JP6133879B2 - Method and apparatus for sealing an electronic component using a volume reducing material that causes phase change - Google Patents

Method and apparatus for sealing an electronic component using a volume reducing material that causes phase change Download PDF

Info

Publication number
JP6133879B2
JP6133879B2 JP2014537018A JP2014537018A JP6133879B2 JP 6133879 B2 JP6133879 B2 JP 6133879B2 JP 2014537018 A JP2014537018 A JP 2014537018A JP 2014537018 A JP2014537018 A JP 2014537018A JP 6133879 B2 JP6133879 B2 JP 6133879B2
Authority
JP
Japan
Prior art keywords
mold cavity
sealing
volume reducing
volume
reducing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014537018A
Other languages
Japanese (ja)
Other versions
JP2014530510A (en
Inventor
レオナルダス ユリアン ゼイル,ヨハネス
レオナルダス ユリアン ゼイル,ヨハネス
ヘラルダス ヨセフ ハル,ウィルヘルムス
ヘラルダス ヨセフ ハル,ウィルヘルムス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Besi Netherlands BV
Original Assignee
Besi Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Besi Netherlands BV filed Critical Besi Netherlands BV
Publication of JP2014530510A publication Critical patent/JP2014530510A/en
Application granted granted Critical
Publication of JP6133879B2 publication Critical patent/JP6133879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1701Component parts, details or accessories; Auxiliary operations using a particular environment during moulding, e.g. moisture-free or dust-free
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • B29C2045/14663Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame the mould cavity walls being lined with a film, e.g. release film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/005Using a particular environment, e.g. sterile fluids other than air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/02Transfer moulding, i.e. transferring the required volume of moulding material by a plunger from a "shot" cavity into a mould cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、担持体に実装される電子部品を封止する方法において、A)封止用の電子部品を、担持体に接続する金型キャビティ内へ載置する処理ステップと、B)金型キャビティを液状封止材で充填する処理ステップと、C)金型キャビティ内の封止材を少なくとも一部硬化させる処理ステップと、を含んでいる。本発明はまた、かかる方法を実行するための装置にも関する。   The present invention relates to a method for sealing an electronic component mounted on a carrier, in which A) a processing step of placing the electronic component for sealing in a mold cavity connected to the carrier, and B) a mold A processing step of filling the cavity with a liquid sealing material; and C) a processing step of at least partially curing the sealing material in the mold cavity. The invention also relates to an apparatus for carrying out such a method.

電子部品の封止において、より詳細には、担持体(例えば、リードフレーム等)に実装される半導体の封止において、異なる種類の封止プロセス、中でも、圧送成形、加圧成形、射出成形、またはこれら封止プロセスの組み合わせ等を用いることができる。ここで、半導体は、チップに加え、それらが例えば、発光ダイオード(LED)等の他の電子部品も含むように、広く解釈されることに留意されたい。電子部品を持つ担持体は、金型キャビティが封止用部品の周りに画成されるように、ここで成形部間にクランプされる。液状封止材は、成形部品が離型され、封止電子部品を持つ担持体が外される少なくとも部分的な硬化の後、これらの金型キャビティ内に供給される。封止材は通常、充填剤を包含する熱硬化性エポキシまたは樹脂から成っている。通常加熱もされる封止材に、圧力をかけ、その結果、既に液状ではない封止材を、液状になるまで加熱する。液状封止材は、(通常加熱される)金型キャビティを満たし、液状封止材は、例えば、化学結合(架橋結合)によって、金型キャビティ内で少なくとも部分的に硬化する。封止品質を高めるため、封止材の供給を開始する前に、所定の加圧(すなわち、大気圧よりも低いガス圧)を適用可能である。金型キャビティはここで、通常、金型キャビティの充填中、ガスを排出できる吸引チャネル(通気孔)を介して加圧される。金型キャビティを封止材で完全に満たすことが、非常に重要である。電子部品の封止における問題には、特定の条件によって、金型キャビティが常に封止材で完全に満たされるとは限らず、それにより、開口(ボイド)が作製すべき封止内に残ってしまうということがある。この現象は、特に、金型キャビティ内の封止材のフローフロントの前で生じ、ここで、(小さな)気泡または放出ガスが、封止材内に封入されるおそれがある。   In the sealing of electronic components, more specifically, in the sealing of semiconductors mounted on a carrier (for example, a lead frame), different types of sealing processes, among others, pressure molding, pressure molding, injection molding, Alternatively, a combination of these sealing processes can be used. It should be noted here that semiconductors are broadly interpreted so that in addition to the chip, they also include other electronic components such as, for example, light emitting diodes (LEDs). The carrier with the electronic components is now clamped between the moldings so that the mold cavity is defined around the sealing component. The liquid encapsulant is fed into these mold cavities after at least partial curing when the molded part is released and the carrier with the encapsulated electronic part is removed. The encapsulant typically consists of a thermosetting epoxy or resin that includes a filler. Pressure is applied to the sealing material that is also normally heated, and as a result, the sealing material that is not already liquid is heated until it becomes liquid. The liquid encapsulant fills the mold cavity (which is normally heated) and the liquid encapsulant is at least partially cured within the mold cavity, for example, by chemical bonding (crosslinking). In order to improve the sealing quality, a predetermined pressurization (that is, a gas pressure lower than the atmospheric pressure) can be applied before the supply of the sealing material is started. The mold cavity is now pressurized through a suction channel (vent) that can discharge gas during filling of the mold cavity. It is very important to completely fill the mold cavity with the encapsulant. The problem with sealing electronic components is that, depending on the specific conditions, the mold cavity is not always completely filled with the sealing material, so that an opening (void) remains in the seal to be created. Sometimes it ends up. This phenomenon occurs in particular in front of the encapsulant flow front in the mold cavity, where (small) bubbles or emitted gases can be encapsulated in the encapsulant.

本発明は、電子部品を封止するための方法および装置を提供し、ボイドが電子部品の封止内に生じる可能性を低減する目的を有する。   The present invention provides a method and apparatus for encapsulating electronic components and has the object of reducing the possibility of voids occurring within the encapsulation of electronic components.

