JP6128635B2 - 加工孔の位置測定装置 - Google Patents

加工孔の位置測定装置 Download PDF

Info

Publication number
JP6128635B2
JP6128635B2 JP2012240847A JP2012240847A JP6128635B2 JP 6128635 B2 JP6128635 B2 JP 6128635B2 JP 2012240847 A JP2012240847 A JP 2012240847A JP 2012240847 A JP2012240847 A JP 2012240847A JP 6128635 B2 JP6128635 B2 JP 6128635B2
Authority
JP
Japan
Prior art keywords
probe
hole
scanning mechanism
blade
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012240847A
Other languages
English (en)
Other versions
JP2014092363A (ja
Inventor
章浩 切東
章浩 切東
川浪 精一
精一 川浪
是 木村
是 木村
河野 雄一
雄一 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2012240847A priority Critical patent/JP6128635B2/ja
Publication of JP2014092363A publication Critical patent/JP2014092363A/ja
Application granted granted Critical
Publication of JP6128635B2 publication Critical patent/JP6128635B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被加工物に加工されている加工孔の位置を測定する加工孔の位置測定装置に関する。
ガスタービンや蒸気タービンのタービン翼面は、複雑な3次元形状に形成されており、更に、その内部にはタービン翼を冷却する冷媒を流通させる冷却孔が複数穿孔加工されて、形成されている。形成された冷却孔の位置を測定するため、UT(Ultrasonic Transducer;超音波トランスデューサ)探触子を用いた探傷法が使用されている。
特開平10−282069号公報 特開2006−308566号公報
UT探触子を用いた探傷法では、タービン翼面にUT探触子を倣わせる必要があるが、タービン翼面が複雑な3次元形状であるため、UT探触子を自動で走査することが難しく、手動で行われていた。このため、タービン翼の冷却孔の加工時に、リアルタイムで冷却孔の位置を測定することができなかった。
又、翼面の表面に近い冷却孔の位置を検出しようとする場合、1つの振動子を用いるUT探触子では不感帯が広いため、その不感帯と冷却孔の検出信号が重なると、検出が困難になったり、検出できたとしても、冷却孔の位置の測定精度が悪くなったりすることがあった。
本発明は上記課題に鑑みなされたもので、被加工物の表面への倣い性が高く、加工孔の位置の測定精度の向上を図ることができる加工孔の位置測定装置を提供することを目的とする。
上記課題を解決する第1の発明に係る加工孔の位置測定装置は、
被加工物の内部に加工された加工孔又は被加工物の内部に加工中の加工孔の位置を測定する加工孔の位置測定装置において、
超音波を送信する振動子と前記超音波を受信する他の振動子を有し、前記被加工物の表面に接触面を接触させる探触子と、
前記探触子を保持すると共に、前記被加工物の表面に倣って、前記探触子の角度を変更させて、前記探触子の前記接触面を接触させる倣い機構と、
前記倣い機構を保持すると共に、前記探触子を前記被加工物の表面に沿って移動させる走査機構と、
前記倣い機構及び前記走査機構から前記探触子の位置を取得し、前記探触子から前記超音波の反射信号を取得して、前記加工孔の位置を検出する測定制御手段とを備え、
前記倣い機構は、所定方向に前記探触子を回転させる第1の回転軸と前記所定方向と直交する方向に前記探触子を回転させる第2の回転軸の少なくとも2つの回転軸と、前記探触子の前記接触面と共に前記被加工物の表面に接触するローラと、前記探触子の前記接触面と前記ローラのに設けられ、前記走査機構に保持される支持部材とを有することを特徴とする。
上記課題を解決する第2の発明に係る加工孔の位置測定装置は、
上記第1の発明に記載の加工孔の位置測定装置において、
前記被加工物に対し、所定の表面側に前記探触子、前記倣い機構及び前記走査機構を配置すると共に、前記所定の表面側と反対の表面側に他の前記探触子、他の前記倣い機構及び他の前記走査機構を配置することを特徴とする。
上記課題を解決する第3の発明に係る加工孔の位置測定装置は、
上記第1、第2の発明に記載の加工孔の位置測定装置において、
前記探触子の前記接触面の大きさを、5mm角以下又は直径5mm以下とすることを特徴とする。
上記課題を解決する第4の発明に係る加工孔の位置測定装置は、
上記第1〜第3のいずれか1つの発明に記載の加工孔の位置測定装置において、
前記測定制御手段は、前記走査機構を用いて、特定の前記加工孔の設計経路範囲内を前記探触子で走査し、前記設計経路範囲内から前記超音波の反射信号が得られない場合には、前記加工孔の位置がずれていると判定することを特徴とする。
本発明によれば、探触子を保持する倣い機構、又は、弾性変形可能な探触子及び変形部材を用いるので、被加工物の表面への倣い性が高く、加工孔の位置の測定精度の向上を図ることができる。その結果、被加工物の表面での自動走査が可能となり、加工中においても、加工孔の位置をリアルタイムで測定することができる。
又、超音波を送信する振動子と反射した超音波を受信する他の振動子を有する探触子を用いるので、その不感帯を低減し、被加工物の表面に近い加工孔を検出することができる。
又、被加工物に対し、所定の表面側にだけでなく、所定の表面側と反対の表面側にも探触子を配置する場合には、被加工物の内部の加工孔に対して、所定の表面側からだけでなく、その反対側の表面側からも位置を検出するので、被加工物の表面に近い加工孔の検出性を更に向上させることができる。
本発明に係る加工孔の位置測定装置の実施形態の一例(実施例1)を示す概略構成図である。 図1に示した加工孔の位置測定装置で用いるUT探触子を説明する概略構成図である。 図2に示したUT探触子を保持すると共に、UT探触子の接触面をタービン翼面に倣わせる倣い機構を説明する斜視図である。 図3に示した倣い機構を保持すると共に、UT探触子を走査方向に移動させる走査機構を説明する概略構成図である。 図1に示した加工孔の位置測定装置におけるUT探触子の走査を説明する図である。 図5に示したUT探触子の走査を説明する拡大図である。 本発明に係る加工孔の位置測定装置の実施形態の他の一例(実施例2)として、UT探触子をタービン翼面の両面に配置した構成における測定を説明する図である。 本発明に係る加工孔の位置測定装置の実施形態の他の一例(実施例3)として、タービン翼面におけるUT探触子の走査を説明する図である。 本発明に係る加工孔の位置測定装置の実施形態の参考例(参考例1)を示す概略構成図である。 図9に示した加工孔の位置測定装置におけるフレキシブルアレイ探触子の走査を説明する図である。 図9に示した加工孔の位置測定装置におけるフレキシブルアレイ探触子をタービン翼面の両面に配置した構成を説明する図である。 本発明に係る加工孔の位置測定装置の実施形態の他の参考例(参考例2)を説明する図である。
以下、図1〜図12を参照して、本発明に係る加工孔の位置測定装置の実施形態を説明する。なお、以降の説明では、被加工物としてタービン翼を例示して説明を行うが、加工孔が内部に穿孔加工される被加工物であれば、他のものでもよい。又、加工済みの加工孔を測定対象としてもよいし、加工中の加工孔を測定対象としてもよい。
(実施例1)
図1は、本実施例の加工孔の位置測定装置を示す概略構成図であり、図2は、図1に示した加工孔の位置測定装置で用いるUT探触子を説明する概略構成図であり、図3は、図2に示したUT探触子を保持すると共に、UT探触子の接触面をタービン翼面に倣わせる倣い機構を説明する斜視図であり、図4は、図3に示した倣い機構を保持すると共に、UT探触子を走査方向に移動させる走査機構を説明する概略構成図である。まず、図1〜図4を参照して、本実施例の加工孔の位置測定装置の構成を説明する。
本実施例の加工孔の位置測定装置10は、2つの振動子を用いるUT探触子20と、UT探触子20を保持すると共に、UT探触子20の接触面をタービン翼60の翼面に倣わせる倣い機構30と、倣い機構30を保持すると共に、倣い機構30と共にUT探触子20を走査方向に移動させる走査機構40と、走査機構40を制御すると共に、UT探触子20の位置の位置データやUT探触子20を用いて測定した超音波データを取得する測定制御部50とを備えている。
UT探触子20は、図2に示すように、超音波を送信する振動子21と反射した超音波を受信する他の振動子22の2つを筐体23の内部に設けており、振動子21と振動子22の間には、送信用の振動子21からの渡り込み信号24の混入を防止する音響隔離板25が設けられている。UT探触子20の接触面26をタービン翼60の表面に接触させ、振動子21で超音波を発生させると、この超音波が、タービン翼60の内部に形成された冷却孔61で反射し、振動子22で受信されて、冷却孔61の位置を測定することになる。UT探触子20の接触面26は、例えば、5mm角程度以下又は直径5mm程度以下の大きさが望ましい。
2つの振動子21、22を有するUT探触子20を用いることにより、超音波の焦点位置を浅く調整することができ、これにより、表面近傍の不感帯を小さくして、表面近傍の冷却孔61からの反射信号を得ることができ、翼面表面に近い冷却孔61の検出が可能となる。又、タービン翼60は複雑な3次元曲面形状であるため、場所によって曲率が異なるが、UT探触子20の接触面26を5mm角程度以下又は直径5mm程度以下の大きさとすることにより、曲率の影響を受けずに、タービン翼60の翼面に接触面26を接触させることができ、複雑な3次元形状のタービン翼60の翼面に倣うように、UT探触子20を走査することができる。
上述したUT探触子20は、図3に示す倣い機構30に保持されている。倣い機構30は、図3に示すように、UT探触子20の筐体23の周囲を保持するホルダ31と、翼長方向Lの方向に回転可能な第1の回転軸32と、UT探触子20と共にホルダ31を第1の回転軸32により回転可能に支持する第1の回転支持部材33と、翼長方向Lと直交する翼幅方向Wの方向に回転可能な第2の回転軸34と、第1の回転支持部材33を第2の回転軸34により回転可能に支持する第2の回転支持部材35と、第2の回転軸34に同軸に設けられると共に、第2の回転支持部材35を挟んで、UT探触子20とは反対側に設けられ、UT探触子20の接触面26と共に、タービン翼60の翼面と接触する支点となるローラ36と、翼長方向Lの方向に回転可能な第3の回転軸37と、第2の回転支持部材35を第3の回転軸37により回転可能に支持する第3の回転支持部材38とを備えている。
回転軸32、34、37の近傍には、被支持部材側(例えば、第1の回転軸32では、UT探触子20及びホルダ31側、第2の回転軸34では、第1の回転支持部材33側、第3の回転軸37では、第2の回転支持部材35側)が初期位置から回転すると、回転方向とは逆方向に付勢力を付与するバネ等の弾性部材(図示省略)が各々設けられている。又、角度センサ(図示省略)を各々設けることにより、これらの角度センサにより、UT探触子20の角度を検出し、冷却孔位置測定に用いることもできる。
上述した倣い機構30は、所謂、複数の回転軸32、34、37を有するジンバル機構であり、これにより、タービン翼60の翼面の形状に対応して、UT探触子20の角度を変更させて、UT探触子20の接触面26をタービン翼60の翼面に接触させており、小型のUT探触子20の接触面26のタービン翼60の翼面への追従性(倣い性)を確保することができる。特に、倣い機構30は、翼長方向Lの方向に回転可能な2つの回転軸32、37を備えており、この2つの回転軸32、37により、タービン翼60の倒れ(翼長方向Lの傾き)に対応して、その追従性(倣い性)を向上させている。
又、第2の回転軸34に設けたローラ36が、タービン翼60の翼面に接触する1つの支点となり、UT探触子20の接触面26の側端部の少なくとも2ヶ所が、タービン翼60の翼面に接触する2つの支点となるので、少なくとも3ヶ所でタービン翼60の翼面に接触して、接触面26をタービン翼60の翼面に安定して接触させることができる。
又、第2の回転支持部材35及び第3の回転支持部材38は、UT探触子20の接触面26とローラ36の中央部分に、つまり、上述した3つの支点の中央部分に配置されており、これにより、接触面26をタービン翼60の翼面に安定して接触させることができる。
このような倣い機構30を用いることにより、不安定な小型のUT探触子20を、タービン翼60の翼面に安定して接触させて、走査させることができる。又、このような倣い機構30を用い、後述する走査機構40で走査することにより、タービン翼60の翼面を自動で走査することが可能となり、更には、冷却孔61の加工時において、リアルタイムで冷却孔61の位置測定も可能となる。
例えば、図4には、先端側から見たタービン翼60における各位置でのUT探触子20及び倣い機構30の状態を示している。図4中の翼幅方向Wの右側の位置においては、タービン翼60の翼面の傾きに追従して、UT探触子20と共に倣い機構30の第1の回転支持部材33が翼幅方向Wの右側に傾いている。一方、図4中の翼幅方向Wの左側の位置においては、タービン翼60の翼面の傾きに追従して、UT探触子20と共に倣い機構30の第1の回転支持部材33が翼幅方向Wの左側に傾いている。又、図4中の翼幅方向Wの中央付近においては、タービン翼60の翼面がZ方向に略垂直であるので、その状態に追従して、UT探触子20と共に倣い機構30の第1の回転支持部材33は、Z方向に略垂直となっている。
上述した倣い機構30は、図4に示す走査機構40に保持されている。走査機構40は、図4に示すように、倣い機構30の第3の回転支持部材38を固定する第1のガイドブロック41及び第1のガイドブロック41をZ方向に移動可能に支持する第1のガイドレール42からなる第1のリニアガイド43と、第1のガイドレール42を固定する第2のガイドブロック44及び第2のガイドブロック44をY方向に移動可能に支持する第2のガイドレール45からなる第2のリニアガイド46と、第2のガイドレール45を固定する第3のガイドブロック(図示省略)及び第3のガイドブロックをX方向に移動可能に支持する第3のガイドレール(図示省略)からなる第3のリニアガイド47とを備えている。
又、第1のリニアガイド43、第2のリニアガイド46、第3のリニアガイド47には、各々モータやエンコーダが設けられており、これらのエンコーダにより、UT探触子20の位置が検出できるようになっている。このような走査機構40を用いて、UT探触子20をタービン翼60の表面に沿って移動させている。
そして、測定制御部50(測定制御手段)は、走査機構40を制御して、タービン翼60の翼面表面に沿って、UT探触子20を走査させ、走査機構40からの位置信号(X、Y、Z方向エンコーダ信号)の位置データを取得すると共に、UT探触子20を用いて測定した超音波反射信号の超音波データを取得して、タービン翼60内部の冷却孔61の位置を測定することになる。
次に、本実施例の加工孔の位置測定装置10におけるUT探触子20の走査について、図5、図6を参照して説明を行う。ここで、図5は、本実施例におけるUT探触子20の走査を説明する図であり、図6は、図5に示したUT探触子の走査を説明する図であり、領域Aの拡大図である。
タービン翼60には、その内部に複数の冷却孔が形成されているが、中でも、翼長方向Lに沿って形成されている複数の冷却孔61は、それらの冷却効率を高めるためには、それらを形成した位置が重要である。そこで、本実施例では、図6に示すように、複数の冷却孔61を走査対象とし、まず、両端部の冷却孔61の間を翼幅方向W(走査機構40のY方向)の方向にUT探触子20を走査し、その後、翼長方向L(走査機構40のX方向)の方向にUT探触子20を移動し、その後、同じく、両端部の冷却孔61の間を翼幅方向Wの方向にUT探触子20を走査しており、このような走査手順を、タービン翼60の先端側(X方向の上方側)から基部60a側(X方向の下方側)まで繰り返し行っている。
このような操作手順を、測定制御部50を用いて行うことにより、複雑な3次元形状のタービン翼60の内部に形成された複数の冷却孔61の位置を自動的に測定することができる。更に、本実施例の加工孔の位置測定装置10は、冷却孔61の加工中に使用することも可能であり、例えば、測定制御部50で取得した冷却孔61の位置を、冷却孔61を加工する加工制御装置にフィードバックし、目標位置と位置ズレを校正することにより、リアルタイムでの冷却孔61の位置の測定及び加工が可能となる。
(実施例2)
本実施例の加工孔の位置測定装置は、実施例1において説明した加工孔の位置測定装置10と基本的に同じ構成を有しているが、実施例1では、UT探触子20をタービン翼60の一方の翼面側でのみ走査可能な構成であるのに対して、本実施例では、タービン翼60の他方(反対側)の翼面側でも走査可能な構成としている。
具体的には、UT探触子20、倣い機構30及び走査機構40を、タービン翼60の一方の翼面側だけでなく、その反対側の他方の翼面側にも配置している。そして、両翼面に対するUT探触子20、倣い機構30及び走査機構40を、測定制御部50が全て制御して、測定データを取得している。なお、測定制御部50は1つでもよいが、翼面毎に個別に設けてもよい。
図7を参照して本実施例の説明を行う。ここで、図7は、本実施例におけるUT探触子20の測定を説明する図である。本発明では、2つの振動子21、22を有するUT探触子20を用いているので、不感帯が小さく、翼面の表面近傍の冷却孔61も、ある程度の近さまでは測定可能である。しかしながら、UT探触子20でも不感帯が全く無くなる訳ではないので、翼面の表面の極近傍の冷却孔61は、表面に近すぎるため、測定が困難なことがある。例えば、図7において、冷却孔61P1を測定する位置にあるUT探触子20aP1、冷却孔61P2を測定する位置にあるUT探触子20aP2は、冷却孔61P1、冷却孔61P2の翼面表面からの距離がある程度長いため、それらの位置の測定は可能であるが、冷却孔61P3を測定する位置にあるUT探触子20aP3は、冷却孔61P3の翼面表面からの距離が短いため、その測定が困難であった。
そこで、本実施例では、一方の翼面側だけでなく、その反対側の翼面側にも、同様のUT探触子20bを配置している。この場合、例えば、図7において、冷却孔61P1を測定する位置にあるUT探触子20bP1、冷却孔61P2を測定する位置にあるUT探触子20bP2は、冷却孔61P1、冷却孔61P2の翼面表面からの距離がある程度長いため、それらの位置の測定は可能であり、冷却孔61P3を測定する位置にあるUT探触子20bP3も、冷却孔61P3の翼面表面からの距離がある程度長いため、その測定が可能となる。つまり、両翼面側から冷却孔61の位置を測定することにより、翼面の表面の極近傍の冷却孔61を検出可能となり、測定可能エリアを増大することができる。
(実施例3)
本実施例の加工孔の位置測定装置は、実施例1において説明した加工孔の位置測定装置10と同じ構成であるが、実施例1では、複数の冷却孔61を対象として、UT探触子20を走査するのに対して、本実施例では、特定の1つの冷却孔61を対象とし、当該冷却孔61の設計経路範囲内を走査するようにしている。
図8を参照して本実施例の説明を行う。ここで、図8は、本実施例におけるUT探触子の走査を説明する図であり、図5の領域Aの拡大図に該当する。実施例1においては、複数の冷却孔61を走査対象としたが、本実施例では、特定の1つの冷却孔61に着目し、着目した冷却孔61の設計経路の範囲内でUT探触子20を走査させる。例えば、走査範囲Sを10mm程度以下の範囲に限定すれば、走査の簡略化、測定時間の短縮が可能となり、特に、加工中にリアルタイムで測定し、フィードバック制御を行う場合に、特に有効である。又、走査範囲内から反射信号(反射エコー)が得られない場合には、加工した冷却孔61の位置がずれていることを簡便に判定することができる。
参考例1
図9は、本参考例の加工孔の位置測定装置を示す概略構成図であり、図10は、本参考例におけるフレキシブルアレイ探触子の走査を説明する図である。まず、図9を参照して、本参考例の加工孔の位置測定装置の構成を説明する。
参考例の加工孔の位置測定装置70は、弾性変形可能な材料から形成され、多数の振動子が長手方向に配置されたフレキシブルアレイ探触子(以降、FA探触子と呼ぶ。)71と、FA探触子71を表面に保持すると共に、弾性変形可能な材料(ゴム等)から形成された変形部材72と、変形部材72に取り付けられ、FA探触子71と共に変形部材72をタービン翼60の翼面に押し付ける押付機構73と、押付機構73を保持すると共に、押付機構73と共にFA探触子71及び変形部材72を走査方向に移動させる走査機構74と、走査機構47を制御すると共に、FA探触子71の位置データやFA探触子71を用いて測定した超音波データを取得する測定制御部75とを備えている。
FA探触子71は、超音波を送信する振動子と反射した超音波を受信する他の振動子を多数有しており、例えば、振動子となる圧電素子を樹脂等からなる弾性変形可能なフレキシブル基板の長手方向に多数配置して、形成している。このFA探触子71において、冷却孔61の位置の検出は、冷却孔61からの反射信号を得た振動子の位置から算出することができる。
そして、押付機構73を用いて、FA探触子71及び変形部材72をタービン翼60の翼面に押し付けることにより、FA探触子71及び変形部材72がタービン翼60の翼面の曲面へ倣って共に変形し、FA探触子71の接触面がタービン翼60の翼面の曲面へ倣うように接触することになる。
又、走査機構74は、実施例1で説明した走査機構40と略同等の構成、機能を有するものであるが、少なくとも、X方向及びY方向にFA探触子71を移動し、X方向及びY方向の位置信号を取得可能であればよい。特に、本参考例の場合、1つのFA探触子71で複数の冷却孔61を測定可能であるので、1方向のみの走査、例えば、図10に示すように、翼長方向L(X方向)のみの走査を行うようにしてもよい。この場合、FA探触子71の走査は、1方向のみであるので、走査が簡便になる。
従って、測定制御部75は、走査機構74を制御して、タービン翼60の翼面表面に沿って、FA探触子71を走査させ、走査機構74からの位置信号(X、Y方向エンコーダ信号)の位置データを取得すると共に、FA探触子71を用いて測定した超音波反射信号の超音波データ及び振動子の位置データを取得して、タービン翼60内部の冷却孔61の位置を測定することになる。
参考例の加工孔の位置測定装置70を用いることにより、複雑な3次元形状のタービン翼60の内部に形成された複数の冷却孔61の位置を自動的に測定することができる。更に、本参考例の加工孔の位置測定装置70も、冷却孔61の加工中に使用することが可能であり、例えば、測定制御部75で取得した冷却孔61の位置を、冷却孔61を加工する加工制御装置にフィードバックし、目標位置と位置ズレを校正することにより、リアルタイムでの冷却孔61の位置の測定及び加工が可能となる。加えて、1つのFA探触子71で複数の冷却孔61を測定可能であるので、1方向のみの走査でもよく、走査が簡便になり、測定時間の短縮を図ることもできる。
なお、図9、図10では、FA探触子71をタービン翼60の一方の翼面側でのみ走査可能な構成であるが、図11に示すように、タービン翼60の他方の翼面側でも走査可能としてもよい。具体的には、FA探触子71、変形部材72、押付機構73及び走査機構74を、タービン翼60の一方の翼面側だけでなく、その反対側の他方の翼面側にも配置する。そして、両翼面に対するFA探触子71、変形部材72、押付機構73及び走査機構74を、測定制御部75が全て制御して、測定データを取得している。なお、測定制御部75は1つでもよいが、翼面毎に個別に設けてもよい。
このように、タービン翼60の両翼面側から冷却孔61からの反射信号を検出することにより、不感帯を低減した測定が可能となる。又、FA探触子71の一方の翼面側を送信側とし、他方の翼面側を受信側とし、超音波の反射波ではなく、透過波を検出することにより、冷却孔61の位置を特定することもできる。
参考例2
参考例の加工孔の位置測定装置は、参考例1において説明した加工孔の位置測定装置70と基本的に同じ構成を有しているが、参考例1では、多数の振動子を長手方向に配置したフレキシブルアレイ探触子71を用いているのに対して、本参考例では、図12に示すように、多数の振動子を格子状に配列したフレキシブルマトリクスアレイ探触子(以降、FMA探触子と呼ぶ。)81を用いている。
具体的には、本参考例の加工孔の位置測定装置は、弾性変形可能な材料から形成され、多数の振動子が格子状に配列されたFMA探触子81と、上述した変形部材72、押付機構73、走査機構74及び測定制御部75とを備えている。
参考例の加工孔の位置測定装置において、FMA探触子81は、超音波を送信する振動子と反射した超音波を受信する他の振動子を多数有しており、例えば、振動子となる圧電素子を樹脂等からなるフレキシブル基板に格子状に多数配列して、形成している。このFMA探触子81においても、冷却孔61の位置の検出は、冷却孔61からの反射信号を得た振動子の位置から算出することができる。なお、このFMA探触子81が上述した変形部材72の表面に保持されため、変形部材72は、FMA探触子81に対応する大きさとなっている。
そして、押付機構73を用いて、FMA探触子81及び変形部材72をタービン翼60の翼面に押し付けることにより、FMA探触子81及び変形部材72がタービン翼60の翼面の曲面へ倣って共に変形し、FMA探触子81の接触面がタービン翼60の翼面の曲面へ倣うように接触することになる。
又、走査機構74は、実施例1で説明した走査機構40と略同等の構成、機能を有するものであるが、少なくとも、X方向及びY方向にFMA探触子81を移動し、X方向及びY方向の位置信号を取得可能であればよい。特に、本参考例の場合、1つのFMA探触子81で複数の冷却孔61を広い範囲において測定可能であるので、例えば、図12に示すように、走査を行わずに測定を行うようにしてもよい。
従って、測定制御部75は、走査機構74からの位置信号(X、Y方向エンコーダ信号)の位置データを取得すると共に、FMA探触子81を用いて測定した超音波反射信号の超音波データ及び振動子の位置データを取得して、タービン翼60内部の冷却孔61の位置を測定することになる。
参考例の加工孔の位置測定装置を用いることにより、複雑な3次元形状のタービン翼60の内部に形成された複数の冷却孔61の位置を自動的に測定することができる。更に、本参考例の加工孔の位置測定装置も、冷却孔61の加工中に使用することが可能であり、例えば、測定制御部75で取得した冷却孔61の位置を、冷却孔61を加工する加工制御装置にフィードバックし、目標位置と位置ズレを校正することにより、リアルタイムでの冷却孔61の位置の測定及び加工が可能となる。加えて、1つのFMA探触子81で複数の冷却孔61を広い範囲で測定可能であるので、測定時間の短縮を図ることもできる。
なお、図12では、FMA探触子81をタービン翼60の一方の翼面側に配置しているが、タービン翼60の他方(反対側)の翼面側にも配置した構成としてもよい。具体的には、FMA探触子81、変形部材72、押付機構73及び走査機構74を、タービン翼60の一方の翼面側だけでなく、その反対側の他方の翼面側にも配置する。そして、両翼面に対するFMA探触子81、変形部材72、押付機構73及び走査機構74を、測定制御部75が全て制御して、測定データを取得している。なお、測定制御部75は1つでもよいが、翼面毎に個別に設けてもよい。
このように、タービン翼60の両翼面側から冷却孔61からの反射信号を検出することにより、不感帯を低減した測定が可能となる。又、FMA探触子81の一方の翼面側を送信側とし、他方の翼面側を受信側とし、超音波の反射波ではなく、透過波を検出することにより、冷却孔61の位置を特定することもできる。
本発明は、被加工物に加工された加工孔の位置の測定に適用するものであるが、特に、複雑な3次元形状を有するタービン翼に加工された冷却孔の位置測定に好適である。
10、70 加工孔の位置測定装置
20 UT探触子
21、22 振動子
26 接触面
30 倣い機構
32 第1の回転軸
33 第1の回転支持部材
34 第2の回転軸
35 第2の回転支持部材
36 ローラ
37 第3の回転軸
38 第3の回転支持部材
40、74 走査機構
43 第1のリニアガイド
46 第2のリニアガイド
47 第3のリニアガイド
50、75 測定制御部(測定制御手段)
60 タービン翼
61 冷却孔
71 フレキシブルアレイ探触子
72 変形部材
73 押付機構
81 フレキシブルマトリクスアレイ探触子

Claims (4)

  1. 被加工物の内部に加工された加工孔又は被加工物の内部に加工中の加工孔の位置を測定する加工孔の位置測定装置において、
    超音波を送信する振動子と前記超音波を受信する他の振動子を有し、前記被加工物の表面に接触面を接触させる探触子と、
    前記探触子を保持すると共に、前記被加工物の表面に倣って、前記探触子の角度を変更させて、前記探触子の前記接触面を接触させる倣い機構と、
    前記倣い機構を保持すると共に、前記探触子を前記被加工物の表面に沿って移動させる走査機構と、
    前記倣い機構及び前記走査機構から前記探触子の位置を取得し、前記探触子から前記超音波の反射信号を取得して、前記加工孔の位置を検出する測定制御手段とを備え、
    前記倣い機構は、所定方向に前記探触子を回転させる第1の回転軸と前記所定方向と直交する方向に前記探触子を回転させる第2の回転軸の少なくとも2つの回転軸と、前記探触子の前記接触面と共に前記被加工物の表面に接触するローラと、前記探触子の前記接触面と前記ローラのに設けられ、前記走査機構に保持される支持部材とを有することを特徴とする加工孔の位置測定装置。
  2. 請求項1に記載の加工孔の位置測定装置において、
    前記被加工物に対し、所定の表面側に前記探触子、前記倣い機構及び前記走査機構を配置すると共に、前記所定の表面側と反対の表面側に他の前記探触子、他の前記倣い機構及び他の前記走査機構を配置することを特徴とする加工孔の位置測定装置。
  3. 請求項1又は請求項2に記載の加工孔の位置測定装置において、
    前記探触子の前記接触面の大きさを、5mm角以下又は直径5mm以下とすることを特徴とする加工孔の位置測定装置。
  4. 請求項1から請求項3のいずれか1つに記載の加工孔の位置測定装置において、
    前記測定制御手段は、前記走査機構を用いて、特定の前記加工孔の設計経路範囲内を前記探触子で走査し、前記設計経路範囲内から前記超音波の反射信号が得られない場合には、前記加工孔の位置がずれていると判定することを特徴とする加工孔の位置測定装置。
JP2012240847A 2012-10-31 2012-10-31 加工孔の位置測定装置 Expired - Fee Related JP6128635B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012240847A JP6128635B2 (ja) 2012-10-31 2012-10-31 加工孔の位置測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240847A JP6128635B2 (ja) 2012-10-31 2012-10-31 加工孔の位置測定装置

Publications (2)

Publication Number Publication Date
JP2014092363A JP2014092363A (ja) 2014-05-19
JP6128635B2 true JP6128635B2 (ja) 2017-05-17

Family

ID=50936543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240847A Expired - Fee Related JP6128635B2 (ja) 2012-10-31 2012-10-31 加工孔の位置測定装置

Country Status (1)

Country Link
JP (1) JP6128635B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6261699B1 (ja) * 2016-10-07 2018-01-17 株式会社Ihi検査計測 超音波エンコーダとこれを用いた位置検出方法
JP6655589B2 (ja) * 2017-11-29 2020-02-26 三菱重工業株式会社 計測システム、加工システム、計測方法及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273387A (ja) * 1993-03-18 1994-09-30 Daido Steel Co Ltd 探傷装置
JP2008215936A (ja) * 2007-03-01 2008-09-18 Tokyo Electric Power Co Inc:The ガスタービンの翼の超音波探傷方法
JP2012002781A (ja) * 2010-06-21 2012-01-05 Mitsubishi Heavy Ind Ltd 超音波探傷装置及び超音波探傷方法

Also Published As

Publication number Publication date
JP2014092363A (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5155692B2 (ja) 超音波検査装置
JP5931551B2 (ja) 超音波探傷装置、超音波センサ支持装置、および超音波探傷方法
EP3315904B1 (en) Thickness detection experiment platform
JP6261939B2 (ja) 可搬式の超音波探傷装置及び超音波探傷方法
EP2594931B1 (en) Ultrasonic flaw detecting apparatus and method for test pieces with complex shapes
JP2008051645A (ja) 超音波探傷装置
US4554834A (en) Acoustic sensor and method of using same for determining the position of a tool relative to a workpiece
JP6128635B2 (ja) 加工孔の位置測定装置
KR101480787B1 (ko) 각도 조절 기능을 구비하는 탐상장치
JP4412180B2 (ja) レーザー超音波探傷法、及びレーザー超音波探傷装置
JP5748417B2 (ja) 超音波探傷システム
JP6112353B2 (ja) 荷重計測方法
JP2010145340A (ja) 大型部品の寸法測定装置および寸法測定方法
JP2008122349A (ja) 測定装置
EP1798550B1 (en) Device for inspecting the interior of a material
JPH07128314A (ja) ソケット溶接継手の超音波探傷方法
JP7391537B2 (ja) 超音波検査装置
JP2005300363A (ja) 超音波探傷システムおよび超音波探傷試験方法
JP7133330B2 (ja) 外径測定器及びその温度特性を調整する方法、並びに研削装置
JP5267158B2 (ja) 超音波測定装置
JP5344290B2 (ja) 研磨装置
KR102212905B1 (ko) 일정 검사 압력을 유지하는 풍력 블레이드 검사 플랫폼 장치 및 검사 장치
JP6261699B1 (ja) 超音波エンコーダとこれを用いた位置検出方法
JPH03272462A (ja) 超音波探触子の駆動装置
JP2019219344A (ja) 管の溶接部の超音波探傷方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150122

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170407

R150 Certificate of patent or registration of utility model

Ref document number: 6128635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees