JP6131821B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP6131821B2
JP6131821B2 JP2013219344A JP2013219344A JP6131821B2 JP 6131821 B2 JP6131821 B2 JP 6131821B2 JP 2013219344 A JP2013219344 A JP 2013219344A JP 2013219344 A JP2013219344 A JP 2013219344A JP 6131821 B2 JP6131821 B2 JP 6131821B2
Authority
JP
Japan
Prior art keywords
nox
temperature
nox adsorbent
amount
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013219344A
Other languages
Japanese (ja)
Other versions
JP2015081541A (en
Inventor
寛真 西岡
寛真 西岡
伊藤 和浩
和浩 伊藤
佳久 塚本
佳久 塚本
寛 大月
寛 大月
康正 野竹
康正 野竹
大地 今井
大地 今井
亮太 神武
亮太 神武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013219344A priority Critical patent/JP6131821B2/en
Priority to CN201480057542.0A priority patent/CN105658919B/en
Priority to DE112014004835.6T priority patent/DE112014004835B4/en
Priority to PCT/JP2014/072859 priority patent/WO2015060014A1/en
Priority to US15/030,724 priority patent/US9840954B2/en
Publication of JP2015081541A publication Critical patent/JP2015081541A/en
Application granted granted Critical
Publication of JP6131821B2 publication Critical patent/JP6131821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/06By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device at cold starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1631Heat amount provided to exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

従来から、排気ガス中のNOxを吸着するためのNOx吸着剤と、排気ガス中のNOxを浄化するためのNOx浄化触媒とを機関排気通路内に配置した内燃機関が知られている。この内燃機関では、機関運転が開始されてからNOx浄化触媒の温度が活性温度に達するまで、排気ガス中のNOxはNOx吸着剤に吸着され、したがってNOxが大気中に放出されるのが抑制される。   Conventionally, an internal combustion engine is known in which a NOx adsorbent for adsorbing NOx in exhaust gas and a NOx purification catalyst for purifying NOx in exhaust gas are arranged in an engine exhaust passage. In this internal combustion engine, from the start of engine operation until the temperature of the NOx purification catalyst reaches the activation temperature, NOx in the exhaust gas is adsorbed by the NOx adsorbent, and thus NOx is prevented from being released into the atmosphere. The

ところが、機関運転停止中に機関排気通路内に存在するガス中には水分が含まれており、この水分は機関が再始動されるまでにNOx吸着剤に吸着される。その結果、機関が再始動されたときにNOx吸着剤が吸着可能なNOx量がNOx吸着剤に吸着されている水分の量だけ減少することになる。すなわち、NOx浄化触媒の温度が活性温度に達する前に大気中に放出されるNOxの量がNOx吸着剤に吸着されている水分の量だけ増大するおそれがある。   However, the gas present in the engine exhaust passage while the engine is stopped contains moisture, and this moisture is adsorbed by the NOx adsorbent before the engine is restarted. As a result, the amount of NOx that can be adsorbed by the NOx adsorbent when the engine is restarted is reduced by the amount of moisture adsorbed by the NOx adsorbent. That is, the amount of NOx released into the atmosphere before the temperature of the NOx purification catalyst reaches the activation temperature may increase by the amount of moisture adsorbed on the NOx adsorbent.

そこで、NOx吸着剤に電気ヒータを取り付け、NOx吸着剤に吸着されている水分量を算出し、吸着水分量がしきい量を越えたときに電気ヒータを作動させてNOx吸着剤を昇温し、それによりNOx吸着剤から水分を放出させる、内燃機関が公知である(特許文献1参照)。   Therefore, an electric heater is attached to the NOx adsorbent, the amount of water adsorbed on the NOx adsorbent is calculated, and when the adsorbed water amount exceeds the threshold amount, the electric heater is operated to raise the temperature of the NOx adsorbent. An internal combustion engine is known in which moisture is released from the NOx adsorbent (see Patent Document 1).

特開2002−155736号公報JP 2002-155736 A

しかしながら、特許文献1では、吸着水分量がしきい量になるまで水分放出作用が行なわれない。その結果、水分放出作用が行なわれた直後は別として、NOx吸着剤に吸着されている水分の量だけ、NOx吸着剤が吸着可能なNOx量が減少することになる。したがって、依然として、NOx浄化触媒の温度が活性温度に達する前に大気中に放出されるNOx量が増大するおそれがある。あるいは、NOx吸着剤の吸着容量を、吸着される水分の量だけ大きくする必要がある。   However, in Patent Document 1, the moisture release action is not performed until the amount of adsorbed moisture reaches the threshold amount. As a result, the amount of NOx that can be adsorbed by the NOx adsorbent is reduced by the amount of water adsorbed by the NOx adsorbent, apart from immediately after the moisture releasing action is performed. Therefore, there is still a possibility that the amount of NOx released into the atmosphere before the temperature of the NOx purification catalyst reaches the activation temperature increases. Alternatively, it is necessary to increase the adsorption capacity of the NOx adsorbent by the amount of moisture to be adsorbed.

本発明によれば、排気ガス中のNOxを吸着するためのNOx吸着剤と、排気ガス中のNOxを浄化するためのNOx浄化触媒とを機関排気通路内に配置し、NOx吸着剤は、NOx吸着剤の温度を上昇させたときにNOx吸着剤の温度が水分離脱温度に達すると吸着している水分が離脱し始め、NOx吸着剤の温度を更に上昇させたときにNOx吸着剤の温度がNOx離脱温度に達すると吸着しているNOxが離脱し始める性質を有し、NOx吸着剤を昇温するための電気ヒータを備え、内燃機関の始動要求を表す信号が発せられたときには、内燃機関が完爆する前に電気ヒータへの電力供給を開始し、かつ、NOx吸着剤の温度が水分離脱温度以上NOx離脱温度未満になる電力量を電気ヒータに供給する、内燃機関の排気浄化装置が提供される。   According to the present invention, the NOx adsorbent for adsorbing NOx in the exhaust gas and the NOx purification catalyst for purifying NOx in the exhaust gas are arranged in the engine exhaust passage, and the NOx adsorbent is NOx When the temperature of the NOx adsorbent reaches the moisture desorption temperature when the temperature of the adsorbent is increased, the adsorbed water begins to desorb, and when the temperature of the NOx adsorbent is further increased, the temperature of the NOx adsorbent is increased. When the NOx adsorbing temperature is reached, the adsorbed NOx has a property of starting to desorb, and an electric heater for raising the temperature of the NOx adsorbent is provided. An exhaust purification device for an internal combustion engine that starts supplying power to the electric heater before the explosion completes and supplies the electric heater with an amount of power that causes the temperature of the NOx adsorbent to be higher than the moisture release temperature and lower than the NOx release temperature. Offer It is.

NOx吸着剤の吸着容量を小さく維持しつつ、NOx浄化触媒の温度が活性温度に達するまでにNOxが大気中に放出されるのを抑制することができる。   While maintaining the adsorption capacity of the NOx adsorbent small, it is possible to suppress the release of NOx into the atmosphere until the temperature of the NOx purification catalyst reaches the activation temperature.

内燃機関の全体図である。1 is an overall view of an internal combustion engine. パティキュレートフィルタの正面図である。It is a front view of a particulate filter. パティキュレートフィルタの側面断面図である。It is side surface sectional drawing of a particulate filter. パティキュレートフィルタの隔壁の部分拡大断面図である。It is a partial expanded sectional view of the partition of a particulate filter. 水分離脱温度及びNOx離脱温度を説明する線図である。It is a diagram explaining a moisture desorption temperature and a NOx desorption temperature. NOx浄化触媒の活性温度を説明する線図である。It is a diagram explaining the activation temperature of a NOx purification catalyst. 本発明による実施例の電気ヒータ制御を説明するタイムチャートである。It is a time chart explaining the electric heater control of the Example by this invention. 初期吸着水分量QAW0のマップを示す図である。It is a figure which shows the map of the amount of initial adsorption moisture QAW0. 電気ヒータ制御ルーチンを示すフローチャートである。It is a flowchart which shows an electric heater control routine. 本発明による別の実施例の電気ヒータ制御を説明するタイムチャートである。It is a time chart explaining the electric heater control of another Example by this invention. 本発明による別の実施例の電気ヒータ制御を説明するタイムチャートである。It is a time chart explaining the electric heater control of another Example by this invention. 本発明による別の実施例の電気ヒータ制御ルーチンを示すフローチャートである。It is a flowchart which shows the electric heater control routine of another Example by this invention. NOx吸着剤の別の排気浄化制御ルーチンを示すフローチャートである。7 is a flowchart showing another exhaust gas purification control routine for NOx adsorbent.

図1を参照すると、1は圧縮着火式内燃機関の本体、2は各気筒の燃焼室、3は燃焼室2内にそれぞれ燃料を噴射するための電磁制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドをそれぞれ示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7cの出口に連結され、コンプレッサ7cの入口は吸気導入管8を介してエアフロメータ9及びエアクリーナ10に順次連結される。吸気ダクト6内には電気制御式スロットル弁11が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置12が配置される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7tの入口に連結され、排気タービン7tの出口は排気後処理装置20に連結される。   Referring to FIG. 1, 1 is a main body of a compression ignition type internal combustion engine, 2 is a combustion chamber of each cylinder, 3 is an electromagnetically controlled fuel injection valve for injecting fuel into the combustion chamber 2, and 4 is an intake manifold, Reference numeral 5 denotes an exhaust manifold. The intake manifold 4 is connected to the outlet of the compressor 7 c of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 c is sequentially connected to the air flow meter 9 and the air cleaner 10 via the intake introduction pipe 8. An electrically controlled throttle valve 11 is disposed in the intake duct 6, and a cooling device 12 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6. On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 t of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 t is connected to the exhaust aftertreatment device 20.

各燃料噴射弁3は燃料供給管13を介してコモンレール14に連結され、このコモンレール14は電気制御式の吐出量可変な燃料ポンプ15を介して燃料タンク16に連結される。燃料タンク16内の燃料は燃料ポンプ15によってコモンレール14内に供給され、コモンレール14内に供給された燃料は各燃料供給管13を介して燃料噴射弁3に供給される。図1に示される実施例ではこの燃料は軽油から構成される。別の実施例では、内燃機関はリーン空燃比のもとで燃焼が行われる火花点火式内燃機関から構成される。この場合には燃料はガソリンから構成される。   Each fuel injection valve 3 is connected to a common rail 14 via a fuel supply pipe 13, and this common rail 14 is connected to a fuel tank 16 via an electrically controlled fuel pump 15 having a variable discharge amount. The fuel in the fuel tank 16 is supplied into the common rail 14 by the fuel pump 15, and the fuel supplied into the common rail 14 is supplied to the fuel injection valve 3 through each fuel supply pipe 13. In the embodiment shown in FIG. 1, this fuel is composed of light oil. In another embodiment, the internal combustion engine comprises a spark ignition internal combustion engine in which combustion is performed under a lean air-fuel ratio. In this case, the fuel is composed of gasoline.

排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRという。)通路17を介して互いに連結され、EGR通路17内には電気制御式EGR制御弁18が配置される。また、EGR通路17周りにはEGR通路17内を流れるEGRガスを冷却するための冷却装置19が配置される。   The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 17, and an electrically controlled EGR control valve 18 is disposed in the EGR passage 17. A cooling device 19 for cooling the EGR gas flowing in the EGR passage 17 is disposed around the EGR passage 17.

排気後処理装置20は排気タービン7tの出口に連結された排気管21を具備し、この排気管21はケーシング22を介して排気管23に連結される。ケーシング22内には、排気ガス中の粒子状物質を捕集するためのパティキュレートフィルタ24が配置され、パティキュレートフィルタ24上に、排気ガス中のNOxを吸着するためのNOx吸着剤25と、排気ガス中のNOxを浄化するためのNOx浄化触媒26とが担持される。また、パティキュレートフィルタ24上流においてケーシング22内に電気ヒータ27がパティキュレートフィルタ24と一体的に配置される。更に、NOx浄化触媒26上流に位置する排気管21には排気ガス中に還元剤を供給する還元剤供給弁28が設けられる。   The exhaust aftertreatment device 20 includes an exhaust pipe 21 connected to an outlet of the exhaust turbine 7t. The exhaust pipe 21 is connected to an exhaust pipe 23 through a casing 22. A particulate filter 24 for collecting particulate matter in the exhaust gas is disposed in the casing 22, and a NOx adsorbent 25 for adsorbing NOx in the exhaust gas on the particulate filter 24, A NOx purification catalyst 26 for purifying NOx in the exhaust gas is supported. In addition, an electric heater 27 is disposed integrally with the particulate filter 24 in the casing 22 upstream of the particulate filter 24. Further, the exhaust pipe 21 located upstream of the NOx purification catalyst 26 is provided with a reducing agent supply valve 28 for supplying a reducing agent into the exhaust gas.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35及び出力ポート36を具備する。吸気導入管8には吸気導入管8内の空気の温度を検出するための温度センサ8Tが取り付けられ、NOx吸着剤25にはNOx吸着剤25の温度を検出するための温度センサ25Tが取り付けられる。図1に示される例では、NOx吸着剤25の温度はパティキュレートフィルタ24及びNOx浄化触媒26の温度を表している。エアフロメータ9及び温度センサ8T,25Tの出力電圧はそれぞれ対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル39にはアクセルペダル39の踏み込み量に比例した出力電圧を発生する負荷センサ40が接続され、負荷センサ40の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。さらに、クランクシャフトが例えば30度回転するごとに出力パルスを発生するクランク角センサ41が入力ポート35に接続される。CPU34ではクランク角センサ41からの出力パルスに基づいて機関回転数が算出される。また、車両運転者によって操作されるイグニッションスイッチ42がオンであるかオフであるかを表す信号が入力ポート35に入力される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁11の駆動装置、燃料ポンプ15、EGR制御弁18、電気ヒータ27、及び還元剤供給弁28に接続される。   The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. A ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, an input port 35 and an output port 36. It comprises. A temperature sensor 8T for detecting the temperature of air in the intake air introduction pipe 8 is attached to the intake air introduction pipe 8, and a temperature sensor 25T for detecting the temperature of the NOx adsorbent 25 is attached to the NOx adsorbent 25. . In the example shown in FIG. 1, the temperature of the NOx adsorbent 25 represents the temperature of the particulate filter 24 and the NOx purification catalyst 26. The output voltages of the air flow meter 9 and the temperature sensors 8T and 25T are input to the input port 35 via the corresponding AD converters 37, respectively. A load sensor 40 that generates an output voltage proportional to the amount of depression of the accelerator pedal 39 is connected to the accelerator pedal 39, and the output voltage of the load sensor 40 is input to the input port 35 via the corresponding AD converter 37. The Further, a crank angle sensor 41 that generates an output pulse every time the crankshaft rotates, for example, 30 degrees is connected to the input port 35. The CPU 34 calculates the engine speed based on the output pulse from the crank angle sensor 41. A signal indicating whether the ignition switch 42 operated by the vehicle driver is on or off is input to the input port 35. On the other hand, the output port 36 is connected to the fuel injection valve 3, the drive device for the throttle valve 11, the fuel pump 15, the EGR control valve 18, the electric heater 27, and the reducing agent supply valve 28 via corresponding drive circuits 38.

図2A及び図2Bはウォールフロー型パティキュレートフィルタ24の構造を示している。なお、図2Aはパティキュレートフィルタ24の正面図を示しており、図2Bはパティキュレートフィルタ24の側面断面図を示している。図2A及び図2Bに示されるようにパティキュレートフィルタ24はハニカム構造をなしており、互いに平行をなして延びる複数個の排気流通路71i,71oと、これら排気流通路71i,71oを互いに隔てる隔壁72とを具備する。図2Aに示される実施例では、排気流通路71i,71oは、上流端が開放されかつ下流端が栓73dにより閉塞された排気ガス流入通路71iと、上流端が栓73uにより閉塞されかつ下流端が開放された排気ガス流出通路71oとにより構成される。なお、図2Aにおいてハッチングを付した部分は栓73uを示している。したがって、排気ガス流入通路71i及び排気ガス流出通路71oは薄肉の隔壁72を介して交互に配置される。云い換えると排気ガス流入通路71i及び排気ガス流出通路71oは各排気ガス流入通路71iが4つの排気ガス流出通路71oによって包囲され、各排気ガス流出通路71oが4つの排気ガス流入通路71iによって包囲されるように配置される。別の実施例では、排気流通路は、上流端及び下流端が開放された排気ガス流入通路と、上流端が栓により閉塞されかつ下流端が開放された排気ガス流出通路とにより構成される。   2A and 2B show the structure of the wall flow type particulate filter 24. FIG. 2A shows a front view of the particulate filter 24, and FIG. 2B shows a side sectional view of the particulate filter 24. As shown in FIG. As shown in FIGS. 2A and 2B, the particulate filter 24 has a honeycomb structure, and a plurality of exhaust flow passages 71i and 71o extending in parallel with each other, and a partition wall separating the exhaust flow passages 71i and 71o from each other. 72. In the embodiment shown in FIG. 2A, the exhaust flow passages 71i and 71o are composed of an exhaust gas inflow passage 71i having an upstream end opened and a downstream end closed by a plug 73d, and an upstream end closed by a plug 73u and a downstream end. The exhaust gas outflow passage 71o is opened. In FIG. 2A, hatched portions indicate plugs 73u. Therefore, the exhaust gas inflow passages 71 i and the exhaust gas outflow passages 71 o are alternately arranged via the thin partition walls 72. In other words, in the exhaust gas inflow passage 71i and the exhaust gas outflow passage 71o, each exhaust gas inflow passage 71i is surrounded by four exhaust gas outflow passages 71o, and each exhaust gas outflow passage 71o is surrounded by four exhaust gas inflow passages 71i. Arranged so that. In another embodiment, the exhaust flow passage is constituted by an exhaust gas inflow passage whose upstream end and downstream end are opened, and an exhaust gas outflow passage whose upstream end is closed by a plug and whose downstream end is opened.

隔壁72は多孔質材料、例えばコージェライト、炭化ケイ素、窒化ケイ素、ジルコニア、チタニア、アルミナ、シリカ、ムライト、リチウムアルミニウムシリケート、リン酸ジルコニウムのようなセラミックから形成される。したがって、図2Bに矢印で示されるように、排気ガスはまず排気ガス流入通路71i内に流入し、次いで周囲の隔壁72内を通って隣接する排気ガス流出通路71o内に流出する。このように隔壁72は排気ガス流入通路71iの内周面を構成する。別の実施例では、隔壁ないし基材は多孔性のある抵抗発熱材、例えばNi−Cr系合金、二ケイ化モリブデン(MoSi)などの金属発熱体、炭化ケイ素(SiC)などの非金属発熱体から形成される。この場合、隔壁に通電することによりNOx吸着剤25が昇温され、したがって隔壁は電気ヒータ27として作用する。 The partition wall 72 is formed of a porous material, for example, a ceramic such as cordierite, silicon carbide, silicon nitride, zirconia, titania, alumina, silica, mullite, lithium aluminum silicate, zirconium phosphate. Therefore, as shown by an arrow in FIG. 2B, the exhaust gas first flows into the exhaust gas inflow passage 71i, and then flows into the adjacent exhaust gas outflow passage 71o through the surrounding partition wall 72. Thus, the partition 72 constitutes the inner peripheral surface of the exhaust gas inflow passage 71i. In another embodiment, the partition wall or substrate is a porous resistance heating material, for example, a metal heating element such as a Ni—Cr alloy, molybdenum disilicide (MoSi 2 ), or a non-metallic heating element such as silicon carbide (SiC). Formed from the body. In this case, the NOx adsorbent 25 is heated by energizing the partition wall, so that the partition wall acts as an electric heater 27.

図3は隔壁72の部分拡大断面図を示している。図3に示されるように、隔壁72の排気ガス流入通路71i側の側面上にはNOx吸着剤25の層が形成され、NOx吸着剤25の層の上にNOx浄化触媒26の層が形成される。   FIG. 3 shows a partially enlarged sectional view of the partition wall 72. As shown in FIG. 3, a layer of NOx adsorbent 25 is formed on the side surface of partition wall 72 on the exhaust gas inflow passage 71 i side, and a layer of NOx purification catalyst 26 is formed on the layer of NOx adsorbent 25. The

本発明による実施例では、NOx吸着剤25はゼオライトを含む。別の実施例ではNOx吸着剤25はマンガンMnを含む。   In an embodiment according to the present invention, the NOx adsorbent 25 includes zeolite. In another embodiment, the NOx adsorbent 25 includes manganese Mn.

NOx吸着剤25の温度が低いときにはNOxがNOx吸着剤25に吸着し、NOx吸着剤25の温度が高くなると吸着しているNOxがNOx吸着剤25から離脱し放出される。また、水分も同様にNOx吸着剤25に吸着し、NOx吸着剤25から離脱する。   When the temperature of the NOx adsorbent 25 is low, NOx is adsorbed by the NOx adsorbent 25, and when the temperature of the NOx adsorbent 25 becomes high, the adsorbed NOx is released from the NOx adsorbent 25 and released. Similarly, moisture is adsorbed on the NOx adsorbent 25 and desorbed from the NOx adsorbent 25.

図4はNOx吸着剤25から離脱する水分量QDW及びNOx量QDNを示している。図4からわかるように、NOx吸着剤25の温度TNAが水分離脱温度TDWよりも低いときには、離脱水分量QDWはほぼゼロに維持されており、したがってNOx吸着剤25から水分はほとんど離脱しない。NOx吸着剤25の温度TNAを上昇させたときにNOx吸着剤25の温度TNAが水分離脱温度TDWに達すると、離脱水分量QDWがゼロから増大し、したがってNOx吸着剤25に吸着されている水分が離脱し始める。一方、NOx吸着剤25の温度TNAがNOx離脱温度TDNよりも低いときには、離脱NOx量QDNはほぼゼロに維持されており、したがってNOx吸着剤25からNOxはほとんど離脱しない。NOx吸着剤25の温度TNAを更に上昇させたときにNOx吸着剤25の温度TNAがNOx離脱温度TDNに達すると、離脱NOx量QDNがゼロから増大し、したがってNOx吸着剤25に吸着されているNOxが離脱し始める。本発明による実施例では、水分離脱温度TDWは約100℃にされており、NOx離脱温度TDNは水分離脱温度TDWよりも高い約180℃にされている。   FIG. 4 shows the amount of moisture QDW and the amount of NOx QDN desorbed from the NOx adsorbent 25. As can be seen from FIG. 4, when the temperature TNA of the NOx adsorbent 25 is lower than the moisture desorption temperature TDW, the desorption moisture amount QDW is maintained almost zero, and therefore, almost no moisture is desorbed from the NOx adsorbent 25. If the temperature TNA of the NOx adsorbent 25 reaches the moisture desorption temperature TDW when the temperature TNA of the NOx adsorbent 25 is increased, the desorbed water amount QDW increases from zero, and therefore the moisture adsorbed on the NOx adsorbent 25. Begins to leave. On the other hand, when the temperature TNA of the NOx adsorbent 25 is lower than the NOx desorption temperature TDN, the desorbed NOx amount QDN is maintained almost zero, and therefore NOx is hardly desorbed from the NOx adsorbent 25. When the temperature TNA of the NOx adsorbent 25 is further increased and the temperature TNA of the NOx adsorbent 25 reaches the NOx desorption temperature TDN, the desorbed NOx amount QDN increases from zero and is therefore adsorbed by the NOx adsorbent 25. NOx begins to leave. In the embodiment according to the present invention, the moisture desorption temperature TDW is about 100 ° C., and the NOx desorption temperature TDN is about 180 ° C., which is higher than the water desorption temperature TDW.

一方、NOx浄化触媒26は本発明による実施例では、酸素過剰のもとで還元剤により排気ガス中のNOxを還元するのに適したNOx選択還元触媒から構成される。このNOx選択還元触媒はチタニアTiOを担体とし、この担体上に担持された酸化バナジウムV、又はゼオライトZSM5を担体とし、この担体上に担持された銅Cuを含む。また、還元剤供給弁28からは尿素水溶液が供給され、尿素水溶液から発生するアンモニアが還元剤として作用する。別の実施例では、還元剤として燃料(炭化水素)が用いられる。 On the other hand, in the embodiment according to the present invention, the NOx purification catalyst 26 is composed of a NOx selective reduction catalyst suitable for reducing NOx in the exhaust gas with a reducing agent under an excess of oxygen. This NOx selective reduction catalyst contains titania TiO 2 as a carrier, vanadium oxide V 2 O 5 supported on this carrier, or zeolite ZSM5 as a carrier, and contains copper Cu supported on this carrier. Further, a urea aqueous solution is supplied from the reducing agent supply valve 28, and ammonia generated from the urea aqueous solution acts as a reducing agent. In another embodiment, fuel (hydrocarbon) is used as the reducing agent.

機関吸気通路、燃焼室2およびNOx浄化触媒26上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、別の実施例では、NOx浄化触媒26は流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入する排気ガスの空燃比がリッチになると吸蔵したNOxを放出するNOx吸蔵触媒から構成される。このNOx吸蔵触媒は白金Pt、ロジウムRh、パラジウムPdのような貴金属触媒と、カリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOxに電子を供与しうる金属から選ばれた少なくとも一つを含む塩基性層とを備えている。なお、吸蔵という用語は吸着及び吸収を含んでいる。   If the ratio of the air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber 2 and the exhaust passage upstream of the NOx purification catalyst 26 is referred to as the air-fuel ratio of the exhaust gas, in another embodiment, the NOx purification catalyst 26 Is composed of a NOx storage catalyst that stores NOx contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean and releases the stored NOx when the air-fuel ratio of the inflowing exhaust gas becomes rich. This NOx storage catalyst includes noble metal catalysts such as platinum Pt, rhodium Rh and palladium Pd, alkali metals such as potassium K, sodium Na and cesium Cs, alkaline earth metals such as barium Ba and calcium Ca, and lanthanoids. And a basic layer containing at least one selected from metals capable of donating electrons to NOx, such as rare earth and silver Ag, copper Cu, iron Fe, and iridium Ir. The term occlusion includes adsorption and absorption.

図5はNOx浄化触媒26のNOx浄化率EFFとNOx浄化触媒26の温度TCとの関係を示している。図5に示されるように、NOx浄化触媒26のNOx浄化率EFFはNOx浄化触媒26の温度TCが高くなるにつれて高くなり、ピークに達する。この場合、NOx浄化触媒26の温度TCが活性温度TCACT以上であると、NOx浄化率EFFは許容値EFF1以上になる。本発明による実施例では、NOx浄化触媒26の活性温度TCACTはNOx吸着剤25のNOx離脱温度TDNにほぼ等しい約180℃にされている。別の実施例では、NOx浄化触媒26の活性温度TCACTはNOxのNOx離脱温度TDNよりも低くされる。   FIG. 5 shows the relationship between the NOx purification rate EFF of the NOx purification catalyst 26 and the temperature TC of the NOx purification catalyst 26. As shown in FIG. 5, the NOx purification rate EFF of the NOx purification catalyst 26 increases as the temperature TC of the NOx purification catalyst 26 increases and reaches a peak. In this case, if the temperature TC of the NOx purification catalyst 26 is equal to or higher than the activation temperature TCACT, the NOx purification rate EFF becomes equal to or higher than the allowable value EFF1. In the embodiment according to the present invention, the activation temperature TCACT of the NOx purification catalyst 26 is set to about 180 ° C. which is substantially equal to the NOx removal temperature TDN of the NOx adsorbent 25. In another embodiment, the activation temperature TCACT of the NOx purification catalyst 26 is set lower than the NOx removal temperature TDN of NOx.

さて、内燃機関の運転が開始されると、排気ガスがパティキュレートフィルタ24に導かれる。この場合、NOx浄化触媒26の温度が活性温度TCACTよりも低くても、NOxはNOx吸着剤25に吸着される。その結果、NOxが大気中に排出されるのが抑制される。次いで、排気ガスによりNOx吸着剤25及びNOx浄化触媒26の温度が上昇される。NOx吸着剤25の温度がNOx離脱温度TDNに達するとNOx吸着剤25から吸着されているNOxが離脱し始め、離脱したNOxはNOx浄化触媒26に流入する。このときNOx浄化触媒26の温度TCは活性温度TCACTに達しており、したがってNOxがNOx浄化触媒26によって浄化される。なお、NOx浄化触媒26の温度TCが活性温度TCACTに達すると還元剤供給弁28からの還元剤供給が開始される。   Now, when the operation of the internal combustion engine is started, the exhaust gas is guided to the particulate filter 24. In this case, even if the temperature of the NOx purification catalyst 26 is lower than the activation temperature TCACT, NOx is adsorbed by the NOx adsorbent 25. As a result, NOx is suppressed from being discharged into the atmosphere. Next, the temperatures of the NOx adsorbent 25 and the NOx purification catalyst 26 are raised by the exhaust gas. When the temperature of the NOx adsorbent 25 reaches the NOx desorption temperature TDN, NOx adsorbed from the NOx adsorbent 25 starts to desorb, and the desorbed NOx flows into the NOx purification catalyst 26. At this time, the temperature TC of the NOx purification catalyst 26 has reached the activation temperature TCACT, and therefore NOx is purified by the NOx purification catalyst 26. When the temperature TC of the NOx purification catalyst 26 reaches the activation temperature TCACT, the supply of the reducing agent from the reducing agent supply valve 28 is started.

ところで、内燃機関の運転が開始されたときにNOx吸着剤25に水分が吸着されていると、NOx吸着剤25が吸着可能なNOx量がこの水分の量だけ少なくなってしまう。一方、NOx吸着剤25の温度TNAを水分離脱温度TDWまで上昇すれば、NOx吸着剤25から水分を離脱させることができる。   By the way, if moisture is adsorbed to the NOx adsorbent 25 when the operation of the internal combustion engine is started, the amount of NOx that can be adsorbed by the NOx adsorbent 25 is reduced by this amount of moisture. On the other hand, if the temperature TNA of the NOx adsorbent 25 is increased to the moisture desorption temperature TDW, the moisture can be desorbed from the NOx adsorbent 25.

そこで本発明による実施例では、内燃機関の始動要求を表す信号が発せられたときには、内燃機関が完爆する前に電気ヒータ27への電力供給を開始し、かつ、NOx吸着剤25の温度TNAが水分離脱温度TDW以上NOx離脱温度TDN未満になる電力量を電気ヒータ27に供給している。その結果、排気ガスがNOx吸着剤25に流入する前にNOx吸着剤25の温度を高めることができる。また、NOx吸着剤25の温度TNAが水分離脱温度TDW以上NOx離脱温度TDN未満にされるので、NOx吸着剤25にNOxを吸着させたままNOx吸着剤25から水分を離脱させることができる。したがって、NOx吸着剤25が吸着可能なNOx量を多くすることができる。したがって、NOx吸着剤25の吸着容量を小さく維持しつつ、NOx浄化触媒26の温度TCが活性温度TCACTに達するまでにNOxが大気中に放出されるのを更に抑制することができる。   Therefore, in the embodiment according to the present invention, when a signal indicating the start request of the internal combustion engine is issued, the power supply to the electric heater 27 is started before the internal combustion engine is completely exploded, and the temperature TNA of the NOx adsorbent 25 is started. Is supplied to the electric heater 27 with an amount of power that becomes equal to or higher than the moisture release temperature TDW and lower than the NOx release temperature TDN. As a result, the temperature of the NOx adsorbent 25 can be increased before the exhaust gas flows into the NOx adsorbent 25. Further, since the temperature TNA of the NOx adsorbent 25 is set to be equal to or higher than the moisture desorption temperature TDW and lower than the NOx desorption temperature TDN, the moisture can be desorbed from the NOx adsorbent 25 while the NOx adsorbent 25 is adsorbed. Therefore, the amount of NOx that can be adsorbed by the NOx adsorbent 25 can be increased. Therefore, it is possible to further suppress the release of NOx into the atmosphere until the temperature TC of the NOx purification catalyst 26 reaches the activation temperature TCACT while keeping the adsorption capacity of the NOx adsorbent 25 small.

本発明による実施例では、内燃機関の始動要求を表す信号はイグニッションスイッチ42がオンであることを表す信号から構成される。別の実施例では、スタータモータスイッチがオンであることを表す信号、車両のドアが開けられたことを表す信号、又は車両のドアのロックが解錠されたことを表す信号から内燃機関の始動要求を表す信号が構成される。更に別の実施例では、電気モータ及び内燃機関を備え、車両駆動力を増大すべき又はバッテリの蓄電量を増大すべきときに内燃機関が運転されるハイブリッド車両において、車両駆動力の増大要求を表す信号又はバッテリ蓄電量の増大要求を表す信号から内燃機関の始動要求を表す信号が構成される。   In the embodiment according to the present invention, the signal indicating the start request of the internal combustion engine is composed of a signal indicating that the ignition switch 42 is ON. In another embodiment, the internal combustion engine is started from a signal indicating that the starter motor switch is on, a signal indicating that the vehicle door has been opened, or a signal indicating that the vehicle door has been unlocked. A signal representing the request is constructed. In yet another embodiment, in a hybrid vehicle that includes an electric motor and an internal combustion engine and the internal combustion engine is operated when the vehicle driving force should be increased or the battery charge amount should be increased, a request for increasing the vehicle driving force is made. The signal indicating the start request of the internal combustion engine is configured from the signal indicating or the signal indicating the increase request of the battery storage amount.

上述したように、電気ヒータ27への電力供給が行なわれるとNOx吸着剤25から水分が離脱される。本発明による実施例では、電気ヒータ27への電力供給中にNOx吸着剤25の吸着水分量がしきい量よりも少なくなったか否かが判別される。NOx吸着剤25の吸着水分量がしきい量よりも少なくなったと判断されないときには、電気ヒータ27への電力供給が継続される。NOx吸着剤25の吸着水分量がしきい量よりも少なくなったと判断されたときには電気ヒータ27への電力供給が停止される。その結果、電気ヒータ27に過剰の電力が供給されるのを阻止することができる。   As described above, when the electric power is supplied to the electric heater 27, moisture is released from the NOx adsorbent 25. In the embodiment according to the present invention, it is determined whether or not the amount of adsorbed moisture of the NOx adsorbent 25 is smaller than the threshold amount during the power supply to the electric heater 27. When it is not determined that the amount of moisture adsorbed by the NOx adsorbent 25 is less than the threshold amount, power supply to the electric heater 27 is continued. When it is determined that the amount of moisture adsorbed by the NOx adsorbent 25 is less than the threshold amount, the power supply to the electric heater 27 is stopped. As a result, it is possible to prevent excessive electric power from being supplied to the electric heater 27.

次に、図6を参照しながら本発明による実施例を更に説明する。
図6を参照すると、時間ta1はイグニッションスイッチ42がオンにされたタイミングを示している。図6に示される例では、時間ta1におけるNOx吸着剤25の吸着水分量QAWは初期量QAW0になっている。時間ta1においてイグニッションスイッチ42がオンにされると、電気ヒータ27への電力供給が開始される。すなわち、電気ヒータ27が作動される。その結果、NOx吸着剤25の温度TNAが上昇する。また、電気ヒータ27に供給された電力量EEHが増加し始める。
Next, an embodiment according to the present invention will be further described with reference to FIG.
Referring to FIG. 6, time ta1 indicates the timing when the ignition switch 42 is turned on. In the example shown in FIG. 6, the adsorbed moisture amount QAW of the NOx adsorbent 25 at the time ta1 is the initial amount QAW0. When the ignition switch 42 is turned on at time ta1, supply of electric power to the electric heater 27 is started. That is, the electric heater 27 is activated. As a result, the temperature TNA of the NOx adsorbent 25 increases. Further, the amount of power EEH supplied to the electric heater 27 starts to increase.

次いで、時間ta2においてNOx吸着剤25の温度TNAが水分離脱温度TDWに達すると、NOx吸着剤25から吸着されている水分が離脱し始める。その結果、NOx吸着剤25の吸着水分量QAWが減少し始める。この場合、NOx吸着剤25の温度TNAが水分離脱温度TDW以上NOx離脱温度TDN未満になるように電気ヒータ27に電力が供給される。その結果、NOxがNOx吸着剤25に吸着されたままNOx吸着剤25から水分が離脱される。   Next, when the temperature TNA of the NOx adsorbent 25 reaches the moisture desorption temperature TDW at time ta2, the moisture adsorbed from the NOx adsorbent 25 begins to desorb. As a result, the adsorbed moisture amount QAW of the NOx adsorbent 25 starts to decrease. In this case, electric power is supplied to the electric heater 27 so that the temperature TNA of the NOx adsorbent 25 is equal to or higher than the moisture release temperature TDW and lower than the NOx release temperature TDN. As a result, moisture is released from the NOx adsorbent 25 while NOx is adsorbed on the NOx adsorbent 25.

次いで、時間ta3においてNOx吸着剤25に供給された電力量EEHが要求電力量EEHRに達すると、電気ヒータ27への電力供給が停止される。この要求電力量EEHRはNOx吸着剤25の吸着水分量QAWを初期量QAW0からしきい量QAWTよりも少なくするのに必要な電力量である。したがって、NOx吸着剤25に供給された電力量EEHが要求電力量EEHRに達したときに、NOx吸着剤25の吸着水分量QAWがしきい量QAWTよりも少なくなったと判断することできる。図6に示される例では、時間ta3において、NOx吸着剤25の吸着水分量QAWがしきい量QAWTよりも少なくなっている。しきい量QAWTは図6に示される例ではほぼゼロに設定される。   Next, when the power amount EEH supplied to the NOx adsorbent 25 reaches the required power amount EEHR at time ta3, the power supply to the electric heater 27 is stopped. This required power amount EEHR is an amount of power required to reduce the amount of adsorbed moisture QAW of the NOx adsorbent 25 from the initial amount QAW0 to a threshold amount QAWT. Therefore, when the power amount EEH supplied to the NOx adsorbent 25 reaches the required power amount EEHR, it can be determined that the adsorbed water amount QAW of the NOx adsorbent 25 is smaller than the threshold amount QAWT. In the example shown in FIG. 6, the adsorbed moisture amount QAW of the NOx adsorbent 25 is smaller than the threshold amount QAWT at time ta3. The threshold value QAWT is set to almost zero in the example shown in FIG.

要求電力量EEHRはおおまかに言うと、NOx吸着剤25の温度TNAを水分離脱温度TDWまで上昇させるのに必要な電力量と、NOx吸着剤25から量(QAW0−QAWT)の水分を離脱させるのに必要な電力量との合計で表される。前者は、NOx吸着剤25の熱容量、より正確に言うと図1に示される例ではNOx吸着剤25、NOx浄化触媒26及びパティキュレートフィルタ24の熱容量に応じてあらかじめ求めることができる。一方、後者は、電気ヒータ27への電力供給が開始されるときにNOx吸着剤25に吸着されている水分量、すなわち上述の初期量QAW0に応じて定まる。初期吸着水分量QAW0は図7に示されるように、電気ヒータ27への電力供給が開始されるときの大気温度TAが低くなるにつれて多くなる。初期吸着水分量QAW0は大気温度TAの関数として図7に示されるマップの形であらかじめROM32内に記憶されている。なお、電気ヒータ27への電力供給が開始されるときの大気温度TAは温度センサ8T(図1)によって検出される。   Roughly speaking, the required power amount EEHR is the amount of power required to raise the temperature TNA of the NOx adsorbent 25 to the moisture desorption temperature TDW and the amount of water (QAW0-QAWT) from the NOx adsorbent 25 is desorbed. It is expressed as a total with the amount of power required. The former can be obtained in advance according to the heat capacity of the NOx adsorbent 25, more precisely, according to the heat capacities of the NOx adsorbent 25, the NOx purification catalyst 26, and the particulate filter 24 in the example shown in FIG. On the other hand, the latter is determined according to the amount of water adsorbed by the NOx adsorbent 25 when the power supply to the electric heater 27 is started, that is, the above-mentioned initial amount QAW0. As shown in FIG. 7, the initial adsorption moisture amount QAW0 increases as the atmospheric temperature TA when the supply of electric power to the electric heater 27 is started decreases. The initial adsorbed moisture amount QAW0 is stored in advance in the ROM 32 as a function of the atmospheric temperature TA in the form of a map shown in FIG. It should be noted that the atmospheric temperature TA when power supply to the electric heater 27 is started is detected by the temperature sensor 8T (FIG. 1).

図6において、Xは内燃機関の運転が開始されたタイミングを示しており、Yは内燃機関が完爆したタイミング、すなわち機関回転数Neがあらかじめ定められた設定回転数NeCを越えたタイミングを示している。図6に示される実施例では、内燃機関が完爆するタイミングYよりも前に電気ヒータ27への電力供給が開始される(ta1)。したがって、NOx吸着剤25の温度を速やかに高めることができる。また、図6に示される実施例では、電気ヒータ27への電力供給が停止された後に(ta3)、機関運転が開始され(X)、内燃機関が完爆している(Y)。したがって、内燃機関からの排気ガスがNOx吸着剤25に流入する前に、NOx吸着剤25が吸着可能なNOx量をあらかじめ増大させることができる。別の実施例では、電気ヒータ27への電力供給が開始され(ta1)、次いで機関運転が開始され(X)、次いで電気ヒータ27への電力供給が停止され(ta3)、次いで内燃機関が完爆する(Y)。更に別の実施例では、電気ヒータ27への電力供給が開始され(ta1)、次いで機関運転が開始され(X)、次いで内燃機関が完爆し(Y)、次いで電気ヒータ27への電力供給が停止される(ta3)。   In FIG. 6, X indicates the timing at which the operation of the internal combustion engine is started, and Y indicates the timing at which the internal combustion engine has completed a complete explosion, that is, the timing at which the engine speed Ne exceeds a predetermined set speed NeC. ing. In the embodiment shown in FIG. 6, the supply of electric power to the electric heater 27 is started before the timing Y when the internal combustion engine completes explosion (ta1). Therefore, the temperature of the NOx adsorbent 25 can be quickly increased. Further, in the embodiment shown in FIG. 6, after the supply of electric power to the electric heater 27 is stopped (ta3), the engine operation is started (X), and the internal combustion engine is completely exploded (Y). Therefore, before the exhaust gas from the internal combustion engine flows into the NOx adsorbent 25, the amount of NOx that can be adsorbed by the NOx adsorbent 25 can be increased in advance. In another embodiment, power supply to the electric heater 27 is started (ta1), engine operation is then started (X), power supply to the electric heater 27 is then stopped (ta3), and then the internal combustion engine is completed. Explode (Y). In yet another embodiment, power supply to the electric heater 27 is started (ta1), engine operation is then started (X), the internal combustion engine is completely detonated (Y), and then electric power is supplied to the electric heater 27. Is stopped (ta3).

図8は本発明による実施例の電気ヒータ制御を実行するルーチンを示している。このルーチンはイグニッションスイッチ42がオンにされたときに1回だけ行なわれる。
図8を参照すると、ステップ100では大気温度TAが読み込まれる。続くステップ101では初期吸着水分量QAW0が図7のマップから算出される。続くステップ102では要求電力量EEHRが算出される。続くステップ103では電気ヒータ27への電力供給が開始される。続くステップ104では電気ヒータ27に供給された電力量EEHが算出される。続くステップ105では電気ヒータ27に供給された電力量EEHが要求電力量EEHR以上か否かが判別される。EEH<EEHRのときにはステップ103に戻り、電気ヒータ27への電力供給が継続される。EEH≧EEHRのときにはステップ106に進み、電気ヒータ27への電力供給が停止される。
FIG. 8 shows a routine for executing the electric heater control of the embodiment according to the present invention. This routine is performed only once when the ignition switch 42 is turned on.
Referring to FIG. 8, in step 100, the atmospheric temperature TA is read. In the subsequent step 101, the initial adsorbed moisture amount QAW0 is calculated from the map of FIG. In the subsequent step 102, the required power amount EEHR is calculated. In the subsequent step 103, power supply to the electric heater 27 is started. In the subsequent step 104, the amount of power EEH supplied to the electric heater 27 is calculated. In the following step 105, it is determined whether or not the electric energy EEH supplied to the electric heater 27 is equal to or greater than the required electric energy EEHR. When EEH <EEHR, the process returns to step 103 and the power supply to the electric heater 27 is continued. When EEH ≧ EEHR, the routine proceeds to step 106 where the power supply to the electric heater 27 is stopped.

次に、図9を参照しながら本発明による別の実施例を説明する。
図9を参照すると、時間tb1において電気ヒータ27への電力供給が開始される。この場合、NOx吸着剤25の温度TNAが第1の目標温度TTNA1になるように電気ヒータ27への電力供給が制御される。したがって、NOx吸着剤25の温度TNAが次第に上昇する。次いで、時間tb2においてNOx吸着剤25の温度TNAが第1の目標温度TTNA1に達すると、NOx吸着剤25の温度TNAが第2の目標温度TTNA2になるように電気ヒータ27に供給される電力がステップ状に増大される。その結果、NOx吸着剤25の温度TNAは上昇する。
Next, another embodiment according to the present invention will be described with reference to FIG.
Referring to FIG. 9, power supply to the electric heater 27 is started at time tb1. In this case, the power supply to the electric heater 27 is controlled so that the temperature TNA of the NOx adsorbent 25 becomes the first target temperature TTNA1. Therefore, the temperature TNA of the NOx adsorbent 25 gradually increases. Next, when the temperature TNA of the NOx adsorbent 25 reaches the first target temperature TTNA1 at time tb2, the electric power supplied to the electric heater 27 is set so that the temperature TNA of the NOx adsorbent 25 becomes the second target temperature TTNA2. Increased in steps. As a result, the temperature TNA of the NOx adsorbent 25 increases.

次いで、時間tb3においてNOx吸着剤25の温度TNAが第2の目標温度TTNA2に達すると、NOx吸着剤25の温度TNAが第1の目標温度TTNA1から第2の目標温度TTNA2まで上昇するのに要した時間dt(=tb3−tb2)が算出される。この所要時間dtは電気ヒータ27に供給される電力をステップ状に上昇させたときのNOx吸着剤25の温度TNAの上昇速度を表している。   Next, when the temperature TNA of the NOx adsorbent 25 reaches the second target temperature TTNA2 at time tb3, it is necessary for the temperature TNA of the NOx adsorbent 25 to rise from the first target temperature TTNA1 to the second target temperature TTNA2. The calculated time dt (= tb3-tb2) is calculated. This required time dt represents the rate of increase in the temperature TNA of the NOx adsorbent 25 when the power supplied to the electric heater 27 is increased stepwise.

この所要時間dtはNOx吸着剤25に吸着されている水分の量が少なくなるにつれて短くなる。図9はNOx吸着剤25の吸着水分量QAWが少なく、したがって所要時間dtが短い場合を示している。これに対し、図10はNOx吸着剤25の吸着水分量QAWが多く、したがって所要時間dtが長い場合を示している。   This required time dt becomes shorter as the amount of moisture adsorbed on the NOx adsorbent 25 decreases. FIG. 9 shows a case where the amount of adsorbed moisture QAW of the NOx adsorbent 25 is small and therefore the required time dt is short. On the other hand, FIG. 10 shows a case where the amount of adsorbed moisture QAW of the NOx adsorbent 25 is large and therefore the required time dt is long.

そこで本発明による別の実施例では、所要時間dtがあらかじめ定められた設定時間dtSよりも短いか否かが判別され、所要時間dtが設定時間dtSよりも短いときにはNOx吸着剤25の吸着水分量QAWがしきい量QAWTよりも少なくなったと判断され、電気ヒータ27への電力供給が停止される。その結果、電気ヒータ27への過剰な電力供給が阻止される。   Therefore, in another embodiment according to the present invention, it is determined whether or not the required time dt is shorter than a predetermined set time dtS. When the required time dt is shorter than the set time dtS, the amount of adsorbed moisture of the NOx adsorbent 25 is determined. It is determined that the QAW has become smaller than the threshold amount QAWT, and the power supply to the electric heater 27 is stopped. As a result, excessive power supply to the electric heater 27 is prevented.

所要時間dtがあらかじめ定められた設定時間dtSよりも長いときには電気ヒータ27への電力供給が継続される。この場合、NOx吸着剤25の温度TNAが第1の目標温度TTNA1になるように電気ヒータ27への電力供給が制御される。次いで、NOx吸着剤25の温度TNAが第1の目標温度TTNA1まで低下すると、電気ヒータ27に供給される電力が再びステップ状に増大され、所要時間dtが再び算出される。次いで、所定時間dtが設定時間dtSよりも短いか否かが再び判別される。   When the required time dt is longer than a predetermined set time dtS, power supply to the electric heater 27 is continued. In this case, the power supply to the electric heater 27 is controlled so that the temperature TNA of the NOx adsorbent 25 becomes the first target temperature TTNA1. Next, when the temperature TNA of the NOx adsorbent 25 decreases to the first target temperature TTNA1, the electric power supplied to the electric heater 27 is increased stepwise again, and the required time dt is calculated again. Next, it is determined again whether or not the predetermined time dt is shorter than the set time dtS.

すなわち、本発明による別の実施例では、電気ヒータ27に供給される電力をステップ状に増大させたときのNOx吸着剤25の温度TNAの上昇速度が検出され、上昇速度があらかじめ定められた設定速度よりも高いときにNOx吸着剤25の吸着水分量QAWがしきい量QAWTよりも少なくなったと判断される。   That is, in another embodiment according to the present invention, the rising speed of the temperature TNA of the NOx adsorbent 25 when the electric power supplied to the electric heater 27 is increased stepwise is detected, and the rising speed is set to a predetermined value. When the speed is higher than the speed, it is determined that the amount of adsorbed water QAW of the NOx adsorbent 25 is smaller than the threshold amount QAWT.

なお、第1の目標温度TTNA1及び第2の目標温度TTNA2は水分離脱温度TDWとNOx離脱温度TDNとの間で設定される。本発明による別の実施例では、第1の目標温度TTNA1は110℃に設定され、第2の目標温度TTNA2は120℃に設定される。   The first target temperature TTNA1 and the second target temperature TTNA2 are set between the moisture desorption temperature TDW and the NOx desorption temperature TDN. In another embodiment according to the invention, the first target temperature TTNA1 is set to 110 ° C. and the second target temperature TTNA2 is set to 120 ° C.

図11は本発明による実施例の電気ヒータ制御を実行するルーチンを示している。このルーチンはイグニッションスイッチ42がオンにされたときに1回だけ行なわれる。
図11を参照すると、ステップ200では電気ヒータ27が作動される。続くステップ201ではNOx吸着剤25の目標温度TTNAが第1の目標温度TTNA1に設定される。その結果、NOx吸着剤25の温度TNAが第1の目標温度TTNA1になるように電気ヒータ27への電力供給が制御される。続くステップ202ではNOx吸着剤25の温度TNAが第1の目標温度TTNA1になったか否かが判別される。TNA≠TTNA1のときにはステップ201に戻る。TNA=TTNA1のときには次いでステップ203に進み、NOx吸着剤25の目標温度TTNAが第2の目標温度TTNA2に設定される。続くステップ204ではNOx吸着剤25の温度TNAが第2の目標温度TTNA2になったか否かが判別される。TNA≠TTNA2のときにはステップ203に戻る。TNA=TTNA2のときには次いでステップ205に進み、所要時間dtが算出される。続くステップ206では所要時間dtがあらかじめ定められた設定時間dtSよりも短いか否かが判別される。dt≧dtSのときにはステップ201に戻る。すなわち、電気ヒータ27への電力供給が継続される。dt<dtSのときにはステップ207に進み、電気ヒータ27への電力供給が停止される。
FIG. 11 shows a routine for executing the electric heater control of the embodiment according to the present invention. This routine is performed only once when the ignition switch 42 is turned on.
Referring to FIG. 11, in step 200, the electric heater 27 is activated. In the subsequent step 201, the target temperature TTNA of the NOx adsorbent 25 is set to the first target temperature TTNA1. As a result, the power supply to the electric heater 27 is controlled so that the temperature TNA of the NOx adsorbent 25 becomes the first target temperature TTNA1. In the following step 202, it is determined whether or not the temperature TNA of the NOx adsorbent 25 has reached the first target temperature TTNA1. When TNA ≠ TTNA1, the process returns to step 201. When TNA = TTNA1, the routine proceeds to step 203 where the target temperature TTNA of the NOx adsorbent 25 is set to the second target temperature TTNA2. In the next step 204, it is determined whether or not the temperature TNA of the NOx adsorbent 25 has reached the second target temperature TTNA2. When TNA ≠ TTNA2, the process returns to step 203. When TNA = TTNA2, the routine proceeds to step 205 where the required time dt is calculated. In the next step 206, it is determined whether or not the required time dt is shorter than a predetermined set time dtS. When dt ≧ dtS, the process returns to step 201. That is, power supply to the electric heater 27 is continued. When dt <dtS, the routine proceeds to step 207 where the power supply to the electric heater 27 is stopped.

図3を参照して説明したように、図1に示される実施例では、NOx吸着剤25とNOx浄化触媒26とが互いに共通の基材上に担持されており、NOx吸着剤25が基材に近い側に、NOx浄化触媒26が基材から遠い側に、それぞれ配置され、基材がパティキュレートフィルタ24から構成される。このようにすると、NOx吸着剤25の温度だけでなく、パティキュレートフィルタ24及びNOx浄化触媒26の温度も電気ヒータ27により速やかに上昇させることができる。また、ケーシング22の容積を低減することもできる。   As described with reference to FIG. 3, in the embodiment shown in FIG. 1, the NOx adsorbent 25 and the NOx purification catalyst 26 are supported on a common base material, and the NOx adsorbent 25 is the base material. The NOx purification catalyst 26 is disposed on the side far from the base material, and the base material is composed of the particulate filter 24. In this way, not only the temperature of the NOx adsorbent 25 but also the temperatures of the particulate filter 24 and the NOx purification catalyst 26 can be quickly raised by the electric heater 27. Further, the volume of the casing 22 can be reduced.

図12はNOx吸着剤25の別の実施例を示している。この実施例では、NOx吸着剤25とNOx浄化触媒26とが互いに別個の基材上に担持されており、NOx吸着剤25が排気流れ上流側に、NOx浄化触媒26が排気ガス流れ下流側に、それぞれ配置される。この場合、NOx吸着剤25を担持する基材はハニカム構造をなしており、薄肉の隔壁により互いに分離された複数個の排気ガス流通路を具備する。これら排気ガス流通路は上流端及び下流端が開放されている。各隔壁の両側表面上にNOx吸着剤25が担持される。この基材はパティキュレートフィルタ24と同様に構成される。一方、NOx浄化触媒26を担持する基材はパティキュレートフィルタ24から構成される。また、電気ヒータ27はNOx吸着剤25に取り付けられ、還元剤供給弁28はNOx吸着剤25とNOx浄化触媒26との間に配置される。   FIG. 12 shows another embodiment of the NOx adsorbent 25. In this embodiment, the NOx adsorbent 25 and the NOx purification catalyst 26 are supported on separate substrates, and the NOx adsorbent 25 is on the exhaust flow upstream side and the NOx purification catalyst 26 is on the exhaust gas flow downstream side. , Respectively. In this case, the base material carrying the NOx adsorbent 25 has a honeycomb structure and includes a plurality of exhaust gas flow passages separated from each other by thin partition walls. These exhaust gas flow passages are open at the upstream end and the downstream end. The NOx adsorbent 25 is supported on both side surfaces of each partition wall. This base material is configured in the same manner as the particulate filter 24. On the other hand, the base material carrying the NOx purification catalyst 26 is composed of the particulate filter 24. The electric heater 27 is attached to the NOx adsorbent 25, and the reducing agent supply valve 28 is disposed between the NOx adsorbent 25 and the NOx purification catalyst 26.

図12に示される例では、パティキュレートフィルタ24がNOx吸着剤25下流に配置されることになる。その結果、電気ヒータ27により昇温されたNOx吸着剤25を通過した排気ガスがパティキュレートフィルタ24内に流入するので、パティキュレートフィルタ24及びNOx浄化触媒26の温度が速やかに上昇される。   In the example shown in FIG. 12, the particulate filter 24 is arranged downstream of the NOx adsorbent 25. As a result, the exhaust gas that has passed through the NOx adsorbent 25 heated by the electric heater 27 flows into the particulate filter 24, so that the temperatures of the particulate filter 24 and the NOx purification catalyst 26 are quickly raised.

図1に示される実施例及び図12に示される実施例を包含するように表現すると、NOx吸着剤25から離脱したNOxがNOx浄化触媒26に流入するようにNOx吸着剤25及びNOx浄化触媒26が機関排気通路内に配置されているということになる。   When expressed so as to include the embodiment shown in FIG. 1 and the embodiment shown in FIG. 12, the NOx adsorbent 25 and the NOx purification catalyst 26 so that NOx released from the NOx adsorbent 25 flows into the NOx purification catalyst 26. Is disposed in the engine exhaust passage.

1 機関本体
21 排気管
24 パティキュレートフィルタ
25 NOx吸着剤
26 NOx浄化触媒
27 電気ヒータ
42 イグニッションスイッチ
1 Engine Body 21 Exhaust Pipe 24 Particulate Filter 25 NOx Adsorbent 26 NOx Purification Catalyst 27 Electric Heater 42 Ignition Switch

Claims (9)

排気ガス中のNOxを吸着するためのNOx吸着剤と、排気ガス中のNOxを浄化するためのNOx浄化触媒とを機関排気通路内に配置し、NOx吸着剤は、NOx吸着剤の温度を上昇させたときにNOx吸着剤の温度が水分離脱温度に達すると吸着している水分が離脱し始め、NOx吸着剤の温度を更に上昇させたときにNOx吸着剤の温度がNOx離脱温度に達すると吸着しているNOxが離脱し始める性質を有し、NOx吸着剤を昇温するための電気ヒータを備え、内燃機関の始動要求を表す信号が発せられたときには、内燃機関が完爆する前に電気ヒータへの電力供給を開始し、かつ、NOx吸着剤の温度が水分離脱温度以上NOx離脱温度未満になる電力量を電気ヒータに供給する、内燃機関の排気浄化装置であって、NOx吸着剤から離脱したNOxがNOx浄化触媒に流入するようにNOx吸着剤及びNOx浄化触媒が配置される、内燃機関の排気浄化装置A NOx adsorbent for adsorbing NOx in the exhaust gas and a NOx purification catalyst for purifying NOx in the exhaust gas are arranged in the engine exhaust passage, and the NOx adsorbent increases the temperature of the NOx adsorbent. When the NOx adsorbent temperature reaches the moisture desorption temperature, the adsorbed moisture begins to desorb, and when the NOx adsorbent temperature is further increased, the NOx adsorbent temperature reaches the NOx desorption temperature. The adsorbed NOx has the property of starting to desorb, and is equipped with an electric heater for raising the temperature of the NOx adsorbent. When a signal indicating a request for starting the internal combustion engine is issued, and starts power supply to the electric heater, and supplying the amount of power which the temperature is less than the water leaving temperature higher NOx leaving the temperature of the NOx adsorbent to the electric heater, and an exhaust purification device for an internal combustion engine, NOx adsorption Leaving the NOx is disposed NOx adsorbent and the NOx purification catalyst to flow into the NOx purifying catalyst from the exhaust purification system of an internal combustion engine. 電気ヒータへの電力供給中にNOx吸着剤の吸着水分量がしきい量よりも少なくなったか否かが判別され、NOx吸着剤の吸着水分量がしきい量よりも少なくなったと判断されたときに電気ヒータへの電力供給が停止される、請求項1に記載の内燃機関の排気浄化装置。   When it is determined whether or not the amount of adsorbed moisture of the NOx adsorbent is smaller than the threshold amount during power supply to the electric heater, and it is determined that the amount of adsorbed moisture of the NOx adsorbent is smaller than the threshold amount The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein power supply to the electric heater is stopped. NOx吸着剤の吸着水分量をしきい量よりも少なくするのに必要な電力量が求められ、電気ヒータに供給された電力量が該必要な電力量に達したときにNOx吸着剤の吸着水分量がしきい量よりも少なくなったと判断される、請求項2に記載の内燃機関の排気浄化装置。   When the amount of electric power required to reduce the amount of adsorbed moisture of the NOx adsorbent to be less than the threshold amount is obtained and the amount of electric power supplied to the electric heater reaches the required amount of electric power, the adsorbed moisture of the NOx adsorbent The exhaust emission control device for an internal combustion engine according to claim 2, wherein it is determined that the amount is less than a threshold amount. 前記必要な電力量が電気ヒータへの電力供給が開始されるときの大気温度に基づいて求められる、請求項3に記載の内燃機関の排気浄化装置。   The exhaust emission control device for an internal combustion engine according to claim 3, wherein the required amount of electric power is obtained based on an atmospheric temperature when electric power supply to the electric heater is started. 電気ヒータに供給される電力をステップ状に増大させたときのNOx吸着剤の温度の上昇速度が検出され、該上昇速度があらかじめ定められた設定速度よりも高いときにNOx吸着剤の吸着水分量がしきい量よりも少なくなったと判断される、請求項2に記載の内燃機関の排気浄化装置。   The NOx adsorbent temperature rise rate is detected when the electric power supplied to the electric heater is increased stepwise, and the adsorbed moisture amount of the NOx adsorbent when the rise rate is higher than a predetermined set speed. The exhaust emission control device for an internal combustion engine according to claim 2, wherein the exhaust gas purification device is determined to be less than a threshold amount. NOx吸着剤とNOx浄化触媒とが互いに共通の基材上に担持されており、NOx吸着剤が基材に近い側に、NOx浄化触媒が基材から遠い側に、それぞれ配置される、請求項に記載の内燃機関の排気浄化装置。 The NOx adsorbent and the NOx purification catalyst are supported on a common base material, and the NOx adsorbent is disposed on the side closer to the base material and the NOx purification catalyst is disposed on the side farther from the base material. 2. An exhaust emission control device for an internal combustion engine according to 1 . 前記基材が、排気ガス中の粒子状物質を捕集するためのパティキュレートフィルタの隔壁から構成される、請求項に記載の内燃機関の排気浄化装置。 The exhaust purification device for an internal combustion engine according to claim 6 , wherein the base material is constituted by a partition wall of a particulate filter for collecting particulate matter in the exhaust gas. NOx吸着剤とNOx浄化触媒とが互いに別個の基材上に担持されており、NOx吸着剤が排気流れ上流側に、NOx浄化触媒が排気ガス流れ下流側に、それぞれ配置される、請求項に記載の内燃機関の排気浄化装置。 A NOx adsorbent and the NOx purifying catalyst are supported on one another separate substrate, the NOx adsorbent exhaust stream upstream, NOx purifying catalyst in the exhaust gas stream downstream, are arranged respectively, according to claim 1 2. An exhaust gas purification apparatus for an internal combustion engine according to 1. 排気ガス中の粒子状物質を捕集するためのパティキュレートフィルタがNOx吸着剤下流に配置される、請求項に記載の内燃機関の排気浄化装置。 The exhaust emission control device for an internal combustion engine according to claim 8 , wherein a particulate filter for collecting particulate matter in the exhaust gas is disposed downstream of the NOx adsorbent.
JP2013219344A 2013-10-22 2013-10-22 Exhaust gas purification device for internal combustion engine Active JP6131821B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013219344A JP6131821B2 (en) 2013-10-22 2013-10-22 Exhaust gas purification device for internal combustion engine
CN201480057542.0A CN105658919B (en) 2013-10-22 2014-08-26 For the emission-control equipment of internal combustion engine
DE112014004835.6T DE112014004835B4 (en) 2013-10-22 2014-08-26 Exhaust gas purification device for an internal combustion engine
PCT/JP2014/072859 WO2015060014A1 (en) 2013-10-22 2014-08-26 Exhaust purification device for internal combustion engine
US15/030,724 US9840954B2 (en) 2013-10-22 2014-08-26 Exhaust purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219344A JP6131821B2 (en) 2013-10-22 2013-10-22 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015081541A JP2015081541A (en) 2015-04-27
JP6131821B2 true JP6131821B2 (en) 2017-05-24

Family

ID=51626117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219344A Active JP6131821B2 (en) 2013-10-22 2013-10-22 Exhaust gas purification device for internal combustion engine

Country Status (5)

Country Link
US (1) US9840954B2 (en)
JP (1) JP6131821B2 (en)
CN (1) CN105658919B (en)
DE (1) DE112014004835B4 (en)
WO (1) WO2015060014A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11255244B2 (en) 2016-03-02 2022-02-22 Watlow Electric Manufacturing Company Virtual sensing system
MX2018010593A (en) 2016-03-02 2019-08-12 Watlow Electric Mfg Thermal storage device for use in a fluid flow system.
KR102383213B1 (en) * 2016-09-13 2022-04-05 현대자동차 주식회사 Exhaust gas purification device of vehicle and control method thereof
DE102016224711B4 (en) * 2016-12-12 2019-08-01 Continental Automotive Gmbh Method for operating an electrically heatable catalyst
DE102017115408A1 (en) 2017-07-10 2019-01-10 Volkswagen Aktiengesellschaft Exhaust gas aftertreatment system and method for exhaust aftertreatment of an internal combustion engine
JP6729540B2 (en) * 2017-12-18 2020-07-22 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE102018000378A1 (en) * 2018-01-18 2019-07-18 Audi Ag Recycling of pollutants from combustion engines
JP2019157738A (en) * 2018-03-12 2019-09-19 いすゞ自動車株式会社 Exhaust purifying device for internal combustion engine
JP7028140B2 (en) * 2018-10-26 2022-03-02 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
CN109404100B (en) * 2018-11-09 2020-11-20 潍柴动力股份有限公司 Exhaust purification device, exhaust purification control method and control system thereof
WO2020159991A1 (en) * 2019-01-29 2020-08-06 Watlow Electric Manufacturing Company Virtual sensing system
CN110529221B (en) * 2019-09-05 2020-11-03 北京工业大学 Control method of cold-start adsorption and desorption device of plug-in engine

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827568B2 (en) * 1991-04-30 1998-11-25 トヨタ自動車株式会社 Hybrid vehicle drive system
JP2983429B2 (en) 1994-02-25 1999-11-29 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JPH10184345A (en) * 1996-12-24 1998-07-14 Nissan Motor Co Ltd Emission control device for engine
JP3899869B2 (en) * 2000-09-07 2007-03-28 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
EP1186764A3 (en) 2000-09-07 2003-11-12 Nissan Motor Co., Ltd. Engine exhaust gas purification device
JP2003343334A (en) * 2002-01-22 2003-12-03 Hitachi Ltd Water removing apparatus and method for exhaust emission control device for internal combustion engine
US6718857B2 (en) * 2002-01-28 2004-04-13 Darryl D. Kimmel Compliant workholder for machinery
JP2004176636A (en) 2002-11-27 2004-06-24 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2005180198A (en) 2003-12-16 2005-07-07 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP5373255B2 (en) * 2006-05-29 2013-12-18 株式会社キャタラー NOx reduction catalyst, NOx reduction catalyst system, and NOx reduction method
JP4535036B2 (en) * 2006-07-12 2010-09-01 トヨタ自動車株式会社 Power supply system for internal combustion engine
JP4710865B2 (en) * 2007-04-13 2011-06-29 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4483972B2 (en) 2008-04-14 2010-06-16 トヨタ自動車株式会社 Failure diagnosis device for exhaust purification system
JP2010184183A (en) * 2009-02-11 2010-08-26 Nippon Soken Inc Exhaust emission control system
US8443587B2 (en) * 2009-02-23 2013-05-21 GM Global Technology Operations LLC Method for exhaust aftertreatment in an internal combustion engine
JP2010270616A (en) 2009-05-19 2010-12-02 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2011038405A (en) * 2009-08-06 2011-02-24 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP5206730B2 (en) 2010-04-28 2013-06-12 株式会社デンソー Catalyst energization controller
JP2012107567A (en) 2010-11-17 2012-06-07 Toyota Motor Corp Apparatus for controlling electrically heated catalyst
DE102011081644A1 (en) * 2011-08-26 2013-02-28 Ford Global Technologies, Llc Emission-reduced exhaust aftertreatment

Also Published As

Publication number Publication date
DE112014004835B4 (en) 2023-12-28
US9840954B2 (en) 2017-12-12
DE112014004835T5 (en) 2016-07-28
JP2015081541A (en) 2015-04-27
US20160281565A1 (en) 2016-09-29
CN105658919A (en) 2016-06-08
CN105658919B (en) 2018-07-03
WO2015060014A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6131821B2 (en) Exhaust gas purification device for internal combustion engine
EP2331798B1 (en) Exhaust gas control apparatus for internal combustion engine
US20110314796A1 (en) Particulate matter detection sensor and control device of controlling the same
JP2008231966A (en) Exhaust emission control device for compression-ignition internal combustion engine
JP2009257226A (en) Exhaust emission control device for internal combustion engine
JP4821737B2 (en) Exhaust gas purification device for internal combustion engine
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
JP2009185659A (en) Exhaust emission control device for internal combustion engine
EP3091205B1 (en) Exhaust purification system for internal combustion engine
JP4792424B2 (en) Exhaust gas purification device for internal combustion engine
EP3039259B9 (en) Exhaust purification system for an internal combustion engine
CN104204434A (en) Exhaust purification device of internal combustion engine
JP2005030231A (en) Exhaust emission control device for internal combustion engine
JP2009264320A (en) Exhaust emission control device for internal combustion engine
JP6394616B2 (en) Exhaust gas purification device for internal combustion engine
JP2010242522A (en) Exhaust emission control device for internal combustion engine
JP2011231755A (en) Exhaust emission control device of internal combustion engine
CN113446090A (en) Control device for internal combustion engine
JP4341351B2 (en) How to recover the purification capacity of an exhaust purifier
WO2011114381A1 (en) Exhaust gas evacuation device for internal combustion engine
WO2007029339A1 (en) Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification
JP2018013067A (en) Exhaust emission control device for internal combustion engine
JP2016114334A (en) Control device for internal combustion engine
JP6686665B2 (en) Exhaust gas purification device for internal combustion engine
JP5652255B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170403

R151 Written notification of patent or utility model registration

Ref document number: 6131821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151