本発明は、このために、前文で述べた種類の方法を提供し、ここで体積減少材は、金型キャビティが完全に、または部分的に封止材で充填される前に、金型キャビティ内へ導入され、体積減少材は、封止材で金型キャビティを充填する間に、体積減少材の体積が減少するように、相変化を生じる。ここで、体積減少材は、封止材で金型キャビティを充填する間、気相から少なくとも凝縮することが可能であるが、体積減少材はまた、気相から固相へ転置するか、体積減少材が(任意選択的に過熱された)蒸気として凝縮するか、固体に転置することも可能である。方法を実行するために、体積減少材は、気相で、および/またはミストとして、金型キャビティ内へ能動的に運ばれてもよく、より特定のオプションでは、体積減少材を過熱蒸気として能動的に供給する。一方で、体積減少材は、金型キャビティ内へ能動的に運ばれる場合に、液相または固相であることも可能である。関連するものは、封止材を金型キャビティに供給する前の条件の下で、体積減少材は比較的大きい体積(低い質量密度)を有し、封止プロセスが行われる条件の下では、体積減少材は相変化を生じることである。ここで関連するのは、温度だけではなく、相変化が起こる温度が圧力に大きく左右されるために、圧力増加もまた、需要な部分を担う。封止は、[150〜200]℃の温度範囲、および[50〜100]Bar、より詳細には[60〜90]Barの圧力において行われる。体積減少材の体積における最大限の減少(すなわち、最大限の圧縮係数)を得るために、更に、体積減少材の分子量ができる限り小さいことが望ましい。 The present invention provides for this purpose a method of the kind mentioned in the preamble, in which the volume reducing material is used before the mold cavity is completely or partially filled with the encapsulant. Introduced into the volume reducing material causes a phase change such that the volume of the volume reducing material decreases while filling the mold cavity with the sealant . Here, the volume reducing material can at least condense from the gas phase while filling the mold cavity with the encapsulant, but the volume reducing material can also be transferred from the gas phase to the solid phase or volume. It is also possible for the depletion material to condense as vapor (optionally superheated) or be transferred to a solid. To perform the method, the volume reducing material may be actively carried into the mold cavity in the gas phase and / or as a mist, and in a more specific option, the volume reducing material is activated as superheated steam. To supply. On the other hand, the volume reducing material can be in the liquid or solid phase when actively transported into the mold cavity. Relevant is that under conditions prior to supplying the encapsulant to the mold cavity, the volume reducing material has a relatively large volume (low mass density), and under conditions where the encapsulating process takes place, The volume reducing material is to cause a phase change. Relevant here is not only the temperature, but the pressure increase is also a demanding part, since the temperature at which the phase change occurs depends greatly on the pressure. Sealing takes place in a temperature range of [150-200] ° C. and a pressure of [50-100] Bar, more particularly [60-90] Bar. In order to obtain the maximum reduction in the volume of the volume reducing material (ie the maximum compression factor), it is further desirable that the molecular weight of the volume reducing material be as small as possible.

本発明はまた、フィルム材が、電子部品を持つ担持体と担持体に接続する金型キャビティとの間に配置され、液状封止材は、担持体とフィルム材との間に供給され、体積減少材は、フィルムと金型キャビティとの間に運ばれる方法を提供する。従って、体積減少材は、封止用の電子部品から、担持体から、そして、封止材から離される。(比較的少量の)体積減少材の存在が封止プロセスを損なうおそれがある程度まで、これらの欠点を防ぐことができる。体積減少材はこのように結局、電子部品を持つ担持体から離間して対向するフィルム材の一方の側にすべて位置する一方で、電子部品を持つ担持体は(後ほどの封止プロセス中、封止材も同様に)、それどころか、フィルムの反対側(すなわち、電子部品を持つ担持体に対向するフィルム材側)に位置する。 The present invention also provides a film material, is disposed between the mold cavity to be connected to the carrier and the carrier with electronic components, liquid sealant is supplied between the bearing member and the film material, the volume The reducing material provides a way to be transported between the film and the mold cavity. Therefore, the volume reducing material is separated from the electronic component for sealing, from the carrier, and from the sealing material. To the extent that the presence of a (relatively small amount) volume reducing material can impair the sealing process, these drawbacks can be prevented. The volume-reducing material is thus ultimately located on one side of the opposing film material spaced away from the carrier with the electronic components, while the carrier with the electronic components is sealed (during the later sealing process). On the contrary, it is located on the opposite side of the film (ie on the side of the film material facing the carrier with the electronic components).

この状態(すなわち、減少されたか否か)にかかわらず、体積減少材は従って、電子部品を持つ担持体および封止材の条件に影響を及ぼさず、結論として接触は免れる。フィルム材が体積減少材の適用と組み合わされて適用される、電子部品の封止の利点は、封止材を適用する(例えば、金型キャビティへの封止材の付着の機会がない)利点が従って、金型キャビティのガス抜きを可能にするために行われるべき構造的な対策をせずに達成できるという点にある。フィルム材との封止において、従って、金型キャビティ内の過剰圧力の上昇を防ぐ対策を行う必要はない。特に、高度な金型キャビティ(LEDと組み合わせて適用される、例えば、完全に、または部分的に封止するか、および/または製造する光学レンズ)において、過剰圧力が大きく上昇し得、それによって、フィルム材が損傷するリスクが高まる。排出チャネルは通常、このために、金型キャビティ(または複数の金型キャビティ)が配置される成形部内に配置される。体積減少材の存在は、単数または複数の金型キャビティのガス抜き(通気孔)が不必要となるように、体積減少材における相変化の結果として、体積減少が生じるために、かかる対策を無駄にしてしまう。これにより、単数または複数の金型キャビティを持つ成形部が、容易に製造できるだけではなく、おそらくより重要には、動作中の不具合に対して影響を受けにくいより単純な成形部となる。これは、金型キャビティに接続するガス抜き対策が汚れにより容易に目詰まりするか、または、例えば、フィルム分離が封止材により適切に機能しないためである。目詰まりしたガス抜き対策を持つかかる成形部の洗浄は、大きな労働力を要し、生産の進行を妨げる可能性がある。過分なガス抜き対策の別の利点は、それにより、特定の可能性のある用途を持つ封止を製造するために、平滑な、それどころか研磨された金型キャビティを適用できることにある。本発明により、金型キャビティの表面粗さを介して通気孔へ封入ガスを案内することは不要となる。従って、例えば、封止材を用いて、レンズを製造することも可能となる。 Regardless of this state (ie, whether or not it has been reduced), the volume-reducing material therefore does not affect the conditions of the carrier with the electronic component and the encapsulant, and in conclusion contact is avoided. The advantage of sealing electronic components where the film material is applied in combination with the application of a volume reducing material is the advantage of applying the sealing material (eg, no opportunity for adhesion of the sealing material to the mold cavity) Therefore, it can be achieved without the structural measures to be taken to allow the mold cavity to be vented. In sealing with the film material, therefore, there is no need to take measures to prevent an excessive pressure increase in the mold cavity. Especially in advanced mold cavities (optical lenses applied in combination with LEDs, eg fully or partially encapsulated and / or manufactured), the overpressure can be greatly increased, thereby The risk of damaging the film material increases. For this purpose, the discharge channel is usually arranged in a molding part in which the mold cavity (or mold cavities) is arranged. The presence of volume reduction material, so that one or more of the mold cavity venting (vent) is unnecessary, as a result of a phase change in the volume reduction material, for volume reduction occurs, waste such measures End up. This makes a molded part with one or more mold cavities not only easy to manufacture, but perhaps more importantly a simpler molded part that is less susceptible to malfunctions during operation. This is because the degassing measures connected to the mold cavity are easily clogged by dirt, or, for example, film separation does not function properly with the sealant. Cleaning such molded parts with clogging degassing measures can be labor intensive and can hinder production. Another advantage of excessive degassing measures is that it allows the application of a smooth, even polished mold cavity to produce a seal with certain potential uses. The present invention eliminates the need to guide the filled gas to the vent through the surface roughness of the mold cavity. Accordingly, for example, a lens can be manufactured using a sealing material.

