは、蒸発管21に向けて散布され、蒸発管21を流れる冷水Cの熱を得て一部が蒸発して蒸発器冷媒蒸気Veとなり、吸収器缶胴17に導入される。散布された冷媒液Vfに熱を奪われた冷水Cは、温度が低下して蒸発管21から導出され、空気調和機等の冷水Cの利用場所に供給される。冷媒液散布ノズル22から散布されて蒸発しなかった冷媒液Vfは、凝縮器缶胴47から導入された冷媒液Vfと混合して蒸発器缶胴27の下部に貯留される。   The refrigerant liquid Vf introduced from the condenser can body 47 into the evaporator can body 27 is mixed with the refrigerant liquid Vf sprayed from the refrigerant liquid spray nozzle 22 and not evaporated, and stored in the lower portion of the evaporator can body 27. The The refrigerant liquid Vf in the evaporator can body 27 flows through the refrigerant liquid pipe 28 to the refrigerant liquid spray nozzle 22 by the refrigerant pump 29. The refrigerant liquid Vf that has reached the refrigerant liquid spray nozzle 22 is sprayed toward the evaporation pipe 21, obtains the heat of the cold water C flowing through the evaporation pipe 21, and partially evaporates to become the evaporator refrigerant vapor Ve, and the absorber can It is introduced into the trunk 17. The cold water C deprived of heat by the sprayed refrigerant liquid Vf is led out from the evaporation pipe 21 with the temperature lowered, and is supplied to a place where the cold water C is used such as an air conditioner. The refrigerant liquid Vf sprayed from the refrigerant liquid spray nozzle 22 and not evaporated is mixed with the refrigerant liquid Vf introduced from the condenser can body 47 and stored in the lower portion of the evaporator can body 27.

次に吸収冷凍機1の溶液S側のサイクルを見ると、吸収器缶胴17内の希溶液Swは、溶液ポンプ19により、まず希溶液管18を流れ、交換希溶液管18Aと回収希溶液管18Bとに分流し、溶液熱交換器81及びドレン熱回収器82でそれぞれ温度が上昇した後に、本実施の形態では再び1本の希溶液管18に合流し、再生器缶胴37に導入される。なお、溶液熱交換器81及びドレン熱回収器82でそれぞれ温度が上昇した希溶液Swが、1本の希溶液管18に合流せず、別々に再生器缶胴37に導入されるように構成されていてもよい。再生器缶胴37に導入された希溶液Swは、加熱部31に供給された熱源蒸気Hが保有する熱によって加熱され、冷媒Vが離脱して濃溶液Saとなる。他方、希溶液Swから離脱した冷媒Vは、再生器冷媒蒸気Vgとして、再生器冷媒蒸気流路35を介して凝縮器缶胴47内に送られる。再生器缶胴37内で生成された濃溶液Saは、濃溶液管38を流れ、溶液熱交換器81において希溶液Swと熱交換して温度が低下したうえで濃溶液散布ノズル12に至る。なお、加熱部31で溶液Sに熱を与えた熱源蒸気Hは、凝縮してドレン液Dとなってドレン管33を流れ、ドレン熱回収器82において希溶液Swと熱交換して温度が低下したうえで吸収冷凍機1外に排出される。   Next, looking at the solution S side cycle of the absorption refrigerator 1, the dilute solution Sw in the absorber canister 17 first flows through the dilute solution pipe 18 by the solution pump 19, and the exchange dilute solution pipe 18 </ b> A and the recovered dilute solution are collected. After the temperature is increased by the solution heat exchanger 81 and the drain heat recovery device 82, the temperature is increased by the solution heat exchanger 81 and the drain heat recovery device 82, and then, in this embodiment, the temperature is again merged with one dilute solution tube 18 and introduced into the regenerator can body 37. Is done. The dilute solution Sw whose temperature has risen in each of the solution heat exchanger 81 and the drain heat recovery unit 82 is not merged into one dilute solution pipe 18 and is introduced into the regenerator can body 37 separately. May be. The dilute solution Sw introduced into the regenerator can body 37 is heated by the heat held by the heat source vapor H supplied to the heating unit 31, and the refrigerant V is released to become a concentrated solution Sa. On the other hand, the refrigerant V separated from the dilute solution Sw is sent as regenerator refrigerant vapor Vg into the condenser can body 47 via the regenerator refrigerant vapor channel 35. The concentrated solution Sa generated in the regenerator can body 37 flows through the concentrated solution tube 38 and heat exchanges with the dilute solution Sw in the solution heat exchanger 81 to reach the concentrated solution spray nozzle 12 after the temperature is lowered. In addition, the heat source vapor | steam H which gave the heat | fever to the solution S in the heating part 31 condenses, becomes the drain liquid D, flows through the drain pipe 33, and heat-exchanges with the dilute solution Sw in the drain heat recovery device 82, and temperature falls. After that, it is discharged out of the absorption refrigerator 1.

濃溶液散布ノズル12に至った濃溶液Saは、冷却管11に向けて散布され、蒸発器20から導入された蒸発器冷媒蒸気Veを吸収し濃度が低下して希溶液Swとなる。吸収器缶胴17内において、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際には吸収熱が発生する。この発生した吸収熱は、冷却管11を流れる冷却水Qによって除去される。冷却管11を流れる冷却水Qは、吸収熱を奪って温度上昇して冷却水連絡管58に導出され、凝縮器40の凝縮管41に供給される。吸収器缶胴17内で生じた希溶液Swは、吸収器缶胴17内に貯留される。   The concentrated solution Sa reaching the concentrated solution spraying nozzle 12 is sprayed toward the cooling pipe 11, absorbs the evaporator refrigerant vapor Ve introduced from the evaporator 20, decreases in concentration, and becomes a diluted solution Sw. In the absorber can body 17, when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve, absorption heat is generated. The generated absorbed heat is removed by the cooling water Q flowing through the cooling pipe 11. The cooling water Q flowing through the cooling pipe 11 is deprived of absorbed heat, rises in temperature, is led to the cooling water communication pipe 58, and is supplied to the condensing pipe 41 of the condenser 40. The dilute solution Sw generated in the absorber can body 17 is stored in the absorber can body 17.

上述のように作用する吸収冷凍機1は、本実施の形態では、定格運転時、冷却水Qの入口温度が32℃、冷水Cの出口温度が7℃、負荷率が100%となっている。吸収冷凍機1は、制御装置60が、交換温度計51及び回収温度計52のそれぞれから希溶液Swの温度の信号を受信し、交換温度計51で検出された温度と回収温度計52で検出された温度との差が所定の範囲になるように、希溶液流量制御弁84の開度を調節する。詳細には、交換温度計51で検出された温度が回収温度計52で検出された温度よりも高い場合は、回収希溶液管18Bを流れる希溶液Swの流量が減少するように希溶液流量制御弁84の開度を調節し、逆に、交換温度計51で検出された温度よりも回収温度計52で検出された温度が高い場合は、回収希溶液管18Bを流れる希溶液Swの流量が増加するように希溶液流量制御弁84の開度を調節する。このように希溶液流量制御弁84を制御することで、再生器30に導入される希溶液Swの温度を最大化(希溶液Swが回収する熱を最大化)することができ、熱回収効率を向上させることができる。なお、交換温度計51で検出された温度と回収温度計52で検出された温度との差がゼロに近づくほど熱回収効率が高くなるため、所定の範囲はゼロであることが好ましいが、制御の安定性の観点から、所定の範囲は許容できる範囲で適宜設定するとよい。   In the present embodiment, the absorption refrigerator 1 acting as described above has an inlet temperature of the cooling water Q of 32 ° C., an outlet temperature of the cold water C of 7 ° C., and a load factor of 100% during rated operation. . In the absorption refrigerator 1, the control device 60 receives the temperature signal of the dilute solution Sw from each of the replacement thermometer 51 and the recovery thermometer 52, and detects the temperature detected by the replacement thermometer 51 and the recovery thermometer 52. The opening degree of the dilute solution flow control valve 84 is adjusted so that the difference from the measured temperature falls within a predetermined range. Specifically, when the temperature detected by the replacement thermometer 51 is higher than the temperature detected by the recovery thermometer 52, the dilute solution flow rate control is performed so that the flow rate of the dilute solution Sw flowing through the recovery dilute solution pipe 18B decreases. When the opening of the valve 84 is adjusted and, conversely, when the temperature detected by the recovery thermometer 52 is higher than the temperature detected by the replacement thermometer 51, the flow rate of the diluted solution Sw flowing through the recovered diluted solution pipe 18B is The opening degree of the diluted solution flow rate control valve 84 is adjusted so as to increase. By controlling the diluted solution flow rate control valve 84 in this way, the temperature of the diluted solution Sw introduced into the regenerator 30 can be maximized (the heat recovered by the diluted solution Sw can be maximized), and the heat recovery efficiency Can be improved. Note that the heat recovery efficiency increases as the difference between the temperature detected by the replacement thermometer 51 and the temperature detected by the recovery thermometer 52 approaches zero, so that the predetermined range is preferably zero. From the viewpoint of stability, the predetermined range may be appropriately set within an allowable range.

ここで、冷却水Qの入口温度及び冷水Cの出口温度が変わらずに吸収冷凍機1の負荷が減少した場合、制御装置60は、再生器30の内圧と吸収器10の内圧との差に関連して、吸収器10から再生器30に搬送される希溶液Swの流量を減少させるように、溶液ポンプ19の吐出流量を制御する。また、再生器30の加熱部31から排出されてドレン熱回収器82に導入されるドレン液Dの流量やエンタルピが減少することとなる。ドレン熱回収器82に導入されるドレン液Dの流量やエンタルピが減少すると、ドレン熱回収器82において希溶液Swがドレン液Dから回収できる熱量が少なくなるため、回収温度計52で検出される温度が低下する。そして、回収温度計52で検出された温度が、交換温度計51で検出された温度よりも所定の範囲を超えて低下した場合、制御装置60は、回収希溶液管18Bを流れる希溶液Swの流量が減少するように希溶液流量制御弁84の開度を調節し、交換温度計51で検出された温度と回収温度計52で検出された温度との差が所定の範囲になるようにする。このようにして、吸収冷凍機1の負荷が減少した場合に、回収希溶液管18Bを流れる希溶液Swの流量を減少させて、再生器30に導入される希溶液Swが回収する熱を最大化し、熱回収効率を向上させる。   Here, when the load of the absorption refrigerator 1 decreases without changing the inlet temperature of the cooling water Q and the outlet temperature of the cold water C, the control device 60 determines the difference between the internal pressure of the regenerator 30 and the internal pressure of the absorber 10. Relatedly, the discharge flow rate of the solution pump 19 is controlled so that the flow rate of the dilute solution Sw conveyed from the absorber 10 to the regenerator 30 is decreased. In addition, the flow rate and enthalpy of the drain liquid D discharged from the heating unit 31 of the regenerator 30 and introduced into the drain heat recovery unit 82 are reduced. When the flow rate and enthalpy of the drain liquid D introduced into the drain heat recovery device 82 are decreased, the amount of heat that can be recovered from the drain solution D in the drain heat recovery device 82 decreases, and thus the recovery thermometer 52 detects the heat. The temperature drops. When the temperature detected by the recovery thermometer 52 falls below a predetermined range from the temperature detected by the replacement thermometer 51, the control device 60 causes the diluted solution Sw of the recovered diluted solution pipe 18B to flow. The opening degree of the dilute solution flow control valve 84 is adjusted so that the flow rate decreases, so that the difference between the temperature detected by the replacement thermometer 51 and the temperature detected by the recovery thermometer 52 falls within a predetermined range. . In this way, when the load of the absorption refrigerator 1 is reduced, the flow rate of the diluted solution Sw flowing through the recovered diluted solution tube 18B is decreased to maximize the heat recovered by the diluted solution Sw introduced into the regenerator 30. To improve heat recovery efficiency.

他方、吸収冷凍機1が定格負荷付近で運転を行っている状態で、冷却水Qの入口温度が低下した場合、吸収冷凍機1の内圧が低下し、これに伴って濃溶液Saの流量が減少し、希溶液Swの流量も減少する。この場合、ドレン熱回収器82に導入されるドレン液Dの流量やエンタルピは若干低下するが、それ以上にドレン熱回収器82に供給される希溶液Swの流量が減少してしまい、回収温度計52で検出される温度が上昇する。そして、回収温度計52で検出された温度が、交換温度計51で検出された温度よりも所定の範囲を超えて上昇した場合、制御装置60は、回収希溶液管18Bを流れる希溶液Swの流量が増加するように希溶液流量制御弁84の開度を調節し、交換温度計51で検出された温度と回収温度計52で検出された温度との差が所定の範囲になるようにする。回収希溶液管18Bを流れる希溶液Swの流量は、最大流量まで増加させることができる。最大流量オリフィス85によって回収希溶液管18Bを流れる希溶液Swの流量の増加を最大流量にとどめることで、何らかの原因で回収希溶液管18Bを流れる希溶液Swの流量が増加しすぎてしまって却ってドレン熱回収器82から導出された希溶液Swの温度が低下してしまうことを防ぐことができる。このようにして、冷却水Qの入口温度が低下した場合に、回収希溶液管18Bを流れる希溶液Swの流量を増加させて、再生器30に導入される希溶液Swが回収する熱を最大化し、熱回収効率を向上させる。このように、本実施の形態では、交換温度計51で検出された温度と回収温度計52で検出された温度との差が所定の範囲になるように希溶液流量制御弁84の開度を調節することで、ドレン熱回収器82に導入されるドレン液Dの流量の、ドレン熱回収器82に導入される希溶液Swの流量に対する比(D/Sw)が所定の比率になるようにしている。ここで、所定の比率は、再生器30に導入される希溶液Swが回収する熱量を極力大きくすることができる比率であり、許容できる程度の幅があってもよい。   On the other hand, when the inlet temperature of the cooling water Q is lowered while the absorption refrigerator 1 is operating near the rated load, the internal pressure of the absorption refrigerator 1 is reduced, and the flow rate of the concentrated solution Sa is accordingly reduced. The flow rate of the dilute solution Sw is also reduced. In this case, the flow rate and enthalpy of the drain liquid D introduced into the drain heat recovery device 82 are slightly reduced, but the flow rate of the dilute solution Sw supplied to the drain heat recovery device 82 is further reduced, and the recovery temperature is reduced. The temperature detected by the total 52 increases. When the temperature detected by the recovery thermometer 52 rises beyond a predetermined range from the temperature detected by the replacement thermometer 51, the control device 60 causes the diluted solution Sw of the recovered diluted solution pipe 18B to flow. The opening degree of the dilute solution flow control valve 84 is adjusted so that the flow rate increases, so that the difference between the temperature detected by the replacement thermometer 51 and the temperature detected by the recovery thermometer 52 falls within a predetermined range. . The flow rate of the diluted solution Sw flowing through the recovered diluted solution tube 18B can be increased to the maximum flow rate. By restricting the increase in the flow rate of the dilute solution Sw flowing through the recovered dilute solution pipe 18B to the maximum flow rate by the maximum flow orifice 85, the flow rate of the dilute solution Sw flowing through the recovered dilute solution tube 18B is excessively increased for some reason. It is possible to prevent the temperature of the dilute solution Sw derived from the drain heat recovery unit 82 from being lowered. In this way, when the inlet temperature of the cooling water Q decreases, the flow rate of the dilute solution Sw flowing through the collective dilute solution tube 18B is increased so that the heat recovered by the dilute solution Sw introduced into the regenerator 30 is maximized. To improve heat recovery efficiency. Thus, in the present embodiment, the opening of the dilute solution flow control valve 84 is set so that the difference between the temperature detected by the replacement thermometer 51 and the temperature detected by the recovery thermometer 52 falls within a predetermined range. By adjusting, the ratio (D / Sw) of the flow rate of the drain liquid D introduced into the drain heat recovery unit 82 to the flow rate of the dilute solution Sw introduced into the drain heat recovery unit 82 becomes a predetermined ratio. ing. Here, the predetermined ratio is a ratio at which the amount of heat recovered by the dilute solution Sw introduced into the regenerator 30 can be increased as much as possible, and may have a permissible range.

図2に、ドレン熱回収器82に導入されるドレン液Dの流量のドレン熱回収器82に導入される希溶液Swに対する比(D/Sw)と、ドレン熱回収器82に導入される希溶液Swの流量の溶液熱交換器81に導入される希溶液Swの流量に対する比(R)との関係のグラフを示す。図2に示すグラフは、説明の簡単のために両者の関係を線形にしているが、希溶液流量制御弁84の特性などにより、線形になっていなくてもかまわない。吸収冷凍機1が定格運転を行っているとき、比D/Swは定格点となり、このときの比Rは定格流量比Rrとなる。吸収冷凍機1の負荷率が低下して行き、加熱部31から排出されるドレン液Dが減少して行く、すなわち比D/Swが減少して行くと、制御装置60による希溶液流量制御弁84の制御によって回収希溶液管18Bを流れる希溶液Swの流量が減少して行く、すなわち比Rが減少して行くこととなる。そして、回収希溶液管18Bを流れる希溶液Swの流量が最小流量となると、比Rは最低流量比Rminとなってこれよりも低下することはなくなる。他方、吸収冷凍機1に供給される冷却水Qの温度が低下して希溶液Swの流量が減少し、比D/Swが増加して行くと、制御装置60による希溶液流量制御弁84の制御によって回収希溶液管18Bを流れる希溶液Swの流量が増加して行く、すなわち比Rが増加して行くこととなる。そして、回収希溶液管18Bを流れる希溶液Swの流量が最大流量となると、比Rは最高流量比Rmaxとなってこれよりも増加することはなくなる。   FIG. 2 shows the ratio (D / Sw) of the flow rate of the drain liquid D introduced into the drain heat recovery unit 82 to the dilute solution Sw introduced into the drain heat recovery unit 82, and the rare amount introduced into the drain heat recovery unit 82. The graph of the relationship with ratio (R) with respect to the flow volume of the dilute solution Sw introduced into the solution heat exchanger 81 of the flow volume of the solution Sw is shown. In the graph shown in FIG. 2, the relationship between the two is linear for simplicity of explanation, but it may not be linear depending on the characteristics of the dilute solution flow control valve 84. When the absorption refrigerator 1 is performing a rated operation, the ratio D / Sw is a rated point, and the ratio R at this time is a rated flow ratio Rr. When the load factor of the absorption refrigerator 1 decreases and the drain liquid D discharged from the heating unit 31 decreases, that is, the ratio D / Sw decreases, the dilute solution flow rate control valve by the control device 60 By the control of 84, the flow rate of the dilute solution Sw flowing through the recovered dilute solution pipe 18B decreases, that is, the ratio R decreases. When the flow rate of the dilute solution Sw flowing through the recovered dilute solution tube 18B becomes the minimum flow rate, the ratio R becomes the minimum flow rate ratio Rmin and does not decrease further. On the other hand, when the temperature of the cooling water Q supplied to the absorption refrigerator 1 is decreased and the flow rate of the dilute solution Sw is decreased and the ratio D / Sw is increased, the dilute solution flow rate control valve 84 of the control device 60 increases. The flow rate of the dilute solution Sw flowing through the recovered dilute solution tube 18B is increased by the control, that is, the ratio R is increased. When the flow rate of the dilute solution Sw flowing through the recovered dilute solution tube 18B reaches the maximum flow rate, the ratio R becomes the maximum flow rate ratio Rmax and does not increase further.

図3(A)に、吸収冷凍機1の負荷率の低下に伴って比Rを低下させた場合における、冷却水Q入口温度をパラメータとした、吸収冷凍機1の負荷率と、熱源蒸気Hの消費率との関係のグラフを示す。図中、曲線Q20は冷却水Q入口温度が20℃のときのもの、曲線Q32は冷却水Q入口温度が32℃のときのものであり、それぞれ、破線はドレン熱回収器82に導入される希溶液Swの流量の溶液熱交換器81に導入される希溶液Swの流量に対する比Rを定格点から変化させない場合、実線は負荷率の低下に伴って比Rを低下させた場合を示している。図3(A)から分かるように、吸収冷凍機1の部分負荷運転時は、冷却水Q入口温度が高いほど、また、負荷率が低いほど、蒸気消費率の削減効果が大きい、すなわち効率が向上している。   FIG. 3A shows the load factor of the absorption chiller 1 and the heat source steam H, using the cooling water Q inlet temperature as a parameter when the ratio R is reduced as the load factor of the absorption chiller 1 is reduced. The graph of the relationship with the consumption rate is shown. In the figure, curve Q20 is when the cooling water Q inlet temperature is 20 ° C., curve Q32 is when the cooling water Q inlet temperature is 32 ° C., and the broken line is introduced into the drain heat recovery unit 82, respectively. When the ratio R of the flow rate of the dilute solution Sw to the flow rate of the dilute solution Sw introduced into the solution heat exchanger 81 is not changed from the rated point, the solid line indicates the case where the ratio R is decreased as the load factor decreases. Yes. As can be seen from FIG. 3A, during the partial load operation of the absorption chiller 1, the higher the cooling water Q inlet temperature and the lower the load factor, the greater the effect of reducing the steam consumption rate, that is, the efficiency. It has improved.

図3(B)に、冷却水Qの入口温度の低下に伴って比Rを増加させた場合における、冷却水Q入口温度をパラメータとした、吸収冷凍機1の負荷率と、熱源蒸気Hの消費率との関係のグラフを示す。図中、曲線Q20は冷却水Q入口温度が20℃のときのもの、曲線Q32は冷却水Q入口温度が32℃のときのものであり、曲線Q20における破線はドレン熱回収器82に導入される希溶液Swの流量の溶液熱交換器81に導入される希溶液Swの流量に対する比Rを定格点から変化させない場合、実線は冷却水Q入口温度の低下に伴って比Rを増加させた場合を示している。図3(B)から分かるように、吸収冷凍機1の定格運転時は、冷却水Qの入口温度が低下すると、負荷率が高いほど、蒸気消費率の削減効果が大きい、すなわち効率が向上している。   FIG. 3B shows the load factor of the absorption chiller 1 and the heat source steam H with the ratio of the cooling water Q inlet temperature as a parameter when the ratio R is increased as the cooling water Q inlet temperature decreases. The graph of the relationship with a consumption rate is shown. In the figure, the curve Q20 is when the cooling water Q inlet temperature is 20 ° C., the curve Q32 is when the cooling water Q inlet temperature is 32 ° C., and the broken line in the curve Q20 is introduced into the drain heat recovery device 82. When the ratio R of the flow rate of the diluted solution Sw to the flow rate of the diluted solution Sw introduced into the solution heat exchanger 81 is not changed from the rated point, the solid line increases the ratio R as the cooling water Q inlet temperature decreases. Shows the case. As can be seen from FIG. 3 (B), during the rated operation of the absorption refrigerator 1, when the inlet temperature of the cooling water Q decreases, the higher the load factor, the greater the effect of reducing the steam consumption rate, that is, the efficiency is improved. ing.

以上で説明したように、本実施の形態に係る吸収冷凍機1によれば、負荷が減少して凝縮するドレン液Dの流量が減少した場合、あるいは、冷却水Qの入口温度が低下して希溶液Swの流量が減少した場合に、比D/Swの変動に応じて、交換希溶液管18Aを流れる希溶液Swの流量と回収希溶液管18Bを流れる希溶液Swの流量との割合を調節するので、再生器30に導入される希溶液Swが回収する熱を最大化することができ、効率を向上させることができる。また、希溶液Swの流量の割合を調節するに際し、交換温度計51で検出された温度と回収温度計52で検出された温度との差が所定の範囲になるように希溶液流量制御弁84の開度を調節するので、簡便に適切な流量配分を行うことができる。   As explained above, according to the absorption refrigerator 1 according to the present embodiment, when the load decreases and the flow rate of the condensed drain liquid D decreases, or the inlet temperature of the cooling water Q decreases. When the flow rate of the dilute solution Sw decreases, the ratio of the flow rate of the dilute solution Sw flowing through the exchange dilute solution tube 18A and the flow rate of the dilute solution Sw flowing through the recovered dilute solution tube 18B according to the change in the ratio D / Sw. Therefore, the heat recovered by the dilute solution Sw introduced into the regenerator 30 can be maximized, and the efficiency can be improved. Further, when the ratio of the flow rate of the dilute solution Sw is adjusted, the dilute solution flow rate control valve 84 is set so that the difference between the temperature detected by the replacement thermometer 51 and the temperature detected by the recovery thermometer 52 falls within a predetermined range. Therefore, appropriate flow rate distribution can be easily performed.

以上の説明では、絞り機構が、最大流量オリフィス85であるとしたが、開度の調節が可能な弁(手動であるか自動であるかは問わない)であってもよい。絞り機構が開度の調節が可能な弁で構成されている場合、最大流量の設定を適宜変更することができる。他方、絞り機構が最大流量オリフィス85で構成されている場合は、最大流量が誤って変わってしまうことを防ぐことができる。なお、最大流量オリフィス85を用いる場合でも、オリフィスを入れ替えることで最大流量の設定を変更することが可能である。   In the above description, the throttle mechanism is the maximum flow orifice 85, but it may be a valve (regardless of whether it is manual or automatic) whose opening degree can be adjusted. When the throttle mechanism is configured by a valve capable of adjusting the opening, the setting of the maximum flow rate can be changed as appropriate. On the other hand, when the throttle mechanism is constituted by the maximum flow orifice 85, it is possible to prevent the maximum flow rate from being changed by mistake. Even when the maximum flow orifice 85 is used, the setting of the maximum flow can be changed by replacing the orifice.

以上の説明では、交換希溶液管18Aを流れる希溶液Swの流量と回収希溶液管18Bを流れる希溶液Swの流量との割合を調節するに際し、交換温度計51で検出された温度と回収温度計52で検出された温度との差が所定の範囲になるように希溶液流量制御弁84の開度を調節することとしたが、定格運転時の希溶液Swの流量の割合に対して、冷却水温度計15で検出された温度が低下するのに応じて回収希溶液管18Bを流れる希溶液Swの流量が増加するように、希溶液流量制御弁84の開度を調節することとしてもよい。この場合、交換温度計51及び回収温度計52を省略してもよい。なお、冷却水温度計15で検出された温度に基づく制御を行わない場合は、冷却水温度計15を省略してもよい。   In the above description, when adjusting the ratio between the flow rate of the dilute solution Sw flowing through the exchange dilute solution tube 18A and the flow rate of the dilute solution Sw flowing through the recovery dilute solution tube 18B, the temperature detected by the exchange thermometer 51 and the recovery temperature. The opening degree of the dilute solution flow rate control valve 84 is adjusted so that the difference from the temperature detected by the total 52 is within a predetermined range. However, with respect to the ratio of the dilute solution Sw flow rate during rated operation, Even if the opening degree of the dilute solution flow control valve 84 is adjusted so that the flow rate of the dilute solution Sw flowing through the recovered dilute solution pipe 18B increases as the temperature detected by the cooling water thermometer 15 decreases. Good. In this case, the replacement thermometer 51 and the recovery thermometer 52 may be omitted. Note that the cooling water thermometer 15 may be omitted when the control based on the temperature detected by the cooling water thermometer 15 is not performed.

以上の説明では、流量調節機構が、最小流量オリフィス83を迂回するバイパス管18Bbに配設された、開度を無段階に調節可能な希溶液流量制御弁84で構成されているとしたが、以下のように構成されていてもよい。
図4は、流量調節機構の変形例を示す部分系統図である。図4に示す変形例の、図1に示す希溶液流量制御弁84まわりの構成との相違点は、以下の通りである。まず、最小流量オリフィス83と最大流量オリフィス85との間の回収希溶液管18Bに、定格流量の希溶液Swを流す定格流量オリフィス184が配設されている。最小流量オリフィス83を迂回する最小バイパス管318B(図1におけるバイパス管18Bbに相当)には、希溶液流量制御弁84(図1参照)に代えて、最小バイパス管318Bの流路を開閉する電磁弁283が配設されている。また、回収希溶液管18Bには、定格流量オリフィス184を迂回する定格バイパス管418Bが設けられている。定格バイパス管418Bには、その流路を開閉する電磁弁284が配設されている。電磁弁283を開にしたときの最小バイパス管318B、及び電磁弁284を開にしたときの定格バイパス管418Bは、最大流量の希溶液Swを流すことができる口径に形成されている。なお、図4に示す変形例では、最小流量オリフィス83と定格流量オリフィス184との間の回収希溶液管18Bに接続される管が、最小バイパス管318Bと定格バイパス管418Bとを兼ねている。
In the above description, the flow rate adjustment mechanism is configured by the dilute solution flow rate control valve 84 that is disposed in the bypass pipe 18Bb that bypasses the minimum flow rate orifice 83 and can adjust the opening degree steplessly. It may be configured as follows.
FIG. 4 is a partial system diagram showing a modification of the flow rate adjusting mechanism. The difference between the modification shown in FIG. 4 and the configuration around the dilute solution flow control valve 84 shown in FIG. 1 is as follows. First, a rated flow orifice 184 through which a diluted solution Sw of a rated flow is passed is disposed in the recovered diluted solution pipe 18B between the minimum flow orifice 83 and the maximum flow orifice 85. A minimum bypass pipe 318B that bypasses the minimum flow orifice 83 (corresponding to the bypass pipe 18Bb in FIG. 1) is an electromagnetic that opens and closes the flow path of the minimum bypass pipe 318B instead of the dilute solution flow control valve 84 (see FIG. 1). A valve 283 is provided. The recovered dilute solution pipe 18B is provided with a rated bypass pipe 418B that bypasses the rated flow orifice 184. The rated bypass pipe 418B is provided with an electromagnetic valve 284 that opens and closes the flow path. The minimum bypass pipe 318B when the electromagnetic valve 283 is opened and the rated bypass pipe 418B when the electromagnetic valve 284 is opened are formed to have a diameter capable of flowing the dilute solution Sw having the maximum flow rate. In the modification shown in FIG. 4, the pipe connected to the recovered dilute solution pipe 18B between the minimum flow orifice 83 and the rated flow orifice 184 also serves as the minimum bypass pipe 318B and the rated bypass pipe 418B.

上述のように構成された図4に示す変形例では、最大流量オリフィス85の下流側の回収希溶液管18Bを流れる希溶液Swの流量が、2つの電磁弁283、284を開にしたときに最大流量となり、電磁弁283を開かつ電磁弁284を閉にしたときに定格流量となり、少なくとも電磁弁283を閉にしたときに最小流量となる。このように、図4に示す変形例では、制御装置が、各バイパス管に配設された電磁弁の開閉を切り替えるだけで、あらかじめ設定された複数の流量の中から選択された流量の希溶液Swを流すことができる。なお、図4に示す変形例では、最大流量、定格流量、最小流量の3種類の中から流量を選択する構成となっているが、任意の設定流量のオリフィスと、当該オリフィスを迂回する最大流量を流すことができるバイパス管(開閉弁が配設される)との組を、回収希溶液管18Bに設けることで、流量の選択の幅を広げることができる。   In the modification shown in FIG. 4 configured as described above, when the flow rate of the dilute solution Sw flowing through the recovered dilute solution pipe 18B on the downstream side of the maximum flow orifice 85 is when the two electromagnetic valves 283 and 284 are opened. The maximum flow rate is obtained when the electromagnetic valve 283 is opened and the electromagnetic valve 284 is closed, and the minimum flow rate is obtained when at least the electromagnetic valve 283 is closed. As described above, in the modification shown in FIG. 4, the control device simply switches the opening and closing of the electromagnetic valve disposed in each bypass pipe, and the dilute solution having a flow rate selected from a plurality of preset flow rates. Sw can flow. In the modification shown in FIG. 4, the flow rate is selected from the three types of maximum flow rate, rated flow rate, and minimum flow rate, but an orifice with an arbitrarily set flow rate and a maximum flow rate that bypasses the orifice. By providing the recovered dilute solution pipe 18B with a set of a bypass pipe (with an on-off valve provided) through which the flow rate can flow, the range of flow rate selection can be expanded.

以上の説明では、冷却水Qが、吸収器11に導入された後に凝縮器40に導入される構成を例示したが、凝縮器40に導入された後に吸収器11に導入される構成であってもよく、吸収器10と凝縮器40とに並列に導入される構成であってもよい。   In the above description, the configuration in which the cooling water Q is introduced into the condenser 40 after being introduced into the absorber 11 is exemplified. However, the cooling water Q is introduced into the absorber 11 after being introduced into the condenser 40. Alternatively, a configuration in which the absorber 10 and the condenser 40 are introduced in parallel may be employed.

以上の説明では、理解の容易のために、吸収冷凍機1が単効用の構成であるとしたが、複数の再生器を有する多重効用の吸収冷凍機、あるいは、動作圧力の異なる複数の蒸発器/吸収器を有する吸収冷凍機にも適用することができる。
図5(A)は、パラレルフローの二重効用吸収冷凍機1Aの溶液側の部分系統図である。吸収冷凍機1Aは、主に以下の点で、吸収冷凍機1(図1参照)と異なっている。吸収冷凍機1Aは、再生器が高温再生器30Hと低温再生器30Lとに分かれている。吸収冷凍機1Aは、吸収器10から導出された希溶液Swが、高温再生器30H及び低温再生器30Lに並列に供給されるように構成されている。高温再生器30Hは、熱源蒸気Hを導入する加熱部31が高温再生器30Hに設けられており、導入した希溶液Swの流量を熱源蒸気Hで加熱して、高温濃溶液SaHを生成するように構成されている。低温再生器30Lは、高温再生器30Hで生成された冷媒の蒸気を熱源として、導入した希溶液Swを加熱し、低温濃溶液SaL生成するように構成されている。希溶液管18には、高温濃溶液SaHと低温濃溶液SaLとが混合した濃溶液Saと、希溶液Swとで熱交換させる低温溶液熱交換器81Lが配設されている。
In the above description, for the sake of easy understanding, the absorption refrigerator 1 has a single-effect configuration, but a multiple-effect absorption refrigerator having a plurality of regenerators or a plurality of evaporators having different operating pressures. / It can also be applied to an absorption refrigerator having an absorber.
FIG. 5 (A) is a partial system diagram on the solution side of the parallel flow double-effect absorption refrigerator 1A. The absorption refrigerator 1A is different from the absorption refrigerator 1 (see FIG. 1) mainly in the following points. In the absorption refrigerator 1A, the regenerator is divided into a high temperature regenerator 30H and a low temperature regenerator 30L. The absorption refrigerator 1A is configured such that the dilute solution Sw derived from the absorber 10 is supplied in parallel to the high temperature regenerator 30H and the low temperature regenerator 30L. In the high temperature regenerator 30H, the heating unit 31 for introducing the heat source steam H is provided in the high temperature regenerator 30H, and the flow rate of the introduced dilute solution Sw is heated with the heat source steam H so as to generate the high temperature concentrated solution SaH. It is configured. The low temperature regenerator 30L is configured to heat the introduced dilute solution Sw using the vapor of the refrigerant generated in the high temperature regenerator 30H as a heat source to generate a low temperature concentrated solution SaL. The dilute solution tube 18 is provided with a concentrated solution Sa obtained by mixing the high temperature concentrated solution SaH and the low temperature concentrated solution SaL, and a low temperature solution heat exchanger 81L for exchanging heat with the diluted solution Sw.

希溶液管18には、低温溶液熱交換器81Lの下流側で、低温再生器30Lに希溶液Swを供給する低温希溶液管18Lが接続されている。希溶液管18は、低温希溶液管18Lとの分岐部よりも下流側で、交換希溶液管18Aと回収希溶液管18Bとに分岐している。交換希溶液管18Aと回収希溶液管18Bとの分岐部よりも下流側の構成は、吸収冷凍機1(図1参照)と同じであるが、低温溶液熱交換器81Lとの区別のため、交換希溶液管18Aに配設された熱交換器を、高温溶液熱交換器81Hということとする。また、高温再生器30Hから導出された高温濃溶液SaHを流す流路を、高温濃溶液管38Hということとする。高温濃溶液管38Hは、高温溶液熱交換器81Hの下流側で、低温再生器30Lから導出された低温濃溶液SaLを流す低温濃溶液管38Lに接続している。高温濃溶液管38Hと低温濃溶液管38Lとが接続した下流側は、濃溶液Saを吸収器10に導く濃溶液管38となっている。   A low temperature dilute solution pipe 18L that supplies dilute solution Sw to the low temperature regenerator 30L is connected to the dilute solution pipe 18 on the downstream side of the low temperature solution heat exchanger 81L. The dilute solution pipe 18 is branched into an exchange dilute solution pipe 18A and a recovered dilute solution pipe 18B on the downstream side of the branch portion with the low temperature dilute solution pipe 18L. The downstream structure of the branch portion of the exchange dilute solution pipe 18A and the recovered dilute solution pipe 18B is the same as that of the absorption refrigerator 1 (see FIG. 1), but for the distinction from the low temperature solution heat exchanger 81L, The heat exchanger disposed in the exchange dilute solution tube 18A is referred to as a high temperature solution heat exchanger 81H. The flow path for flowing the high temperature concentrated solution SaH derived from the high temperature regenerator 30H is referred to as a high temperature concentrated solution tube 38H. The high temperature concentrated solution pipe 38H is connected to the low temperature concentrated solution pipe 38L through which the low temperature concentrated solution SaL derived from the low temperature regenerator 30L flows, downstream of the high temperature solution heat exchanger 81H. The downstream side where the high temperature concentrated solution tube 38H and the low temperature concentrated solution tube 38L are connected is a concentrated solution tube 38 that guides the concentrated solution Sa to the absorber 10.

吸収冷凍機1Aでは、高温濃溶液SaHが第2の吸収液に相当する。吸収冷凍機1Aにおいても、負荷が減少して凝縮するドレン液Dの流量が減少した場合、あるいは、冷却水の入口温度が低下して希溶液Swの流量が減少した場合に、交換希溶液管18Aを流れる希溶液Swの流量と回収希溶液管18Bを流れる希溶液Swの流量との割合を調節するので、高温再生器30Hに導入される希溶液Swが回収する熱を最大化することができ、効率を向上させることができる。   In the absorption refrigerator 1A, the hot concentrated solution SaH corresponds to the second absorbing solution. Also in the absorption refrigerator 1A, when the flow rate of the condensate drain liquid D decreases due to a decrease in load, or when the cooling water inlet temperature decreases and the flow rate of the dilute solution Sw decreases, the exchange dilute solution tube Since the ratio between the flow rate of the dilute solution Sw flowing through 18A and the flow rate of the dilute solution Sw flowing through the recovered dilute solution tube 18B is adjusted, the heat recovered by the dilute solution Sw introduced into the high temperature regenerator 30H can be maximized. And efficiency can be improved.

図5(B)は、リバースフローの二重効用吸収冷凍機1Bの溶液側の部分系統図である。吸収冷凍機1Bは、主に以下の点で、吸収冷凍機1A(図5(A)参照)と異なっている。吸収冷凍機1Bは、吸収器10から導出された希溶液Swが低温再生器30Lに供給され、低温再生器30Lで生成された低温濃溶液SaLが高温再生器30Hに供給されるように構成されている。吸収冷凍機1Bは、吸収器10と低温再生器30Lとが、希溶液Swを搬送する低温希溶液管18Lで接続されている。低温希溶液管18Lには、希溶液Swを圧送する低温溶液ポンプ19Lと、低温溶液熱交換器81Lとが配設されている。低温再生器30Lと高温再生器30Hとは、低温濃溶液SaLを高温再生器30Hに向けて搬送する高温希溶液管18Hで接続されている。高温希溶液管18Hには、低温濃溶液SaLの一部を流す低温濃溶液管38Lが接続されている。また、高温希溶液管18Hには、低温濃溶液管38Lとの接続部よりも下流側に、高温溶液ポンプ19Hが配設されている。高温希溶液管18Hは、高温溶液ポンプ19Hの下流側で、交換希溶液管18Aと回収希溶液管18Bとに分岐している。交換希溶液管18Aと回収希溶液管18Bとの分岐部よりも下流側の構成は、吸収冷凍機1A(図5(A)参照)と同じである。また、低温溶液熱交換器81Lと並列に低温熱回収器を配設し、熱回収器82で熱回収されたドレン液Dを低温熱回収器に導いてさらに熱回収を行ってもよい。この場合、高温溶液ポンプ19Hによって熱回収器82へ導入される吸収液の制御と同様の流量制御を、低温溶液熱交換器81Lと並列に配設された低温熱回収器に対して行ってもよい。   FIG. 5B is a partial system diagram on the solution side of the reverse-flow double-effect absorption refrigerator 1B. The absorption refrigerator 1B is different from the absorption refrigerator 1A (see FIG. 5A) mainly in the following points. The absorption refrigerator 1B is configured such that the dilute solution Sw derived from the absorber 10 is supplied to the low temperature regenerator 30L, and the low temperature concentrated solution SaL generated by the low temperature regenerator 30L is supplied to the high temperature regenerator 30H. ing. In the absorption refrigerator 1B, the absorber 10 and the low temperature regenerator 30L are connected by a low temperature dilute solution pipe 18L that conveys the dilute solution Sw. A low temperature solution pump 19L for pumping the dilute solution Sw and a low temperature solution heat exchanger 81L are disposed in the low temperature dilute solution pipe 18L. The low temperature regenerator 30L and the high temperature regenerator 30H are connected by a high temperature dilute solution pipe 18H that conveys the low temperature concentrated solution SaL toward the high temperature regenerator 30H. A low temperature concentrated solution tube 38L through which a part of the low temperature concentrated solution SaL flows is connected to the high temperature diluted solution tube 18H. The high temperature dilute solution pipe 18H is provided with a high temperature solution pump 19H on the downstream side of the connecting portion with the low temperature concentrated solution pipe 38L. The high-temperature dilute solution pipe 18H branches into an exchange dilute solution pipe 18A and a recovered dilute solution pipe 18B on the downstream side of the high-temperature solution pump 19H. The configuration downstream of the branch portion of the exchange dilute solution pipe 18A and the recovered dilute solution pipe 18B is the same as that of the absorption refrigerator 1A (see FIG. 5A). Further, a low-temperature heat recovery device may be provided in parallel with the low-temperature solution heat exchanger 81L, and the drain liquid D recovered by the heat recovery device 82 may be guided to the low-temperature heat recovery device for further heat recovery. In this case, the flow rate control similar to the control of the absorption liquid introduced into the heat recovery device 82 by the high temperature solution pump 19H may be performed on the low temperature heat recovery device arranged in parallel with the low temperature solution heat exchanger 81L. Good.

吸収冷凍機1Bでは、低温濃溶液SaLが第1の吸収液に相当し、高温濃溶液SaHが第2の吸収液に相当する。吸収冷凍機1Bにおいても、負荷が減少して凝縮するドレン液Dの流量が減少した場合、あるいは、冷却水の入口温度が低下して希溶液Swの流量が減少した場合に、交換希溶液管18Aを流れる低温濃溶液SaLの流量と回収希溶液管18Bを流れる低温濃溶液SaLの流量との割合を調節するので、高温再生器30Hに導入される低温濃溶液SaLが回収する熱を最大化することができ、効率を向上させることができる。   In the absorption refrigerator 1B, the low-temperature concentrated solution SaL corresponds to the first absorption liquid, and the high-temperature concentrated solution SaH corresponds to the second absorption liquid. Also in the absorption refrigerator 1B, when the flow rate of the drain liquid D that is condensed due to a decrease in load decreases, or when the inlet temperature of the cooling water decreases and the flow rate of the diluted solution Sw decreases, the exchange diluted solution tube Since the ratio between the flow rate of the low temperature concentrated solution SaL flowing through 18A and the flow rate of the low temperature concentrated solution SaL flowing through the recovered diluted solution pipe 18B is adjusted, the heat recovered by the low temperature concentrated solution SaL introduced into the high temperature regenerator 30H is maximized. Can improve efficiency.

負荷が減少して凝縮するドレン液Dの流量が減少した場合、あるいは、冷却水の入口温度が低下して希溶液Swの流量が減少した場合に、比D/Swの変動に応じて、交換希溶液管18Aを流れる第1の吸収液の流量と回収希溶液管18Bを流れる第1の吸収液の流量との割合を調節する構成は、図1に示す吸収冷凍機1、図5(A)に示す吸収冷凍機1A、図5(B)に示す吸収冷凍機1Bのほか、シリーズフローの二重効用吸収冷凍機や、3つ以上の再生器を有する多重効用の吸収冷凍機、あるいは、動作圧力の異なる複数の蒸発器/吸収器を有する吸収冷凍機にも適用することができる。   When the flow rate of the condensate drain liquid D decreases due to a decrease in load, or when the cooling water inlet temperature decreases and the flow rate of the dilute solution Sw decreases, the exchange is performed according to the change in the ratio D / Sw. The configuration for adjusting the ratio between the flow rate of the first absorbent flowing through the dilute solution pipe 18A and the flow rate of the first absorbent flowing through the recovered dilute solution pipe 18B is the absorption refrigerator 1 shown in FIG. In addition to the absorption refrigerator 1A shown in FIG. 5B, the absorption refrigerator 1B shown in FIG. 5B, a series-effect double-effect absorption refrigerator, a multi-effect absorption refrigerator having three or more regenerators, or The present invention can also be applied to an absorption refrigerator having a plurality of evaporators / absorbers having different operating pressures.

1 吸収冷凍機
18A 交換希溶液管
18B 回収希溶液管
30 再生器
60 制御装置
81 熱交換器
82 熱回収器
84 希溶液流量制御弁
85 最大流量オリフィス
91 交換温度計
92 回収温度計
D ドレン液
H 熱源蒸気
Sa 濃溶液
Sw 希溶液
Vg 再生器冷媒蒸気
1 Absorption Refrigerator 18A Exchange Diluted Solution Tube 18B Collected Diluted Solution Tube 30 Regenerator 60 Controller 81 Heat Exchanger 82 Heat Recovery Unit 84 Diluted Solution Flow Control Valve 85 Maximum Flow Orifice 91 Exchange Thermometer 92 Recovery Thermometer D Drain Solution H Heat source vapor Sa Concentrated solution Sw Dilute solution Vg Regenerator refrigerant vapor

Claims (3)

相変化を伴う冷媒と、前記冷媒が混合した吸収液とのサイクルによって熱を移動させる吸収冷凍機であって;
第1の吸収液と熱源蒸気とを導入し、前記熱源蒸気が保有する熱で前記第1の吸収液を加熱して前記第1の吸収液から冷媒を蒸発させることで前記第1の吸収液よりも濃度が高い第2の吸収液を生成する再生器と;
前記再生器に導入される前記第1の吸収液を流す吸収液熱交換管と;
前記再生器に導入される前記第1の吸収液を流す吸収液熱回収管であって、前記吸収液熱交換管に対して並列に配置された吸収液熱回収管と;
前記吸収液熱交換管に配設された熱交換器であって、前記吸収液熱交換管を流れる前記第1の吸収液と、前記再生器から導出された前記第2の吸収液とで熱交換を行わせる熱交換器と;
前記吸収液熱回収管に配設された熱回収器であって、前記吸収液熱回収管を流れる前記第1の吸収液に、前記再生器で前記熱源蒸気が凝縮して生じたドレン液の熱を回収させる熱回収器と;
前記吸収液熱回収管に配設された絞り機構であって、定格流量よりも大きい最大流量を通過させる絞り機構と;
前記第2の吸収液が前記冷媒の蒸気を吸収した際に発生した吸収熱を、冷却水が奪うように構成された吸収器と;
前記吸収液熱交換管を流れる前記第1の吸収液の流量と、前記吸収液熱回収管を流れる前記第1の吸収液の流量との割合を調節する流量調節機構であって、前記吸収冷凍機の全負荷付近における運転時に前記冷却水の温度が定格運転時よりも低くなって前記第1の吸収液及び前記第2の吸収液の流量が減少することによる前記熱回収器に導入される前記ドレン液の流量の前記熱回収器に導入される前記第1の吸収液の流量に対する比の増加に伴って、前記吸収液熱回収管を流れる前記第1の吸収液の流量の前記吸収液熱交換管を流れる前記第1の吸収液の流量に対する比が増加するように、前記割合の調節を行う流量調節機構とを備える;
吸収冷凍機。
An absorption refrigerator that transfers heat by a cycle of a refrigerant accompanied by a phase change and an absorbing liquid mixed with the refrigerant;
The first absorption liquid and the heat source vapor are introduced, the first absorption liquid is heated by the heat held by the heat source vapor, and the refrigerant is evaporated from the first absorption liquid, thereby the first absorption liquid. A regenerator that produces a second absorbent having a higher concentration;
An absorption liquid heat exchange tube for flowing the first absorption liquid introduced into the regenerator;
An absorption liquid heat recovery pipe for flowing the first absorption liquid introduced into the regenerator, the absorption liquid heat recovery pipe disposed in parallel with the absorption liquid heat exchange pipe;
A heat exchanger disposed in the absorption liquid heat exchange pipe, wherein heat is generated by the first absorption liquid flowing through the absorption liquid heat exchange pipe and the second absorption liquid derived from the regenerator. A heat exchanger to effect exchange;
A heat recovery unit disposed in the absorption liquid heat recovery pipe, wherein the drain liquid generated by condensing the heat source vapor in the regenerator to the first absorption liquid flowing through the absorption liquid heat recovery pipe A heat recovery device for recovering heat;
A throttle mechanism disposed in the absorption liquid heat recovery pipe, wherein the throttle mechanism allows a maximum flow rate larger than a rated flow rate to pass;
An absorber configured so that the cooling water takes away the heat of absorption generated when the second absorbent absorbs the vapor of the refrigerant;
A flow rate adjusting mechanism that adjusts a ratio between a flow rate of the first absorption liquid flowing through the absorption liquid heat exchange tube and a flow rate of the first absorption liquid flowing through the absorption liquid heat recovery tube, the absorption refrigeration At the time of operation near the full load of the machine, the temperature of the cooling water is lower than that at the rated operation, and the flow rate of the first absorption liquid and the second absorption liquid is reduced, so that the heat recovery device is introduced. As the ratio of the flow rate of the drain liquid to the flow rate of the first absorption liquid introduced into the heat recovery device increases, the absorption liquid of the flow rate of the first absorption liquid flowing through the absorption liquid heat recovery pipe A flow rate adjusting mechanism that adjusts the ratio so that a ratio to a flow rate of the first absorbent flowing through the heat exchange pipe increases;
Absorption refrigerator.
前記絞り機構がオリフィスである;
請求項1に記載の吸収冷凍機。
The throttling mechanism is an orifice;
The absorption refrigerator according to claim 1.
前記熱交換器の下流側の前記吸収液熱交換管を流れる前記第1の吸収液の温度を検出する交換温度検出器と;
前記熱回収器の下流側の前記吸収液熱回収管を流れる前記第1の吸収液の温度を検出する回収温度検出器と;
前記交換温度検出器で検出された温度と前記回収温度検出器で検出された温度との差が所定の範囲になるように前記流量調節機構を制御する制御装置とを備える;
請求項1又は請求項2に記載の吸収冷凍機。
An exchange temperature detector for detecting the temperature of the first absorbent flowing through the absorbent liquid heat exchange pipe on the downstream side of the heat exchanger;
A recovery temperature detector for detecting the temperature of the first absorption liquid flowing through the absorption liquid heat recovery pipe on the downstream side of the heat recovery apparatus;
A control device that controls the flow rate adjusting mechanism so that a difference between a temperature detected by the replacement temperature detector and a temperature detected by the recovery temperature detector falls within a predetermined range;
The absorption refrigerator according to claim 1 or 2.
JP2013195516A 2013-09-20 2013-09-20 Absorption refrigerator Active JP6138642B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013195516A JP6138642B2 (en) 2013-09-20 2013-09-20 Absorption refrigerator
CN201410474753.6A CN104457011B (en) 2013-09-20 2014-09-17 Absorption Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013195516A JP6138642B2 (en) 2013-09-20 2013-09-20 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2015059733A JP2015059733A (en) 2015-03-30
JP6138642B2 true JP6138642B2 (en) 2017-05-31

Family

ID=52817399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195516A Active JP6138642B2 (en) 2013-09-20 2013-09-20 Absorption refrigerator

Country Status (2)

Country Link
JP (1) JP6138642B2 (en)
CN (1) CN104457011B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337055B2 (en) * 2015-10-07 2018-06-06 荏原冷熱システム株式会社 Absorption heat pump
CN109253557B (en) * 2017-07-14 2021-09-10 荏原冷热系统株式会社 Absorption refrigerator
CN112908627A (en) * 2021-02-01 2021-06-04 武汉众精谷科技有限公司 Air-conditioning type transformer manufacturing method by using polymer oil and lithium bromide and air-conditioning type transformer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924770B2 (en) * 1976-10-16 1984-06-12 株式会社荏原製作所 Absorption heating and cooling equipment
JPS5555216A (en) * 1978-10-20 1980-04-23 Toshiba Corp Steam flow rate detector
US4813242A (en) * 1987-11-17 1989-03-21 Wicks Frank E Efficient heater and air conditioner
JP2777450B2 (en) * 1990-02-22 1998-07-16 三洋電機株式会社 Absorption refrigerator
JPH11230633A (en) * 1998-02-18 1999-08-27 Sanyo Electric Co Ltd Absorption refrigerator
JP4090262B2 (en) * 2002-04-12 2008-05-28 三洋電機株式会社 Absorption refrigerator
JP4167190B2 (en) * 2004-02-20 2008-10-15 三菱重工業株式会社 Refrigeration system and operation method thereof
JP2007071475A (en) * 2005-09-08 2007-03-22 Ebara Refrigeration Equipment & Systems Co Ltd Triple-effect absorption refrigerating machine
JP2007218495A (en) * 2006-02-16 2007-08-30 Hitachi Ltd Absorption water cooler-heater
JP2009287805A (en) * 2008-05-28 2009-12-10 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerator
JP5570969B2 (en) * 2010-12-27 2014-08-13 三洋電機株式会社 Exhaust gas heat recovery device and absorption refrigerator
JP2012167905A (en) * 2011-02-16 2012-09-06 Hitachi Appliances Inc Double effect absorption refrigerating machine

Also Published As

Publication number Publication date
CN104457011B (en) 2019-06-18
CN104457011A (en) 2015-03-25
JP2015059733A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
JP6138642B2 (en) Absorption refrigerator
JP5395502B2 (en) Absorption heat pump
KR101060776B1 (en) Absorption Chiller
JP2012202589A (en) Absorption heat pump apparatus
WO2018056024A1 (en) Absorption refrigerator
JP5785800B2 (en) Vapor absorption refrigerator
KR101269843B1 (en) Refrigerant condensing temperature adjustable heat pump system based on ambient temperature and evaporating temperature
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP4281967B2 (en) Absorption chiller / heater
JP4315855B2 (en) Absorption refrigerator
JP2001099474A (en) Air conditioner
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP5456368B2 (en) Absorption refrigerator
JP5513981B2 (en) Absorption heat pump
KR20020050928A (en) Control Method and Structure of Condensate of an Absorption Chiller with Hot Water Supply Function
JP3813348B2 (en) Absorption refrigerator
JP4278315B2 (en) Absorption refrigerator
JP4330522B2 (en) Absorption refrigerator operation control method
JP2001317835A (en) Absorption refrigeration machine
JPS63204080A (en) Absorption refrigerator
KR20220093724A (en) Absorption type cooler and heater
KR20220083339A (en) Absorption type cooler
JP5816135B2 (en) Absorption heat pump and operation method of absorption heat pump
JP3811632B2 (en) Waste heat input type absorption refrigerator
CN116951740A (en) Flow path structure for heat exchanger, heat exchanger and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170426

R150 Certificate of patent or registration of utility model

Ref document number: 6138642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250