JP6133627B2 - Booster circuit - Google Patents

Booster circuit Download PDF

Info

Publication number
JP6133627B2
JP6133627B2 JP2013041455A JP2013041455A JP6133627B2 JP 6133627 B2 JP6133627 B2 JP 6133627B2 JP 2013041455 A JP2013041455 A JP 2013041455A JP 2013041455 A JP2013041455 A JP 2013041455A JP 6133627 B2 JP6133627 B2 JP 6133627B2
Authority
JP
Japan
Prior art keywords
voltage
boost
current
booster circuit
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013041455A
Other languages
Japanese (ja)
Other versions
JP2014171312A (en
Inventor
和樹 木内
和樹 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013041455A priority Critical patent/JP6133627B2/en
Publication of JP2014171312A publication Critical patent/JP2014171312A/en
Application granted granted Critical
Publication of JP6133627B2 publication Critical patent/JP6133627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、昇圧回路に係り、特に昇圧復帰時間を一定に保つ昇圧回路の制御に関する。   The present invention relates to a booster circuit, and more particularly to control of a booster circuit that keeps a boost recovery time constant.

燃費や排ガス低減を目的とし、気筒内に直接燃料を噴射するインジェクタを備えた気筒内直接噴射エンジンシステムが近年注目されている。   In recent years, an in-cylinder direct injection engine system including an injector that directly injects fuel into a cylinder has been attracting attention for the purpose of reducing fuel consumption and exhaust gas.

図1に示すように、気筒内直接噴射エンジンシステムは、気筒内直接噴射型インジェクタ106を有し、インジェクタ106は高圧に加圧された燃料を気筒内噴射するため、インジェクタ106の開弁の際には大電流を流す必要がある。そのため、気筒内直接噴射エンジンコントロールユニットでは昇圧回路で昇圧電圧を生成している。そして、エンジン駆動時には昇圧電圧を使用してインジェクタ106に大電流を流し、インジェクタ106を開弁して高圧の燃料を気筒内に噴射している。   As shown in FIG. 1, the in-cylinder direct injection engine system includes an in-cylinder direct injection type injector 106, and the injector 106 injects fuel pressurized to a high pressure into the cylinder. Requires a large current to flow. For this reason, the in-cylinder direct injection engine control unit generates a boosted voltage by a booster circuit. When the engine is driven, a large current is supplied to the injector 106 using the boosted voltage, and the injector 106 is opened to inject high-pressure fuel into the cylinder.

また、PM抑制、燃費改善といった市場要求に対応するため、1気筒で複数回連続噴射を行う多段噴射機能の追加が求められている。多段噴射機能の採用により、シリンダ内の燃料付着防止や燃料によるシリンダの冷却が可能となり、オイル希釈防止、PM抑制、燃費改善をすることができる。   Further, in order to meet market demands such as PM suppression and fuel efficiency improvement, it is required to add a multi-stage injection function for performing continuous injection multiple times in one cylinder. By adopting the multi-stage injection function, it is possible to prevent fuel adhesion in the cylinder and to cool the cylinder with the fuel, thereby preventing oil dilution, suppressing PM, and improving fuel efficiency.

特開2012−145119号公報JP 2012-145119 A

気筒内直接噴射エンジンシステムではインジェクタ通電によって昇圧電圧が低下するため、次のインジェクタ通電までに低下した昇圧電圧を昇圧動作によって規定の電圧値まで復帰させる必要がある。昇圧電圧を復帰させるまでに要する時間を昇圧復帰時間と呼び、昇圧復帰時間はバッテリ電源電圧(直流電圧源の電圧)に依存する。バッテリ電源電圧が増大すると昇圧復帰時間は短くなり、バッテリ電源電圧が低下すると昇圧復帰時間は長くなる。   In the in-cylinder direct injection engine system, the boosted voltage decreases due to the energization of the injector. Therefore, it is necessary to restore the boosted voltage that has been reduced until the next injector energization to a specified voltage value by the boosting operation. The time required to restore the boosted voltage is referred to as the boosting recovery time, and the boosting recovery time depends on the battery power supply voltage (DC voltage source voltage). When the battery power supply voltage increases, the boost recovery time becomes shorter, and when the battery power supply voltage decreases, the boost recovery time becomes longer.

高回転での駆動時や多段噴射採用時にはインジェクタ106の通電間隔が短くなるため、バッテリ電源電圧が低下し昇圧電圧復帰までの時間が長くなると、次のインジェクタ通電時に規定の電圧まで昇圧電圧が復帰できないことが起こりうる。規定の昇圧電圧より低い電圧でインジェクタ通電を行うと、インジェクタ開弁に要する時間が増加するため燃料噴射量にバラツキが発生する。そのため高回転での駆動時や多段噴射採用時には昇圧復帰時間の安定化が重要となる。   When driving at high speed or using multi-stage injection, the energization interval of the injector 106 is shortened. Therefore, when the battery power supply voltage decreases and the time until the boost voltage is restored increases, the boost voltage is restored to the specified voltage when the next injector is energized. Things that can't be done can happen. If the injector is energized at a voltage lower than the specified boost voltage, the time required for opening the injector will increase, causing variations in the fuel injection amount. For this reason, it is important to stabilize the boosting return time when driving at a high speed or adopting multistage injection.

以上示したようなことから、昇圧回路において、直流電圧源の電圧が低下しても、昇圧復帰時間を一定に保つことが課題となる。   As described above, in the booster circuit, even if the voltage of the DC voltage source decreases, it is a problem to keep the boost recovery time constant.

本発明の昇圧回路は、直流電圧源に接続され、当該直流電圧源の電圧を昇圧する昇圧コイルと、前記昇圧コイルへ昇圧電流を通電させるスイッチング素子と、前記昇圧コイルで生成されたエネルギーを蓄積する昇圧コンデンサと、前記昇圧コイルの昇圧電流を検出する電流検出部と、前記昇圧コイルの昇圧電流が上限閾値に到達後、下限閾値に到達するまで前記スイッチング素子をオフにして昇圧電流を遮断し、前記昇圧コイルに蓄積されたエネルギーを前記昇圧コンデンサに充電させる昇圧制御を繰り返して行い昇圧電圧を生成する昇圧回路制御部と、前記昇圧電圧を検出する電圧検出部と、を備えた昇圧回路において、前記昇圧回路制御部は、前記直流電圧源の電圧が変動した際に、前記昇圧電圧が元の昇圧状態の電圧に復帰するまでの昇圧復帰時間を一定にするように、前記直流電圧源の電圧の変動に応じて前記昇圧電流の平均昇圧電流値を変更することを特徴とする。The booster circuit of the present invention is connected to a DC voltage source, boosts the voltage of the DC voltage source, a switching element for passing a boost current to the boost coil, and stores energy generated by the boost coil. A boost capacitor, a current detector for detecting a boost current of the boost coil, and after the boost current of the boost coil reaches the upper limit threshold, the switching element is turned off until the boost current reaches the lower limit threshold, thereby blocking the boost current A booster circuit comprising: a booster circuit controller that generates boosted voltage by repeatedly performing booster control to charge the booster capacitor with energy stored in the booster coil; and a voltage detector that detects the boosted voltage. When the voltage of the DC voltage source fluctuates, the booster circuit control unit waits until the boosted voltage returns to the original boosted voltage. As the pressure recovery time constant, and changes the average voltage boosting current value of the boost current in accordance with a variation in the voltage of the DC voltage source.

本発明では直流電圧源の電圧を観測し、直流電圧源の電圧が変動した際には、それに併せ平均昇圧電流値を変動させることにより昇圧復帰時間の安定化を図る。   In the present invention, the voltage of the DC voltage source is observed, and when the voltage of the DC voltage source fluctuates, the boosting recovery time is stabilized by changing the average boosted current value accordingly.

本発明によれば、昇圧回路において、直流電圧源の電圧が変動しても昇圧復帰時間を一定に保つことが可能となる。   According to the present invention, in the booster circuit, the boost recovery time can be kept constant even when the voltage of the DC voltage source fluctuates.

気筒内直接噴射エンジンシステムの一例を示す概略図である。1 is a schematic diagram showing an example of an in-cylinder direct injection engine system. 実施形態1における内燃機関制御装置を示すブロック図である。1 is a block diagram showing an internal combustion engine control device in Embodiment 1. FIG. 実施形態1における気筒内直接噴射エンジンシステムの内燃機関制御装置を示す回路図である。1 is a circuit diagram showing an internal combustion engine control device of an in-cylinder direct injection engine system in Embodiment 1. FIG. インジェクタ電流と昇圧動作を示すタイムチャートである。It is a time chart which shows an injector electric current and pressure | voltage rise operation | movement. 昇圧動作時の昇圧電流を示すタイムチャートである。It is a time chart which shows the step-up current at the time of step-up operation. 実施形態1における直流電圧源の電圧と昇圧電流を示すタイムチャートである。3 is a time chart showing a voltage of a DC voltage source and a boost current in the first embodiment.

図1は実施形態1における気筒内直接噴射エンジンシステムの一例を示す概略図である。図1の概略図は一例であり、本発明はこれに限定されるものではない。   FIG. 1 is a schematic diagram illustrating an example of an in-cylinder direct injection engine system according to the first embodiment. The schematic diagram of FIG. 1 is an example, and the present invention is not limited to this.

吸入空気はエアフローセンサ1を通り、吸入空気流量を制御するスロットルバルブ2を介して吸気管3を通り燃焼室4に導入される。   The intake air passes through the air flow sensor 1 and is introduced into the combustion chamber 4 through the intake pipe 3 via the throttle valve 2 that controls the intake air flow rate.

燃料タンク5の燃料は、高圧ポンプ6で高い圧力に加圧され、インジェクタ106から燃焼室4に噴射される。燃焼室4に噴射された燃料は、吸入空気との混合気を生成し、イグニッション7で着火され、燃焼室4内で燃焼する。   The fuel in the fuel tank 5 is pressurized to a high pressure by the high-pressure pump 6 and injected from the injector 106 into the combustion chamber 4. The fuel injected into the combustion chamber 4 generates an air-fuel mixture with intake air, is ignited by the ignition 7, and burns in the combustion chamber 4.

燃焼室4にて燃焼後の排気ガスは排気管8へ排出され、排気管8の途中には、EGRバルブ9が形成されている。排気管8を流れる排気ガスの一部(EGRガス)は、EGRバルブ9よりEGR管10を通って吸気管3内に還流する。EGRガス流量はEGRバルブ9によって調節される。   The exhaust gas after combustion in the combustion chamber 4 is discharged to the exhaust pipe 8, and an EGR valve 9 is formed in the middle of the exhaust pipe 8. Part of the exhaust gas (EGR gas) flowing through the exhaust pipe 8 is recirculated into the intake pipe 3 from the EGR valve 9 through the EGR pipe 10. The EGR gas flow rate is adjusted by the EGR valve 9.

排気管8に排出された排気ガスは、三元触媒11にて有害な排気成分を浄化された後に大気に放出される。   The exhaust gas discharged to the exhaust pipe 8 is discharged into the atmosphere after the harmful exhaust components are purified by the three-way catalyst 11.

図2に、気筒内直接噴射型の内燃機関制御装置を示す。図2に示すように内燃機関制御装置では、各センサからの入力信号100を制御部101に取り込み、制御部101で昇圧回路制御部102、インジェクタ回路制御部103を制御する。昇圧回路制御部102は昇圧回路104を動作させ、インジェクタ回路制御部103はインジェクタ駆動回路105を動作させ、インジェクタ駆動回路105はインジェクタ106を駆動させている。   FIG. 2 shows an in-cylinder direct injection type internal combustion engine control apparatus. As shown in FIG. 2, in the internal combustion engine control apparatus, an input signal 100 from each sensor is taken into the control unit 101, and the control unit 101 controls the booster circuit control unit 102 and the injector circuit control unit 103. The booster circuit control unit 102 operates the booster circuit 104, the injector circuit control unit 103 operates the injector drive circuit 105, and the injector drive circuit 105 drives the injector 106.

制御部101は例えばマイコン等で実装される。また、状況に応じ、昇圧回路104、インジェクタ駆動回路105での動作情報を昇圧回路制御部102、インジェクタ回路制御部103、制御部101へフィードバックし、その情報を基に動作を行う機能を追加してもよい。   The control unit 101 is implemented by, for example, a microcomputer. Also, depending on the situation, operation information in the booster circuit 104 and the injector drive circuit 105 is fed back to the booster circuit control unit 102, the injector circuit control unit 103, and the control unit 101, and a function for performing an operation based on the information is added. May be.

図3に昇圧回路104とインジェクタ駆動回路105の詳細を示す。   FIG. 3 shows details of the booster circuit 104 and the injector drive circuit 105.

昇圧回路104は車載の直流電圧源(例えば、バッテリ電源電圧:以下、バッテリ電源電圧と称する)からインジェクタ開弁に必要な高電圧を生成する。昇圧回路104は、昇圧コイル201、スイッチング素子(例えば、FET)202、電流検出用抵抗203、昇圧コンデンサ204、逆流防止ダイオード208、昇圧回路制御部102を有する。   The booster circuit 104 generates a high voltage necessary for opening the injector from an on-vehicle DC voltage source (for example, a battery power supply voltage: hereinafter referred to as a battery power supply voltage). The booster circuit 104 includes a booster coil 201, a switching element (for example, FET) 202, a current detection resistor 203, a booster capacitor 204, a backflow prevention diode 208, and a booster circuit control unit 102.

また、インジェクタ106を駆動させるインジェクタ駆動回路105は、インジェクタ駆動回路制御部103を備え、インジェクタ駆動回路制御部103では、昇圧制御部205から出力された昇圧回路の状態やインジェクタ106のコイルの状態を監視し、インジェクタ駆動回路105を制御している。   The injector driving circuit 105 for driving the injector 106 includes an injector driving circuit control unit 103. The injector driving circuit control unit 103 displays the state of the booster circuit output from the boosting control unit 205 and the state of the coil of the injector 106. Monitoring and controlling the injector drive circuit 105.

昇圧動作の制御は昇圧回路制御部102が行う。昇圧回路制御部102はスイッチング素子202の駆動を制御する昇圧制御部205と、昇圧コンデンサ204に蓄積された充電電圧を検出する電圧検出部206と、スイッチング素子202を流れる電流を検出する電流検出部207を有し、例えばこれらの機能はカスタムICにまとめて実装されている。   The boosting circuit control unit 102 controls the boosting operation. The step-up circuit control unit 102 includes a step-up control unit 205 that controls driving of the switching element 202, a voltage detection unit 206 that detects a charging voltage accumulated in the step-up capacitor 204, and a current detection unit that detects a current flowing through the switching element 202. For example, these functions are collectively implemented in a custom IC.

図4は、インジェクタ電流波形の一例と昇圧動作を示すグラフである。(a)は制御部101からインジェクタ駆動回路制御部103に送られるインジェクタ駆動信号であり、インジェクタ駆動信号がHi出力の期間300の間、インジェクタ106に通電する。インジェクタ駆動信号がLo出力になると、インジェクタ106への通電を終了する。   FIG. 4 is a graph showing an example of the injector current waveform and the boosting operation. (A) is an injector drive signal sent from the control unit 101 to the injector drive circuit control unit 103, and the injector 106 is energized during a period 300 in which the injector drive signal is Hi output. When the injector drive signal becomes Lo output, energization to the injector 106 is terminated.

(b)はインジェクタ106に流れる電流波形の一例である。期間301はインジェクタを開弁させる期間であり、昇圧電圧を使用してインジェクタ106に通電する。期間302はインジェクタ106の開弁状態を保持する期間であり、保持時間302は磁気回路特性、燃料圧力、供給燃料量に応じたインジェクタ電流通電期間によって決定される。   (B) is an example of a current waveform flowing through the injector 106. A period 301 is a period during which the injector is opened, and the injector 106 is energized using the boosted voltage. A period 302 is a period during which the valve open state of the injector 106 is maintained, and the retention time 302 is determined by an injector current energization period corresponding to the magnetic circuit characteristics, fuel pressure, and supplied fuel amount.

(c)は昇圧電圧を表している。昇圧回路104での昇圧動作によって昇圧コンデンサ204に303の電圧が蓄えられている状態でインジェクタ106を開弁すると、昇圧電圧を使用してインジェクタ106に通電するため、開弁後、昇圧電圧は一時的に低下する。昇圧電圧が一定値304以上低下すると、昇圧回路制御部102の電圧検出部206で電圧降下を検出して昇圧動作を開始する。昇圧動作は303の電圧値に回復するまで継続する。   (C) represents the boosted voltage. When the injector 106 is opened while the voltage of 303 is stored in the boosting capacitor 204 by the boosting operation in the boosting circuit 104, the booster voltage is used to energize the injector 106. Decline. When the boosted voltage decreases by a certain value 304 or more, the voltage detection unit 206 of the booster circuit control unit 102 detects a voltage drop and starts a boosting operation. The boosting operation continues until the voltage value of 303 is recovered.

(d)は昇圧制御部205がスイッチング素子202のオンとオフの切り替えを制御する昇圧制御信号、(e)は昇圧コイル201を流れる昇圧電流を示す。   (D) is a boost control signal for controlling the switching on and off of the switching element 202 by the boost controller 205, and (e) is a boost current flowing through the boost coil 201.

図4(d)(e)に示すように、昇圧電圧が一定値304以上低下すると、制御部101からの入力により昇圧制御信号がオンして昇圧動作が開始し、昇圧電流が立ち上がる。昇圧電流が上限閾値305に到達すると、昇圧回路制御部102の電流検出部207で電流値を検出し、スイッチング素子202をオフさせる。このスイッチング素子202がオフの期間に昇圧コイル201に蓄えられたエネルギーは昇圧コンデンサ204にチャージされ昇圧電圧が若干上昇する。スイッチング素子202がオフの期間、昇圧電流は低下し、下限閾値306に到達すると再び昇圧スイッチング素子202をオンさせる。このスイッチング素子202の一連のスイッチング動作を繰り返すことによって図4(c)に示すように、昇圧電圧を元の電圧303まで回復させる。昇圧電流の上限閾値305と下限閾値306の平均値を平均昇圧電流値307と呼び、インジェクタ通電により低下した昇圧電圧を元の電圧値303まで復帰させるために要する時間308を昇圧復帰時間と呼ぶ。   As shown in FIGS. 4D and 4E, when the boosted voltage drops by a certain value 304 or more, the boost control signal is turned on by the input from the control unit 101 to start the boosting operation, and the boosted current rises. When the boosted current reaches the upper limit threshold value 305, the current detection unit 207 of the booster circuit control unit 102 detects the current value and turns off the switching element 202. The energy stored in the booster coil 201 during the period when the switching element 202 is off is charged in the booster capacitor 204, and the boosted voltage slightly increases. While the switching element 202 is off, the boost current decreases, and when the lower limit threshold 306 is reached, the boost switching element 202 is turned on again. By repeating the series of switching operations of the switching element 202, the boosted voltage is restored to the original voltage 303 as shown in FIG. The average value of the upper limit threshold value 305 and the lower limit threshold value 306 of the boost current is referred to as an average boost current value 307, and the time 308 required to return the boosted voltage reduced by the energization of the injector to the original voltage value 303 is referred to as a boost recovery time.

図5は、昇圧動作時の昇圧電流の拡大波形を示すグラフである。スイッチング素子202がオン期間400の間、昇圧電流は上昇し、昇圧電流が上限閾値305に到達するとスイッチング素子202をオフさせ、昇圧電流が下限閾値306に到達するまでのオフ期間401の間、昇圧電流を低下させる。   FIG. 5 is a graph showing an enlarged waveform of the boost current during the boost operation. The boosting current increases during the ON period 400 of the switching element 202. When the boosting current reaches the upper limit threshold 305, the switching element 202 is turned off, and the boosting current is increased during the OFF period 401 until the boosting current reaches the lower limit threshold 306. Reduce current.

昇圧コイル201のインダクタンスをL、バッテリ電源電圧200をVとすると、昇圧電流を上限閾値305まで上昇させるオン期間400の昇圧電流の傾きはV/Lに比例する。そのため、オン期間400はバッテリ電源電圧200が大きければ短くなり昇圧復帰時間308も短くなる。一方、バッテリ電源電圧200が小さければオン期間400は長くなり昇圧復帰時間308も長くなる。   Assuming that the inductance of the boosting coil 201 is L and the battery power supply voltage 200 is V, the slope of the boosting current during the ON period 400 in which the boosting current is raised to the upper threshold 305 is proportional to V / L. Therefore, the ON period 400 is shortened as the battery power supply voltage 200 is large, and the boosting recovery time 308 is also shortened. On the other hand, if the battery power supply voltage 200 is small, the ON period 400 is lengthened and the boosting recovery time 308 is also lengthened.

また、昇圧電圧を復帰させる際、昇圧動作によって昇圧コンデンサ204に蓄えられるエネルギー量は縦線部面積402に比例する。そのため平均昇圧電流値307が上昇すれば縦線部面積402は増大するため昇圧復帰時間308は短くなり、平均昇圧電流値307が低下すれば縦線部面積402は減少するため昇圧復帰時間308は長くなる。   Further, when restoring the boosted voltage, the amount of energy stored in the boost capacitor 204 by the boosting operation is proportional to the vertical line area 402. Therefore, if the average boost current value 307 increases, the vertical line area 402 increases, so the boost recovery time 308 decreases. If the average boost current value 307 decreases, the vertical line area 402 decreases, and the boost recovery time 308 decreases. become longer.

従来、昇圧動作を行う際には、昇圧電流の上限閾値305、下限閾値306は一定であり平均昇圧電流値307も常に一定となる仕様としている。この方法は昇圧電流の上限閾値305、下限閾値306を当初設定から変更する必要が無いため、制御が容易であるという利点があった。しかしながら、バッテリ電源電圧200が変動した際には、それに併せて昇圧復帰時間308が変動してしまうという問題点があった。   Conventionally, when performing a boost operation, the upper limit threshold value 305 and the lower limit threshold value 306 of the boost current are constant, and the average boost current value 307 is always constant. This method has an advantage that control is easy because there is no need to change the upper limit threshold value 305 and the lower limit threshold value 306 of the boost current from the initial setting. However, when the battery power supply voltage 200 fluctuates, there is a problem that the boost recovery time 308 fluctuates accordingly.

以下、本願発明の実施形態1〜4を具体的に説明する。   Hereinafter, Embodiments 1-4 of the present invention will be specifically described.

[実施形態1]
実施形態1における内燃機関制御装置の駆動時において、バッテリ電源電圧200が基準の電圧値500から電圧値501だけ変動した際のバッテリ電源電圧200と昇圧電流の挙動を図6に示す。
[Embodiment 1]
FIG. 6 shows the behavior of the battery power supply voltage 200 and the boosted current when the battery power supply voltage 200 varies from the reference voltage value 500 by the voltage value 501 when the internal combustion engine control apparatus according to the first embodiment is driven.

予め、表1に示すように昇圧復帰時間が一定になるようなバッテリ電源電圧200と昇圧電流の上限閾値305,下限閾値306の組み合わせのTableを制御部101に設定する。   As shown in Table 1, a table of combinations of the battery power supply voltage 200 and the upper limit threshold value 305 and the lower limit threshold value 306 of the boost current that makes the boost recovery time constant is set in the control unit 101 in advance.

Figure 0006133627
Figure 0006133627

内燃機関制御装置の駆動時において、定期的に制御部101でバッテリ電源電圧200を観測する。観測したバッテリ電源電圧200を表1のTableと照らし合わせ、規定の昇圧復帰時間308を達成するために必要な昇圧電流の上限閾値502と下限閾値503を導出する。   When the internal combustion engine control device is driven, the control unit 101 periodically observes the battery power supply voltage 200. The observed battery power supply voltage 200 is compared with Table in Table 1 to derive the upper limit threshold value 502 and the lower limit threshold value 503 of the boost current necessary to achieve the specified boost recovery time 308.

制御部101から導出された昇圧電流の上限閾値502と下限閾値503を昇圧回路制御部102へ送り、昇圧回路104を指定された昇圧電流の上限閾値502と下限閾値503で駆動させる。これにより平均昇圧電流値も図6に示すように電流値307から電流値504へと変動することとなる。このように平均昇圧電流値を変化させることで、電源電圧変動による昇圧復帰時間の変動分を打ち消し、昇圧復帰時間308を常時一定に保つことが可能となる。また、高回転や多段噴射でも安定的に燃料噴射を行うことができる。   The upper limit threshold value 502 and the lower limit threshold value 503 of the boost current derived from the control unit 101 are sent to the booster circuit control unit 102, and the booster circuit 104 is driven by the specified upper limit threshold value 502 and lower limit threshold value 503 of the specified boost current. As a result, the average boosted current value also varies from the current value 307 to the current value 504 as shown in FIG. By changing the average boost current value in this way, it is possible to cancel the boost recovery time fluctuation due to the power supply voltage fluctuation and keep the boost recovery time 308 constant. In addition, fuel injection can be performed stably even at high speeds and multistage injection.

[実施形態2]
次に、実施形態2における内燃機関制御装置を説明する。実施形態1では、バッテリ電源電圧200を定期的に観測し、その都度、バッテリ電源電圧に応じて昇圧電流の上限閾値と下限閾値を導出していた。これに対し、本実施形態2では、バッテリ電源電圧200の検出方法として定期的に電源電圧値を観測するのではなく、バッテリ電源電圧200が規定の電圧値から一定以上変化し、さらにそれが一定時間以上続くようであれば制御部101で昇圧電流の上限閾値305と下限閾値306を変更する。その他の構成は実施形態1と同様である。
[Embodiment 2]
Next, an internal combustion engine control apparatus according to Embodiment 2 will be described. In the first embodiment, the battery power supply voltage 200 is regularly observed, and the upper limit threshold and the lower limit threshold of the boost current are derived according to the battery power supply voltage each time. On the other hand, in the second embodiment, as a method for detecting the battery power supply voltage 200, the power supply voltage value is not regularly observed, but the battery power supply voltage 200 changes from a specified voltage value to a certain level or more. If it continues for more than the time, the control unit 101 changes the upper limit threshold value 305 and the lower limit threshold value 306 of the boost current. Other configurations are the same as those of the first embodiment.

これにより、実施形態1の作用効果に加え、演算負荷を低減することが可能となる。   Thereby, in addition to the effect of Embodiment 1, it becomes possible to reduce a calculation load.

[実施形態3]
次に、実施形態3における内燃機関制御装置について説明する。
[Embodiment 3]
Next, an internal combustion engine control apparatus according to Embodiment 3 will be described.

実施形態1では、表1のTableから昇圧電流の上限閾値と下限閾値を導出していたが、本実施形態3では、制御部101によって設定する昇圧電流の上限閾値と下限閾値とを、その都度、算出する。   In the first embodiment, the upper limit threshold and the lower limit threshold of the boost current are derived from the table of Table 1, but in the third embodiment, the upper limit threshold and the lower limit threshold of the boost current set by the control unit 101 are calculated each time. ,calculate.

具体的には、観測したバッテリ電源電圧200と規定の電圧値の差分を取り、その電圧値の差分からスイッチング素子202がオン期間400(昇圧電流上昇の際)における昇圧電流の傾きの変動分を算出する。ここで、昇圧電流の傾きはV/L(ただし、V:バッテリ電源電圧,L:インダクタンス)に比例する。そのため、電圧値の差分から傾きの変動分を求めることができる。   Specifically, the difference between the observed battery power supply voltage 200 and the specified voltage value is taken, and the change in the slope of the boost current during the ON period 400 (when the boost current rises) is determined from the difference between the voltage values. calculate. Here, the slope of the boost current is proportional to V / L (where V: battery power supply voltage, L: inductance). Therefore, it is possible to obtain a change in inclination from the difference between the voltage values.

昇圧電流の傾きから昇圧電流が下限閾値から上限閾値まで到達するのに必要な時間が求められるため、昇圧電流の傾きの変動分から昇圧復帰時間の変動分を算出することができる。   Since the time required for the boost current to reach from the lower limit threshold value to the upper limit threshold value is obtained from the slope of the boost current, the change amount of the boost return time can be calculated from the change amount of the boost current slope.

次に、算出された昇圧復帰時間変動分を解消できるような、一回のスイッチング素子202のオンオフ切り替えで昇圧コンデンサ204に蓄えられるエネルギー量を求める。I=ΔQ/Δt(ただし、I:昇圧電流,dQ:電荷,dt:時間差)であるため、昇圧電流から、一回のスイッチング素子202のオンオフ切り替えで昇圧コンデンサに蓄えられる電荷ΔQが求まり、その電荷からエネルギー量(∝Q2/C(ただし、C:昇圧コンデンサ204の容量))を求めることができる。その値より昇圧復帰時間変動分を解消できる平均昇圧電流値を算出し、設定すべき昇圧電流の上限閾値と下限閾値を求める。 Next, the amount of energy stored in the boost capacitor 204 by one on / off switching of the switching element 202 is obtained so that the calculated boost recovery time fluctuation can be eliminated. Since I = ΔQ / Δt (where I: boost current, dQ: charge, dt: time difference), the charge ΔQ stored in the boost capacitor is obtained from the boost current by switching the switching element 202 on and off once. The amount of energy (∝Q 2 / C (where C is the capacitance of the boost capacitor 204)) can be obtained from the electric charge. Based on this value, an average boost current value that can eliminate the boost recovery time fluctuation is calculated, and an upper limit threshold and a lower limit threshold of the boost current to be set are obtained.

この方式では制御部101で上記のような算出が必要となることから実施形態1に比べ、制御が困難となる。しかしながら、バッテリ電源電圧値の小さな変動にも対応できることから、実施形態3では昇圧復帰時間308をより安定させることが可能となる。   In this method, the control unit 101 needs to perform the calculation as described above, so that control becomes difficult as compared with the first embodiment. However, since it is possible to cope with small fluctuations in the battery power supply voltage value, the boost recovery time 308 can be further stabilized in the third embodiment.

[実施形態4]
実施形態1〜3では平均昇圧電流を変動させる際に、昇圧電流の上限閾値305と昇圧電流の下限閾値306を併せて変動させて平均昇圧電流307を変動させているが、昇圧電流の上限閾値305または下限閾値306のどちらか一方を変動させて平均昇圧電流値307を変動させる方式としても良い。また、昇圧電流の上限閾値を大きく変動させて下限閾値の変動を小さくする方法やその逆でもよい。
[Embodiment 4]
In the first to third embodiments, when the average boost current is changed, the average boost current 307 is changed by changing the boost current upper limit threshold 305 and the boost current lower limit threshold 306 together. A method may be used in which one of 305 and the lower threshold 306 is changed to change the average boost current value 307. Further, a method of greatly changing the upper limit threshold of the boost current to reduce the change of the lower limit threshold and vice versa may be used.

例えば、昇圧電流の上限閾値のみを上げた場合、昇圧コイルでは交流成分により消費電力が大きくなるが、下限閾値のみを上げることにより、昇圧コイルの交流成分による消費電力は小さくなる。一方、下限閾値のみを上げた場合は、スイッチング素子202のスイッチング回数が増えてスイッチング損失が増えることとなる。   For example, when only the upper limit threshold value of the boost current is increased, the power consumption of the booster coil increases due to the AC component, but by increasing only the lower limit threshold value, the power consumption due to the AC component of the booster coil decreases. On the other hand, when only the lower limit threshold value is increased, the switching frequency of the switching element 202 is increased, and the switching loss is increased.

本実施形態4によれば、上限閾値と下限閾値の設定の自由度が向上し、上記のような各要素の影響を考慮した上限閾値および下限閾値に設定することが可能となる。   According to the fourth embodiment, the degree of freedom in setting the upper limit threshold and the lower limit threshold is improved, and it is possible to set the upper limit threshold and the lower limit threshold in consideration of the influence of each element as described above.

101…制御部
102…昇圧回路制御部
106…インジェクタ
200…直流電圧源(バッテリ電源電圧)
201…昇圧コイル
202…スイッチング素子(FET)
203…電流検出部
204…昇圧コンデンサ
206…昇圧電圧検出部
307,504…平均昇圧電流値
305,502…上限閾値
306,503…下限閾値
DESCRIPTION OF SYMBOLS 101 ... Control part 102 ... Booster circuit control part 106 ... Injector 200 ... DC voltage source (battery power supply voltage)
201 ... Boosting coil 202 ... Switching element (FET)
DESCRIPTION OF SYMBOLS 203 ... Current detection part 204 ... Boost capacitor 206 ... Boost voltage detection part 307,504 ... Average step-up current value 305, 502 ... Upper limit threshold value 306, 503 ... Lower limit threshold value

Claims (7)

直流電圧源に接続され、当該直流電圧源の電圧を昇圧する昇圧コイルと、
前記昇圧コイルへ昇圧電流を通電させるスイッチング素子と、
前記昇圧コイルで生成されたエネルギーを蓄積する昇圧コンデンサと、
前記昇圧コイルの昇圧電流を検出する電流検出部と、
前記昇圧コイルの昇圧電流が上限閾値に到達後、下限閾値に到達するまで前記スイッチング素子をオフにして昇圧電流を遮断し、前記昇圧コイルに蓄積されたエネルギーを前記昇圧コンデンサに充電させる昇圧制御を繰り返して行い昇圧電圧を生成する昇圧回路制御部と、
前記昇圧電圧を検出する電圧検出部と、を備えた昇圧回路において、
前記昇圧回路制御部は、
前記直流電圧源の電圧が変動した際に、前記昇圧電圧が元の昇圧状態の電圧に復帰するまでの昇圧復帰時間を一定にするように、前記直流電圧源の電圧の変動に応じて前記昇圧電流の平均昇圧電流値を変更ることを特徴とする昇圧回路。
A boosting coil connected to a DC voltage source and boosting the voltage of the DC voltage source;
A switching element for passing a boost current to the boost coil;
A boost capacitor for storing energy generated by the boost coil;
A current detector for detecting a boost current of the boost coil;
After reaching the boost current limit threshold of the boosting coil, and turns off the switching element until it reaches the lower threshold to cut off the boost current, the step-up control for charging the energy stored in the boost coil to said boost capacitor A booster circuit controller that repeatedly generates a boosted voltage;
In a booster circuit comprising a voltage detector that detects the boosted voltage,
The booster circuit control unit includes:
When the voltage of the DC voltage source is varied, the so boosted voltage to a constant boost voltage recovery time to return to the voltage of the original boost state, the boost in accordance with a variation in the voltage of the DC voltage source boosting circuit characterized that you change the average voltage boosting current value of the current.
前記昇圧回路制御部は、
前記昇圧電流の上限閾値と下限閾値を変更することにより平均昇圧電流値を変更することを特徴とする請求項1記載の昇圧回路。
The booster circuit control unit includes:
2. The booster circuit according to claim 1, wherein the average boost current value is changed by changing an upper limit threshold and a lower limit threshold of the boost current.
前記昇圧回路制御部は、
前記昇圧電流の上限閾値と下限閾値のどちらか一方を変更することにより平均昇圧電流値を変更することを特徴とする請求項1記載の昇圧回路。
The booster circuit control unit includes:
2. The booster circuit according to claim 1, wherein the average boost current value is changed by changing one of an upper limit threshold and a lower limit threshold of the boost current.
前記昇圧回路制御部は、
前記平均昇圧電流値の変更を、前記電圧検出部で検出された電圧値が規定の電圧値から一定以上変動したことを検知した時、または定期的に行うことを特徴とする請求項1〜3のうち何れか1項に記載の昇圧回路。
The booster circuit control unit includes:
4. The average boosted current value is changed when it is detected that the voltage value detected by the voltage detector has fluctuated more than a predetermined value from a specified voltage value, or periodically. The booster circuit according to any one of the above.
前記昇圧回路制御部は、
前記電圧検出部で検出した電圧に基づいて、その都度、平均昇圧電流値を算出することを特徴とする請求項1〜4のうち何れか1項に記載の昇圧回路
The booster circuit control unit includes:
Based on the voltage detected by the voltage detecting section, each time the step-up circuit according to any one of claims 1 to 4, characterized in that to calculate the average boost current.
前記昇圧回路制御部は、
予め制御部に記憶された前記直流電圧源の電圧と昇圧電流のテーブルから、前記直流電圧源の電圧に基づいて、前記昇圧電流を導出することを特徴とする請求項1〜4のうち何れか1項に記載の昇圧回路。
The booster circuit control unit includes:
5. The boosted current is derived based on the voltage of the DC voltage source from a table of the voltage of the DC voltage source and the boosted current stored in advance in the control unit. 2. The booster circuit according to item 1.
前記昇圧回路は内燃機関の制御装置に備えられたものであって、
前記昇圧回路で生成された昇圧電圧はエンジン気筒内に燃料を噴射するインジェクタの開弁に用いられることを特徴とする請求項1〜6のうち何れか1項に記載の昇圧回路。
The booster circuit is provided in a control device for an internal combustion engine,
The booster circuit according to any one of claims 1 to 6, wherein the booster voltage generated by the booster circuit is used to open an injector that injects fuel into an engine cylinder.
JP2013041455A 2013-03-04 2013-03-04 Booster circuit Active JP6133627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041455A JP6133627B2 (en) 2013-03-04 2013-03-04 Booster circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041455A JP6133627B2 (en) 2013-03-04 2013-03-04 Booster circuit

Publications (2)

Publication Number Publication Date
JP2014171312A JP2014171312A (en) 2014-09-18
JP6133627B2 true JP6133627B2 (en) 2017-05-24

Family

ID=51693320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041455A Active JP6133627B2 (en) 2013-03-04 2013-03-04 Booster circuit

Country Status (1)

Country Link
JP (1) JP6133627B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414022B2 (en) 2015-11-05 2018-10-31 株式会社デンソー Fuel injection control device and fuel injection system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774624A (en) * 1987-07-06 1988-09-27 Motorola, Inc. Boost voltage power supply for vehicle control system
JP2000224777A (en) * 1999-01-29 2000-08-11 Fujitsu Denso Ltd Secondary battery charger
JP4581978B2 (en) * 2005-11-25 2010-11-17 株式会社デンソー Fuel injection control device
JP2008106723A (en) * 2006-10-27 2008-05-08 Denso Corp Ignition control device of internal combustion engine
JP5345230B2 (en) * 2006-10-10 2013-11-20 日立オートモティブシステムズ株式会社 Internal combustion engine control device
JP4325710B2 (en) * 2007-07-13 2009-09-02 株式会社デンソー Boost power supply
JP4776651B2 (en) * 2008-03-28 2011-09-21 日立オートモティブシステムズ株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JP2014171312A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
US8081498B2 (en) Internal combustion engine controller
JP5198496B2 (en) Engine control unit for internal combustion engines
JP6309653B2 (en) Fuel control device for internal combustion engine
JP6314733B2 (en) Fuel injection control device for internal combustion engine
JP6121552B2 (en) Fuel injection control device for internal combustion engine
JP4815502B2 (en) Control device for internal combustion engine
EP1860310B1 (en) Method of operating a fuel injector
CN103807041B (en) Fuel injection controller and fuel injection system
JP2008075516A (en) Solenoid controlled valve drive unit
EP1574696A2 (en) Power supply arrangement for a fuel injector drive circuit
JP4604959B2 (en) Fuel injection control device
JP2008025453A (en) Injector drive device
JP4032356B2 (en) Fuel injection device
JP2016160920A (en) Fuel injection control device
JP6133627B2 (en) Booster circuit
JP4156465B2 (en) Fuel injection valve control device
JP2013064363A (en) Fuel injection device of internal combustion engine
JP6420204B2 (en) Fuel control device for internal combustion engine
JP5842619B2 (en) Injector drive control device
JP2012122462A (en) Electromagnetic load control device
JP2010216278A (en) Boosting circuit for driving fuel injection valve
JP6431826B2 (en) Fuel injection control device for internal combustion engine
JP4118432B2 (en) Solenoid valve drive circuit
JPH05321732A (en) Fuel injection control device for internal combustion engine
JP2003041973A (en) Controller and control method for engine-driven generator and recording medium storing control program for engine driven generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170420

R150 Certificate of patent or registration of utility model

Ref document number: 6133627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170927

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250