更に別の、非常に望まれる体積減少材の特性は、圧力が増加する前に、減少する相変化がまだ起こらず、例えば、体積減少材の時期尚早な凝縮が、これにより防止されることにある。これは、所望の効果(封止プロセス中の体積減少材の実質的な体積減少)が、例えば、時期尚早な凝縮の場合に生じることがなく、また、凝縮が良好な封止を妨げる可能性がないために重要であるだけではない。一方で、封止プロセスを開始する前の体積減少材の相変化は、しかしながら、膨張する相変化の場合に許可される。体積減少材が、例えば、液相または固相で金型キャビティ内へ導入されるが、体積減少材が、実際の封止プロセスが行われる前に膨張する場合、これは問題とはならない。その理由は、封止プロセスの開始前に液体または固体の蒸発により、体積減少材が次いで、封止プロセスが開始される前に、体積を増している(すなわち、非常に低い質量密度Δを有している)ためである。体積減少材の体積減少は、凝縮により、極めて相当なものとなる可能性がある。この体積減少のため、従って、封止材に封入される少量の(小さな)気泡の可能性が残り、これによる封入区画は、もはや封入領域として適格ではない程小さくなる。この効果により、封止材は、初期の封入にもかかわらず、封止領域を完全に充填する。従来技術により、封止材の供給中に金型キャビティ内に存在していた空気または他のガスは、高められた圧力の結果として無論圧縮されるが、この圧縮係数は、(ガス)圧力の増加に正比例する。封入された圧縮ガスは従って、結果として、特に望ましくない封止材内の封入(ボイド)を形成する。これを、特定の実施形態に基づいて以下で説明する。相変化を生じる体積減少材の存在は、特に、完全に封入することが比較的難しい電子製品の場合に、向上した品質を達成することが可能である。ここで例えば、封止材にとって流れるのが困難な中間領域が存在するより大きな製品、フリップチップ、および他の積層化電子部品を想定することができる。少量の液状封止材の適用および(より大きな)金型キャビティの表面全体にわたる良好な充填は、同様に、本発明による方法を用いて達成できる。 Yet another highly desirable volume reducing material property is that a decreasing phase change still does not occur before the pressure increases, for example, premature condensation of the volume reducing material is prevented thereby. is there. This means that the desired effect (substantial volume reduction of the volume reducing material during the sealing process) does not occur, for example, in the case of premature condensation, and condensation may prevent good sealing. Not only important because there is no. On the other hand, the phase change of the volume reducing material before starting the sealing process, however, is allowed in the case of an expanding phase change. The volume reducing material is introduced into the mold cavity, for example, in the liquid or solid phase, but this is not a problem if the volume reducing material expands before the actual sealing process takes place. The reason is that due to evaporation of the liquid or solid before the start of the sealing process, the volume reducing material is then increased in volume (i.e. having a very low mass density Δ before the sealing process is started) Is). The volume reduction of the volume reducing material can be quite substantial due to condensation. This volume reduction thus leaves the possibility of a small amount of (small) bubbles being encapsulated in the encapsulant, thereby making the enclosing compartment smaller enough to no longer qualify as an enclosing area. Due to this effect, the encapsulant completely fills the encapsulated area despite the initial encapsulation. According to the prior art, air or other gas that was present in the mold cavity during the supply of the sealant is of course compressed as a result of the increased pressure, but this compression factor is equal to the (gas) pressure. It is directly proportional to the increase. The encapsulated compressed gas thus forms a void within the encapsulant that is particularly undesirable. This will be described below based on specific embodiments. The presence of a volume reducing material that causes a phase change can achieve improved quality, especially in the case of electronic products that are relatively difficult to fully encapsulate. Here, for example, larger products, flip chips, and other laminated electronic components can be envisaged in which there are intermediate regions that are difficult for the encapsulant to flow. Application of a small amount of liquid encapsulant and good filling over the surface of the (larger) mold cavity can likewise be achieved using the method according to the invention.

有利な選択は、体積減少材としてH2O(水)を選択することで見出せる。この体積減少材の分子量が小さい(Mwater=0.018kg/mol)だけではなく、1から、例えば80barの圧力増加において(例えば、T=150℃の一定温度において)、所望の凝縮挙動を有している。Δwater=±0.5kg/m3を持つ1気圧での気相から、Δwater=±900kg/m3を持つ液相への変化が生じることにより、体積減少が従って、約1800のオーダーの係数で生じる。従来、水によって封止プロセスが中断される従来技術による開始点が、常にあった。この目的により、封止材は従って、従来技術による細心の注意で調整される。本発明に至る、予期しない、不明瞭な見識により、一方で、封止装置内の水の存在が、向上した封入結果を招くことができる。封止条件下で凝縮する体積減少材に対する別のオプションは、 2 5 OH(エタノール)、Methanol=0.046kg/molである。増加する圧力は、結果として、約350のオーダーの係数での体積減少を招く。これはまだ、封入結果における明白な向上も招くことができる相当な体積減少である。 An advantageous choice can be found by selecting H 2 O (water) as the volume reducing material . Not only is the volume-reducing material low in molecular weight (M water = 0.018 kg / mol) but also has a desired condensation behavior from 1 to, for example, at a pressure increase of 80 bar (eg at a constant temperature of T = 150 ° C.). doing. From the gas phase at 1 atm with Δ water = ± 0.5kg / m 3 , Δ water = by changes to the liquid phase with ± 900 kg / m 3 is produced, with volume reduction is therefore approximately 1800 Order It occurs with a coefficient. Conventionally, there has always been a starting point in the prior art where the sealing process is interrupted by water. For this purpose, the encapsulant is therefore adjusted with great care according to the prior art. Due to the unexpected and unclear insight leading to the present invention, on the other hand, the presence of water in the sealing device can lead to improved encapsulation results. Another option for a volume reducing material that condenses under sealing conditions is C 2 H 5 OH (ethanol), M ethanol = 0.046 kg / mol. Increasing pressure results in a volume decrease by a factor on the order of about 350. This is still a significant volume reduction that can also lead to a clear improvement in encapsulation results.

所望の効果の更なる向上は、処理ステップB)の通りに、封止材で金型キャビティを充填する前またはその間に、金型キャビティ内を加圧することである。これは、大気圧に対する加圧、つまり1気圧未満の圧力について言及している。簡単な方法で金型キャビティ内で達成できる加圧は、0.1Bar絶対値に達する。前の段落で計算したような体積減少は、これにより10倍に増加される。これは、Δwater=±900kg/m3を持つ液相への変化によりΔwater=±0.5kg/m3の変更された開始条件下で、これにより、約18,000のオーダーの係数での体積減少が生じることを意味する。エタノールに対しては、従って、約3,500のオーダーの体積減少係数を生じる。従って、金型キャビティを加圧することにより、更に非常に好ましい効果が向上する。その他、従って更に多くの存在するガス(一般には空気)を除去するために、体積減少材を金型キャビティに導入する間またはその前に、金型キャビティ内を加圧することも可能である。この金型キャビティ内に初期に存在するガスの除去は、金型キャビティをガス状の体積減少材で洗浄することによって、または、任意選択的に過熱蒸気状態の体積減少材を供給(噴射)することによっても可能である。金型キャビティを加圧し、金型キャビティを洗浄した後、既に上で説明したように、再度金型キャビティを加圧することも望ましい。 A further improvement of the desired effect is to pressurize the mold cavity before or during the filling of the mold cavity with the encapsulant as in process step B). This refers to pressurization relative to atmospheric pressure, that is, pressure less than 1 atmosphere. The pressurization that can be achieved in the mold cavity in a simple manner reaches an absolute value of 0.1 Bar. The volume reduction as calculated in the previous paragraph is thereby increased by a factor of 10. This is due to a change in liquid phase with Δ water = ± 900 kg / m 3 , under a modified starting condition of Δ water = ± 0.5 kg / m 3 , thereby a factor of the order of about 18,000. This means that a volume reduction occurs. For ethanol, this results in a volume reduction factor on the order of about 3,500. Therefore, a very favorable effect is improved by pressurizing the mold cavity. In addition, it is also possible to pressurize the mold cavity during or before introducing the volume reducing material into the mold cavity in order to remove more of the gas present (generally air). The removal of the gas initially present in the mold cavity can be achieved by cleaning the mold cavity with a gaseous volume reducing material , or optionally supplying (injecting) a volume reducing material in a superheated vapor state. It is also possible. After pressurizing the mold cavity and cleaning the mold cavity, it is also desirable to pressurize the mold cavity again as described above.

体積減少材は、封止材とは別々に、例えば、体積減少材を噴射または吹き付けることによって、金型キャビティに追加できるが、少量の液体(例えば、液体水)または固体粒子体積減少材(氷)を供給すること(急速蒸発)によっても、同様に、実際の封止前に金型キャビティの所望の条件開始点を招くことができる。しかし、体積減少材を封止材と組み合わせて供給することも可能であり、体積減少材が封止材の前に金型キャビティに入るようにすることも可能である。封止材は、このために、例えば、体積減少材を封止材に添加することによって調整されてもよい。 The volume reducing material can be added to the mold cavity separately from the encapsulant, for example, by spraying or spraying the volume reducing material , but a small amount of liquid (eg, liquid water) or solid particle volume reducing material (ice ) (Rapid evaporation) can also lead to the desired starting condition of the mold cavity prior to actual sealing. However, the volume reducing material can be supplied in combination with the encapsulant, and the volume reducing material can enter the mold cavity before the encapsulant. The encapsulant may be adjusted for this by, for example, adding a volume reducing material to the encapsulant.

一旦、金型キャビティを、封止用の電子部品に対して処理ステップA)中に位置決めした後、封止材を金型キャビティに供給してもよい。また、封止材を金型キャビティに変位させる前に、封止材を加熱することも可能であり、封止材に圧力をかけることによって、金型キャビティに運ばれてもよい。ここで特に想定されるのは、いわゆる圧送成形プロセスであり、封止材は、ひとつ以上のプランジャによって金型キャビティに当接される。一方で、本発明はまた、例えば、成形部の閉鎖圧を用いて金型キャビティ内で封止材を圧縮すること(加圧成形)、または封止材を金型キャビティに噴射すること(射出成形)等の、他の封止プロセスと組み合わされてもよい。金型キャビティでの体積減少材の適用は、金型キャビティへの封止材の供給方法に関わりなく、結果として上記の利点を生じることができる。 Once the mold cavity is positioned relative to the electronic component for sealing during processing step A), the sealing material may be supplied to the mold cavity. It is also possible to heat the encapsulant prior to displacing the encapsulant into the mold cavity and may be carried to the mold cavity by applying pressure to the encapsulant. Particularly envisaged here is a so-called pressure molding process, in which the encapsulant is brought into contact with the mold cavity by one or more plungers. On the other hand, the present invention also compresses the sealing material in the mold cavity using the closing pressure of the molding part (pressure molding), or injects the sealing material into the mold cavity (injection). It may be combined with other sealing processes, such as molding. The application of the volume reducing material in the mold cavity can result in the above advantages regardless of the method of supplying the sealant to the mold cavity.

本発明による方法の変形において、体積減少材は、金型キャビティを閉じる前に、ガス用吸込口(排出空気または通気孔)を介して金型キャビティに供給されてもよい。体積減少材(例えば、蒸気の形で)は従って、短時間、例えば、1〜3秒以内で金型キャビティに導入できる。従って、金型キャビティを画成する成形部のみを、閉鎖圧にすることができる。 In a variant of the method according to the invention, the volume reducing material may be supplied to the mold cavity via a gas inlet (exhaust air or vent) before closing the mold cavity. The volume reducing material (eg in the form of steam) can thus be introduced into the mold cavity in a short time, eg within 1 to 3 seconds. Therefore, only the molding part that defines the mold cavity can be at a closed pressure.

本発明はまた、担持体に実装される電子部品を封止する装置において、互いに対して変位可能であり、閉位置において、電子部品を封入するための少なくともひとつの金型キャビティを画成する成形部と、金型キャビティに接続する液体封止用の供給手段とを備え、装置はまた、金型キャビティに接続する体積減少材用の供給手段も備える装置も提供する。体積減少材用の供給手段は、体積減少材を、供給のための所望の状態にするための加熱素子を備えていてもよく、体積減少材用の供給手段は、例えば、金型キャビティに接続するひとつ以上のノズルによって形成されてもよい。かかる装置を用いれば、本発明による方法を参照して上で既に述べたような利点を達成でき、本発明による装置に関して参照することによって本明細書中にも含まれるものと考えられる。体積減少材の供給は従って、非常に限定的な構造変化のみによって、既存の封止機器に組み込むことができる。 The present invention also provides a device for sealing an electronic component mounted on a carrier, which is displaceable relative to each other and defines at least one mold cavity for enclosing the electronic component in a closed position. And a supply means for liquid sealing connected to the mold cavity, and the apparatus also provides an apparatus comprising supply means for volume reducing material connected to the mold cavity. Supply means for volume reduction material, a volume reduction member, the desired heating element for the state of may comprise a supply means for volume reduction member for supplying, for example, connected to the mold cavity It may be formed by one or more nozzles. With such a device, the advantages as already mentioned above with reference to the method according to the invention can be achieved and are considered to be included herein by reference with respect to the device according to the invention. The volume-reducing material supply can thus be incorporated into existing sealing devices with only very limited structural changes.

本発明による装置の変形例はまた、成形部間にフィルム材を供給するための供給手段も備えている。体積減少材用の供給手段および封止材用の供給手段は、フィルム材用の供給手段によって供給されるフィルムの反対側に位置してもよい。体積減少材の供給がフィルム供給と組み合わされるかかる装置により、本発明による方法に関して上で既に説明したような、体積減少材の供給とフィルム材の存在が封止中に組み合わされる利点が達成できる。これら上記の利点もまた、これら2つの供給設備が組み合わされる装置に関する参照により、本明細書中に包含される。金型キャビティを備える成形部の単純な構造によって十分であるだけでなく、体積減少材もまた、封止用電子部品と接触することが避けられる。この変形例における体積減少材は、封止用電子部品および担持体と接触しないため、体積減少材は従って、望ましくない効果を持たない。これにより、適切な体積減少材の選択可能性が向上する。また、封止材は、体積減少材から物理的に離れたままであり、これにより体積減少材と封止材が互いに望ましくない影響を及ぼしあうことも回避されることに留意されたい。 A variant of the device according to the invention also comprises supply means for supplying film material between the forming parts. The volume reducing material supply means and the sealing material supply means may be located on the opposite side of the film supplied by the film material supply means. With such a device in which the supply of the volume reducing material is combined with the film supply, the advantages of combining the supply of the volume reducing material and the presence of the film material during sealing can be achieved, as already explained above for the method according to the invention. These above advantages are also encompassed herein by reference with respect to the apparatus in which these two supply facilities are combined. Not only is the simple structure of the molded part with the mold cavity sufficient, but the volume reducing material is also avoided from contacting the sealing electronics. Since the volume reducing material in this variant does not contact the sealing electronic component and the carrier, the volume reducing material therefore has no undesirable effect. This improves the possibility of selecting an appropriate volume reducing material . It should also be noted that the encapsulant remains physically separated from the volume reducing material , thereby avoiding undesirable effects of the volume reducing material and the encapsulant on each other.

体積減少材の簡単な供給は、体積減少材用の供給手段が、体積減少材をフィルム材上に配置するよう成されている場合に達成できる。体積減少材は従って、供給手段によって金型キャビティに導入される必要もない。封止材を付着したフィルム材が成形部間のいずれかに載置されれば、体積減少材がフィルム材上に配置されることで十分である。フィルム材の供給は従って、成形部間に体積減少材を導入することにも用いられる。 Simple supply of volume reduction material can be achieved if the supply means for the volume reduction material, have been made to place the volume reduction material on the film material. The volume reducing material therefore does not need to be introduced into the mold cavity by the supply means. If the film material to which the sealing material is attached is placed anywhere between the molding parts, it is sufficient that the volume reducing material is disposed on the film material. The supply of film material is therefore also used to introduce a volume reducing material between the forming parts.

本発明を更に、以下の非限定的な実施形態に基づいて説明する。   The invention will be further described based on the following non-limiting embodiments.

図1は、担持体に実装される電子部品を封止するための従来技術装置の一部の略斜視図を示している。FIG. 1 shows a schematic perspective view of a part of a prior art device for sealing an electronic component mounted on a carrier. 図2Aは、従来技術の封止プロセスの連続する段階中の電子部品を持つ担持体の2つの異なる上面図を示している。FIG. 2A shows two different top views of the carrier with electronic components during successive stages of the prior art sealing process. 図2Bは、従来技術の封止プロセスの連続する段階中の電子部品を持つ担持体の2つの異なる上面図を示している。FIG. 2B shows two different top views of the carrier with electronic components during successive stages of the prior art sealing process. 図3は、本発明による担持体に実装される電子部品を封止するための装置の側面略図を示している。FIG. 3 shows a schematic side view of an apparatus for sealing an electronic component mounted on a carrier according to the invention. 図4Aは、本発明による担持体に実装される電子部品を封止するための装置の側面略図を示し、装置はフィルム材用の供給部も備えている。FIG. 4A shows a schematic side view of an apparatus for sealing an electronic component mounted on a carrier according to the present invention, the apparatus also comprising a supply for film material. 図4Bは、本発明による担持体に実装される電子部品を封止するための装置の側面略図を示し、装置はフィルム材用の供給部も備えている。FIG. 4B shows a schematic side view of an apparatus for sealing an electronic component mounted on a carrier according to the present invention, the apparatus also comprising a supply for film material. 図5は、封止材用の、いわゆる「トップエッジ」供給部を持つ、本発明による封止装置の変形例の一部を通る断面図を示している。FIG. 5 shows a cross-sectional view through a part of a variant of the sealing device according to the invention with a so-called “top edge” supply for the sealing material.

図1は、2つの成形部1、2を通る切取断面図を示している。下側成形部2に配置されるのは、電子部品5が配置される担持体4(例えば、リードフレームまたは基板)を受領するための凹部3である。金型キャビティに接続するチャネル6を介して、封止材7が、矢印P1の通りに、金型キャビティに供給される。図示の状況において、金型キャビティは、部分的にのみ封止材7で充填され、封止材は、フローフロント8と共に金型キャビティ内へ流れ、それによって、電子部品5を封止する。 FIG. 1 shows a cut-away sectional view through two molded parts 1 and 2. Disposed in the lower molding portion 2 is a recess 3 for receiving a carrier 4 (for example, a lead frame or a substrate) in which an electronic component 5 is disposed. Through the channel 6 connected to the mold cavity, the sealing material 7 is supplied to the mold cavity as indicated by the arrow P 1 . In the situation shown, the mold cavity is only partially filled with the encapsulant 7, and the encapsulant flows into the mold cavity with the flow front 8, thereby sealing the electronic component 5.

図1を参照して略図的に示す従来技術の封止方法はまた、図2Aにも適用される。ここに上面図で示すものは、担持体10であり、封止材12が供給チャネル11によって供給されることである。供給チャネル11から、封止材12が、分配チャンバ13へ流れ、そこから、封止材12が、矢印P2の通りに、フローフロント14と共に担持体(フィルムゲート)にわたる大きな幅を超えて流れる。担持体10上に位置するのは、電子部品15であり、それらが担持体10の表面の上に突出しているために、担持体10にわたる封止材12の流れに対する所定の抵抗を生成する。この結果、フローフロントは、担持体10にわたって直線状には流れないが、図示のように、電子部品15の後ろの位置で遅れる可能性がある、より複雑な形状を有する。封止材は、電子部品15の位置(近傍)においてガス封入16のリスクが生じる抵抗が小さく、電子部品間に流れる。これは、ガス封入16が最終的な電子部品15の封止内に開口を形成する可能性があるため、望ましくない。この図2Aに更に含まれるのは、金型キャビティからのガスのための2つの排出チャネル17であり、これを通って金型キャビティ内に存在するガスが、矢印P3の通りに受動的または能動的に逃げる。 The prior art sealing method schematically shown with reference to FIG. 1 also applies to FIG. 2A. What is shown here in a top view is a carrier 10 in which a sealing material 12 is supplied by a supply channel 11. From the supply channel 11, the encapsulant 12 flows to the distribution chamber 13, from which the encapsulant 12 flows with the flow front 14 over a large width across the carrier (film gate) as indicated by arrow P 2. . Located on the carrier 10 are the electronic components 15 that project above the surface of the carrier 10 and thus generate a predetermined resistance to the flow of the encapsulant 12 across the carrier 10. As a result, the flow front does not flow linearly across the carrier 10 but has a more complex shape that may be delayed at a position behind the electronic component 15 as shown. The sealing material has a small resistance that causes a risk of gas sealing 16 at the position (near the electronic component 15), and flows between the electronic components. This is undesirable because the gas fill 16 may form an opening in the final electronic component 15 seal. Also included in this FIG. 2A are two exhaust channels 17 for gas from the mold cavity through which the gas present in the mold cavity is passively or as indicated by arrow P 3. Actively escape.

図2Bにおいて、封止材は、供給チャネル11の反対側に位置する金型キャビティの外端18に到達しており、排出チャネル17が、クロージャ19により略図的に示すように閉じられる。これは例えば、本出願人によって既に以前開発されたようなVピンを用いて実施できる。排出チャネル17を閉じることによって、封止材の充填圧を高めることができ、その結果、存在するガス封入16が小さくなるか、更には消滅する。封止材12内に結果として生じるガス封入16は、それにもかかわらず、結果として封止製品の不合格となる問題を残す。   In FIG. 2B, the seal has reached the outer end 18 of the mold cavity located on the opposite side of the supply channel 11, and the discharge channel 17 is closed as shown schematically by a closure 19. This can be done, for example, using a V pin as previously developed by the applicant. By closing the discharge channel 17, the filling pressure of the sealing material can be increased, so that the gas filling 16 present becomes smaller or even disappears. The resulting gas encapsulation 16 within the encapsulant 12 nevertheless remains a problem that results in a failure of the encapsulated product.

図3は、本発明による封止装置22の2つの成形部20、21を通る切取断面図を示している。ここで同様に下側成形部21に配置されるのは、積層化電子部品25(フリップチップ)が配置される担持体24を受領するための凹部23である。封止材27は、金型キャビティに接続するランナー26を介して金型キャビティ28に供給できる。封止材27の供給は、ここで、圧力を封止材27にかけることのできるプランジャ29によって行われる。プランジャ29は、このために、封止材27も内部で運ばれるハウジング30内で変位可能である。体積減少材31は、例えば、水蒸気32の形で金型キャビティ26内に導入できる。封止材27を金型キャビティ内に導入する前に、例えば、体積減少材31、32で金型キャビティ28を「洗浄する」ことも可能である。ここでのオプションは、吸込口33によって金型キャビティ28内を加圧することである。体積減少材31、32を持つリザーバ34は、金型キャビティ28と開口接続状態にあるため、蒸気圧もリザーバ34内で減少し、それによって、体積減少材31、32(例えば、水)が沸騰し始める。リザーバ34内の体積減少材の温度は、このために、体積減少材31、32の所望の沸騰状態が低下した圧力の結果として正確に生じるように、選択される。水蒸気は、その後開口されるバルブ36を持つ導管35を通って、金型キャビティ28を洗浄し、再び吸込口を通って(部分的に)消失する。無論、(例えば、上側成形部20内に追加の洗浄導管を配置することによって)金型キャビティ28を洗浄する他の多くの方法を想定することも可能である。一旦、金型キャビティ28が、蒸気の状態の体積減少材32で充填されると(または、少なくとも実質的にすべての空気が、金型キャビティから完全に消失すると)、バルブ36を閉じることによって、洗浄を停止できる。封止材27はその後、プランジャによって金型キャビティ内へ押圧できる。おそらく余計な事だが、封止材を金型キャビティ内へ導入できる他の多くの方法があることに、ここで再度留意されたい。封止材を供給するこれらの代替方法も、体積減少材で金型キャビティを充填することと組み合わせて、本発明の一部を形成している。 FIG. 3 shows a cut-away sectional view through the two moldings 20, 21 of the sealing device 22 according to the invention. Here, similarly, disposed in the lower molding portion 21 is a recess 23 for receiving the carrier 24 in which the laminated electronic component 25 (flip chip) is disposed. The sealing material 27 can be supplied to the mold cavity 28 via a runner 26 connected to the mold cavity. The supply of the sealing material 27 is here carried out by a plunger 29 which can apply pressure to the sealing material 27. For this purpose, the plunger 29 is displaceable in a housing 30 in which the sealing material 27 is also carried. The volume reducing material 31 can be introduced into the mold cavity 26 in the form of water vapor 32, for example. It is also possible to “clean” the mold cavity 28 with volume reducing materials 31, 32, for example, before introducing the sealing material 27 into the mold cavity. The option here is to pressurize the inside of the mold cavity 28 by the suction port 33. Since the reservoir 34 having the volume reducing materials 31 and 32 is in an open connection state with the mold cavity 28, the vapor pressure is also reduced in the reservoir 34, thereby boiling the volume reducing materials 31 and 32 (for example, water). Begin to. The temperature of the volume reducing material in the reservoir 34 is selected for this purpose so that the desired boiling state of the volume reducing materials 31, 32 occurs exactly as a result of the reduced pressure. The water vapor passes through a conduit 35 having a valve 36 that is then opened to clean the mold cavity 28 and again (partially) disappear through the inlet. Of course, many other ways of cleaning the mold cavity 28 (e.g., by placing additional cleaning conduits in the upper mold 20 ) are possible. Once the mold cavity 28 is filled with the volume reducing material 32 in the vapor state (or at least substantially all of the air has completely disappeared from the mold cavity), by closing the valve 36, Washing can be stopped. The encapsulant 27 can then be pressed into the mold cavity by the plunger. It should be noted here again that there are many other ways in which the encapsulant can be introduced into the mold cavity, perhaps extra. These alternative methods of supplying the encapsulant also form part of the present invention in combination with filling the mold cavity with a volume reducing material .

図4Aは、電子部品25を持つ担持体24の反対側に接続する2つの成形部20、21を備える本発明の変形実施形態による封止装置37を通る断面図を示す。この封止装置37において、下側成形部21は同様に、担持体24を支持する平坦な接触側23を備えている。成形部20は、複数の電子部品を封入する金型キャビティ40を備えている。   FIG. 4A shows a cross-sectional view through a sealing device 37 according to a variant embodiment of the invention comprising two moldings 20, 21 connected to the opposite side of the carrier 24 with the electronic component 25. In the sealing device 37, the lower molding portion 21 similarly includes a flat contact side 23 that supports the carrier 24. The molding unit 20 includes a mold cavity 40 that encloses a plurality of electronic components.

供給ローラ45によって成形部20、21間に供給されるのは、ひとつ以上の工程に続いて、再度排出ローラ46に排出されるフィルム材38である。フィルム材は、担持体24とフィルム材38との間に作成されるべき中間領域39に接続する封止材42用の供給手段によって、担持体24とフィルム材38(このため、図4B参照)との間に封止材を供給できる一方の側に、分離層を形成する。体積減少材用の供給手段41は、フィルム材が成形部20、21間に運ばれる前に、矢印P5の通りに体積減少材をフィルム材38上に供給できるように載置される。フィルム材38の供給中、体積減少材は次いで、金型キャビティ40が位置している箇所にも供給される。液状封止材は次いで、矢印P4の通りに、供給手段42によってフィルム材38と担持体24との間に案内される。金型キャビティ40における、封止材の圧力下および体積減少材の相変化の結果として、フィルム38は、金型キャビティ40の壁に向かって移動される(図4B参照)。ガスの排出および余剰に供給される封止材(矢印P6)の可能性のため、通気孔43は、成形部によって何もない状態となる。 What is supplied between the forming parts 20 and 21 by the supply roller 45 is the film material 38 that is discharged again to the discharge roller 46 after one or more steps. The film material is supplied to the carrier 24 and the film material 38 (hence the FIG. 4B) by the supply means for the sealing material 42 connected to the intermediate region 39 to be created between the carrier 24 and the film material 38. A separation layer is formed on one side to which the sealing material can be supplied. The volume reducing material supply means 41 is placed so that the volume reducing material can be supplied onto the film material 38 as indicated by an arrow P 5 before the film material is conveyed between the molding parts 20 and 21. During the supply of the film material 38, the volume reducing material is then also supplied to the location where the mold cavity 40 is located. The liquid sealing material is then guided between the film material 38 and the carrier 24 by the supply means 42 as indicated by arrow P 4 . As a result of the pressure of the encapsulant and the phase change of the volume reducing material in the mold cavity 40, the film 38 is moved toward the wall of the mold cavity 40 (see FIG. 4B). Due to the possibility of gas discharge and surplus sealing material (arrow P 6 ), the vent hole 43 is left in a state of nothing by the molding part.

図5は、複数の相対的に変位可能な部品から組み立てられる上側成形部52および下側成形部51を持つ封止装置50の一部を示している。担持体54は、封止材60を、プランジャ59によって縁部53の上側を越えて供給チャネル61を通って供給できるように、相対的に変位可能な支持55と縁部53との間にクランプされる。縁部53を用いる利点のひとつに、担持体54の縁部領域を従って、封止材の無い状態にできることがある。成形部51、52が離された状態において、および、封止材が供給される前に、体積減少材を供給するための第2の供給チャネル56が開けられ、その結果、体積減少材を矢印P7の通りに供給できる。この体積減少材はここで、電子部品と共に担持体54に載置されたフィルム62と上側成形部52内の金型キャビティ58との間を通り抜ける。 FIG. 5 shows a part of a sealing device 50 having an upper molding part 52 and a lower molding part 51 assembled from a plurality of relatively displaceable parts. The carrier 54 is clamped between the relatively displaceable support 55 and the edge 53 so that the sealant 60 can be supplied by the plunger 59 over the upper side of the edge 53 and through the supply channel 61. Is done. One advantage of using the edge 53 is that the edge region of the carrier 54 can thus be free of sealing material. In a state where the molding parts 51 and 52 are separated and before the sealing material is supplied, the second supply channel 56 for supplying the volume reducing material is opened, so that the volume reducing material is indicated by the arrow. It can be supplied to the streets of P 7. Here, the volume reducing material passes between the film 62 placed on the carrier 54 together with the electronic component and the mold cavity 58 in the upper molding portion 52.

Claims (12)

担持体に実装される電子部品を封止する方法において、
A)封止用の電子部品を、前記担持体に接続する金型キャビティ内へ載置する処理ステップと、
B)前記金型キャビティを液状封止材で充填する処理ステップと、
C)前記金型キャビティ内の前記封止材を少なくとも一部硬化させる処理ステップと、を含み、
処理ステップB)の前に、フィルム材が、電子部品を持つ前記担持体と前記担持体に接続する前記金型キャビティとの間に配置され、
理ステップB)中に前記金型キャビティを封止材で充填する前に、体積減少材が前記金型キャビティへ導入され、前記体積減少材は処理ステップB)中に相変化し、それによって、前記体積減少材の体積が減少し、
前記液状封止材は、前記担持体と前記フィルム材との間に供給され、前記体積減少材は、前記フィルム材と前記金型キャビティとの間に運ばれることを特徴とする方法。
In a method for sealing an electronic component mounted on a carrier,
A) a processing step of placing an electronic component for sealing in a mold cavity connected to the carrier;
B) a processing step of filling the mold cavity with a liquid sealing material;
C) a treatment step of at least partially curing the sealing material in the mold cavity,
-Before processing step B), a film material is arranged between the carrier with electronic components and the mold cavity connected to the carrier;
- before filling the mold cavity to processing step B) in a sealing material, is introduced volume reduction material into the mold cavity, the volume reduction material phase changes to processing step B) in it Reduces the volume of the volume reducing material ,
The liquid sealing material is supplied between the carrier and the film material, and the volume reducing material is conveyed between the film material and the mold cavity .
請求項に記載の方法において、前記体積減少材は、処理ステップB)の通りに、封止材で前記金型キャビティを充填する間、気相から少なくとも凝縮することを特徴とする方法。 2. A method according to claim 1 , wherein the volume reducing material condenses at least from the gas phase while filling the mold cavity with a sealing material as in process step B). 請求項1または2に記載の方法において、前記体積減少材は、気相で前記金型キャビティ内へ能動的に運ばれることを特徴とする方法。 3. A method according to claim 1 or 2 , wherein the volume reducing material is actively carried into the mold cavity in the gas phase. 請求項1または2のいずれか一項に記載の方法において、前記体積減少材は、ミストとして前記金型キャビティ内へ能動的に運ばれることを特徴とする方法。 3. The method according to claim 1 or 2 , wherein the volume reducing material is actively carried as a mist into the mold cavity. 請求項1または2のいずれか一項に記載の方法において、前記体積減少材は、前記金型キャビティ内へ能動的に運ばれる場合に、液相であることを特徴とする方法。 3. A method according to claim 1 or 2 , wherein the volume reducing material is in a liquid phase when actively transported into the mold cavity. 請求項1または2のいずれか一項に記載の方法において、前記体積減少材は、前記金型キャビティ内へ能動的に運ばれる場合に、固相であることを特徴とする方法。 3. A method according to claim 1 or 2 , wherein the volume reducing material is a solid phase when actively transported into the mold cavity. 請求項1〜6のいずれか一項に記載の方法において、前記体積減少材は、H2O(水)および 2 5 OH(エタノール)の群から選択されることを特徴とする方法。 A method according to any one of claims 1 to 6, wherein the volume reduction material, wherein the selected from the group of H 2 O (water) and C 2 H 5 OH (ethanol). 請求項1〜7のいずれか一項に記載の方法において、処理ステップB)の通りに、封止材で前記金型キャビティを充填する前またはその間に、前記金型キャビティ内を加圧することを特徴とする方法。 The method according to any one of claims 1 to 7 , wherein the inside of the mold cavity is pressurized before or during the filling of the mold cavity with a sealing material as in the processing step B). Feature method. 請求項1〜8のいずれか一項に記載の方法において、前記体積減少材を前記金型キャビティ内に導入する前またはその間に、前記金型キャビティ内を加圧することを特徴とする方法。 A method according to any one of claims 1 to 8, the volume reduction material before or during introduction into the mold cavity, wherein the pressurizing the mold cavity. 請求項1〜9のいずれか一項に記載の方法において、前記体積減少材は、前記金型キャビティを閉じる前にガス用の吸込口を介して前記金型キャビティ内に供給されることを特徴とする方法。 A method according to any one of claims 1 to 9, wherein the volume reduction material, characterized in that it is supplied through the inlet for the gas before closing the mold cavity to the mold cavity And how to. 担持体に実装される電子部品を封止する装置において、
− 互いに対して変位可能であり、閉位置において、電子部品を封入するための少なくともひとつの金型キャビティを画成する成形部と、
− 前記金型キャビティに接続する封止材用の供給手段と、を備え、
前記装置はまた、
前記金型キャビティに接続する体積減少材用の供給手段と、
− 前記成形部間にフィルム材用の供給手段と、
を備え、
前記体積減少材用の供給手段および前記封止材用の供給手段は、前記フィルム材用の供給手段によって供給される前記フィルムの反対側に位置することを特徴とする装置。
In an apparatus for sealing an electronic component mounted on a carrier,
A mold part that is displaceable relative to each other and defines, in the closed position, at least one mold cavity for enclosing the electronic component;
A supply means for a sealing material connected to the mold cavity,
The device also includes
- supply means for volume reduction member to be connected to the mold cavity,
A supply means for film material between the molding parts;
With
The volume reducing material supply means and the sealing material supply means are located on the opposite side of the film supplied by the film material supply means .
請求項11に記載の封止装置において、前記体積減少材用の供給手段は、前記体積減少材をフィルム材上に配置するよう成されていることを特徴とする封止装置。 12. The sealing device according to claim 11 , wherein the volume reducing material supply means is arranged to dispose the volume reducing material on a film material.
JP2014537018A 2011-10-18 2012-10-18 Method and apparatus for sealing an electronic component using a volume reducing material that causes phase change Expired - Fee Related JP6133879B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2007614A NL2007614C2 (en) 2011-10-18 2011-10-18 METHOD AND DEVICE FOR COVERING ELECTRONIC COMPONENTS USING A REDUCTION MATERIAL UNDERTAKING A PHASE TRANSITION
NL2007614 2011-10-18
PCT/NL2012/050724 WO2013066162A1 (en) 2011-10-18 2012-10-18 Method and device for encapsulating electronic components using a reduction material which undergoes a phase change

Publications (2)

Publication Number Publication Date
JP2014530510A JP2014530510A (en) 2014-11-17
JP6133879B2 true JP6133879B2 (en) 2017-05-24

Family

ID=47116232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014537018A Expired - Fee Related JP6133879B2 (en) 2011-10-18 2012-10-18 Method and apparatus for sealing an electronic component using a volume reducing material that causes phase change

Country Status (9)

Country Link
JP (1) JP6133879B2 (en)
KR (1) KR102017672B1 (en)
CN (1) CN103874569B (en)
DE (1) DE112012004392B4 (en)
GB (1) GB2516148B (en)
MY (1) MY165079A (en)
NL (1) NL2007614C2 (en)
SG (1) SG2014011431A (en)
WO (1) WO2013066162A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2016011B1 (en) * 2015-12-23 2017-07-03 Besi Netherlands Bv Press, actuator set and method for encapsulating electronic components with at least two individual controllable actuators.
DE102017216711A1 (en) * 2017-09-21 2019-03-21 Robert Bosch Gmbh Apparatus and method for the production of at least partially covered with a casting material components
DE102023200536A1 (en) 2023-01-24 2024-07-25 BSH Hausgeräte GmbH Process for specific injection molding of plastic components for household appliances, as well as injection molding machine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1554851A1 (en) * 1966-04-16 1970-01-22 Phoenix Gummiwerke Ag Method for injecting a plastic rubber or plastic mixture into a hollow mold
JPS6297812A (en) * 1985-10-23 1987-05-07 Mitsubishi Electric Corp Resin molding
NL9400119A (en) * 1994-01-27 1995-09-01 3P Licensing Bv Method for encapsulating an electronic component with a hardening plastic, electronic components with plastic enclosure obtained by means of this method and mold for carrying out the method.
DE4427309C2 (en) 1994-08-02 1999-12-02 Ibm Production of a carrier element module for installation in chip cards or other data carrier cards
JP3407987B2 (en) * 1994-08-18 2003-05-19 Towa株式会社 Storage method of resin molding die and resin sealing method of electronic component
US6770236B2 (en) * 2000-08-22 2004-08-03 Apic Yamada Corp. Method of resin molding
JP3569224B2 (en) 2000-12-11 2004-09-22 アピックヤマダ株式会社 Resin sealing method and resin sealing device
JP2006198813A (en) * 2005-01-18 2006-08-03 Hitachi Chem Co Ltd Seal-molding method and seal-molding machine
JP2009099680A (en) * 2007-10-15 2009-05-07 Panasonic Corp Optical device and method of manufacturing the same
NL2003792C2 (en) * 2009-07-17 2011-01-18 Fico Bv METHOD AND DEVICE FOR COATING ELECTRONIC COMPONENTS WITH CONTROLLED GAS PRESSURE

Also Published As

Publication number Publication date
DE112012004392B4 (en) 2021-10-28
SG2014011431A (en) 2014-06-27
WO2013066162A1 (en) 2013-05-10
KR102017672B1 (en) 2019-09-03
CN103874569B (en) 2017-02-15
NL2007614C2 (en) 2013-04-22
GB201407324D0 (en) 2014-06-11
MY165079A (en) 2018-02-28
GB2516148B (en) 2016-10-26
JP2014530510A (en) 2014-11-17
GB2516148A (en) 2015-01-14
KR20140079453A (en) 2014-06-26
DE112012004392T5 (en) 2014-07-10
CN103874569A (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP2524955B2 (en) Method and apparatus for resin sealing molding of electronic parts
JP4980365B2 (en) Embosser, equipment and method for manufacturing parts
KR20110082422A (en) Molding apparatus and molding method
JP6133879B2 (en) Method and apparatus for sealing an electronic component using a volume reducing material that causes phase change
JP2004098364A (en) Method and apparatus for resin seal molding of electronic part
KR19990068067A (en) Resin sealing method and apparatus for a semiconductor device
JP4741592B2 (en) Mold part and method for encapsulating electronic components
KR20190010524A (en) Resin molding mold and resin molding method
KR101609276B1 (en) Method and device for encapsulating electronic components using underpressure
JP6259263B2 (en) Resin mold and resin mold molding method
KR20120052325A (en) Method and device for encapsulating electronic components with controlled gas pressure
KR102239452B1 (en) Mould, moulding apparatus and method for controlled overmoulding of a carrier with electronic components and moulded product
JP3569224B2 (en) Resin sealing method and resin sealing device
JP2004146556A (en) Method and device for sealing resin and resin sheet
JP6438772B2 (en) Resin molding equipment
JP4954012B2 (en) Mold for resin sealing molding of electronic parts
JP3751325B2 (en) Resin sealing molding method for electronic parts
JPH10189630A (en) Method of molding and resin-sealing electronic component
JP6497084B2 (en) Composite material molding method, composite material molding apparatus, and composite material
JP4819796B2 (en) Method and device for supplying encapsulant material to a mold cavity
ES2268106T3 (en) A MOLDING TOOL AND A METHOD FOR MOLDING BY RESIN TRANSFER.
KR20100091687A (en) Sleeve manufacture apparatus of super high voltage cable connect box and the sleeve manufacture method
JP2002059453A (en) Method and apparatus for sealing resin
JP2007533132A6 (en) Method and device for supplying encapsulant material to a mold cavity
JP2622773B2 (en) Resin sealing molding method for electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170420

R150 Certificate of patent or registration of utility model

Ref document number: 6133879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees