JP6120685B2 - Method for manufacturing power semiconductor device - Google Patents

Method for manufacturing power semiconductor device Download PDF

Info

Publication number
JP6120685B2
JP6120685B2 JP2013121438A JP2013121438A JP6120685B2 JP 6120685 B2 JP6120685 B2 JP 6120685B2 JP 2013121438 A JP2013121438 A JP 2013121438A JP 2013121438 A JP2013121438 A JP 2013121438A JP 6120685 B2 JP6120685 B2 JP 6120685B2
Authority
JP
Japan
Prior art keywords
power semiconductor
pressure
semiconductor element
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013121438A
Other languages
Japanese (ja)
Other versions
JP2014239170A (en
Inventor
翔 熊田
翔 熊田
林 建一
建一 林
裕章 巽
裕章 巽
宏貴 園田
宏貴 園田
祐介 石山
祐介 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013121438A priority Critical patent/JP6120685B2/en
Publication of JP2014239170A publication Critical patent/JP2014239170A/en
Application granted granted Critical
Publication of JP6120685B2 publication Critical patent/JP6120685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L2224/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83048Thermal treatments, e.g. annealing, controlled pre-heating or pre-cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Description

本発明は、電力用半導体装置の製造方に関する。 The present invention relates to a manufacturing how the power semiconductor device.

半導体装置の中でも電力用半導体装置は、産業用機器から家電・情報端末まで幅広い機器の主電力(パワー)の制御に用いられ、とくに輸送機器等においては高い信頼性が求められている。近年、とくに大電流を流すことができ、高温動作も可能なワイドバンドギャップ半導体材料である炭化珪素(SiC)がシリコン(Si)に代わる半導体材料として開発が進められている。   Among semiconductor devices, a power semiconductor device is used for controlling main power of a wide range of equipment from industrial equipment to home appliances and information terminals, and high reliability is particularly required for transportation equipment and the like. In recent years, silicon carbide (SiC), which is a wide band gap semiconductor material capable of flowing a particularly large current and capable of high-temperature operation, has been developed as a semiconductor material replacing silicon (Si).

上記のような高温動作での接合信頼性を高めるため、近年、焼結金属体を形成する接合材を用いて電力用半導体素子を回路基板等の配線部材に接合する方法が提案されている。この接合材には、ナノオーダーから数マイクロオーダー程度の非常に微小なフィラー(金属粒子)が含まれている。一般的に、金属粒子は粒子径が所定のサイズ以下に小さくなると、バルク金属に比べて非常に活性な表面状態を有するようになり、互いが焼結して粒成長し表面エネルギーを減らす方向へと容易に反応が進行することになる。したがって、バルクの融点の高い金属の粒子を用いた接合材を用いることで、バルク状態の融点よりもはるかに低温での接合が可能であるとともに、接合達成後の接合層はバルクの融点まで再溶融することはない。   In order to improve the bonding reliability in the high-temperature operation as described above, a method for bonding a power semiconductor element to a wiring member such as a circuit board using a bonding material for forming a sintered metal body has been recently proposed. This bonding material contains very minute fillers (metal particles) of nano order to several micro orders. In general, when the particle size of the metal particles becomes smaller than a predetermined size, the metal particles have a more active surface state than the bulk metal, and each particle sinters to grow grains and reduce the surface energy. The reaction proceeds easily. Therefore, by using a bonding material using metal particles having a high bulk melting point, it is possible to bond at a temperature much lower than the melting point in the bulk state, and the bonding layer after the bonding is achieved can be reused up to the melting point of the bulk. It does not melt.

一方、接合材中の金属粒子は、焼結を抑制するために表面が有機保護膜で覆われており、加熱によって保護膜を分解・脱ガスさせることで、金属粒子同士が接触して焼結が進行し、接合が可能となる。そのため、焼結性金属粒子を含有する接合材を用いて接合する際には、加熱と加圧が重要となり、とくに接合面全域にわたって十分な圧力を加えることが重要となる。例えば、加圧力が不足する領域では、金属粒子同士の接触不良により焼結が進行せず、その領域での金属部材の密度が疎となり、信頼性が低下する。   On the other hand, the metal particles in the bonding material are covered with an organic protective film to suppress sintering, and the protective film is decomposed and degassed by heating, so that the metal particles come into contact with each other and are sintered. Progresses and bonding becomes possible. Therefore, when joining using the joining material containing a sinterable metal particle, heating and pressurization are important, and in particular, it is important to apply sufficient pressure over the entire joining surface. For example, in a region where the applied pressure is insufficient, sintering does not proceed due to poor contact between the metal particles, and the density of the metal member in that region becomes sparse and the reliability is lowered.

一方、本願と目的は違うが、半導体チップ(本願の電力用半導体素子に対応)と半導体チップ搭載装置(加圧接合機)との間にシートを介在させる構成(例えば、特許文献1参照。)が開示されている。そこで、この構成の応用として、電力用半導体素子と加圧接合機との間に可撓性のシート(圧力均一化シート)を介在させ、電力用半導体素子等の回路部材や接合材の厚みばらつきを吸収し、接合面内での加圧力を均一化することが考えられる。   On the other hand, although the purpose is different from the present application, a configuration in which a sheet is interposed between a semiconductor chip (corresponding to the power semiconductor element of the present application) and a semiconductor chip mounting device (pressure bonding machine) (see, for example, Patent Document 1). Is disclosed. Therefore, as an application of this configuration, a flexible sheet (pressure equalization sheet) is interposed between the power semiconductor element and the pressure bonding machine, and the thickness variation of the circuit members and bonding materials such as the power semiconductor element It is conceivable to make the applied pressure uniform within the bonding surface.

特開2008−193023号公報(段落0052〜0054、図5、図6)JP 2008-193023 A (paragraphs 0052 to 0054, FIGS. 5 and 6)

しかしながら、単に圧力均一化シートを介在させるだけでは、加圧中に圧力均一化シートが垂れ下がって接合部分の周囲を覆ってしまい、分解・脱ガスした有機保護膜の成分がその空間内に滞留することが懸念される。この場合、空間近傍の回路部材等を汚染して、回路部材等の信頼性が低下する恐れがあった。とくに、多数の電力用半導体素子を同時に接合する場合、接合材自体の量も増えるため、有機保護膜の成分量も増大し、回路部材等の汚染が、より顕著化する可能性があった。   However, simply by interposing the pressure equalizing sheet, the pressure equalizing sheet hangs down during pressurization and covers the periphery of the joining portion, and the components of the organic protective film that has been decomposed and degassed stay in the space. There is concern. In this case, there is a possibility that the reliability of the circuit member or the like may be deteriorated by contaminating the circuit member or the like in the vicinity of the space. In particular, when a large number of power semiconductor elements are bonded at the same time, the amount of the bonding material itself increases, so the component amount of the organic protective film also increases, and the contamination of circuit members and the like may become more prominent.

本発明は、上記のような課題を解決するためになされたもので、耐熱性に優れるとともに、信頼性の高い電力用半導体素子を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a power semiconductor element that has excellent heat resistance and high reliability.

本発明の電力用半導体装置の製造方法は、焼結性金属粒子を含有する接合材と加圧装置を用いて、配線部材と電力用半導体素子との接合を行う電力用半導体装置の製造方法であって、鉛直方向において、前記電力用半導体素子が前記配線部材の上方に位置するように、前記接合材を介して前記電力用半導体素子を前記配線部材に重ね、前記加圧装置の一対の加圧板の間の所定位置に設置する設置工程と、前記一対の加圧板により加熱、加圧して、前記接合材の焼結性金属粒子を焼結させて前記電力用半導体素子を前記配線部材に接合する接合工程と、を含み、前記一対の加圧板のうち、上側の加圧板と前記電力用半導体素子の主面との間には、樹脂シートを介在させており、前記上側の加圧板は、その加圧面が前記主面を内包するように配置され、かつ、前記接合工程中に変形した前記樹脂シートの端部を前記加圧面よりも上方にかわすための空間が形成されていることを特徴とする。   The method for manufacturing a power semiconductor device according to the present invention is a method for manufacturing a power semiconductor device in which a wiring member and a power semiconductor element are bonded using a bonding material containing a sinterable metal particle and a pressure device. The power semiconductor element is overlaid on the wiring member via the bonding material so that the power semiconductor element is positioned above the wiring member in the vertical direction, and a pair of pressure devices An installation step of installing at a predetermined position between the pressure plates and heating and pressurization by the pair of pressure plates to sinter the sinterable metal particles of the bonding material to bond the power semiconductor element to the wiring member A bonding step, and a resin sheet is interposed between the upper pressure plate of the pair of pressure plates and the main surface of the power semiconductor element, and the upper pressure plate Arranged so that the pressing surface contains the main surface It is, and, and a space to fend off an end portion of the resin sheet which is deformed during the joining step above the said pressing surface is formed.

本発明の電力用半導体装置の製造方法によれば、均一に加圧できるとともに金属焼結体を形成する接合材に含まれる有機保護膜の分解・脱ガス成分による回路部材等の汚染を防止できるので、耐熱性に優れるとともに、信頼性の高い電力用半導体素子を得ることができる。   According to the method for manufacturing a power semiconductor device of the present invention, it is possible to uniformly pressurize and prevent contamination of circuit members and the like due to decomposition and degassing components of the organic protective film contained in the bonding material forming the metal sintered body. Therefore, it is possible to obtain a power semiconductor element having excellent heat resistance and high reliability.

本発明の実施の形態1にかかる電力用半導体装置の製造方法を説明するための製造工程中の各段階における回路部材および加圧板部分の断面図である。It is sectional drawing of the circuit member and pressure plate part in each step in the manufacturing process for demonstrating the manufacturing method of the power semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電力用半導体装置の製造方法に用いる加圧装置の断面図、および加圧装置に設置される加圧板と電力用半導体素子との寸法関係を示すための加圧板部分の平面図である。Sectional drawing of the pressurization apparatus used for the manufacturing method of the power semiconductor device concerning Embodiment 1 of this invention, and the pressurization board for showing the dimensional relationship between the pressurization board and power semiconductor element which are installed in a pressurization apparatus It is a top view of a part. 本発明の実施の形態1にかかる電力用半導体装置の製造方法に用いる加圧装置に設置される加圧板を説明するための平面図である。It is a top view for demonstrating the pressurization board installed in the pressurization apparatus used for the manufacturing method of the semiconductor device for electric power concerning Embodiment 1 of this invention. 従来の電力用半導体装置の製造方法における、ある段階での回路部材と加圧板部分の断面図である。It is sectional drawing of the circuit member and pressure plate part in a certain step in the manufacturing method of the conventional semiconductor device for electric power. 本発明の実施の形態1の変形例にかかる電力用半導体装置の製造方法における一行程中の回路部材および加圧板部分の断面図、および一部の加圧板の平面図である。It is sectional drawing of the circuit member and pressurization board part in one process in the manufacturing method of the semiconductor device for electric power concerning the modification of Embodiment 1 of this invention, and the top view of a part of pressurization board. 本発明の実施の形態2にかかる電力用半導体装置の製造方法の説明の前提として、実施の形態1で説明した加圧板を複数の電力用半導体素子の接合に用いた場合の回路部材および加圧板部分の断面図である。As a premise of the description of the method for manufacturing the power semiconductor device according to the second embodiment of the present invention, the circuit member and the pressure plate when the pressure plate described in the first embodiment is used for joining a plurality of power semiconductor elements. It is sectional drawing of a part. 本発明の実施の形態2にかかる電力用半導体装置の製造方法を説明するための、複数の電力用半導体素子を接合する際の回路部材および加圧板部分の断面図である。It is sectional drawing of the circuit member and pressure plate part at the time of joining the several power semiconductor element for demonstrating the manufacturing method of the power semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる電力用半導体装置の製造方法の説明の前提として、実施の形態1で説明した加圧板を用いた場合の電力用半導体素子と加圧板と圧力均一化シートの位置関係を示す、回路部材と加圧板部分の断面図と、圧力均一化シートの平面図である。As a premise of the description of the method for manufacturing the power semiconductor device according to the third embodiment of the present invention, the positions of the power semiconductor element, the pressure plate, and the pressure equalizing sheet when the pressure plate described in the first embodiment is used. It is sectional drawing of a circuit member and a pressurization board part which shows a relationship, and a top view of a pressure equalization sheet | seat. 本発明の実施の形態3にかかる電力用半導体装置の製造方法に用いる加圧板部分の平面図である。It is a top view of the pressurization plate part used for the manufacturing method of the semiconductor device for electric power concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる電力用半導体装置の製造方法を説明するための、電力用半導体素子と加圧板と圧力均一化シートの位置関係を示す、回路部材と加圧板部分の断面図と、圧力均一化シートの平面図である。Sectional drawing of the circuit member and pressure plate part which shows the positional relationship of a power semiconductor element, a pressurization plate, and a pressure equalization sheet | seat for demonstrating the manufacturing method of the power semiconductor device concerning Embodiment 3 of this invention, It is a top view of a pressure equalization sheet | seat. 本発明の実施の形態3の変形例にかかる電力用半導体装置の製造方法に用いる加圧板部分の平面図である。It is a top view of the pressurization board part used for the manufacturing method of the semiconductor device for electric power concerning the modification of Embodiment 3 of this invention.

実施の形態1.
図1〜図4は、本発明の実施の形態1にかかる電力用半導体装置の製造方法およびその製造方法で製造した電力用半導体装置について説明するためのものであって、図1(a)〜(d)は、製造工程中の各段階における電力用半導体素子を含む回路部材、および圧力均一化シートと加圧板部分の断面図、図2と図3は電力用半導体装置の製造方法に用いる加圧装置の構成を説明するためのもので、図2(a)は加圧装置の断面図、図2(b)は加圧装置に設置される加圧板のうち、上型と電力用半導体素子との寸法関係を示すための上型部分の(下方からの)平面図、図3は下型の構成を示す平面図である。そして、図4は従来の電力用半導体装置の製造方法における、図1(d)に対応する段階での電力用半導体素子を含む回路部材、および圧力均一化シートと加圧板部分の断面図である。
Embodiment 1 FIG.
1 to 4 are diagrams for explaining a method for manufacturing a power semiconductor device and a power semiconductor device manufactured by the manufacturing method according to the first embodiment of the present invention. (D) is a cross-sectional view of a circuit member including a power semiconductor element and a pressure equalizing sheet and a pressure plate in each stage of the manufacturing process, and FIGS. FIG. 2A is a cross-sectional view of the pressure device, and FIG. 2B is an upper mold and a power semiconductor element among the pressure plates installed in the pressure device. FIG. 3 is a plan view showing the configuration of the lower mold (from below), and FIG. 3 is a plan view showing the configuration of the lower mold. FIG. 4 is a cross-sectional view of a circuit member including a power semiconductor element, a pressure equalizing sheet, and a pressure plate portion at a stage corresponding to FIG. 1D in the conventional method for manufacturing a power semiconductor device. .

本発明の各実施の形態にかかる製造方法で製造した電力用半導体装置1は、図1(d)に示すように、配線部材4と、配線部材4の所定部分に、焼結金属体の接合層3を介して裏面電極が接合された電力用半導体素子2とを備えるものである。   As shown in FIG. 1 (d), the power semiconductor device 1 manufactured by the manufacturing method according to each embodiment of the present invention is obtained by bonding a sintered metal body to the wiring member 4 and a predetermined portion of the wiring member 4. And a power semiconductor element 2 to which a back electrode is bonded via a layer 3.

電力用半導体素子2は、厚み0.1〜0.4mm程度で主面2fが矩形状をなしている。例えば、スイッチング素子としてIGBT(Insulated Gate Bipolar Transistor)を用いた場合、裏面にはコレクタ電極が形成され、主面2fには主電力電極であるエミッタ電極と、制御電極であるゲート電極が形成されている。配線部材4としては、電気導電性と熱伝導性に優れた銅(Cu)や銅合金または、アルミニウム(Al)等の金属の矩形状ブロックを例に説明を行うが、実際には様々な形態のものが適用できる。例えば、リードフレームと称される板材、あるいは、絶縁性を有するセラミックの基材に金属配線パターンを形成したセラミック絶縁基板などである。さらに、電力用半導体素子2としては、MOSFET(Metal Oxide Semiconductor Field-Effect Transistor)、SBD(Schottky Barrier diode)、FWD(Free Wheeling Diode)などを用いることができる。   The power semiconductor element 2 has a thickness of about 0.1 to 0.4 mm and a main surface 2f having a rectangular shape. For example, when an IGBT (Insulated Gate Bipolar Transistor) is used as a switching element, a collector electrode is formed on the back surface, and an emitter electrode that is a main power electrode and a gate electrode that is a control electrode are formed on the main surface 2f. Yes. The wiring member 4 will be described by taking, as an example, a rectangular block of metal such as copper (Cu), copper alloy, or aluminum (Al), which is excellent in electrical conductivity and thermal conductivity. Can be applied. For example, a plate material called a lead frame, or a ceramic insulating substrate in which a metal wiring pattern is formed on an insulating ceramic base material. Furthermore, as the power semiconductor element 2, a MOSFET (Metal Oxide Semiconductor Field-Effect Transistor), an SBD (Schottky Barrier Diode), an FWD (Free Wheeling Diode), or the like can be used.

上述したように、電力用半導体素子2の主面2fにも電極があり、電力用半導体装置1としては、主面2f側にも図示しない配線部材等が接合される。また、配線部材4の下面側には冷却部材が設けられることもある。さらに、電力用半導体素子2を含む回路面が例えば封止樹脂によって封止されることもある。しかし、本発明の特徴的な部分は、電力用半導体素子2と配線部材4との接合方法にあり、素子を含む回路構成やパッケージ構成等は一般的なものでよい。そこで、接合に関する構成以外の部分については、説明を省略し、接合(製造方法)に特化して説明する。   As described above, the main surface 2f of the power semiconductor element 2 also has electrodes, and as the power semiconductor device 1, a wiring member or the like (not shown) is also bonded to the main surface 2f side. Further, a cooling member may be provided on the lower surface side of the wiring member 4. Furthermore, the circuit surface including the power semiconductor element 2 may be sealed with a sealing resin, for example. However, a characteristic part of the present invention resides in a method of joining the power semiconductor element 2 and the wiring member 4, and a circuit configuration including the element, a package configuration, and the like may be general. Therefore, description of parts other than the configuration related to the bonding will be omitted, and description will be made focusing on the bonding (manufacturing method).

はじめに、本発明の実施の形態1にかかる電力用半導体装置の製造方法に用いる加圧装置の構成について図2と図3を用いて説明する。
加圧装置10は、図1に示すように、上支持盤11と下支持盤13とが支柱14により間隔を固定され、上支持盤11と下支持盤13との間には、支柱14によって上下方向に摺動可能なスライド盤12が設けられている。そして、スライド盤12と下支持盤13とは、例えば、シリンダ15cとピストン15pからなる油圧プレス、あるいはサーボプレス等のような加圧力発生部15を介して連結されている。そして、加圧力発生部15の動作(例えば、油圧)を制御することで、スライド盤12が上下し、所望の力で上支持盤11とスライド盤12との間でプレス加工を行うことができるようになっている。
First, the configuration of a pressure device used in the method for manufacturing the power semiconductor device according to the first embodiment of the present invention will be described with reference to FIGS. 2 and 3.
As shown in FIG. 1, the pressurizing device 10 has an upper support plate 11 and a lower support plate 13 fixed at intervals by a column 14, and between the upper support plate 11 and the lower support plate 13 by a column 14. A slide board 12 is provided that is slidable in the vertical direction. The slide board 12 and the lower support board 13 are connected to each other via a pressurizing force generation unit 15 such as a hydraulic press composed of a cylinder 15c and a piston 15p, a servo press, or the like. Then, by controlling the operation (for example, hydraulic pressure) of the pressurizing force generation unit 15, the slide plate 12 moves up and down, and press working can be performed between the upper support plate 11 and the slide plate 12 with a desired force. It is like that.

そして、上支持盤11およびスライド盤12には、製造(接合)対象である電力用半導体装置1に応じて形成された上下で一対の加圧板(下側の加圧板22、上側の加圧板21)が、それぞれxy面内の設定された位置に取り付けられる。上側の加圧板21は、断熱材31を介して上支持盤11に設置され、ヒーター21hを内蔵することで所望の温度に加熱できる。同様に、下側の加圧板22は、断熱材32を介してスライド盤12に設置され、ヒーター22hを内蔵することで所望の温度に加熱できる。   A pair of upper and lower pressure plates (a lower pressure plate 22 and an upper pressure plate 21) are formed on the upper support plate 11 and the slide plate 12 in accordance with the power semiconductor device 1 to be manufactured (joined). ) Are respectively attached to the set positions in the xy plane. The upper pressure plate 21 is installed on the upper support plate 11 via a heat insulating material 31, and can be heated to a desired temperature by incorporating a heater 21h. Similarly, the lower pressure plate 22 is installed on the slide board 12 via a heat insulating material 32, and can be heated to a desired temperature by incorporating a heater 22h.

そして、上側の加圧板21の加圧面21fの寸法(縦Wdy×横Wdx:縦横を区別しない場合は「Wd」と表記)は、図2(b)に示すように、電力用半導体素子2の寸法(縦Wcy×横Wcx:縦横を区別しない場合は「Wc」と表記)に応じて調整されている。加圧面21fは、電力用半導体素子2を配線部材4に接合する際に、電力用半導体素子2を加圧する面(加圧面)であり、電力用半導体素子2に接した際に、縦方向、横方向それぞれの両端が所定の寸法(縦方向Dsy、横方向Dsx:縦横を区別しない場合は「Ds」と表記)電力用半導体素子2の端面からはみ出るように調整している。   The dimension of the pressure surface 21f of the upper pressure plate 21 (vertical Wdy × horizontal Wdx: expressed as “Wd” when vertical and horizontal are not distinguished) is as shown in FIG. 2B. Adjustment is made according to the dimensions (vertical Wcy × horizontal Wcx: “Wc” when vertical and horizontal are not distinguished). The pressure surface 21 f is a surface (pressure surface) that pressurizes the power semiconductor element 2 when the power semiconductor element 2 is bonded to the wiring member 4. Both ends in the horizontal direction are adjusted so as to protrude from the end face of the power semiconductor element 2 with predetermined dimensions (vertical direction Dsy, horizontal direction Dsx: “Ds” when vertical and horizontal are not distinguished).

また、下側の加圧板22の加圧面22fの所定位置には、図3に示すように、電力用半導体素子2の接合対象である配線部材4を位置決めするために加圧面22fから突出したガイド22gが設けられている。ガイド22gはL字形状をなし、そのコーナー部に矩形状の配線部材4の角を突き当てることで、配線部材4の下側の加圧板22に対する位置決めができる。なお、加圧面22fに直接接触する対象は、配線部材4が形成された基板等が対象になることもあるが、説明を簡略化するため、配線部材4を対象として記載している。また、ここでは位置決めするための機構として、ガイド22gを例示し、またその形状をL字とし説明を行ったが、これに限定されるものではなく、位置決め機能を有する機構であればよい。   Further, as shown in FIG. 3, a guide projecting from the pressure surface 22f is positioned at a predetermined position of the pressure surface 22f of the lower pressure plate 22 to position the wiring member 4 to be joined to the power semiconductor element 2. 22g is provided. The guide 22g has an L-shape, and the corner of the rectangular wiring member 4 is abutted on the corner portion, whereby the guide 22g can be positioned with respect to the pressure plate 22 on the lower side of the wiring member 4. In addition, although the board | substrate etc. with which the wiring member 4 was formed may be object as the object which contacts the pressurization surface 22f directly, in order to simplify description, it has described it as the object. Further, here, the guide 22g is illustrated as an example of a mechanism for positioning, and the shape thereof is described as being L-shaped. However, the present invention is not limited to this, and any mechanism having a positioning function may be used.

次に、上述した加圧装置10を用いた電力用半導体素子2の配線部材4への接合方法について図1を用いて説明する。
まず、はじめに、図1(a)に示すように、配線部材4の回路面側(図中上側)の所定範囲に、所定厚みのペースト状の接合材3Pを塗布する。そして、その上に、電力用半導体素子2の裏面(図中下側の面)を対向させて配置し、接合準備品1Aを形成する。
Next, a method of joining the power semiconductor element 2 to the wiring member 4 using the pressure device 10 described above will be described with reference to FIG.
First, as shown in FIG. 1A, a paste-like bonding material 3P having a predetermined thickness is applied to a predetermined range on the circuit surface side (upper side in the drawing) of the wiring member 4. And the back surface (lower surface in the figure) of the power semiconductor element 2 is disposed on the power semiconductor element 2 so as to be opposed thereto, thereby forming a bonding preparation 1A.

次に、図1(b)に示すように、接合準備品1Aの電力用半導体素子2の主面2f(配線部材に対向する裏面の反対側の面)上に、主面2f全体を含むように圧力均一化シート50を配置する。この圧力均一化シート50を配置することで、後の加圧工程において、例えば、素子の傾き等により生じる加圧力の偏り(方当たり)を抑制する。   Next, as shown in FIG. 1B, the entire main surface 2f is included on the main surface 2f of the power semiconductor element 2 of the bonding preparation 1A (the surface opposite to the back surface facing the wiring member). The pressure equalizing sheet 50 is disposed in By disposing the pressure equalizing sheet 50, in the subsequent pressurizing step, for example, the bias (force per unit) of the pressing force caused by the inclination of the element is suppressed.

次に、図1(c)に示されるように、圧力均一化シート50を載置した接合準備品1Aを下側の加圧板22上に、配線部材4の角をガイド22gのコーナー部に突き当てるように配置する。これにより、上支持盤11から下向きに透視した場合に、電力用半導体素子2が上側の加圧板21の加圧面21fの領域内で、電力用半導体素子2の端部と加圧面21fの端部(上側の加圧板21の側部21s)との間に所定幅Dsを有するように位置決めされる。このとき、事前にヒーター21h、22hに通電することで、上側の加圧板21と下側の加圧板22は、接合材3P内で金属粒子どうしの焼結が起こらない所定の温度(たとえば130℃)に加熱した状態で保持されている。   Next, as shown in FIG. 1 (c), the bonding preparation 1A on which the pressure equalizing sheet 50 is placed is pushed onto the lower pressure plate 22, and the corners of the wiring member 4 are pushed into the corners of the guide 22g. Arrange to hit. As a result, when the power semiconductor element 2 is seen through downward from the upper support plate 11, the end of the power semiconductor element 2 and the end of the pressurization surface 21f are within the region of the pressurization surface 21f of the upper pressurization plate 21. It is positioned so as to have a predetermined width Ds between (the side portion 21s of the upper pressure plate 21). At this time, when the heaters 21h and 22h are energized in advance, the upper pressure plate 21 and the lower pressure plate 22 have a predetermined temperature (for example, 130 ° C.) at which the metal particles do not sinter in the bonding material 3P. ) In a heated state.

その状態で、下側の加圧板22を上昇させ、図1(d)に示されるように、圧力均一化シート50を載せた接合準備品1Aを上側の加圧板21と下側の加圧板22とではさみ、加圧する。このとき、圧力均一化シート50が、接合準備品1A内の部材の厚みばらつきを吸収してくれるので、電力用半導体素子2の主面2f全体を均一に加圧することができる。そのため、例えば、接合材3Pの塗布むら等によって、厚さがばらつき、電力用半導体素子2の主面2fと加圧面21fとの間に傾きが生じていたとしても、圧力均一化シート50が変形することにより、電力用半導体素子2の主面2f全体を均一に加圧することができる。   In this state, the lower pressure plate 22 is raised, and as shown in FIG. 1 (d), the bonding preparation 1 </ b> A on which the pressure equalizing sheet 50 is placed is placed on the upper pressure plate 21 and the lower pressure plate 22. And then pressurize. At this time, since the pressure equalizing sheet 50 absorbs the thickness variation of the members in the bonding preparation 1 </ b> A, the entire main surface 2 f of the power semiconductor element 2 can be uniformly pressed. Therefore, for example, even if the thickness varies due to uneven application of the bonding material 3P and an inclination occurs between the main surface 2f of the power semiconductor element 2 and the pressure surface 21f, the pressure equalizing sheet 50 is deformed. By doing so, the whole main surface 2f of the power semiconductor element 2 can be uniformly pressurized.

加圧板間の加圧力が所定範囲に達すると、上側の加圧板21と下側の加圧板22を焼結に必要な温度(例えば、200℃〜350℃程度)まで加熱する。そして、圧力均一化シート50、電力用半導体素子2、接合材3P、および配線部材4の温度がそれぞれ所定温度に達してから、所定の時間、加圧力と温度を保持すれば、金属焼結体からなる接合層3が形成され、電力用半導体素子2と配線部材4の接合が完了する。   When the applied pressure between the pressure plates reaches a predetermined range, the upper pressure plate 21 and the lower pressure plate 22 are heated to a temperature required for sintering (for example, about 200 ° C. to 350 ° C.). Then, if the pressure uniformizing sheet 50, the power semiconductor element 2, the bonding material 3P, and the wiring member 4 reach the predetermined temperatures, and the pressure and temperature are maintained for a predetermined time, the metal sintered body The joining layer 3 made of is formed, and the joining of the power semiconductor element 2 and the wiring member 4 is completed.

接合工程においての圧力均一化シート50の役割は、上記のように電力用半導体素子2にかかる加圧力を均一化する他に、電力用半導体素子2が破損するのを防ぐクッション材としての役割がある。圧力均一化シート50を構成する材料は接合材3Pの焼結温度(200℃〜350℃程度)に加熱しても破断せず、その温度において、SiまたはSiCからなる電力用半導体素子2を破損しない程度の柔軟さを保持する材料であれば良い。例えば、ポリイミド、フッ素樹脂、シリコン樹脂などが挙げられる。   The role of the pressure equalizing sheet 50 in the joining process is to serve as a cushioning material for preventing the power semiconductor element 2 from being damaged, in addition to equalizing the pressure applied to the power semiconductor element 2 as described above. is there. The material constituting the pressure equalizing sheet 50 does not break even when heated to the sintering temperature (about 200 ° C. to 350 ° C.) of the bonding material 3P, and breaks the power semiconductor element 2 made of Si or SiC at that temperature. Any material can be used as long as the material retains a degree of flexibility that does not occur. For example, polyimide, a fluororesin, a silicon resin, etc. are mentioned.

ポリイミド、フッ素樹脂の場合は塑性変形さて電力用半導体素子2の破損を防ぎ、シリコン樹脂の場合は弾性変形させて電力用半導体素子2の破損を防ぐ。また、圧力均一化シート50のサイズについては、電力用半導体素子2の破損を防ぎ、主面2f全体を十分に加圧するためには、主面2fのサイズWc以下には小さくできない。また、圧力均一化シート50を配置する際の作業性の観点から、圧力均一化シート50は主面2fに対して、横、縦ともに1mm程度大きいことが望ましい。圧力均一化シート50の厚さについては、加圧前の状態では電力用半導体素子2よりも厚く、加圧後は加圧前の厚さの半分以下になるような厚さを想定している。   In the case of polyimide or fluororesin, the power semiconductor element 2 is prevented from being damaged by plastic deformation, and in the case of silicon resin, the power semiconductor element 2 is prevented from being damaged by elastic deformation. In addition, the size of the pressure equalizing sheet 50 cannot be reduced below the size Wc of the main surface 2f in order to prevent the power semiconductor element 2 from being damaged and sufficiently pressurize the entire main surface 2f. Further, from the viewpoint of workability when the pressure equalizing sheet 50 is disposed, it is desirable that the pressure equalizing sheet 50 is about 1 mm larger in both the horizontal and vertical directions than the main surface 2f. About the thickness of the pressure equalization sheet | seat 50, the thickness before the pressurization is thicker than the semiconductor element 2 for electric power, and the thickness after pressurization assumes half or less of the thickness before pressurization. .

上記のような圧力均一化シート50を用いて接合を行う際、図4に示すように、上側の加圧板21Cの加圧面21Cfの範囲が限定されていない場合、圧力均一化シート50は加圧面21Cfに押し返されてしまうので、配線部材4の側に変形する。その結果、電力用半導体素子2の近傍の空間Spが圧力均一化シート50によって遮蔽されてしまう。その遮蔽された空間Sp内に金属焼結体を形成する接合材3Pから揮発した有機保護膜の成分が局所的に堆積してしまい、それが配線部材4あるいは電力用半導体素子2を汚染してしまうことが筆者らの実験によって確認されている。   When performing bonding using the pressure equalizing sheet 50 as described above, as shown in FIG. 4, when the range of the pressure surface 21 </ b> Cf of the upper pressure plate 21 </ b> C is not limited, the pressure equalizing sheet 50 is the pressure surface. Since it is pushed back by 21Cf, it is deformed to the wiring member 4 side. As a result, the space Sp near the power semiconductor element 2 is shielded by the pressure equalizing sheet 50. In the shielded space Sp, components of the organic protective film volatilized from the bonding material 3P forming the metal sintered body are locally deposited, which contaminates the wiring member 4 or the power semiconductor element 2. This has been confirmed by our experiments.

しかし、本実施の形態1にかかる電力用半導体装置の製造方法では、接合時に電力用半導体素子2の主面2fに対向する上側の加圧板21の加圧面21fの寸法Wdを主面2fのサイズWcによって規定し、加圧面21fよりも外側には、圧力均一化シート50を上方にかわすため、一定以上のクリアランスCvを有する空間Sfを確保するようにした。これにより、加圧した際に図1(d)に示したように、圧力均一化シート50が加圧面21fよりもさらに電力用半導体素子2から離れる方向に反り返る。   However, in the method for manufacturing the power semiconductor device according to the first embodiment, the dimension Wd of the pressing surface 21f of the upper pressing plate 21 that faces the main surface 2f of the power semiconductor element 2 at the time of bonding is the size of the main surface 2f. A space Sf having a clearance Cv of a certain level or more is secured outside the pressure surface 21f so as to avoid the pressure equalizing sheet 50 upward. Thereby, when pressurized, as shown in FIG.1 (d), the pressure equalization sheet | seat 50 will bend in the direction which leaves | separates from the semiconductor element 2 for electric power further than the pressurization surface 21f.

その結果、図1(d)に示される電力用半導体素子2の近傍の空間Spが圧力均一化シート50によって遮蔽されるのを防ぎ、有機保護膜の揮発成分が電力用半導体素子2の近傍の空間に滞留することがなくなる。つまり、配線部材4あるいは電力用半導体素子2に有機保護膜の成分が局所的に堆積し、汚染されるのを防ぐことができる。   As a result, the space Sp in the vicinity of the power semiconductor element 2 shown in FIG. 1D is prevented from being shielded by the pressure equalizing sheet 50, and the volatile component of the organic protective film is in the vicinity of the power semiconductor element 2. It will not stay in the space. That is, it is possible to prevent the organic protective film component from being locally deposited and contaminated on the wiring member 4 or the power semiconductor element 2.

上側の加圧板21の加圧面21fのサイズが、主面2fのサイズに応じて定められている場合でも、電力用半導体素子2の端部と加圧面21fの端部との所定幅Dsが長すぎる場合には、圧力均一化シート50は加圧面21fに押し返されてしまうことになる。そのため、加圧面21fに制限がない場合と同様、電力用半導体素子2の近傍の空間Spが圧力均一化シート50によって遮蔽されてしまい、その遮蔽された空間Sp内に有機保護膜の成分が局所的に堆積し、配線部材が汚染される恐れがある。   Even when the size of the pressure surface 21f of the upper pressure plate 21 is determined according to the size of the main surface 2f, the predetermined width Ds between the end of the power semiconductor element 2 and the end of the pressure surface 21f is long. If too much, the pressure equalizing sheet 50 is pushed back to the pressing surface 21f. Therefore, as in the case where there is no restriction on the pressing surface 21f, the space Sp near the power semiconductor element 2 is shielded by the pressure equalizing sheet 50, and the components of the organic protective film are locally contained in the shielded space Sp. There is a risk that the wiring members will be contaminated.

そこで、本発明者は、加圧面21fのサイズ(空間Sfの開始地点である側部21sの位置)をパラメータとして、圧力均一化シート50を反り返らせるための条件について検討した。その結果、所定幅Dsが0〜0.5mmの範囲になるように加圧面21fのサイズを調整すれば、電力用半導体素子2の主面2f全面を加圧できるとともに、圧力均一化シート50を加圧面21fよりもさらに電力用半導体素子2から離れる方向に反り返らせることができることがわかった。なお、所定幅Dsの上限値の0.5mmという値は、電力用半導体素子2の主面2fのサイズWcの5%にあたる。   Therefore, the present inventor examined conditions for warping the pressure equalizing sheet 50 using the size of the pressure surface 21f (the position of the side portion 21s as the starting point of the space Sf) as a parameter. As a result, if the size of the pressing surface 21f is adjusted so that the predetermined width Ds is in the range of 0 to 0.5 mm, the entire main surface 2f of the power semiconductor element 2 can be pressed, and the pressure equalizing sheet 50 can be It turned out that it can be made to warp in the direction which leaves | separates from the semiconductor element 2 for electric power further than the pressurization surface 21f. The upper limit value of 0.5 mm of the predetermined width Ds corresponds to 5% of the size Wc of the main surface 2f of the power semiconductor element 2.

加えて、加圧面21fの外側の空間SfのクリアランスCvについても実験的に確認を行った。前述したとおり、圧力均一化シート50は主面2fに対して、横、縦ともに1mm程度大きいことが望ましい。クリアランスCvが少なすぎる場合には、反り返った圧力均一化シート50が上側の面(上側の加圧板21あるいは上支持盤11)に押し戻され、配線部材4に近づく方向に垂れ下がる。その結果、圧力均一化シート50の端部が配線部材4に接触し、電力用半導体素子2の近傍の空間Spが遮蔽されることになる。そして、有機保護膜の揮発成分が電力用半導体素子2の近傍の空間Spに滞留し、配線部材4に有機保護膜の成分が局所的に堆積し、汚染される恐れがある。   In addition, the clearance Cv of the space Sf outside the pressing surface 21f was also confirmed experimentally. As described above, the pressure equalizing sheet 50 is desirably about 1 mm larger in width and length than the main surface 2f. When the clearance Cv is too small, the warped pressure equalizing sheet 50 is pushed back to the upper surface (the upper pressure plate 21 or the upper support plate 11) and hangs down in a direction approaching the wiring member 4. As a result, the end of the pressure equalizing sheet 50 comes into contact with the wiring member 4 and the space Sp in the vicinity of the power semiconductor element 2 is shielded. Then, the volatile component of the organic protective film stays in the space Sp in the vicinity of the power semiconductor element 2, and the component of the organic protective film may locally accumulate on the wiring member 4 and be contaminated.

したがって、配線部材4の汚染を防止するためには、反り返った圧力均一化シート50が上側の面に接触しないことが重要である。このためには、空間SfのクリアランスCvが2mm以上、望ましくは5mm以上必要である。また、フッ素樹脂からなる圧力均一化シート50は接合時の加熱、加圧により5〜7mm程度、面内方向に伸びる。そのため、フッ素樹脂のような延びを示す圧力均一化シート50に対しては、クリアランスCvを10mm以上とることが望ましい。   Therefore, in order to prevent the wiring member 4 from being contaminated, it is important that the warped pressure equalizing sheet 50 does not contact the upper surface. For this purpose, the clearance Cv of the space Sf is required to be 2 mm or more, desirably 5 mm or more. Further, the pressure equalizing sheet 50 made of a fluororesin extends in the in-plane direction by about 5 to 7 mm by heating and pressurizing during bonding. For this reason, it is desirable that the clearance Cv be 10 mm or more for the pressure equalizing sheet 50 that exhibits an extension such as a fluororesin.

なお、上記実施の形態1においては、電力用半導体素子2と配線部材4とを接合する工程で、金属焼結体を形成する接合材3Pを塗布した配線部材4に電力用半導体素子2を重ね、さらに圧力均一化シート50をかぶせた状態の接合準備品1Aを加圧装置10の下側の加圧板22上に配置する例について説明した。しかしながら、この方法では、接合準備品1Aを下側の加圧板22上に配置する際に、圧力均一化シート50が電力用半導体素子2に対して位置ずれすることが考えられる。その場合、加圧面21fと電力用半導体素子2間に圧力均一化シート50が介在する部分と介在しない部分が混在することになる。その結果、電力用半導体素子2を加圧する際に、圧力が不均等に加わり、良好な接合が得られないばかりか、場合によっては、電力用半導体素子2を破損する可能性もあった。   In the first embodiment, in the step of joining the power semiconductor element 2 and the wiring member 4, the power semiconductor element 2 is overlapped on the wiring member 4 coated with the bonding material 3P forming the metal sintered body. Further, the example in which the bonding preparation 1 </ b> A in a state in which the pressure uniformizing sheet 50 is covered is arranged on the pressure plate 22 on the lower side of the pressure device 10 has been described. However, in this method, it is conceivable that the pressure equalizing sheet 50 is displaced with respect to the power semiconductor element 2 when the bonding preparation 1 </ b> A is disposed on the lower pressure plate 22. In that case, a portion where the pressure equalizing sheet 50 is interposed and a portion where it is not interposed are mixed between the pressing surface 21 f and the power semiconductor element 2. As a result, when the power semiconductor element 2 is pressurized, the pressure is applied unevenly, and a good bonding cannot be obtained. In some cases, the power semiconductor element 2 may be damaged.

そこで、実施の形態1の変形例として、圧力均一化シート50を接合準備品1Aに対してではなく、加圧装置10に対して位置決め配置できるようにした。図5(a)は本実施の形態1の変形例にかかる電力用半導体装置の製造方法における図1(c)に対応する行程における回路部材および加圧板部分の断面図、図5(b)は下方側から見た上側の加圧板の平面図である。   Therefore, as a modification of the first embodiment, the pressure equalizing sheet 50 can be positioned and arranged with respect to the pressurizing apparatus 10 instead of the bonding preparation 1A. FIG. 5A is a cross-sectional view of the circuit member and the pressure plate in the process corresponding to FIG. 1C in the method for manufacturing the power semiconductor device according to the modification of the first embodiment, and FIG. It is a top view of the upper side pressure plate seen from the lower side.

本変形例では、上側の加圧板21に、圧力均一化シート50を吸着するために、図5に示すように、例えば、加圧面21f上で開口するように真空吸着用の連通孔21tを配置した吸着機構を設けるようにした。そして、図1(b)で説明した工程では、圧力均一化シート50を接合準備品1Aにかぶせず、接合準備品1Aとは別に、電力用半導体素子2の直上に対応する位置で吸着する。これにより、図5(a)に示すように、接合準備品1Aは、加圧されるまで圧力均一化シート50に触れることがなくなり、下側の加圧板22に位置決めする際に圧力均一化シート50との間で位置ずれすることを防止できる。このようにすることで、電力用半導体素子2の主面2fの全面を確実に圧力均一化シート50で覆うことができ、電力用半導体素子2が破損するのを防ぐことができる。   In this modification, in order to adsorb the pressure equalizing sheet 50 to the upper pressure plate 21, as shown in FIG. 5, for example, a vacuum suction communication hole 21t is arranged so as to open on the pressure surface 21f. An adsorption mechanism was provided. In the step described with reference to FIG. 1B, the pressure equalizing sheet 50 is not covered with the bonding preparation product 1 </ b> A, and is adsorbed at a position corresponding to the position immediately above the power semiconductor element 2, separately from the bonding preparation product 1 </ b> A. As a result, as shown in FIG. 5A, the bonding preparation 1 </ b> A does not touch the pressure equalization sheet 50 until it is pressurized, and the pressure equalization sheet is positioned when positioned on the lower pressure plate 22. It is possible to prevent the positional deviation from 50. By doing in this way, the whole main surface 2f of the power semiconductor element 2 can be reliably covered with the pressure equalizing sheet 50, and the power semiconductor element 2 can be prevented from being damaged.

以上のように、本発明の実施の形態1にかかる電力用半導体装置1の製造方法によれば、焼結性金属粒子を含有する接合材3Pと加圧装置10を用いて、配線部材4と電力用半導体素子2との接合を行う電力用半導体装置1の製造方法であって、鉛直方向(z)において、電力用半導体素子2が配線部材4の上方に位置するように、接合材3Pを介して電力用半導体素子2を配線部材4に重ね、加圧装置10の一対の加圧板(21、22)の間の所定位置に設置する設置工程と、一対の加圧板(21、22)により加熱、加圧して、接合材3Pの焼結性金属粒子を焼結させて電力用半導体素子2を配線部材4に接合する工程と、を含み、一対の加圧板のうち、上側の加圧板21と電力用半導体素子2の主面2fとの間には、電力用半導体素子2よりも柔軟な樹脂シート(圧力均一化シート50)を介在させており、上側の加圧板21は、主面2fに平行な方向(xy)において、加圧面21fが主面2fを内包するように配置されているとともに、接合行程中に変形した樹脂シート(圧力均一化シート50)の端部を加圧面21fよりも上方にかわすため、主面2fの4辺から外側に所定幅(Ds)離れた部分に空間Sfが形成されているように構成した。そのため、加圧した際に圧力均一化シート50が加圧面21fよりもさらに電力用半導体素子2から離れる方向に反り返るので、電力用半導体素子2の近傍の空間Spが圧力均一化シート50によって遮蔽されるのを防ぎ、有機保護膜の揮発成分が電力用半導体素子2の近傍の空間に滞留することがなくなる。つまり、配線部材4あるいは電力用半導体素子2に有機保護膜の成分が局所的に堆積し、汚染されるのを防ぐことができる。その結果、均一に加圧できるとともに金属焼結材に含まれる有機保護膜の分解・脱ガス成分による回路部材等の汚染を防止できるので、耐熱性に優れるとともに、信頼性の高い電力用半導体素子を得ることができる。   As described above, according to the method for manufacturing the power semiconductor device 1 according to the first embodiment of the present invention, the bonding member 3P containing the sinterable metal particles and the pressure device 10 are used to In the method for manufacturing the power semiconductor device 1 for joining with the power semiconductor element 2, the bonding material 3 </ b> P is arranged so that the power semiconductor element 2 is positioned above the wiring member 4 in the vertical direction (z). The power semiconductor element 2 is overlaid on the wiring member 4 and installed at a predetermined position between the pair of pressure plates (21, 22) of the pressure device 10, and the pair of pressure plates (21, 22). Heating and pressing to sinter the sinterable metal particles of the bonding material 3P and bonding the power semiconductor element 2 to the wiring member 4, and the upper pressure plate 21 of the pair of pressure plates Between the main surface 2f of the power semiconductor element 2 and the power semiconductor element 2 A more flexible resin sheet (pressure equalizing sheet 50) is interposed, and the upper pressure plate 21 is configured such that the pressure surface 21f includes the main surface 2f in a direction (xy) parallel to the main surface 2f. In order to dodge the end of the resin sheet (pressure equalizing sheet 50) that has been disposed and deformed during the joining process upward from the pressure surface 21f, it is separated from the four sides of the main surface 2f by a predetermined width (Ds). A space Sf is formed in the part. Therefore, when the pressure is applied, the pressure equalizing sheet 50 warps in a direction further away from the power semiconductor element 2 than the pressing surface 21f, so that the space Sp near the power semiconductor element 2 is shielded by the pressure equalizing sheet 50. This prevents the volatile components of the organic protective film from staying in the space near the power semiconductor element 2. That is, it is possible to prevent the organic protective film component from being locally deposited and contaminated on the wiring member 4 or the power semiconductor element 2. As a result, it is possible to pressurize uniformly and prevent contamination of circuit members due to decomposition and degassing components of the organic protective film contained in the sintered metal material, so it has excellent heat resistance and highly reliable power semiconductor elements Can be obtained.

とくに、所定幅Dsは、0〜5mm、あるいは電力用半導体素子2の主面2fの横または縦の寸法(WcxまたはWcy)の0〜5%の範囲に設定されるように構成したので、加圧した際に圧力均一化シート50を確実に加圧面21fよりもさらに電力用半導体素子2から離れる方向に反り返らせることができる。   In particular, the predetermined width Ds is set to 0 to 5 mm or a range of 0 to 5% of the horizontal or vertical dimension (Wcx or Wcy) of the main surface 2f of the power semiconductor element 2. When pressed, the pressure equalizing sheet 50 can be reliably warped in a direction further away from the power semiconductor element 2 than the pressing surface 21f.

実施の形態2.
本実施の形態2にかかる電力用半導体装置の製造方法では、上記実施の形態1にかかる電力用半導体装置の製造方法を複数の電力用半導体素子を同時に接合する場合の形態について記載するものである。基本的な考え方は実施の形態1と同様であり、例えば、後述する加圧板の構成において、電力用半導体素子が隣接する部分に対応する部分以外の構成については、実施の形態1と同様である。
Embodiment 2. FIG.
In the method for manufacturing a power semiconductor device according to the second embodiment, the method for manufacturing the power semiconductor device according to the first embodiment is described for a case where a plurality of power semiconductor elements are simultaneously bonded. . The basic concept is the same as in the first embodiment. For example, in the configuration of the pressure plate described later, the configuration other than the portion corresponding to the portion where the power semiconductor element is adjacent is the same as in the first embodiment. .

図6と図7は、本発明の実施の形態2にかかる電力用半導体装置の製造方法の説明として、それぞれ図1(d)に対応する行程における回路部材および加圧板部分の断面図を示したもので、図6は実施の形態1で説明した加圧板をそのまま複数の電力用半導体素子の接合に用いた場合、図7は本発明の実施の形態2にかかる電力用半導体装置の製造方法に対応する加圧板を用いた場合の回路部材および加圧板部分の断面図である。   6 and 7 are sectional views of a circuit member and a pressure plate portion in the process corresponding to FIG. 1 (d), respectively, as an explanation of the method for manufacturing the power semiconductor device according to the second embodiment of the present invention. FIG. 6 shows a case where the pressure plate described in the first embodiment is used as it is for joining a plurality of power semiconductor elements, and FIG. 7 shows a method for manufacturing a power semiconductor device according to the second embodiment of the present invention. It is sectional drawing of the circuit member and pressure plate part at the time of using a corresponding pressure plate.

例えば、複数の電力用半導体素子2を一括して配線部材4に接合することで、生産性を向上させることができる。このとき、例えば、図6に示すように、上側の加圧板21Wの外形となる側部21sの位置は、実施の形態1にならって、複数(図では2つ)の電力用半導体素子2の配置に応じて規定する。しかし、電力用半導体素子2どうしの隙間に対応する部分は、平坦に形成した場合について検討する。この場合、複数の電力用半導体素子2の隙間部分の空間Spiでは、圧力均一化シート50が加圧面21fに押し返されて配線部材4方向に垂れ下がる。そのため、外側の空間Spxは実施の形態1と同様に解放されるが、内側の空間Spiは圧力均一化シート50によって外部と遮蔽されることになる。そのため、内側の空間Spi側の配線部材4や電力用半導体素子2に有機保護膜の成分が局所的に堆積し、汚染される恐れがある。   For example, productivity can be improved by collectively bonding a plurality of power semiconductor elements 2 to the wiring member 4. At this time, for example, as shown in FIG. 6, the position of the side portion 21 s which is the outer shape of the upper pressure plate 21 </ b> W is the same as that of the first embodiment in the plurality of (two in the figure) power semiconductor elements 2. It is specified according to the arrangement. However, the case where the portion corresponding to the gap between the power semiconductor elements 2 is formed flat will be considered. In this case, in the space Spi of the gap portions of the plurality of power semiconductor elements 2, the pressure equalizing sheet 50 is pushed back by the pressing surface 21 f and hangs down in the direction of the wiring member 4. Therefore, the outer space Spx is released in the same manner as in the first embodiment, but the inner space Spi is shielded from the outside by the pressure equalizing sheet 50. Therefore, components of the organic protective film may be locally deposited on the wiring member 4 and the power semiconductor element 2 on the inner space Spi side and may be contaminated.

そこで、本実施の形態2にかかる電力用半導体装置の製造方法では、図6に示すように、複数の電力用半導体素子2の間に形成される隙間のそれぞれに対応して、加圧面21fから窪む窪み部21dを設けるようにした。これにより、各隙間の直上に対応する部分でも、電力用半導体素子2のエッジから所定幅(実施の形態1における所定幅Dsに対応)外側の部分は、圧力均一化シート50を加圧面21fよりも上方にかわすために所定のクリアランスCvを有する空間Sfになる。   Therefore, in the method for manufacturing the power semiconductor device according to the second embodiment, as shown in FIG. 6, from the pressing surface 21 f corresponding to each of the gaps formed between the plurality of power semiconductor elements 2. A recessed portion 21d that is recessed is provided. As a result, even in the portion corresponding to the portion directly above each gap, the portion outside the predetermined width (corresponding to the predetermined width Ds in the first embodiment) from the edge of the power semiconductor element 2 allows the pressure equalizing sheet 50 to be removed from the pressing surface 21f. In order to dodge upward, the space Sf has a predetermined clearance Cv.

そのため、素子間の各隙間の直上に対応する圧力均一化シート50を加圧面21fよりもさらに電力用半導体素子2から離れる方向に反り返らせることができる。これにより、内側の空間Spiが圧力均一化シート50によって遮蔽されるのを防ぎ、有機保護膜の揮発成分が空間Spi内に滞留するのを防ぎ、配線部材4あるいは電力用半導体素子2に有機保護膜の成分が局所的に堆積し、汚染されるのを防ぐことができる。なお、図6、7では1つの配線部材4に複数の電力用半導体素子2を接合する場合について示したが、配線部材4は1つに限られるものではなく、複数あっても良い。   Therefore, the pressure equalizing sheet 50 corresponding to the position immediately above each gap between the elements can be warped in a direction further away from the power semiconductor element 2 than the pressing surface 21f. This prevents the inner space Spi from being shielded by the pressure equalizing sheet 50, prevents the volatile components of the organic protective film from staying in the space Spi, and protects the wiring member 4 or the power semiconductor element 2 with organic protection. It is possible to prevent film components from being locally deposited and contaminated. 6 and 7 show the case where a plurality of power semiconductor elements 2 are joined to one wiring member 4, the number of wiring members 4 is not limited to one, and there may be a plurality.

以上のように、本実施の形態2にかかる電力用半導体装置の製造方法によれば、上側の加圧板21には、複数の電力用半導体素子2を接合させる際、電力用半導体素子2どうしの間部分にも、樹脂シート(圧力均一化シート50)を加圧面21fよりも上方にかわすための空間Sfが形成されているので、内側の空間Spiも圧力均一化シート50によって遮蔽されるのを防ぎ、有機保護膜の揮発成分が空間Spi内に滞留するのを防ぎ、配線部材4あるいは電力用半導体素子2に有機保護膜の成分が局所的に堆積し、汚染されるのを防ぐことができる。   As described above, according to the method for manufacturing the power semiconductor device according to the second embodiment, when the plurality of power semiconductor elements 2 are joined to the upper pressure plate 21, the power semiconductor elements 2 are connected to each other. Since the space Sf for dodging the resin sheet (pressure equalizing sheet 50) above the pressurizing surface 21f is also formed in the intermediate portion, the inner space Spi is also shielded by the pressure equalizing sheet 50. It is possible to prevent the volatile components of the organic protective film from staying in the space Spi, and to prevent the organic protective film components from being locally deposited and contaminated on the wiring member 4 or the power semiconductor element 2. .

実施の形態3.
電力用半導体素子2の配線部材4への接合は、加圧装置10のコスト低減やサイズ低減の観点から、より低圧力で行うことが望ましい。また、低い圧力での接合が可能となれば、同一の荷重であっても、一括して接合できる電力用半導体素子2の数が増加し、生産性を向上させることができる。上記のような理由から、接合圧力の低圧力化は多くのメリットがある。しかしながら、接合時の圧力を低下させると、接合面内での圧力にばらつきがある場合、局所的に接合に必要な圧力を下回る領域が発生し、接合不良を生じる恐れがある。このように接合圧力を低下させた場合には、加圧力が大きい場合には問題にならなかった接合面内での圧力のばらつきが問題となる。
Embodiment 3 FIG.
It is desirable to join the power semiconductor element 2 to the wiring member 4 at a lower pressure from the viewpoint of cost reduction and size reduction of the pressure device 10. Further, if bonding at a low pressure is possible, the number of power semiconductor elements 2 that can be bonded together even at the same load increases, and productivity can be improved. For the reasons described above, lowering the bonding pressure has many advantages. However, if the pressure at the time of bonding is lowered, if the pressure in the bonding surface varies, a region that is locally lower than the pressure necessary for bonding may occur, which may cause bonding failure. When the joining pressure is reduced in this way, the pressure variation within the joining surface, which is not a problem when the applied pressure is large, becomes a problem.

例えば、実施の形態1の図2で説明したように、上側の加圧板21の加圧面21fを、電力用半導体素子2の主面2fのエッジを所定幅Dsで縁取るような単純な矩形状に形成した場合の主面2fにおける圧力分布について検証した。その結果、コーナー部Ccにかかる圧力が他の領域にかかる圧力に比べて低くなることを実験によって確認した。例えば、同じ構成の接合準備品1Aに対して、接合時の圧力をパラメータにして接合状態を調査した結果、接合圧力を低下させていくと、まず初めに、電力用半導体素子2のコーナー部Cc直下で接合不良が発生することが確認できた。したがって、実施の形態1の製造方法で使用した加圧板構成をそのまま用いると、接合圧力を低く設定したときに、接合不良が発生する可能性がある。   For example, as described with reference to FIG. 2 of the first embodiment, the pressure surface 21f of the upper pressure plate 21 is a simple rectangular shape that borders the edge of the main surface 2f of the power semiconductor element 2 with a predetermined width Ds. The pressure distribution on the main surface 2f in the case of forming in the above was verified. As a result, it was confirmed by experiments that the pressure applied to the corner portion Cc is lower than the pressure applied to other regions. For example, as a result of investigating the bonding state with the bonding preparation product 1A having the same configuration as the parameter at the time of bonding, when the bonding pressure is decreased, first, the corner portion Cc of the power semiconductor element 2 is detected. It was confirmed that bonding failure occurred immediately below. Therefore, if the pressure plate configuration used in the manufacturing method of the first embodiment is used as it is, a bonding failure may occur when the bonding pressure is set low.

そこで、電力用半導体素子2のコーナー部Ccにかかる加圧力が電力用半導体素子2の他の領域にかかる加圧力に比べて低くなる理由について図8を用いて説明する。図8は、本発明の実施の形態3にかかる電力用半導体装置の製造方法の説明の前提として、実施の形態1で説明した加圧板構成を用いた場合の電力用半導体素子と加圧板と圧力均一化シートの位置関係を示す図で、図8(a)は回路部材と加圧板部分の断面図、図8(b)は圧力均一化シートの平面図である。   The reason why the pressure applied to the corner portion Cc of the power semiconductor element 2 is lower than the pressure applied to other regions of the power semiconductor element 2 will be described with reference to FIG. FIG. 8 shows a power semiconductor element, a pressure plate, and a pressure when the pressure plate configuration described in the first embodiment is used as a premise of the description of the method for manufacturing the power semiconductor device according to the third embodiment of the present invention. FIG. 8A is a cross-sectional view of a circuit member and a pressure plate portion, and FIG. 8B is a plan view of the pressure equalizing sheet.

主面2fを縁取るように上側の加圧板21の加圧面21fの外形を矩形に形成したことで、圧力均一化シート50のコーナー領域Peは、図8(b)の矢印Lsに示すように、x方向にもy方向にも伸びることができる。そのため、伸び量が他の領域に比べて大きく、コーナー領域Peにおける圧力均一化シート50の厚さが局所的に薄くなる。なお、図8では、簡単のために圧力均一化シート50の反り返りを無視して図示してあり、図中の矢印Lsは圧力均一化シート50の伸び量を模式的に表している。   By forming the outer shape of the pressure surface 21f of the upper pressure plate 21 in a rectangular shape so as to border the main surface 2f, the corner region Pe of the pressure equalizing sheet 50 is as indicated by an arrow Ls in FIG. 8B. , Can extend in both the x and y directions. Therefore, the amount of elongation is larger than in other regions, and the thickness of the pressure equalizing sheet 50 in the corner region Pe is locally reduced. In FIG. 8, for the sake of simplicity, the pressure equalization sheet 50 is shown without being warped, and the arrow Ls in the drawing schematically represents the amount of elongation of the pressure equalization sheet 50.

圧力均一化シート50の上側の加圧板21の加圧面21fの4隅部分に接する領域Pdにおいても、コーナー領域Peの影響に加えて、加圧面21fの角に圧力均一化シート50が食い込むことにより、厚さが局所的に薄くなる。この領域Pd影響を受けて、領域Pd近傍の電力用半導体素子2のコーナー部Ccに接する領域Pcにおいても、圧力均一化シート50の厚さが局所的に薄くなる。このため、電力用半導体素子2のコーナー部Ccにかかる加圧力が低下し、実験で確認した低圧力で接合した際に電力用半導体素子2のコーナー部直下における接合不良の発生が説明できる。   In the region Pd in contact with the four corners of the pressure surface 21f of the pressure plate 21 on the upper side of the pressure equalizing sheet 50, in addition to the influence of the corner region Pe, the pressure equalizing sheet 50 bites into the corner of the pressure surface 21f. , The thickness is locally reduced. Under the influence of the region Pd, the thickness of the pressure equalizing sheet 50 is locally reduced also in the region Pc in contact with the corner portion Cc of the power semiconductor element 2 in the vicinity of the region Pd. For this reason, the pressurizing force applied to the corner portion Cc of the power semiconductor element 2 is reduced, and the occurrence of a bonding failure immediately below the corner portion of the power semiconductor element 2 can be explained when the bonding is performed at a low pressure confirmed through experiments.

そこで、本実施の形態3においては、図9に示すように、接合に用いる上側の加圧板21の加圧面21fを、主面2fの4つのコーナー部Ccから所定寸法(半径Lb)の張出部21bを有するようにした。図9は、本発明の実施の形態3にかかる電力用半導体装置の製造方法に用いる加圧板のうち、上側の加圧板を下方から見たときの平面図である。また、図10は、本実施の形態3にかかる電力用半導体装置の製造方法における電力用半導体素子と加圧板と圧力均一化シートの寸法関係を示すための図で、図10(a)は回路部材と加圧板部分の断面図、図10(b)は圧力均一化シートの平面図である。また、図11は、本発明の実施の形態3の変形例にかかる電力用半導体装置の製造方法に用いる加圧板部分の平面図である。   Therefore, in the third embodiment, as shown in FIG. 9, the pressurizing surface 21f of the upper pressurizing plate 21 used for joining is projected from the four corner portions Cc of the main surface 2f with a predetermined dimension (radius Lb). It has a portion 21b. FIG. 9: is a top view when the upper pressure plate is seen from the downward direction among the pressure plates used for the manufacturing method of the power semiconductor device concerning Embodiment 3 of this invention. FIG. 10 is a diagram for showing the dimensional relationship among the power semiconductor element, the pressure plate, and the pressure equalizing sheet in the method for manufacturing the power semiconductor device according to the third embodiment. FIG. Sectional drawing of a member and a pressurizing plate part, FIG.10 (b) is a top view of a pressure equalization sheet | seat. FIG. 11 is a plan view of a pressure plate portion used in the method for manufacturing the power semiconductor device according to the modification of the third embodiment of the present invention.

本実施の形態3にかかる電力用半導体装置の製造方法では、接合に用いる加圧板(上側の加圧板21)の加圧面21fに主面2fの4つのコーナー部Ccから所定距離Lr張り出すように延在する張出部21bを設けるようにした。この場合、図10に示すように、圧力均一化シート50の加圧面21fの4隅部分(張出部21bの隅)に接触する領域Pdでは、依然、局所的に厚みが薄くなる。しかしながら、図10(b)と図8(b)を比較すると、張出部21bを設けることによって、領域Pcと領域Pdとの間隔Dcが長くなる。そのため、本実施の形態3にかかる製造方法では、領域Pcにおいて圧力均一化シート50の厚さが局所的に薄くなることはない。したがって、電力用半導体素子2のコーナー部Ccにかかる加圧力が低下するのを防ぐことができる。   In the method for manufacturing the power semiconductor device according to the third embodiment, a predetermined distance Lr is projected from the four corner portions Cc of the main surface 2f on the pressure surface 21f of the pressure plate (upper pressure plate 21) used for bonding. An extending overhang part 21b is provided. In this case, as shown in FIG. 10, the thickness P is still locally reduced in the region Pd that is in contact with the four corner portions (corners of the overhang portion 21 b) of the pressure surface 21 f of the pressure equalizing sheet 50. However, when FIG. 10B is compared with FIG. 8B, the distance Dc between the region Pc and the region Pd is increased by providing the overhanging portion 21b. Therefore, in the manufacturing method according to the third embodiment, the thickness of the pressure equalizing sheet 50 is not locally reduced in the region Pc. Therefore, it is possible to prevent the pressure applied to the corner portion Cc of the power semiconductor element 2 from being lowered.

さらに、加圧面21fのうち、張出部21bの範囲外である、主面2fの4辺のそれぞれの中間部分から所定幅Ds外側の部分には、圧力均一化シート50をかわすためのクリアランスCvを有する空間Sfが形成されている。そのため、加圧した際には、圧力均一化シート50の4辺のそれぞれの中間部分は、加圧面21fよりも電力用半導体素子2から離れる方向に反り返らせることができる。これにより、電力用半導体素子2近傍の空間Spの通気性は確保され、有機保護膜の揮発成分が滞留することはない。図10に示すような、加圧面21fに張出部21bを形成した上側の加圧板21を用いて実際に接合を行ったところ、配線部材4あるいは電力用半導体素子2を汚染することなく、主面2f全面に十分に加圧力を加えて、配線部材4に接合できることを確認した。   Furthermore, a clearance Cv for dosing the pressure equalizing sheet 50 from the intermediate portion of each of the four sides of the main surface 2f outside the range of the overhanging portion 21b in the pressing surface 21f to a portion outside the predetermined width Ds. A space Sf is formed. Therefore, when the pressure is applied, the intermediate portions of the four sides of the pressure equalizing sheet 50 can be warped in the direction away from the power semiconductor element 2 rather than the pressing surface 21f. Thereby, the air permeability of the space Sp in the vicinity of the power semiconductor element 2 is ensured, and the volatile components of the organic protective film do not stay. When the bonding is actually performed using the upper pressing plate 21 having the protruding portion 21b formed on the pressing surface 21f as shown in FIG. 10, the wiring member 4 or the power semiconductor element 2 is not contaminated. It was confirmed that sufficient pressure was applied to the entire surface 2f to join the wiring member 4.

なお、張出部21bのサイズ(例えば半径Lr)が大きすぎると、電力用半導体素子2のエッジ部近傍で、圧力均一化シート50が張出部21bに押し返されてしまい、配線部材4の側に変形することがある。その結果、電力用半導体素子2のエッジ部近傍の空間が圧力均一化シート50によって遮蔽されてしまう。その遮蔽された空間内に有機保護膜の成分が局所的に堆積してしまい、それが配線部材4あるいは電力用半導体素子2を汚染してしまうことが実験によって確認されている。   If the size of the overhang portion 21 b (for example, the radius Lr) is too large, the pressure equalizing sheet 50 is pushed back to the overhang portion 21 b in the vicinity of the edge portion of the power semiconductor element 2. May deform to the side. As a result, the space near the edge portion of the power semiconductor element 2 is shielded by the pressure uniformizing sheet 50. It has been confirmed by experiments that components of the organic protective film are locally deposited in the shielded space, which contaminates the wiring member 4 or the power semiconductor element 2.

そこで、張出部21bのサイズ(主面2fのコーナー部Ccを中心とする半径Lr)をパラメータとして、実験を行った。その結果、張出部21bの半径Lrが1mm〜4mmであれば、配線部材4を汚染することなく、電力用半導体素子2の主面2f全面に十分に加圧力を加えることができることが確認できた。なお、張出部21bのサイズ(半径Lr)の上限値4mmという値は電力用半導体素子2の主面2fの横または縦の寸法(Wc)の40%にあたり、下限値1mmという値は10%にあたる。つまり、張出部21bの効果を発揮するためには、コーナー部Ccからの張出量が1mm以上あるいは主面2fの寸法Wcの10%以上必要である。そして、圧力均一化シート50を加圧面21fよりもさらに電力用半導体素子2から離れる方向に反り返らせるための条件は、上述した上限値から以下のようになる。つまり、電力用半導体素子2の主面2fを構成する4辺のそれぞれの中間部分として、各辺の寸法(Wc)の20%(100%−40%×2)以上の領域において、エッジから所定幅Ds外側の部分にクリアランスCvを有する空間Sfを設けるよう、上側の加圧板21の加圧面21fを形成する必要がある。   Therefore, an experiment was performed using the size of the overhang portion 21b (the radius Lr centered on the corner portion Cc of the main surface 2f) as a parameter. As a result, if the radius Lr of the overhang portion 21b is 1 mm to 4 mm, it can be confirmed that sufficient pressure can be applied to the entire main surface 2f of the power semiconductor element 2 without contaminating the wiring member 4. It was. The upper limit value 4 mm of the size (radius Lr) of the overhanging portion 21 b corresponds to 40% of the horizontal or vertical dimension (Wc) of the main surface 2 f of the power semiconductor element 2, and the lower limit value 1 mm is 10%. It hits. That is, in order to exert the effect of the overhanging portion 21b, the overhanging amount from the corner portion Cc is required to be 1 mm or more or 10% or more of the dimension Wc of the main surface 2f. And the conditions for making the pressure equalization sheet | seat 50 bend in the direction which leaves | separates from the power semiconductor element 2 further than the pressurization surface 21f are as follows from the upper limit mentioned above. That is, as an intermediate portion of each of the four sides constituting the main surface 2f of the power semiconductor element 2, a predetermined distance from the edge in a region of 20% (100% -40% × 2) or more of the dimension (Wc) of each side. It is necessary to form the pressure surface 21f of the upper pressure plate 21 so that the space Sf having the clearance Cv is provided in the portion outside the width Ds.

実施の形態3の変形例.
なお、張出部21bの形状は、図9、図10で説明したような略円形状に限定されるものではなく、例えば、図11に示すように略矩形状でも良い。ただし、図11のように加圧面21fの4隅部分が角状になっていると、圧力均一化シート50に角が食い込み、その部分が局所的に薄くなりやすい。そのため、張出部21bには、角を有しない形状の方が好ましい。したがって、張出部21bは、図11に示した略矩形状のような形状よりも、図9、図10に示した略円形状のような角の無い形状が望ましい。加えて、張出部21bのエッジ部にRなどの連続的な傾斜をつけることで、圧力均一化シート50への食い込みをさらに低減することができ、より効果的に圧力均一化シート50が局所的に薄くなるのを防止することができる。
Modified example of the third embodiment.
The shape of the overhanging portion 21b is not limited to the substantially circular shape as described with reference to FIGS. 9 and 10, and may be, for example, a substantially rectangular shape as shown in FIG. However, if the four corners of the pressure surface 21f are square as shown in FIG. 11, the corners bite into the pressure equalizing sheet 50, and the portions tend to be locally thin. Therefore, it is preferable that the protruding portion 21b has a shape having no corners. Accordingly, the overhanging portion 21b is preferably a shape having no corners such as the substantially circular shape shown in FIGS. 9 and 10 rather than the substantially rectangular shape shown in FIG. In addition, by providing a continuous slope such as R to the edge portion of the overhanging portion 21b, the biting into the pressure equalizing sheet 50 can be further reduced, and the pressure equalizing sheet 50 is more effectively localized. Thinning can be prevented.

以上のように、本実施の形態3にかかる電力用半導体装置の製造方法によれば、上側の加圧板21の加圧面21fには、主面2fに平行な方向(xy)において、所定幅Dsより大きな所定距離Lr分、電力用半導体素子2の主面2fの4隅(コーナー部Cc)に対応する位置から外側に張り出す張出部21bが形成されているので、接合圧力を低く設定した場合でも、コーナー部Ccでの加圧力低下を抑制し、信頼性の高い接合を得ることができる。   As described above, according to the method for manufacturing the power semiconductor device according to the third embodiment, the pressing surface 21f of the upper pressing plate 21 has the predetermined width Ds in the direction (xy) parallel to the main surface 2f. The overhanging portion 21b projecting outward from the position corresponding to the four corners (corner portion Cc) of the main surface 2f of the power semiconductor element 2 is formed by a larger predetermined distance Lr, so the bonding pressure is set low. Even in this case, it is possible to suppress a decrease in the applied pressure at the corner portion Cc and obtain a highly reliable joint.

とくに、所定距離Lrは、1〜4mm、あるいは電力用半導体素子2の主面2fの横または縦の寸法(WcxまたはWcy)の40%以下の範囲に設定されるので、空間Sfによって圧力均一化シート50を加圧面21fよりも上方にかわすことと、コーナー部Ccでの加圧力低下を抑制することを両立できる。   In particular, the predetermined distance Lr is set to 1 to 4 mm or 40% or less of the horizontal or vertical dimension (Wcx or Wcy) of the main surface 2f of the power semiconductor element 2, so that the pressure is equalized by the space Sf. It is possible to satisfy both of changing the sheet 50 upward from the pressing surface 21f and suppressing a decrease in the applied pressure at the corner portion Cc.

また、上記実施の形態1ないし3にかかる電力用半導体装置の製造方法によれば、焼結性金属粒子を含有する接合材3Pと加圧装置10を用いて、配線部材4と電力用半導体素子2との接合を行う電力用半導体装置1の製造方法であって、鉛直方向(z)において、電力用半導体素子2が配線部材4の上方に位置するように、接合材3Pを介して電力用半導体素子2を配線部材4に重ね、加圧装置10の一対の加圧板(21、22)の間の所定位置に設置する設置工程と、一対の加圧板(21、22)により加熱、加圧して、接合材3Pの焼結性金属粒子を焼結させて電力用半導体素子2を配線部材4に接合する工程と、を含み、一対の加圧板のうち、上側の加圧板21と電力用半導体素子2の主面2fとの間には、電力用半導体素子2よりも柔軟な樹脂シート(圧力均一化シート50)を介在させており、上側の加圧板21は、主面2fに平行な方向(xy)において、加圧面21fが主面2fを内包するように配置され、かつ、接合行程中に変形した樹脂シート(圧力均一化シート50)の端部を加圧面21fよりも上方にかわすための空間Sfが形成されているように構成した。そのため、加圧した際に圧力均一化シート50が加圧面21fよりもさらに電力用半導体素子2から離れる方向に反り返るので、電力用半導体素子2の近傍の空間Spが圧力均一化シート50によって遮蔽されるのを防ぎ、有機保護膜の揮発成分が電力用半導体素子2の近傍の空間に滞留することがなくなる。つまり、配線部材4あるいは電力用半導体素子2に有機保護膜の成分が局所的に堆積し、汚染されるのを防ぐことができる。その結果、均一に加圧できるとともに金属焼結材に含まれる有機保護膜の分解・脱ガス成分による回路部材等の汚染を防止できるので、耐熱性に優れるとともに、信頼性の高い電力用半導体素子を得ることができる。   In addition, according to the method for manufacturing the power semiconductor device according to the first to third embodiments, the wiring member 4 and the power semiconductor element are formed using the bonding material 3P containing the sinterable metal particles and the pressure device 10. 2 is a method for manufacturing a power semiconductor device 1 for joining to a power source 2 through a joining material 3P so that the power semiconductor element 2 is positioned above the wiring member 4 in the vertical direction (z). The semiconductor element 2 is stacked on the wiring member 4 and is installed at a predetermined position between the pair of pressure plates (21, 22) of the pressure device 10, and heated and pressurized by the pair of pressure plates (21, 22). And bonding the power semiconductor element 2 to the wiring member 4 by sintering the sinterable metal particles of the bonding material 3P, and the upper pressure plate 21 and the power semiconductor of the pair of pressure plates. From the power semiconductor element 2 between the main surface 2f of the element 2 and A flexible resin sheet (pressure equalizing sheet 50) is interposed, and the upper pressure plate 21 is arranged so that the pressure surface 21f includes the main surface 2f in a direction (xy) parallel to the main surface 2f. In addition, a space Sf is formed so as to dodge the end of the resin sheet (pressure equalizing sheet 50) deformed during the joining process above the pressure surface 21f. Therefore, when the pressure is applied, the pressure equalizing sheet 50 warps in a direction further away from the power semiconductor element 2 than the pressing surface 21f, so that the space Sp near the power semiconductor element 2 is shielded by the pressure equalizing sheet 50. This prevents the volatile components of the organic protective film from staying in the space near the power semiconductor element 2. That is, it is possible to prevent the organic protective film component from being locally deposited and contaminated on the wiring member 4 or the power semiconductor element 2. As a result, it is possible to pressurize uniformly and prevent contamination of circuit members due to decomposition and degassing components of the organic protective film contained in the sintered metal material, so it has excellent heat resistance and highly reliable power semiconductor elements Can be obtained.

なお、上記各実施の形態においては、電力用半導体素子2には、シリコンウエハを基材とした一般的な素子でも良いが、本発明においては炭化ケイ素(SiC)や窒化ガリウム(GaN)系材料、またはダイヤモンドといったシリコンと較べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料を用い、高耐圧および高温動作が可能な半導体素子を用いた場合に、特に顕著な効果が現れる。特に炭化ケイ素を用いた電力用半導体素子に好適に用いることができる。   In each of the above embodiments, the power semiconductor element 2 may be a general element based on a silicon wafer, but in the present invention, silicon carbide (SiC) or gallium nitride (GaN) -based material. In particular, when a so-called wide band gap semiconductor material having a wider band gap than silicon, such as diamond, is used, and a semiconductor element capable of high breakdown voltage and high temperature operation is used, a particularly remarkable effect appears. In particular, it can be suitably used for a power semiconductor element using silicon carbide.

ワイドバンドギャップ半導体によって形成されたスイッチング素子や整流素子は、ケイ素で形成された素子よりも電力損失が低いため、スイッチング素子や整流素子における高効率化が可能であり、ひいては、電力用半導体装置の高効率化が可能となる。さらに、耐電圧性が高く、許容電流密度も高いため、スイッチング素子や整流素子の小型化が可能であり、これら小型化されたスイッチング素子や整流素子を用いることにより、電力用半導体装置も小型化が可能となる。また耐熱性が高いので、高温動作が可能であり、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化も可能となるので、電力用半導体装置の一層の小型化が可能になる。   Since switching elements and rectifying elements formed of wide band gap semiconductors have lower power loss than elements formed of silicon, it is possible to increase the efficiency of switching elements and rectifying elements. High efficiency can be achieved. In addition, because it has high voltage resistance and high allowable current density, it is possible to reduce the size of switching elements and rectifier elements. By using these reduced switching elements and rectifier elements, power semiconductor devices can also be reduced in size. Is possible. In addition, since the heat resistance is high, it is possible to operate at a high temperature, and it is possible to reduce the size of the heat dissipating fins of the heat sink and the air cooling of the water-cooled portion, thereby further reducing the size of the power semiconductor device.

その際、背景技術で説明したように、高温で信頼性の高い焼結性銀族材を用いた接合が有力であり、本発明による効果を発揮することで、ワイドバンドギャップ半導体の特性を活かすことができるようになる。   At that time, as explained in the background art, bonding using a sinterable silver group material having high reliability at high temperatures is effective, and by taking advantage of the effects of the present invention, the characteristics of the wide band gap semiconductor are utilized. Will be able to.

なお、スイッチング素子及び整流素子の両方がワイドバンドギャップ半導体によって形成されていても、いずれか一方の素子がワイドバンドギャップ半導体によって形成されていてもよい。   Note that both the switching element and the rectifying element may be formed of a wide band gap semiconductor, or one of the elements may be formed of a wide band gap semiconductor.

1:電力用半導体装置、1A:接合準備品、2:電力用半導体素子、2f:主面、3:接合層、3P:金属接合材、4:配線部材、10:加圧装置、21:上側の加圧板、21b:張出部、21f:加圧面、22:下側の加圧板、50:圧力均一化シート(樹脂シート)、Cc:電力用半導体素子の主面の4隅、Ds:主面のエッジと加圧面のエッジ間の距離、Wc:電力用半導体素子の寸法、Wd:加圧面の寸法。   1: power semiconductor device, 1A: bonding preparation, 2: power semiconductor element, 2f: main surface, 3: bonding layer, 3P: metal bonding material, 4: wiring member, 10: pressure device, 21: upper side Pressure plate, 21b: overhang, 21f: pressure surface, 22: lower pressure plate, 50: pressure equalization sheet (resin sheet), Cc: four corners of main surface of power semiconductor element, Ds: main The distance between the edge of the surface and the edge of the pressure surface, Wc: the size of the power semiconductor element, Wd: the size of the pressure surface.

Claims (9)

焼結性金属粒子を含有する接合材と加圧装置を用いて、配線部材と電力用半導体素子との接合を行う電力用半導体装置の製造方法であって、
鉛直方向において、前記電力用半導体素子が前記配線部材の上方に位置するように、前記接合材を介して前記電力用半導体素子を前記配線部材に重ね、前記加圧装置の一対の加圧板の間の所定位置に設置する設置工程と、
前記一対の加圧板により加熱、加圧して、前記接合材の焼結性金属粒子を焼結させて前記電力用半導体素子を前記配線部材に接合する接合工程と、を含み、
前記一対の加圧板のうち、上側の加圧板と前記電力用半導体素子の主面との間には、樹脂シートを介在させており、
前記上側の加圧板は、その加圧面が前記主面を内包するように配置され、かつ、前記接合工程中に変形した前記樹脂シートの端部を前記加圧面よりも上方にかわすための空間が形成されていることを特徴とする電力用半導体装置の製造方法。
Using a bonding material containing a sinterable metal particle and a pressure device, a method for manufacturing a power semiconductor device for bonding a wiring member and a power semiconductor element,
In the vertical direction, the power semiconductor element is overlaid on the wiring member via the bonding material so that the power semiconductor element is positioned above the wiring member, and between the pair of pressure plates of the pressure device. An installation process to install in a predetermined position;
A step of heating and pressing with the pair of pressure plates to sinter the sinterable metal particles of the bonding material to bond the power semiconductor element to the wiring member,
Among the pair of pressure plates, a resin sheet is interposed between the upper pressure plate and the main surface of the power semiconductor element,
The upper pressure plate is disposed so that the pressure surface includes the main surface, and a space for dosing the end portion of the resin sheet deformed during the joining step above the pressure surface. A method of manufacturing a power semiconductor device, wherein the power semiconductor device is formed.
前記樹脂シートは、前記主面よりも大きく、前記端部が前記上側の加圧板に接触しない大きさであることを特徴とする請求項1に記載の電力用半導体装置の製造方法。The method of manufacturing a power semiconductor device according to claim 1, wherein the resin sheet is larger than the main surface and has a size such that the end portion does not contact the upper pressure plate. 前記樹脂シートの端部が前記上側の加圧板に接触しないように、前記空間は前記上側の加圧板の加圧面の位置から上方に所定距離裕度を確保して形成されていることを特徴とする請求項1に記載の電力用半導体装置の製造方法。The space is formed with a predetermined distance tolerance upward from the position of the pressure surface of the upper pressure plate so that the end of the resin sheet does not contact the upper pressure plate. A method for manufacturing a power semiconductor device according to claim 1. 前記電力用半導体素子の主面は矩形をなし、
前記空間は、前記主面の4辺のそれぞれの中間部分から外側に所定幅離れた部分に形成されていることを特徴とする請求項1から3のいずれか1項に記載の電力用半導体装置の製造方法。
The main surface of the power semiconductor element is rectangular,
The space power semiconductor device according to the outside from the respective intermediate portions of the four sides claim 1, characterized in that it is formed in a predetermined width spaced portions to any one of the three of the main surface Manufacturing method.
前記所定幅は、0〜5mm、あるいは前記電力用半導体素子の主面の縦または横の寸法の0〜5%の範囲に設定されることを特徴とする請求項に記載の電力用半導体装置の製造方法。 5. The power semiconductor device according to claim 4 , wherein the predetermined width is set to 0 to 5 mm or a range of 0 to 5% of a vertical or horizontal dimension of a main surface of the power semiconductor element. Manufacturing method. 前記上側の加圧板の加圧面には、前記所定幅より大きな所定距離分、前記電力用半導体素子の主面の4隅に対応する位置から外側に張り出す張出部が形成されていることを特徴とする請求項またはに記載の電力用半導体装置の製造方法。 The pressure surface of the upper pressure plate is formed with a protruding portion that protrudes outward from a position corresponding to the four corners of the main surface of the power semiconductor element by a predetermined distance larger than the predetermined width. 6. The method for manufacturing a power semiconductor device according to claim 4 or 5 . 前記所定距離は、1〜4mm、あるいは前記電力用半導体素子の主面の縦または横の寸法の40%以下の範囲に設定されることを特徴とする請求項に記載の電力用半導体装置の製造方法。 The power semiconductor device according to claim 6 , wherein the predetermined distance is set in a range of 1 to 4 mm or 40% or less of a vertical or horizontal dimension of a main surface of the power semiconductor element. Production method. 前記電力用半導体素子がワイドバンドギャップ半導体材料により形成されていることを特徴とする請求項1から7のいずれか1項に記載の電力用半導体装置の製造方法 Method of manufacturing a power semiconductor device according to any one of claims 1 7, characterized in that said power semiconductor element is formed by a wide band gap semiconductor material. 前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム系材料、およびダイヤモンド、のうちのいずれかであることを特徴とする請求項に記載の電力用半導体装置の製造方法9. The method of manufacturing a power semiconductor device according to claim 8 , wherein the wide band gap semiconductor material is any one of silicon carbide, a gallium nitride-based material, and diamond.
JP2013121438A 2013-06-10 2013-06-10 Method for manufacturing power semiconductor device Active JP6120685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013121438A JP6120685B2 (en) 2013-06-10 2013-06-10 Method for manufacturing power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013121438A JP6120685B2 (en) 2013-06-10 2013-06-10 Method for manufacturing power semiconductor device

Publications (2)

Publication Number Publication Date
JP2014239170A JP2014239170A (en) 2014-12-18
JP6120685B2 true JP6120685B2 (en) 2017-04-26

Family

ID=52136094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013121438A Active JP6120685B2 (en) 2013-06-10 2013-06-10 Method for manufacturing power semiconductor device

Country Status (1)

Country Link
JP (1) JP6120685B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206021B2 (en) * 2013-09-12 2017-10-04 三菱電機株式会社 Power semiconductor device manufacturing method and power semiconductor device
WO2016125764A1 (en) * 2015-02-03 2016-08-11 東レエンジニアリング株式会社 Mounting device and mounting method
JP6261819B1 (en) * 2016-05-12 2018-01-17 三菱電機株式会社 Semiconductor device and manufacturing method of semiconductor device
WO2017203650A1 (en) 2016-05-26 2017-11-30 三菱電機株式会社 Power semiconductor apparatus
NL2021137B1 (en) 2018-06-15 2019-12-20 Boschman Tech Bv Sintering Process Product Carrier
WO2020071387A1 (en) * 2018-10-04 2020-04-09 日東電工株式会社 Heat-resistant release sheet and thermocompression bonding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059904A (en) * 2004-08-18 2006-03-02 Toshiba Corp Semiconductor device and its manufacturing method
JP2007067175A (en) * 2005-08-31 2007-03-15 Renesas Technology Corp Method of manufacturing semiconductor device
WO2009001564A1 (en) * 2007-06-28 2008-12-31 Panasonic Corporation Semiconductor element mounting structure, method for manufacturing the semiconductor element mounting structure, semiconductor element mounting method and pressurizing tool

Also Published As

Publication number Publication date
JP2014239170A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
JP6120685B2 (en) Method for manufacturing power semiconductor device
JP6206021B2 (en) Power semiconductor device manufacturing method and power semiconductor device
US20110037166A1 (en) Semiconductor device and semiconductor device manufacturing method
JP5414644B2 (en) Semiconductor device
JP6336138B2 (en) Semiconductor device
US20150179551A1 (en) Semiconductor device
JP6129107B2 (en) Power semiconductor device and method for manufacturing power semiconductor device
CN106847781B (en) Power module package and its manufacturing method
CN103000559A (en) Positioning clamp for semiconductor chip and manufacture method for semiconductor device
JP2014135411A (en) Semiconductor device and semiconductor device manufacturing method
JP6890520B2 (en) Power semiconductor device
WO2017110614A1 (en) Semiconductor device and manufacturing method therefor
CN111696877A (en) Device and method for joining at least two joining members
US10741413B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2013131592A (en) Lead terminal and semiconductor device using the same
JP2017117869A (en) Semiconductor device and manufacturing method thereof
JP5210935B2 (en) Semiconductor device
JP6643481B2 (en) Semiconductor module and method of manufacturing semiconductor module
JP5895549B2 (en) Semiconductor device and manufacturing method thereof
US20180158762A1 (en) Semiconductor device
JP2015138843A (en) Semiconductor device and manufacturing method of the same
JP2017135183A (en) Semiconductor device
JP6316221B2 (en) Semiconductor device
JP2012209469A (en) Power semiconductor device
JP5680011B2 (en) Power semiconductor device and method for manufacturing power semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170328

R151 Written notification of patent or utility model registration

Ref document number: 6120685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250