WO2018056024A1 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
WO2018056024A1
WO2018056024A1 PCT/JP2017/031613 JP2017031613W WO2018056024A1 WO 2018056024 A1 WO2018056024 A1 WO 2018056024A1 JP 2017031613 W JP2017031613 W JP 2017031613W WO 2018056024 A1 WO2018056024 A1 WO 2018056024A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
pressure regenerator
regenerator
absorber
auxiliary
Prior art date
Application number
PCT/JP2017/031613
Other languages
French (fr)
Japanese (ja)
Inventor
浩伸 川村
藤居 達郎
武田 伸之
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to CN201780003541.1A priority Critical patent/CN108139126B/en
Priority to KR1020187009541A priority patent/KR102017436B1/en
Publication of WO2018056024A1 publication Critical patent/WO2018056024A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B33/00Boilers; Analysers; Rectifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to an absorption refrigerator.
  • the absorption refrigerator can be driven by heat
  • cold water can be supplied using hot water generated as exhaust heat as a driving heat source.
  • cold water of about 7 ° C. can be supplied using hot water of about 90 ° C. as a driving heat source.
  • Patent Document 1 describes that the regenerator is an absorption refrigerator having two two-stage absorption cycles, and cold water can be supplied using hot water having a temperature lower than that of an absorption refrigerator having a single effect cycle as a driving heat source. .
  • Patent Document 2 describes an absorption refrigerator that combines a single effect cycle and an auxiliary cycle (two-stage absorption cycle). This is a series flow in which a high-pressure regenerator and a low-pressure regenerator are provided on the single effect cycle side, and the entire amount of the solution is circulated in the order of the absorber, the high-pressure regenerator, the low-pressure regenerator, and the absorber.
  • the auxiliary cycle side is composed of an auxiliary absorber and an auxiliary regenerator.
  • the gas phase part of the auxiliary absorber communicates with the low pressure regenerator, and the gas phase part of the auxiliary regenerator is the gas phase part of the high pressure regenerator and the condenser.
  • the structure communicated with is described.
  • Patent Document 2 it is assumed that hot water of a driving heat source can be used from one temperature required for an absorption refrigerator of a single effect cycle to a temperature required for an absorption refrigerator of a two-stage absorption cycle in one absorption refrigerator.
  • hot water of about 90 ° C. is used as a driving heat source for an absorption refrigerator of a single effect cycle, and hot water whose temperature has subsequently decreased is used as a driving heat source of an absorption refrigerator of a two-stage absorption cycle.
  • two absorption refrigerators having different cycle configurations are required, and two piping systems for chilled water and cooling water are required, which complicates the piping configuration and increases the installation area and costs.
  • the number of solution pumps and refrigerant pumps almost doubles, increasing the amount of power consumption and also doubling the amount of solution and the amount of refrigerant.
  • An object of the present invention is to obtain an absorption refrigerator that can reduce the amount of solution retained in a configuration in which an auxiliary cycle is combined with a single effect cycle.
  • an absorption refrigerator includes an evaporator, an absorber, a low-pressure regenerator, a high-pressure regenerator, an auxiliary absorber, an auxiliary regenerator, and a condenser. And a solution pump.
  • the evaporator, the absorber, the low pressure regenerator, the high pressure regenerator, the auxiliary absorber, and the auxiliary regenerator are a falling liquid film type.
  • the vaporizer communicates with the evaporator and the absorber
  • the low-pressure regenerator and the auxiliary absorber communicate with the gas-phase portion
  • the regenerator and the condenser communicate with each other in a gas phase portion, and a solution pipe for flowing a solution from the high pressure regenerator to the absorber is connected to a solution pipe for flowing a solution from the low pressure regenerator.
  • the solution pump is provided in the solution pipe from the merge portion to the absorber, Bottom of the serial high-pressure regenerator is located higher than the bottom surface of the low-pressure regenerator.
  • an absorption chiller capable of reducing the amount of solution retained in a configuration in which an auxiliary cycle is combined with a two single effect cycle.
  • the cycle system diagram of the absorption refrigerating machine concerning the embodiment of the present invention is shown.
  • the dueling diagram of the absorption refrigerating machine concerning the embodiment of the present invention is shown.
  • FIG. 1 shows a cycle system diagram of the absorption refrigerator 100 of the present embodiment.
  • FIG. 2 shows a dueling diagram of the absorption refrigerator 100 of the present embodiment.
  • the horizontal axis indicates the solution temperature and the vertical axis indicates the pressure, and the state of the cycle of the present invention is shown in the During diagram composed of the isoconcentration lines of the solution.
  • the absorption refrigerator 100 includes a single effect cycle side and an auxiliary cycle (two-stage absorption cycle) side, and the solution circulates independently in each cycle.
  • the single effect cycle side includes an evaporator 1 (E), an absorber 9 (A), a low pressure regenerator 22 (LG), a high pressure regenerator 33 (HG), a condenser 40 (C), a low temperature solution heat exchanger 55, The heat exchanger element of the high temperature solution heat exchanger 56, the refrigerant pump 6, the solution pumps 14 and 30, and the like are provided.
  • the auxiliary cycle side includes an auxiliary absorber 16 (AA), an auxiliary regenerator 44 (AG), a heat exchanger element of an intermediate temperature solution heat exchanger 57, solution pumps 29 and 54, and the like.
  • the refrigerant stored in the lower part of the evaporator 1 by the refrigerant pump 6 is guided to the spraying device 2 through the refrigerant pipe 7 and sprayed outside the heat transfer tube of the heat exchanger 3.
  • the dispersed refrigerant is heated by the cold water flowing in the heat transfer pipe of the heat exchanger 3 to be partially refrigerant vapor, and is led to the absorber 9 through the eliminator 8.
  • the cold water flowing in the heat transfer tube of the heat exchanger 3 is cooled using the latent heat of vaporization when the refrigerant evaporates.
  • Cold water pipes 4 and 5 are connected to the heat exchanger 3 to pass cold water for supplying cold heat to the load side.
  • the solution concentrated by the low pressure regenerator 22 and the high pressure regenerator 33 is scattered from the spray device 10 to the outside of the heat transfer tube of the heat exchanger 11.
  • the dispersed solution absorbs the refrigerant vapor from the evaporator 1 and decreases in concentration, and then branches at the branch point A after passing through the low-temperature solution heat exchanger 55 by the solution pump 14 installed in the middle of the solution pipe 15.
  • One is led to the low pressure regenerator 22 through the flow rate adjustment valve 32 of the solution pipe 31.
  • the other solution branched at the branch point A is led to the high pressure regenerator 33 through the high temperature solution heat exchanger 56.
  • Cooling water is passed through the heat transfer tube of the heat exchanger 11 of the absorber 9 in order to remove the absorption heat generated when the solution absorbs the refrigerant vapor. Cooling water pipes 12 and 13 are connected to the heat exchanger 11.
  • the solution having a reduced concentration in the absorber 9 is sprayed from the spray device 23 to the outside of the heat transfer tube of the heat exchanger 24.
  • the dispersed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 24 and separated into a concentrated solution and refrigerant vapor.
  • the concentrated solution merges with the solution from the high pressure regenerator 33 at the merge point (merging portion) B through the solution pipe 27.
  • the refrigerant vapor separated from the concentrated solution is guided to the auxiliary absorber 16 on the auxiliary cycle side via the eliminator 21.
  • Heat source medium pipes 25 and 26 are connected to the heat exchanger 24 of the low pressure regenerator 22.
  • the solution whose concentration is reduced by the absorber 9 and heated by the low-temperature solution heat exchanger 55 and the high-temperature solution heat exchanger 56 is sprayed from the spraying device 34 to the outside of the heat transfer tube of the heat exchanger 35.
  • the sprayed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 35 and separated into a concentrated solution and refrigerant vapor.
  • the concentrated solution is guided to the junction B through a high temperature solution heat exchanger 56 installed in the middle of the solution pipe 49.
  • the concentrated solution from the low pressure regenerator 22 and the high pressure regenerator 33 that have joined at the junction B is boosted by the solution pump 30 and led to the absorber 9 through the low temperature solution heat exchanger 55.
  • the refrigerant vapor separated from the solution concentrated by the high pressure regenerator 33 is guided to the condenser 40 through the baffle 39.
  • Heat source medium pipes 36 and 37 are connected to the heat exchanger 35 of the high pressure regenerator 33.
  • the refrigerant vapor separated from the solution concentrated in the high pressure regenerator 33 and the auxiliary regenerator 44 is cooled with cooling water flowing in the heat transfer tube of the heat exchanger 41 to be condensed and liquefied.
  • the condensed and liquefied refrigerant is guided to the evaporator 1 through the refrigerant pipe 50.
  • Cooling water pipes 42 and 43 are connected to the heat exchanger 41.
  • the solution concentrated in the auxiliary regenerator 44 is sprayed from the spraying device 17 to the outside of the heat transfer tube of the heat exchanger 18.
  • the sprayed solution absorbs the refrigerant vapor from the low-pressure regenerator 22 of the single effect side cycle and becomes low in concentration, and then passes through the intermediate-temperature solution heat exchanger 57 with the solution pump 29 installed in the middle of the solution pipe 28 and then the high-pressure. Guided to the regenerator 33.
  • Cooling water is passed through the heat transfer tube of the heat exchanger 18 of the auxiliary absorber 16 in order to remove absorption heat generated when the solution absorbs the refrigerant vapor. Cooling water pipes 19 and 20 are connected to the heat exchanger 18.
  • the solution whose concentration has been reduced by the auxiliary absorber 16 is sprayed from the spraying device 45 to the outside of the heat transfer tube of the heat exchanger 46.
  • the sprayed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 46 and separated into a concentrated solution and refrigerant vapor.
  • the concentrated solution is guided to the auxiliary absorber 16 through the intermediate temperature solution heat exchanger 57 by the solution pump 54 installed in the middle of the solution pipe 51.
  • the refrigerant vapor separated from the concentrated solution is led to the condenser 40 through the baffle 52.
  • Heat source medium pipes 47 and 48 are connected to the heat exchanger 46 of the auxiliary regenerator 44.
  • the heat source medium is passed through the heat exchanger 35 of the high pressure regenerator 33, the heat exchanger 24 of the low pressure regenerator 22, and the heat exchanger 46 of the auxiliary regenerator 44 in this order, for example.
  • the heat source medium is utilized from a temperature higher than the solution temperature at the outlet of the high pressure regenerator 33 (about 90 ° C.) to a temperature close to the solution temperature at the outlet of the auxiliary regenerator 44 (about 60 ° C.). be able to.
  • the refrigerant flows down from the spraying device above each heat exchanger in the absorber 9, the low pressure regenerator 22, the high pressure regenerator 33, the auxiliary absorber 16, and the auxiliary regenerator 44. It is a liquid film heat exchanger.
  • the configuration of the present embodiment communicates the gas phase portion of the low-pressure regenerator 22 on the single effect cycle side and the auxiliary absorber 16 on the auxiliary absorption cycle side, and the high-pressure regenerator 33 and the condensation on the single-effect cycle side.
  • the gas phase section of the auxiliary regenerator 44 on the auxiliary absorption cycle side with the vessel 40, the single effect cycle and the auxiliary absorption cycle can be operated in combination.
  • an aqueous lithium bromide solution is used as the solution (absorbent), and water is used as the refrigerant.
  • the bottom surface 101 of the high pressure regenerator 33 is disposed higher than the bottom surface 102 of the low pressure regenerator 22 by a height H.
  • the height H is set so that the liquid level of the solution flowing out from the high pressure regenerator 33 during operation is formed in the pipe 49. This eliminates the need to store the solution in the high-pressure regenerator 33 during operation, thereby reducing the amount of refrigerant together with the amount of solution.
  • the liquid level of the low-pressure regenerator 22 is detected by a liquid level sensor (not shown) installed in the low-pressure regenerator 22, and if the liquid level drops, the spray amount is increased.
  • the flow rate adjustment valve 32 controls the spray amount to decrease, and the liquid level of the solution stored in the low pressure regenerator 22 is adjusted to a certain range.
  • the liquid level height of the solution flowing out from the high pressure regenerator 33 is the pressure difference ⁇ P1 generated between the high pressure regenerator 33 and the low pressure regenerator 22, and the high pressure regenerator 33 including the inside of the high temperature solution heat exchanger 56.
  • the liquid level height of the solution flowing out from the high pressure regenerator 33 can be reduced by the pressure difference ⁇ P1 with respect to the liquid level height in the low pressure regenerator 22, but is increased by the pressure loss ⁇ P2. If the liquid surface height of the solution stored in the low pressure regenerator 22 is 200 mm, the pressure difference ⁇ P1 is 200 mm, and the pressure loss ⁇ P2 is 1000 mm, the solution may be prevented from being stored in the high pressure regenerator 33.
  • the possible height H is H> 1000 mm.
  • the liquid level of the solution in the low-pressure regenerator 22, the pressure difference ⁇ P1 between the high-pressure regenerator 33 and the low-pressure regenerator 22, and the high-pressure regenerator 33 including the inside of the high-temperature solution heat exchanger 56 to the junction B The pressure loss ⁇ P2 of the pipe 49 can be easily obtained if the specifications and operating conditions of the pipe 49 and the high-temperature solution heat exchanger 56 are determined, and the high pressure regenerator from the bottom surface 102 of the low pressure regenerator 22 based on the result.
  • the height H to the bottom surface 101 of 33 can be set and the device arrangement can be determined.
  • the absorption refrigerator 100 of the present embodiment distributes the solution of the absorber 9 to the low pressure regenerator 22 and the high pressure regenerator 33 at the branch point A, and the solution from the low pressure regenerator 22 and the high pressure regenerator 33 is combined with the junction.
  • the solution is combined at B and is introduced into the absorber 9 by the solution pump 30.
  • the solution from the two elements, the low pressure regenerator 22 and the high pressure regenerator 33 flows into the solution pump 30.
  • the other elements are that the absorber 5 flows into the solution pump 14, the auxiliary absorber 16 enters the solution pump 19, and the solution from the auxiliary regenerator 44 flows into the solution pump 54.
  • , 62, 63, 64 are provided in a one-to-one relationship, and the tank is operated with a certain amount of solution stored in the tank. This is to allow a change in the amount of the solution due to the change in the concentration of the solution in the operating range and to prevent the liquid level in each solution tank from fluctuating sensitively.
  • the pressure can be secured, and each solution pump can be driven stably.
  • the solution from the high pressure regenerator 33 and the low pressure regenerator 22 flows into the solution pump 30, but in order to drive the solution pump 30 stably, the solution tank is the same as other elements. Since one is sufficient, the low pressure regenerator 22 is provided with a solution tank 63. In the low pressure regenerator 22, the pressure loss of the solution up to the solution pump 30 is smaller than that of the high pressure regenerator 33 via the high temperature solution heat exchanger 56, so that the solution tank 63 is provided in the low pressure regenerator 22. There is an effect that the liquid level required for the stable operation of the pump 30 can be kept low.
  • the bottom surface 101 of the high pressure regenerator 33 is arranged at a position higher than the bottom surface 102 of the low pressure regenerator 22 so that the liquid level of the solution flowing out from the high pressure regenerator 33 during operation is formed in the pipe 49.
  • the bottom of the high-pressure regenerator 33 was arranged so that no solution was collected during operation. This eliminates the need for a solution tank in the high-pressure regenerator 33 and reduces the amount of solution and the amount of refrigerant, thereby contributing to downsizing and cost reduction of the absorption refrigeration machine 100. Further, since the heat capacity of the retained liquid amount can be reduced by reducing the amount of solution and the amount of refrigerant, the start-up characteristics of the absorption chiller 100 can be improved.
  • Evaporator 9 Absorber 30: Solution pump 27, 49: Solution pipe 16: Auxiliary absorber 22: Low pressure regenerator 33: High pressure regenerator 40: Condenser 44: Auxiliary regenerator 56: High temperature solution heat exchanger 41 : Condenser 101: Bottom surface of high pressure regenerator 102: Bottom surface of low pressure regenerator

Abstract

Provided is an absorption refrigerator with a configuration in which a single-effect cycle is combined with an auxiliary cycle, wherein the amount of solution retained can be reduced. An absorption refrigerator 100 comprises an evaporator 1, an absorber 9, a low-pressure regenerator 22, a high-pressure regenerator 33, an auxiliary absorber 16, an auxiliary regenerator 44, a condenser 41, and a solution pump 30. Solution piping 49 for a solution to flow from the high-pressure regenerator 33 to the absorber 9 has a junction B that is connected to solution piping 27 for a solution to flow from the low-pressure regenerator 22. The solution pump 30 is provided in the solution piping 49 from the junction B to the absorber 9. The bottom face 101 of the high-pressure regenerator 33 is disposed in a position higher than the bottom face 102 of the low-pressure regenerator 22.

Description

吸収式冷凍機Absorption refrigerator
 本発明は、吸収式冷凍機に関する。 The present invention relates to an absorption refrigerator.
 吸収式冷凍機は、熱駆動できることから、排熱として出た温水を駆動熱源として冷熱を供給することができる。再生器が1つの単効用サイクルでは、90℃程度の温水を駆動熱源として7℃程度の冷熱を供給できる。また、特許文献1には、再生器が2つの2段吸収サイクルの吸収式冷凍機とし、単効用サイクルの吸収式冷凍機より低い温度の温水を駆動熱源として冷熱を供給できることが記載されている。 Since the absorption refrigerator can be driven by heat, cold water can be supplied using hot water generated as exhaust heat as a driving heat source. In a single effect cycle with one regenerator, cold water of about 7 ° C. can be supplied using hot water of about 90 ° C. as a driving heat source. Patent Document 1 describes that the regenerator is an absorption refrigerator having two two-stage absorption cycles, and cold water can be supplied using hot water having a temperature lower than that of an absorption refrigerator having a single effect cycle as a driving heat source. .
 また、特許文献2には、単効用サイクルと補助サイクル(2段吸収サイクル)を組合せた吸収式冷凍機が記載されている。これは、単効用サイクル側に高圧再生器と低圧再生器を設け、溶液の全量を吸収器、高圧再生器、低圧再生器、吸収器の順で循環させるシリーズフローとなっている。また、補助サイクル側は、補助吸収器と補助再生器からなり、補助吸収器の気相部が低圧再生器と連通し、補助再生器の気相部が高圧再生器と凝縮器の気相部と連通した構成が記載されている。特許文献2では、吸収式冷凍機1台で駆動熱源の温水を単効用サイクルの吸収冷凍機に必要な温度から、2段吸収サイクルの吸収式冷凍機に必要な温度まで利用できるとしている。 Patent Document 2 describes an absorption refrigerator that combines a single effect cycle and an auxiliary cycle (two-stage absorption cycle). This is a series flow in which a high-pressure regenerator and a low-pressure regenerator are provided on the single effect cycle side, and the entire amount of the solution is circulated in the order of the absorber, the high-pressure regenerator, the low-pressure regenerator, and the absorber. The auxiliary cycle side is composed of an auxiliary absorber and an auxiliary regenerator. The gas phase part of the auxiliary absorber communicates with the low pressure regenerator, and the gas phase part of the auxiliary regenerator is the gas phase part of the high pressure regenerator and the condenser. The structure communicated with is described. In Patent Document 2, it is assumed that hot water of a driving heat source can be used from one temperature required for an absorption refrigerator of a single effect cycle to a temperature required for an absorption refrigerator of a two-stage absorption cycle in one absorption refrigerator.
特開2004-211979号公報(図6)JP 2004-211979 A (FIG. 6) 韓国公開特許第10-100746241号公報(図2)Korean Published Patent No. 10-10067241 (FIG. 2)
 省エネルギーを図るためには、1つの排熱源からより多くの冷熱量を発生させ再利用することが有効な手段となる。そのための手段として、例えば、90℃程度の温水を単効用サイクルの吸収式冷凍機の駆動熱源として利用し、その後温度が下がった温水を2段吸収サイクルの吸収式冷凍機の駆動熱源として利用することが考えられる。しかし、この場合、それぞれサイクル構成の異なる吸収式冷凍機が2台必要となり、冷水及び冷却水の配管系統が2つとなるため、配管構成が複雑になってしまい、設置面積が大きくなるとともにコスト増加になってしまう。さらに、吸収式冷凍機を2台では、溶液ポンプや冷媒ポンプの数もほぼ倍増してしまい消費電力量が多くなるとともに、溶液量と冷媒量も倍増してしまう。 In order to save energy, it is an effective means to generate more cold heat from one exhaust heat source and reuse it. As a means for that, for example, hot water of about 90 ° C. is used as a driving heat source for an absorption refrigerator of a single effect cycle, and hot water whose temperature has subsequently decreased is used as a driving heat source of an absorption refrigerator of a two-stage absorption cycle. It is possible. However, in this case, two absorption refrigerators having different cycle configurations are required, and two piping systems for chilled water and cooling water are required, which complicates the piping configuration and increases the installation area and costs. Become. Furthermore, with two absorption refrigerators, the number of solution pumps and refrigerant pumps almost doubles, increasing the amount of power consumption and also doubling the amount of solution and the amount of refrigerant.
 一方、特許文献2の技術では、1台の吸収式冷凍機で上記課題に対応したサイクルとなっている。しかしながら、特許文献2の技術では、単効用サイクル側の吸収器から出た溶液の全量が流下液膜式の熱交換器からなる高圧再生器に流入し、高圧再生器を出た溶液の全量が流下液膜式の熱交換器からなる低圧再生器に流入するシリーズフローになっている。また、主な構成要素が、蒸発器、吸収器、低圧再生器、補助吸収器、補助再生器、高圧再生器、凝縮器の7つとなり、単効用サイクルより3つ、特許文献1の補助サイクルより1つ溶液が循環する構成要素が増加している。このため、必要な保有溶液量の増加によるコスト増加が考えられる。 On the other hand, in the technique of Patent Document 2, a cycle corresponding to the above-described problem is achieved with one absorption refrigerator. However, in the technique of Patent Document 2, the total amount of the solution discharged from the absorber on the single effect cycle side flows into the high-pressure regenerator composed of a falling film heat exchanger, and the total amount of the solution discharged from the high-pressure regenerator is It is a series flow that flows into a low-pressure regenerator consisting of a falling film type heat exchanger. Also, there are seven main components: an evaporator, an absorber, a low pressure regenerator, an auxiliary absorber, an auxiliary regenerator, a high pressure regenerator, and a condenser, three from the single effect cycle, and the auxiliary cycle of Patent Document 1. The number of components through which one solution circulates is increasing. For this reason, the cost increase by the increase in the amount of required holding | maintenance solutions can be considered.
 本発明の目的は、単効用サイクルに補助サイクルを組合せた構成において、溶液保有量を低減することができる吸収式冷凍機を得ることである。 An object of the present invention is to obtain an absorption refrigerator that can reduce the amount of solution retained in a configuration in which an auxiliary cycle is combined with a single effect cycle.
 上記目的を達成するため、本発明の一実施形態に係る吸収式冷凍機は、蒸発器と、吸収器と、低圧再生器と、高圧再生器と、補助吸収器と、補助再生器と、凝縮器と、溶液ポンプと、を備え、前記蒸発器と、前記吸収器と、前記低圧再生器と、前記高圧再生器と、前記補助吸収器と、前記補助再生器とは、流下液膜式の熱交換器で構成し、前記蒸発器と前記吸収器とは、気相部が連通し、前記低圧再生器と前記補助吸収器とは、気相部が連通し、前記高圧再生器と前記補助再生器と前記凝縮器とは、気相部が連通し、前記高圧再生器から前記吸収器へ溶液を流すための溶液配管は、前記低圧再生器からの溶液を流すための溶液配管と連結された合流部を有し、前記溶液ポンプは、前記合流部から前記吸収器までの前記溶液配管に設けられ、前記高圧再生器の底面は、前記低圧再生器の底面より高い位置に配置されている。 In order to achieve the above object, an absorption refrigerator according to an embodiment of the present invention includes an evaporator, an absorber, a low-pressure regenerator, a high-pressure regenerator, an auxiliary absorber, an auxiliary regenerator, and a condenser. And a solution pump. The evaporator, the absorber, the low pressure regenerator, the high pressure regenerator, the auxiliary absorber, and the auxiliary regenerator are a falling liquid film type. It is constituted by a heat exchanger, and the vaporizer communicates with the evaporator and the absorber, and the low-pressure regenerator and the auxiliary absorber communicate with the gas-phase portion, and the high-pressure regenerator and the auxiliary The regenerator and the condenser communicate with each other in a gas phase portion, and a solution pipe for flowing a solution from the high pressure regenerator to the absorber is connected to a solution pipe for flowing a solution from the low pressure regenerator. The solution pump is provided in the solution pipe from the merge portion to the absorber, Bottom of the serial high-pressure regenerator is located higher than the bottom surface of the low-pressure regenerator.
 本発明によれば、2単効用サイクルに補助サイクルを組合せた構成において、溶液保有量を低減することができる吸収式冷凍機を提供することができる。 According to the present invention, it is possible to provide an absorption chiller capable of reducing the amount of solution retained in a configuration in which an auxiliary cycle is combined with a two single effect cycle.
本発明の実施形態に係る吸収式冷凍機のサイクル系統図を示す。The cycle system diagram of the absorption refrigerating machine concerning the embodiment of the present invention is shown. 本発明の実施形態に係る吸収式冷凍機のデューリング線図を示す。The dueling diagram of the absorption refrigerating machine concerning the embodiment of the present invention is shown.
 以下、本発明の具体的実施例を、図面を用いて説明する。なお、各図において、同一符号を付した部分は同一或いは相当する部分を示している。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. Note that, in each drawing, the portions denoted by the same reference numerals indicate the same or corresponding portions.
 本発明の実施形態に係る吸収式冷凍機100について、図1、2を参照して説明する。 An absorption refrigerator 100 according to an embodiment of the present invention will be described with reference to FIGS.
 図1は、本実施形態の吸収式冷凍機100のサイクル系統図を示している。 FIG. 1 shows a cycle system diagram of the absorption refrigerator 100 of the present embodiment.
 図2は、本実施形態の吸収式冷凍機100のデューリング線図を示している。図2では、横軸を溶液温度、縦軸を圧力とし、溶液の等濃度線からなるデューリング線図中に、本発明のサイクルの状態を示している。 FIG. 2 shows a dueling diagram of the absorption refrigerator 100 of the present embodiment. In FIG. 2, the horizontal axis indicates the solution temperature and the vertical axis indicates the pressure, and the state of the cycle of the present invention is shown in the During diagram composed of the isoconcentration lines of the solution.
 なお、図1のE、A、LG、HG、AA、AG、Cと、図2のE、A、LG、HG、AA、AG、Cは同じ部分を示す。 In addition, E, A, LG, HG, AA, AG, and C in FIG. 1 and E, A, LG, HG, AA, AG, and C in FIG.
 先ず、本発明の実施形態に係る吸収式冷凍機100の全体構成について説明する。 First, the overall configuration of the absorption refrigerator 100 according to the embodiment of the present invention will be described.
 吸収式冷凍機100は、単効用サイクル側と補助サイクル(二段吸収サイクル)側からなり、それぞれのサイクルで溶液が独立して循環する。単効用サイクル側は、蒸発器1(E)、吸収器9(A)、低圧再生器22(LG)、高圧再生器33(HG)、凝縮器40(C)、低温溶液熱交換器55、高温溶液熱交換器56の熱交換器要素と、冷媒ポンプ6、溶液ポンプ14、30などを備えている。補助サイクル側は、補助吸収器16(AA)、補助再生器44(AG)、中温溶液熱交換器57の熱交換器要素と、溶液ポンプ29、54などを備えている。 The absorption refrigerator 100 includes a single effect cycle side and an auxiliary cycle (two-stage absorption cycle) side, and the solution circulates independently in each cycle. The single effect cycle side includes an evaporator 1 (E), an absorber 9 (A), a low pressure regenerator 22 (LG), a high pressure regenerator 33 (HG), a condenser 40 (C), a low temperature solution heat exchanger 55, The heat exchanger element of the high temperature solution heat exchanger 56, the refrigerant pump 6, the solution pumps 14 and 30, and the like are provided. The auxiliary cycle side includes an auxiliary absorber 16 (AA), an auxiliary regenerator 44 (AG), a heat exchanger element of an intermediate temperature solution heat exchanger 57, solution pumps 29 and 54, and the like.
 次に単効用サイクル側の動作について説明する。 Next, the operation on the single effect cycle side will be described.
 蒸発器1では、冷媒ポンプ6で蒸発器1下部に溜められた冷媒を、冷媒配管7を通って散布装置2に導き、熱交換器3の伝熱管外に散布する。散布した冷媒は、熱交換器3の伝熱管内を流れる冷水に加熱され一部冷媒蒸気となり、エリミネータ8を介して吸収器9に導かれる。このときに、冷媒が蒸発する際の蒸発潜熱を利用し熱交換器3の伝熱管内を流れる冷水を冷却する。熱交換器3には、冷水配管4、5が接続され負荷側に冷熱を供給するための冷水が通水される。 In the evaporator 1, the refrigerant stored in the lower part of the evaporator 1 by the refrigerant pump 6 is guided to the spraying device 2 through the refrigerant pipe 7 and sprayed outside the heat transfer tube of the heat exchanger 3. The dispersed refrigerant is heated by the cold water flowing in the heat transfer pipe of the heat exchanger 3 to be partially refrigerant vapor, and is led to the absorber 9 through the eliminator 8. At this time, the cold water flowing in the heat transfer tube of the heat exchanger 3 is cooled using the latent heat of vaporization when the refrigerant evaporates. Cold water pipes 4 and 5 are connected to the heat exchanger 3 to pass cold water for supplying cold heat to the load side.
 吸収器9では、低圧再生器22と高圧再生器33で濃縮された溶液が、散布装置10から熱交換器11の伝熱管外に散される。散布された溶液は、蒸発器1からの冷媒蒸気を吸収し濃度が薄くなった後、溶液配管15途中に設置した溶液ポンプ14で低温溶液熱交換器55を通過後に分岐点Aで分岐し、一方が溶液配管31の流量調整弁32を介して低圧再生器22に導かれる。分岐点Aで分岐したもう一方の溶液は、高温溶液熱交換器56を通って高圧再生器33に導かれる。吸収器9の熱交換器11の伝熱管内には、溶液が冷媒蒸気を吸収する際に発生する吸収熱を取り除くために冷却水が通水される。熱交換器11には、冷却水配管12、13が接続されている。 In the absorber 9, the solution concentrated by the low pressure regenerator 22 and the high pressure regenerator 33 is scattered from the spray device 10 to the outside of the heat transfer tube of the heat exchanger 11. The dispersed solution absorbs the refrigerant vapor from the evaporator 1 and decreases in concentration, and then branches at the branch point A after passing through the low-temperature solution heat exchanger 55 by the solution pump 14 installed in the middle of the solution pipe 15. One is led to the low pressure regenerator 22 through the flow rate adjustment valve 32 of the solution pipe 31. The other solution branched at the branch point A is led to the high pressure regenerator 33 through the high temperature solution heat exchanger 56. Cooling water is passed through the heat transfer tube of the heat exchanger 11 of the absorber 9 in order to remove the absorption heat generated when the solution absorbs the refrigerant vapor. Cooling water pipes 12 and 13 are connected to the heat exchanger 11.
 低圧再生器22では、吸収器9で濃度の薄くなった溶液が、散布装置23から熱交換器24の伝熱管外に散布される。散布された溶液は、熱交換器24の伝熱管内を流れる熱源媒体で加熱され、濃縮した溶液と冷媒蒸気に分離される。濃縮した溶液は、溶液配管27を通って合流点(合流部)Bで高圧再生器33からの溶液と合流する。濃縮した溶液から分離した冷媒蒸気は、エリミネータ21を介して補助サイクル側の補助吸収器16に導かれる。低圧再生器22の熱交換器24には、熱源媒体配管25、26が接続されている。 In the low-pressure regenerator 22, the solution having a reduced concentration in the absorber 9 is sprayed from the spray device 23 to the outside of the heat transfer tube of the heat exchanger 24. The dispersed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 24 and separated into a concentrated solution and refrigerant vapor. The concentrated solution merges with the solution from the high pressure regenerator 33 at the merge point (merging portion) B through the solution pipe 27. The refrigerant vapor separated from the concentrated solution is guided to the auxiliary absorber 16 on the auxiliary cycle side via the eliminator 21. Heat source medium pipes 25 and 26 are connected to the heat exchanger 24 of the low pressure regenerator 22.
 高圧再生器33では、吸収器9で濃度が薄くなり低温溶液熱交換器55と高温溶液熱交換器56で昇温された溶液が散布装置34から熱交換器35の伝熱管外に散布する。散布した溶液は、熱交換器35の伝熱管内を流れる熱源媒体で加熱され、濃縮した溶液と冷媒蒸気に分離される。濃縮した溶液は、溶液配管49途中に設置した高温溶液熱交換器56を通って合流点Bに導かれる。合流点Bで合流した低圧再生器22と高圧再生器33からの濃縮された溶液は、溶液ポンプ30で昇圧され低温溶液熱交換器55を通って吸収器9に導かれる。高圧再生器33で濃縮した溶液から分離した冷媒蒸気は、バッフル39を介して凝縮器40に導かれる。高圧再生器33の熱交換器35には、熱源媒体配管36、37が接続されている。 In the high-pressure regenerator 33, the solution whose concentration is reduced by the absorber 9 and heated by the low-temperature solution heat exchanger 55 and the high-temperature solution heat exchanger 56 is sprayed from the spraying device 34 to the outside of the heat transfer tube of the heat exchanger 35. The sprayed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 35 and separated into a concentrated solution and refrigerant vapor. The concentrated solution is guided to the junction B through a high temperature solution heat exchanger 56 installed in the middle of the solution pipe 49. The concentrated solution from the low pressure regenerator 22 and the high pressure regenerator 33 that have joined at the junction B is boosted by the solution pump 30 and led to the absorber 9 through the low temperature solution heat exchanger 55. The refrigerant vapor separated from the solution concentrated by the high pressure regenerator 33 is guided to the condenser 40 through the baffle 39. Heat source medium pipes 36 and 37 are connected to the heat exchanger 35 of the high pressure regenerator 33.
 凝縮器40では、高圧再生器33と補助再生器44で濃縮した溶液から分離した冷媒蒸気を、熱交換器41の伝熱管内を流れる冷却水で冷却し、凝縮液化する。凝縮液化した冷媒は、冷媒配管50を通って蒸発器1に導かれる。熱交換器41には、冷却水配管42、43が接続される。 In the condenser 40, the refrigerant vapor separated from the solution concentrated in the high pressure regenerator 33 and the auxiliary regenerator 44 is cooled with cooling water flowing in the heat transfer tube of the heat exchanger 41 to be condensed and liquefied. The condensed and liquefied refrigerant is guided to the evaporator 1 through the refrigerant pipe 50. Cooling water pipes 42 and 43 are connected to the heat exchanger 41.
 次に補助サイクル側の動作について説明する。 Next, the operation on the auxiliary cycle side will be described.
 補助吸収器16では、補助再生器44で濃縮された溶液が散布装置17から熱交換器18の伝熱管外に散布される。散布された溶液は、単効用側サイクルの低圧再生器22からの冷媒蒸気を吸収し濃度が薄くなった後、溶液配管28途中に設置した溶液ポンプ29で中温溶液熱交換器57を通過後に高圧再生器33に導かれる。補助吸収器16の熱交換器18の伝熱管内には、溶液が冷媒蒸気を吸収する際に発生する吸収熱を取り除くために冷却水が通水される。熱交換器18には、冷却水配管19、20が接続されている。 In the auxiliary absorber 16, the solution concentrated in the auxiliary regenerator 44 is sprayed from the spraying device 17 to the outside of the heat transfer tube of the heat exchanger 18. The sprayed solution absorbs the refrigerant vapor from the low-pressure regenerator 22 of the single effect side cycle and becomes low in concentration, and then passes through the intermediate-temperature solution heat exchanger 57 with the solution pump 29 installed in the middle of the solution pipe 28 and then the high-pressure. Guided to the regenerator 33. Cooling water is passed through the heat transfer tube of the heat exchanger 18 of the auxiliary absorber 16 in order to remove absorption heat generated when the solution absorbs the refrigerant vapor. Cooling water pipes 19 and 20 are connected to the heat exchanger 18.
 補助再生器44では、補助吸収器16で濃度の薄くなった溶液が散布装置45から熱交換器46の伝熱管外に散布される。散布された溶液は、熱交換器46の伝熱管内を流れる熱源媒体で加熱され、濃縮した溶液と冷媒蒸気に分離される。濃縮した溶液は、溶液配管51途中に設置した溶液ポンプ54で、中温溶液熱交換器57を通って補助吸収器16に導かれる。濃縮した溶液から分離した冷媒蒸気は、バッフル52を介して凝縮器40導かれる。補助再生器44の熱交換器46には、熱源媒体配管47、48が接続されている。 In the auxiliary regenerator 44, the solution whose concentration has been reduced by the auxiliary absorber 16 is sprayed from the spraying device 45 to the outside of the heat transfer tube of the heat exchanger 46. The sprayed solution is heated by a heat source medium flowing in the heat transfer tube of the heat exchanger 46 and separated into a concentrated solution and refrigerant vapor. The concentrated solution is guided to the auxiliary absorber 16 through the intermediate temperature solution heat exchanger 57 by the solution pump 54 installed in the middle of the solution pipe 51. The refrigerant vapor separated from the concentrated solution is led to the condenser 40 through the baffle 52. Heat source medium pipes 47 and 48 are connected to the heat exchanger 46 of the auxiliary regenerator 44.
 熱源媒体は、例えば、高圧再生器33の熱交換器35、低圧再生器22の熱交換器24、補助再生器44の熱交換器46の順で通水される。このとき、図2に示すように熱源媒体を、高圧再生器33出口の溶液温度より高い温度(90℃程度)から、補助再生器44出口の溶液温度に近い温度(60℃程度)まで利用することができる。 The heat source medium is passed through the heat exchanger 35 of the high pressure regenerator 33, the heat exchanger 24 of the low pressure regenerator 22, and the heat exchanger 46 of the auxiliary regenerator 44 in this order, for example. At this time, as shown in FIG. 2, the heat source medium is utilized from a temperature higher than the solution temperature at the outlet of the high pressure regenerator 33 (about 90 ° C.) to a temperature close to the solution temperature at the outlet of the auxiliary regenerator 44 (about 60 ° C.). be able to.
 また、蒸発器1では冷媒が、吸収器9、低圧再生器22、高圧再生器33、補助吸収器16、及び補助再生器44では溶液が、各熱交換器上部の散布装置から散布される流下液膜式の熱交換器としている。 Further, in the evaporator 1, the refrigerant flows down from the spraying device above each heat exchanger in the absorber 9, the low pressure regenerator 22, the high pressure regenerator 33, the auxiliary absorber 16, and the auxiliary regenerator 44. It is a liquid film heat exchanger.
 以上のように、本実施形態の構成は、単効用サイクル側の低圧再生器22と補助吸収サイクル側の補助吸収器16の気相部を連通し、単効用サイクル側の高圧再生器33及び凝縮器40と補助吸収サイクル側の補助再生器44の気相部を連通することによって、単効用サイクルと補助吸収サイクルを組合せて運転することができる。なお、本実施形態においては、溶液(吸収剤)として臭化リチウム水溶液を使用し、冷媒として水を使用している。 As described above, the configuration of the present embodiment communicates the gas phase portion of the low-pressure regenerator 22 on the single effect cycle side and the auxiliary absorber 16 on the auxiliary absorption cycle side, and the high-pressure regenerator 33 and the condensation on the single-effect cycle side. By connecting the gas phase section of the auxiliary regenerator 44 on the auxiliary absorption cycle side with the vessel 40, the single effect cycle and the auxiliary absorption cycle can be operated in combination. In this embodiment, an aqueous lithium bromide solution is used as the solution (absorbent), and water is used as the refrigerant.
 また、本実施形態では、図1に示すように、高圧再生器33の底面101を、低圧再生器22の底面102より高さH分高く配置する。高さHは、運転中において高圧再生器33から流出する溶液の液面が配管49内に形成されるように設定される。これにより、運転中には、高圧再生器33内に溶液を溜める必要が無くなり、溶液量とともに冷媒量を削減できる。 Further, in the present embodiment, as shown in FIG. 1, the bottom surface 101 of the high pressure regenerator 33 is disposed higher than the bottom surface 102 of the low pressure regenerator 22 by a height H. The height H is set so that the liquid level of the solution flowing out from the high pressure regenerator 33 during operation is formed in the pipe 49. This eliminates the need to store the solution in the high-pressure regenerator 33 during operation, thereby reducing the amount of refrigerant together with the amount of solution.
 次に、高さHの決め方について説明する。運転中に例えば、低圧再生器22の液面を、低圧再生器22内に設置する液面センサ(図示せず)で液面高さを検知し、液面が下がったら散布量を多く、液面が上がったら散布量を少なくなるように流量調整弁32で制御し、低圧再生器22内に溜められる溶液の液面高さを一定範囲に調整する。このとき、高圧再生器33から流出する溶液の液面高さは、高圧再生器33と低圧再生器22との間に生じる圧力差ΔP1と、高温溶液熱交換器56内を含む高圧再生器33から合流点Bまでの配管49の圧力損失ΔP2で決まる。高圧再生器33から流出する溶液の液面高さは、低圧再生器22内の液面高さに対して、圧力差ΔP1分低くできることになるが、圧力損失ΔP2分高くなる。仮に、低圧再生器22内に溜める溶液の液面高さを200mmとし、圧力差ΔP1が200mm、圧力損失ΔP2が1000mmになったとすると、高圧再生器33内に溶液が溜めないようにすることができる高さHは、H>1000mmとなる。 Next, how to determine the height H will be described. During operation, for example, the liquid level of the low-pressure regenerator 22 is detected by a liquid level sensor (not shown) installed in the low-pressure regenerator 22, and if the liquid level drops, the spray amount is increased. When the surface rises, the flow rate adjustment valve 32 controls the spray amount to decrease, and the liquid level of the solution stored in the low pressure regenerator 22 is adjusted to a certain range. At this time, the liquid level height of the solution flowing out from the high pressure regenerator 33 is the pressure difference ΔP1 generated between the high pressure regenerator 33 and the low pressure regenerator 22, and the high pressure regenerator 33 including the inside of the high temperature solution heat exchanger 56. Is determined by the pressure loss ΔP2 of the pipe 49 from the junction point B to the junction point B. The liquid level height of the solution flowing out from the high pressure regenerator 33 can be reduced by the pressure difference ΔP1 with respect to the liquid level height in the low pressure regenerator 22, but is increased by the pressure loss ΔP2. If the liquid surface height of the solution stored in the low pressure regenerator 22 is 200 mm, the pressure difference ΔP1 is 200 mm, and the pressure loss ΔP2 is 1000 mm, the solution may be prevented from being stored in the high pressure regenerator 33. The possible height H is H> 1000 mm.
 ここで、低圧再生器22内の溶液の液面高さと、高圧再生器33と低圧再生器22との圧力差ΔP1と、高温溶液熱交換器56内を含む高圧再生器33から合流点Bまでの配管49の圧力損失ΔP2は、配管49と高温溶液熱交換器56の仕様と運転条件が決まれば、容易に求めることができ、その結果を基に低圧再生器22の底面102から高圧再生器33の底面101までの高さHを設定し、機器配置を決定することができる。 Here, the liquid level of the solution in the low-pressure regenerator 22, the pressure difference ΔP1 between the high-pressure regenerator 33 and the low-pressure regenerator 22, and the high-pressure regenerator 33 including the inside of the high-temperature solution heat exchanger 56 to the junction B The pressure loss ΔP2 of the pipe 49 can be easily obtained if the specifications and operating conditions of the pipe 49 and the high-temperature solution heat exchanger 56 are determined, and the high pressure regenerator from the bottom surface 102 of the low pressure regenerator 22 based on the result. The height H to the bottom surface 101 of 33 can be set and the device arrangement can be determined.
 次に、本実施形態の作用・効果について説明する。 Next, functions and effects of this embodiment will be described.
 本実施形態の吸収式冷凍機100は、吸収器9の溶液を分岐点Aで低圧再生器22と高圧再生器33に分配し、低圧再生器22と高圧再生器33からの溶液を、合流点Bで合流させ溶液ポンプ30で吸収器9に流入させている。このため、他の要素(他のポンプ)とは異なり、溶液ポンプ30には、低圧再生器22と高圧再生器33と2つの要素からの溶液が流入することになる。 The absorption refrigerator 100 of the present embodiment distributes the solution of the absorber 9 to the low pressure regenerator 22 and the high pressure regenerator 33 at the branch point A, and the solution from the low pressure regenerator 22 and the high pressure regenerator 33 is combined with the junction. The solution is combined at B and is introduced into the absorber 9 by the solution pump 30. For this reason, unlike the other elements (other pumps), the solution from the two elements, the low pressure regenerator 22 and the high pressure regenerator 33, flows into the solution pump 30.
 他の要素は、図1のように、溶液ポンプ14には吸収器5、溶液ポンプ19には補助吸収器16、溶液ポンプ54には補助再生器44からの溶液が流入するとともに、溶液タンク61、62、63、64がそれぞれ1対1で設けられ、当該タンクに一定量の溶液を溜めた状態で運転している。これは、運転範囲において溶液の濃度変化分よる溶液量変化を許容することと、各溶液タンク内の液面高さが敏感に変動しないようにするためで、これにより、各溶液ポンプへの押込み圧を確保することができ、各溶液ポンプを安定して駆動できるようにすることができる。 As shown in FIG. 1, the other elements are that the absorber 5 flows into the solution pump 14, the auxiliary absorber 16 enters the solution pump 19, and the solution from the auxiliary regenerator 44 flows into the solution pump 54. , 62, 63, 64 are provided in a one-to-one relationship, and the tank is operated with a certain amount of solution stored in the tank. This is to allow a change in the amount of the solution due to the change in the concentration of the solution in the operating range and to prevent the liquid level in each solution tank from fluctuating sensitively. The pressure can be secured, and each solution pump can be driven stably.
 一方、溶液ポンプ30には、高圧再生器33と低圧再生器22からの溶液が流入することになるが、溶液ポンプ30を安定して駆動させるためには、他の要素と同様に溶液タンクは1つあれば十分であることから、低圧再生器22に溶液タンク63を設ける構成とした。低圧再生器22では、溶液ポンプ30までの溶液の圧力損失が、高温溶液熱交換器56を介した高圧再生器33より小さくなるので、低圧再生器22に溶液タンク63を設けた方が、溶液ポンプ30が安定運転に必要な液面高さを低く抑えることができる効果がある。 On the other hand, the solution from the high pressure regenerator 33 and the low pressure regenerator 22 flows into the solution pump 30, but in order to drive the solution pump 30 stably, the solution tank is the same as other elements. Since one is sufficient, the low pressure regenerator 22 is provided with a solution tank 63. In the low pressure regenerator 22, the pressure loss of the solution up to the solution pump 30 is smaller than that of the high pressure regenerator 33 via the high temperature solution heat exchanger 56, so that the solution tank 63 is provided in the low pressure regenerator 22. There is an effect that the liquid level required for the stable operation of the pump 30 can be kept low.
 以上から、高圧再生器33の底面101を低圧再生器22の底面102より高い位置に配置し、運転中において高圧再生器33から流出する溶液の液面が配管49内に形成されるようにして、高圧再生器33の底部には、運転中に溶液が溜まらない機器配置とした。これにより、高圧再生器33での溶液タンクは不要となり、溶液量及び冷媒量を削減できることから、吸収式冷凍機100の小形化及びコスト低減に寄与することができる。また、溶液量及び冷媒量を削減することで、保有液量の熱容量が少なくできるので、吸収式冷凍機100の起動特性の改善を図ることができる。 From the above, the bottom surface 101 of the high pressure regenerator 33 is arranged at a position higher than the bottom surface 102 of the low pressure regenerator 22 so that the liquid level of the solution flowing out from the high pressure regenerator 33 during operation is formed in the pipe 49. The bottom of the high-pressure regenerator 33 was arranged so that no solution was collected during operation. This eliminates the need for a solution tank in the high-pressure regenerator 33 and reduces the amount of solution and the amount of refrigerant, thereby contributing to downsizing and cost reduction of the absorption refrigeration machine 100. Further, since the heat capacity of the retained liquid amount can be reduced by reducing the amount of solution and the amount of refrigerant, the start-up characteristics of the absorption chiller 100 can be improved.
 なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。 In addition, this invention is not limited to the Example mentioned above. A person skilled in the art can make various additions and changes within the scope of the present invention.
1:蒸発器
9:吸収器
30:溶液ポンプ
27、49:溶液配管
16:補助吸収器
22:低圧再生器
33:高圧再生器
40:凝縮器
44:補助再生器
56:高温溶液熱交換器
41:凝縮器
101:高圧再生器の底面
102:低圧再生器の底面
1: Evaporator 9: Absorber 30: Solution pump 27, 49: Solution pipe 16: Auxiliary absorber 22: Low pressure regenerator 33: High pressure regenerator 40: Condenser 44: Auxiliary regenerator 56: High temperature solution heat exchanger 41 : Condenser 101: Bottom surface of high pressure regenerator 102: Bottom surface of low pressure regenerator

Claims (4)

  1.  蒸発器と、吸収器と、低圧再生器と、高圧再生器と、補助吸収器と、補助再生器と、凝縮器と、溶液ポンプと、を備え、
     前記蒸発器と、前記吸収器と、前記低圧再生器と、前記高圧再生器と、前記補助吸収器と、前記補助再生器とは、流下液膜式の熱交換器で構成し、
     前記蒸発器と前記吸収器とは、気相部が連通し、
     前記低圧再生器と前記補助吸収器とは、気相部が連通し、
     前記高圧再生器と前記補助再生器と前記凝縮器とは、気相部が連通し、
     前記高圧再生器から前記吸収器へ溶液を流すための溶液配管は、前記低圧再生器からの溶液を流すための溶液配管と連結された合流部を有し、
     前記溶液ポンプは、前記合流部から前記吸収器までの前記溶液配管に設けられ、
     前記高圧再生器の底面は、前記低圧再生器の底面より高い位置に配置されている、吸収式冷凍機。
    An evaporator, an absorber, a low pressure regenerator, a high pressure regenerator, an auxiliary absorber, an auxiliary regenerator, a condenser, and a solution pump;
    The evaporator, the absorber, the low-pressure regenerator, the high-pressure regenerator, the auxiliary absorber, and the auxiliary regenerator are configured by a falling film type heat exchanger,
    The vaporizer and the absorber communicate with each other in a gas phase part,
    The low-pressure regenerator and the auxiliary absorber communicate with the gas phase part,
    The high-pressure regenerator, the auxiliary regenerator, and the condenser are in communication with a gas phase part,
    The solution pipe for flowing the solution from the high-pressure regenerator to the absorber has a merging portion connected to the solution pipe for flowing the solution from the low-pressure regenerator,
    The solution pump is provided in the solution pipe from the junction to the absorber,
    The absorption refrigerating machine, wherein a bottom surface of the high pressure regenerator is disposed at a position higher than a bottom surface of the low pressure regenerator.
  2.  前記高圧再生器の前記底面の前記低圧再生器の前記底面に対する位置は、前記高圧再生器から前記吸収器へ溶液を流すための前記溶液配管内に、前記高圧再生器から流出する溶液の液面が形成されるように設定される、請求項1に記載の吸収式冷凍機。 The position of the bottom surface of the high pressure regenerator with respect to the bottom surface of the low pressure regenerator is the level of the solution flowing out of the high pressure regenerator in the solution pipe for flowing the solution from the high pressure regenerator to the absorber. The absorption refrigerator according to claim 1, wherein the absorption refrigerator is set so as to be formed.
  3.  前記高圧再生器の前記底面の前記低圧再生器の前記底面に対する位置は、前記高圧再生器と前記低圧再生器との圧力差と、前記高圧再生器から前記合流点までの前記溶液配管の圧力損失と、前記低圧再生器内の溶液の液面高さと、に基づいて設定される、請求項2に記載の吸収式冷凍機。 The position of the bottom surface of the high pressure regenerator with respect to the bottom surface of the low pressure regenerator is the pressure difference between the high pressure regenerator and the low pressure regenerator, and the pressure loss of the solution pipe from the high pressure regenerator to the junction. The absorption refrigerator according to claim 2, wherein the absorption refrigerator is set based on the liquid level of the solution in the low-pressure regenerator.
  4.  前記高圧再生器から前記合流部へ溶液を流すための前記溶液配管内の溶液と、前記吸収器から前記高圧再生器へ溶液が流れる溶液配管内の溶液とが、熱交換をする高温溶液熱交換器を更に備える、請求項1から請求項3のいずれか一項に記載の吸収式冷凍機。 High-temperature solution heat exchange in which heat is exchanged between the solution in the solution pipe for flowing the solution from the high-pressure regenerator to the junction and the solution in the solution pipe through which the solution flows from the absorber to the high-pressure regenerator. The absorption refrigerator according to any one of claims 1 to 3, further comprising a refrigerator.
PCT/JP2017/031613 2016-09-23 2017-09-01 Absorption refrigerator WO2018056024A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780003541.1A CN108139126B (en) 2016-09-23 2017-09-01 Absorption refrigerator
KR1020187009541A KR102017436B1 (en) 2016-09-23 2017-09-01 Absorption Chiller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-185021 2016-09-23
JP2016185021A JP6632951B2 (en) 2016-09-23 2016-09-23 Absorption refrigerator

Publications (1)

Publication Number Publication Date
WO2018056024A1 true WO2018056024A1 (en) 2018-03-29

Family

ID=61690280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031613 WO2018056024A1 (en) 2016-09-23 2017-09-01 Absorption refrigerator

Country Status (4)

Country Link
JP (1) JP6632951B2 (en)
KR (1) KR102017436B1 (en)
CN (1) CN108139126B (en)
WO (1) WO2018056024A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150516A1 (en) * 2017-02-16 2018-08-23 日立ジョンソンコントロールズ空調株式会社 Absorption refrigerator
JP7154066B2 (en) * 2018-08-29 2022-10-17 日立ジョンソンコントロールズ空調株式会社 Absorption chiller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349987A (en) * 2001-05-30 2002-12-04 Mitsubishi Heavy Ind Ltd Absorption refrigeration unit
WO2004029524A1 (en) * 2002-09-27 2004-04-08 Ebara Corporation Absorption refrigerator
KR100746241B1 (en) * 2006-06-20 2007-08-03 한국지역난방공사 Low temperature water two-stage absorbtion type refrigerator
JP2014196861A (en) * 2013-03-29 2014-10-16 川重冷熱工業株式会社 Absorption refrigerator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028236A (en) * 1998-07-13 2000-01-28 Paloma Ind Ltd Absorption type refrigerating machine
JP3824436B2 (en) * 1998-12-08 2006-09-20 荏原冷熱システム株式会社 Triple effect absorption refrigerator
JP3603006B2 (en) * 2000-04-28 2004-12-15 株式会社 日立インダストリイズ Absorption refrigerator and control method of absorption refrigerator
JP2002048427A (en) * 2000-08-02 2002-02-15 Hitachi Ltd Absorption refrigerating machine
JP2002081805A (en) * 2000-09-08 2002-03-22 Hitachi Ltd Two-stage absorption refrigerator
CN100380069C (en) * 2002-09-27 2008-04-09 株式会社荏原制作所 Absorption refrigerator
JP2004211979A (en) 2003-01-06 2004-07-29 Ebara Corp Absorption refrigerating system
KR101042812B1 (en) * 2009-04-10 2011-06-20 주식회사 센추리 Low temperature water absorbtion type refrigerator having two-stage
JP2010266170A (en) * 2009-05-18 2010-11-25 Sanyo Electric Co Ltd Absorption-type refrigerating machine
CN204063675U (en) * 2014-09-16 2014-12-31 同方川崎节能设备有限公司 The lithium bromide absorption-type machine unit circulatory system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349987A (en) * 2001-05-30 2002-12-04 Mitsubishi Heavy Ind Ltd Absorption refrigeration unit
WO2004029524A1 (en) * 2002-09-27 2004-04-08 Ebara Corporation Absorption refrigerator
KR100746241B1 (en) * 2006-06-20 2007-08-03 한국지역난방공사 Low temperature water two-stage absorbtion type refrigerator
JP2014196861A (en) * 2013-03-29 2014-10-16 川重冷熱工業株式会社 Absorption refrigerator

Also Published As

Publication number Publication date
JP6632951B2 (en) 2020-01-22
KR20180051566A (en) 2018-05-16
CN108139126B (en) 2020-08-25
KR102017436B1 (en) 2019-10-14
CN108139126A (en) 2018-06-08
JP2018048778A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
WO2018056024A1 (en) Absorption refrigerator
JP2012202589A (en) Absorption heat pump apparatus
JP2010078299A (en) Absorption refrigerator
WO2018150516A1 (en) Absorption refrigerator
KR102010832B1 (en) Low load control system for 2-stage low temperature hot water absorption chiller
JP5055071B2 (en) Absorption refrigerator
JP5721408B2 (en) Hot spring water supply system and hot spring water supply method
KR20080094985A (en) Hot-water using absorption chiller
JP5785800B2 (en) Vapor absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
JP3443100B2 (en) Absorption refrigerator and method of operating the same
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP6698297B2 (en) Absorption refrigerator
JP2018138848A (en) Absorption-type refrigerator
JP2004169988A (en) Two-stage/single-stage switchable absorption refrigerator and refrigerating system
JP3434284B2 (en) Absorption refrigerator
KR20020050928A (en) Control Method and Structure of Condensate of an Absorption Chiller with Hot Water Supply Function
JP3434280B2 (en) Absorption refrigerator and its operation method
JP3434283B2 (en) Absorption refrigerator and how to start it
CN114251864A (en) Absorption refrigerator
JP2011163615A (en) Absorption type refrigerating machine
JP2005300126A (en) Absorption type refrigerating machine
JP2019152390A (en) Absorption-type refrigerator
JP2009287806A (en) Absorption refrigerator
JP2001147053A (en) Two-stage double-effect absorption refrigerating machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187009541

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852803

Country of ref document: EP

Kind code of ref document: A1