JP6120382B2 - Negative electrode for lithium secondary battery and lithium secondary battery including the same - Google Patents

Negative electrode for lithium secondary battery and lithium secondary battery including the same Download PDF

Info

Publication number
JP6120382B2
JP6120382B2 JP2014558703A JP2014558703A JP6120382B2 JP 6120382 B2 JP6120382 B2 JP 6120382B2 JP 2014558703 A JP2014558703 A JP 2014558703A JP 2014558703 A JP2014558703 A JP 2014558703A JP 6120382 B2 JP6120382 B2 JP 6120382B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
material layer
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014558703A
Other languages
Japanese (ja)
Other versions
JP2015511389A (en
Inventor
フーン アン、ビョウン
フーン アン、ビョウン
スン ベ、ジューン
スン ベ、ジューン
ワン コー、チャン
ワン コー、チャン
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Priority claimed from PCT/KR2014/000636 external-priority patent/WO2014116029A1/en
Publication of JP2015511389A publication Critical patent/JP2015511389A/en
Application granted granted Critical
Publication of JP6120382B2 publication Critical patent/JP6120382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池用負極及びこれを含むリチウム二次電池に関し、より具体的には、負極活物質の圧延密度及び平均粒子の大きさが互いに異なる多層活物質層を含む負極、及びこれを含むリチウム二次電池に関する。   The present invention relates to a negative electrode for a lithium secondary battery and a lithium secondary battery including the negative electrode. More specifically, the negative electrode includes a multilayer active material layer in which the negative electrode active material has different rolling density and average particle size, and The present invention relates to a lithium secondary battery including the same.

化石燃料の枯渇によるエネルギー源の価格上昇、環境汚染の関心が増幅されるに伴い、環境に優しい代替エネルギー源が未来生活のための必須不可欠な要因となっている。よって、原子力、太陽光、風力、潮力などの自然エネルギーを利用した多様な電力生産技術に対する研究が引き続かれており、このように生産されたエネルギーをさらに効率的に用いるための電力貯蔵装置もまた至大な関心となっている。   As the price of energy sources rise due to the depletion of fossil fuels and the concern about environmental pollution is amplified, environmentally friendly alternative energy sources have become indispensable factors for future life. Therefore, research on various power production technologies using natural energy such as nuclear power, solar power, wind power, tidal power, etc. has been continued, and a power storage device for more efficiently using the energy thus produced. Is also of great interest.

特に、モバイル機器に対する技術開発と需要の増加に伴い、環境に優しい代替エネルギー源として二次電池の需要が急激に増加している。前記二次電池は、最近、電気自動車(EV) またはハイブリッド電気自動車(HEV) などの大容量電力を要する装置の動力源として用いられており、グリッド(Grid)化を介した電力補助電源などの用途にも使用領域が拡がっている。   In particular, with the development of technology and demand for mobile devices, the demand for secondary batteries as an environmentally friendly alternative energy source is increasing rapidly. The secondary battery has recently been used as a power source for devices that require large-capacity power, such as an electric vehicle (EV) or a hybrid electric vehicle (HEV), such as a power auxiliary power source via a grid. The range of use is also expanding in applications.

前記大容量電力を要する装置の動力源として用いられるためには、短時間に大きい出力を発揮することができる特性と共に、大電流による充放電が短時間に繰り返される苛酷な条件下でも10年以上用いられなければならないなど、高いエネルギー密度と優秀な安全性及び長期寿命特性が必然的に求められる。   In order to be used as a power source for the devices that require a large amount of electric power, it has a characteristic capable of exhibiting a large output in a short time and at least 10 years even under severe conditions in which charging and discharging with a large current is repeated in a short time. High energy density, excellent safety and long life characteristics are inevitably required, such as having to be used.

従来、二次電池の負極としてはリチウム金属が用いられていたが、デンドライト(dendrite) の形成に伴う電池短絡と、これによる爆発の危険性が知られながら、 構造的及び電気的性質を維持しつつ、可逆的なリチウムイオンの挿入(intercalation) 及び脱離が可能な炭素系化合物に代替されている。   Traditionally, lithium metal has been used as the negative electrode for secondary batteries, but the structural and electrical properties are maintained while the battery short-circuit associated with the formation of dendrite and the danger of explosion due to this are known. However, carbon-based compounds capable of reversible lithium ion intercalation and desorption are being substituted.

前記炭素系化合物は、標準水素電極電位に対して約-3Vの非常に低い放電電位を有し、黒鉛板層(graphene layer)の一軸配向性による非常に可逆的な充放電挙動のため優秀な電極寿命特性(cycle life)を示す。 また、Liイオン充電時、電極電位が0V Li/Li+で、純粋なリチウム金属とほとんど類似の電位を示すことができるため、酸化物系正極と電池を構成する際、さらに高いエネルギーを得ることができるとの長所がある。   The carbon-based compound has a very low discharge potential of about −3 V with respect to the standard hydrogen electrode potential, and is excellent due to the very reversible charge / discharge behavior due to the uniaxial orientation of the graphite plate layer. The electrode life characteristics (cycle life) are shown. In addition, when charging Li ions, the electrode potential is 0 V Li / Li +, which can show a potential almost similar to that of pure lithium metal, so that higher energy can be obtained when configuring a battery with an oxide-based positive electrode There is an advantage that you can.

前記二次電池用負極は、負極活物質13である炭素材料と、必要に応じて導電材及びバインダーを混合した1種の負極活物質スラリーを製造した後、このスラリーを銅ホイルのような電極集電体11に単層で塗布し、乾燥する方法によって製造される。この際、前記スラリー塗布時には、活物質粉末を集電体に圧着させ、電極の厚さを均一化するために圧延 (press) 工程が行われる (図1参照)。   The negative electrode for a secondary battery is prepared by preparing a negative electrode active material slurry in which a carbon material as the negative electrode active material 13 and, if necessary, a conductive material and a binder are mixed, and then using the slurry as an electrode such as a copper foil. The current collector 11 is manufactured by a method of applying a single layer and drying. At this time, at the time of applying the slurry, the active material powder is pressed against the current collector, and a rolling process is performed in order to make the thickness of the electrode uniform (see FIG. 1).

しかし、従来の電極の圧延工程の際、負極活物質内部に比べて表面の窪みが深化されながら、表面の空隙(pore) の割合が減少される。   However, in the conventional electrode rolling process, the ratio of the surface pores is reduced while the surface depression is deepened as compared with the inside of the negative electrode active material.

このような現象は電極厚さが厚い場合、さらに深化され、電極内部まで電解液の含浸が難しくなるに伴い、イオン移動通路を確保することができないため、イオン移動が円滑に行われ得ないので、電池性能及び寿命特性の低下を齎す。   This phenomenon is further deepened when the electrode thickness is thick, and it becomes difficult to impregnate the electrolyte solution up to the inside of the electrode. Deteriorating battery performance and life characteristics.

本発明の解決しようとする課題は、負極に多層活物質層を含むことにより、電極内部へのイオン移動性が向上した負極を提供することである。   The problem to be solved by the present invention is to provide a negative electrode having improved ion mobility into the electrode by including a multilayer active material layer in the negative electrode.

また、本発明は、前記負極を含むことにより、電池の充電特性及び寿命特性が向上したリチウム二次電池を提供するものである。   Moreover, this invention provides the lithium secondary battery which the charging characteristic and lifetime characteristic of the battery improved by including the said negative electrode.

前記課題を解決するため、本発明の一実施例によれば、
電極集電体; 及び前記電極集電体上に形成された多層活物質層を含み、前記多層活物質層は、前記電極集電体上に形成されており、第1負極活物質を含む1次負極活物質層; 及び前記1次負極活物質層上に形成されており、前記第1負極活物質より相対的に低い圧延密度及び相対的に大きい平均粒子の大きさを有する第2負極活物質を含む2次負極活物質層を含み、前記第1負極活物質及び前記第2負極活物質は、共に結晶質系炭素であり前記結晶質系炭素は、球形または類似球形を有する天然黒鉛、人造黒鉛、またはこれらの混合物を含み、前記第1負極活物質と前記第2負極活物質の平均粒子の大きさの比は、1:9から5:5.1であることを特徴とする負極を提供する。
In order to solve the above problems, according to one embodiment of the present invention,
An electrode current collector; and a multilayer active material layer formed on the electrode current collector, wherein the multilayer active material layer is formed on the electrode current collector and includes a first negative electrode active material 1 And a second negative electrode active material layer formed on the primary negative electrode active material layer and having a relatively lower rolling density and a relatively larger average particle size than the first negative electrode active material. comprises secondary negative-electrode active material layer containing a substance, the first negative active material and the second negative electrode active material, are both crystalline system-carbon, the crystalline carbon include natural with spherical or similar sphere Including graphite, artificial graphite, or a mixture thereof, the ratio of the average particle size of the first negative electrode active material and the second negative electrode active material is 1: 9 to 5: 5.1, A negative electrode is provided.

また、本発明の一実施例によれば、前記負極を含むリチウム二次電池を提供する。   In addition, according to an embodiment of the present invention, a lithium secondary battery including the negative electrode is provided.

本発明の一実施例に係る負極は、電極集電体上に負極活物質の圧延密度及び平均粒子の大きさが異なる二種類の負極活物質を含む多層活物質層を含むことにより、圧延工程後にも電極表面の空隙率 (porosity)を向上させ、電極内部へのイオン移動性を向上させることができるので、リチウム二次電池の充電特性及び寿命特性を向上させることができる。   The negative electrode according to an embodiment of the present invention includes a multilayer active material layer including two types of negative electrode active materials having different rolling densities and average particle sizes of the negative electrode active material on the electrode current collector. Since the porosity of the electrode surface can be improved later and the ion mobility to the inside of the electrode can be improved, the charging characteristics and life characteristics of the lithium secondary battery can be improved.

従来の単層活物質層からなる負極構造の模式図である。It is a schematic diagram of the negative electrode structure which consists of a conventional single layer active material layer. 本発明の一実施例に係る多層活物質層からなる負極構造の模式図である。It is a schematic diagram of the negative electrode structure which consists of a multilayer active material layer based on one Example of this invention. 実験例2によって実施例1、及び比較例1と2のリチウム二次電池の充電特性を測定したグラフである。6 is a graph obtained by measuring charging characteristics of Example 1 and lithium secondary batteries of Comparative Examples 1 and 2 according to Experimental Example 2. FIG. 実験例3によって負極密度による実施例1及び比較例1のリチウム二次電池の寿命特性を測定したグラフである。5 is a graph showing the life characteristics of lithium secondary batteries of Example 1 and Comparative Example 1 measured according to Experimental Example 3 according to negative electrode density. 実験例3によって負極密度による実施例1及び比較例1のリチウム二次電池の寿命特性を測定したグラフである。5 is a graph showing the life characteristics of lithium secondary batteries of Example 1 and Comparative Example 1 measured according to Experimental Example 3 according to negative electrode density.

以下、本発明を詳しく説明する。   The present invention will be described in detail below.

本発明の一実施例に係る負極は、図2に示した模式図でのように、電極集電体21 ; 及び前記電極集電体上に形成された多層活物質層を含み、前記多層活物質層は、第1負極活物質23を含む1次負極活物質層(A); 及び前記第1負極活物質より相対的に低い圧延密度及び相対的に大きい平均粒子の大きさを有する第2負極活物質24を含む2次負極活物質層(B)を含むことができる。   A negative electrode according to an embodiment of the present invention includes an electrode current collector 21; and a multilayer active material layer formed on the electrode current collector, as shown in the schematic diagram of FIG. The material layer includes a primary negative electrode active material layer (A) including a first negative electrode active material 23; and a second material having a relatively lower rolling density and a relatively larger average particle size than the first negative electrode active material. A secondary negative electrode active material layer (B) including the negative electrode active material 24 can be included.

本発明の一実施例に係る負極は、電極集電体上に負極活物質の圧延密度及び平均粒子の大きさが異なる二種類の負極活物質を含む多層活物質層を含むことにより、圧延工程後にも電極表面の空隙率 (porosity)を向上させ、電極内部へのイオン移動性を向上させることができるので、リチウム二次電池の充電特性及び寿命特性を向上させることができる。   The negative electrode according to an embodiment of the present invention includes a multilayer active material layer including two types of negative electrode active materials having different rolling densities and average particle sizes of the negative electrode active material on the electrode current collector. Since the porosity of the electrode surface can be improved later and the ion mobility to the inside of the electrode can be improved, the charging characteristics and life characteristics of the lithium secondary battery can be improved.

先ず、前記電極集電体は、ステンレススチール; アルミニウム; ニッケル; チタン; 焼成炭素; 銅; カーボン、ニッケル、チタンまたは銀で表面処理されたステンレススチール; アルミニウム―カドミウム合金; 導電材で表面処理された非伝導性高分子; 及び伝導性高分子からなる群から選択された1種または2種以上であり得る。   First, the electrode current collector was stainless steel; aluminum; nickel; titanium; calcined carbon; copper; stainless steel surface-treated with carbon, nickel, titanium, or silver; aluminum-cadmium alloy; surface-treated with a conductive material And one or more selected from the group consisting of a non-conductive polymer; and a conductive polymer.

また、本発明の負極において、前記第1負極活物質及び第2負極活物質は高いエネルギー密度を確保することができるよう、理論的な最大限界容量が 372 mAh/g (844 mAh/cc)である天然黒鉛(graphite) 及び人造黒鉛のような結晶質系炭素; ソフトカーボン(soft carbon) 及びハードカーボン(hard carbon)のような非晶質系炭素; またはこれらの混合物を挙げることができる。   In the negative electrode of the present invention, the first negative electrode active material and the second negative electrode active material have a theoretical maximum limit capacity of 372 mAh / g (844 mAh / cc) so as to ensure a high energy density. Mention may be made of some crystalline carbons such as natural graphite and artificial graphite; amorphous carbons such as soft carbon and hard carbon; or mixtures thereof.

具体的に、前記第1負極活物質及び第2負極活物質はそれぞれ球形、または類似球形を有する同一 (同種)の天然黒鉛及び人造黒鉛のような結晶系炭素であってもよく、他のものであってもよい。   Specifically, the first negative electrode active material and the second negative electrode active material may be the same (same type) natural graphite and crystalline carbon such as artificial graphite each having a spherical shape or a similar spherical shape. It may be.

また、本発明の一実施例に係る負極において、前記第1負極活物質:第2負極活物質の平均粒子の大きさの比は1:9 から5:5.1であってもよく、具体的に1:1.3から1:4であってもよい。非制限的な例として、前記第1負極活物質の平均粒子の大きさは約20μm以下、具体的に例えば10μmから18μmの範囲であってもよい。   In the negative electrode according to an embodiment of the present invention, the average particle size ratio of the first negative electrode active material: second negative electrode active material may be 1: 9 to 5: 5.1. Alternatively, it may be 1: 1.3 to 1: 4. As a non-limiting example, the average particle size of the first negative electrode active material may be about 20 μm or less, specifically, for example, in the range of 10 μm to 18 μm.

本発明の一実施例に係る前記負極活物質の平均粒子の大きさは、例えば、レーザー回折法(laser diffraction method)を利用して測定することができる。前記レーザー回折法は、一般にサブミクロン(submicron) 領域から数 mm 程度の粒径の測定が可能であり、高再現性及び高分解性の結果を得ることができる。負極活物質の平均粒子の大きさ(D50)は、粒径分布の50%基準での粒径で定義することができる。 The average particle size of the negative electrode active material according to an embodiment of the present invention can be measured using, for example, a laser diffraction method. In general, the laser diffraction method can measure a particle diameter of about several millimeters from a submicron region, and can obtain results of high reproducibility and high resolution. The average particle size (D 50 ) of the negative electrode active material can be defined by the particle size based on 50% of the particle size distribution.

また、本発明の一実施例に係る負極において、前記第1負極活物質:第2負極活物質の圧延密度比は、12から16MPaの圧力下で1.1:1から3:1、好ましくは1.1:1 から1.5:1 であることがよい。   In the negative electrode according to one embodiment of the present invention, the rolling density ratio of the first negative electrode active material: second negative electrode active material may be 1.1: 1 to 3: 1 under a pressure of 12 to 16 MPa, preferably It should be between 1.1: 1 and 1.5: 1.

本発明の一実施例によれば、前記第1負極活物質と第2負極活物質の圧延密度は、前記範囲を満たす第1負極活物質と第2負極活物質の圧延密度比を満たしている限り、特に制限されない。しかし、例えば、第1負極活物質の圧延密度は、好ましくは12から16MPaの圧力下で1.4 から1.85 g/ccの密度を有し、第2負極活物質の圧延密度は12から16MPaの圧力下で1.4から1.6g/ccの密度を有するのが好ましい。   According to an embodiment of the present invention, a rolling density of the first negative electrode active material and the second negative electrode active material satisfies a rolling density ratio of the first negative electrode active material and the second negative electrode active material satisfying the range. As long as it is not particularly limited. However, for example, the rolling density of the first negative electrode active material preferably has a density of 1.4 to 1.85 g / cc under a pressure of 12 to 16 MPa, and the rolling density of the second negative electrode active material is from 12 It preferably has a density of 1.4 to 1.6 g / cc under a pressure of 16 MPa.

前記圧延密度は、負極活物質の粒子変形が行われる程度を比べたものであって、同一圧力で圧延した時、圧延密度値が低いほど圧縮強度に優れる。前記第1負極活物質及び第2負極活物質の圧延密度の測定は、例えば、三菱化学(Mitsubishi chemical)の粉体抵抗測定器 MCP-PD51を用いて測定され得る。前記粉体抵抗測定器の場合、シリンダータイプロードセル(load cell)に一定量の負極活物質パウダーを入れて力を持続的に加え、この際、粒子が加圧されながら測定される密度を測定したものである。粒子強度が大きいほど同一圧力で充分に押されないようになり圧延密度が低く表れ得る。   The rolling density is a comparison of the degree of particle deformation of the negative electrode active material. When rolling at the same pressure, the lower the rolling density value, the better the compressive strength. The measurement of the rolling density of the first negative electrode active material and the second negative electrode active material can be performed using, for example, a powder resistance measuring device MCP-PD51 of Mitsubishi Chemical. In the case of the powder resistance measuring device, a constant amount of negative electrode active material powder is put into a cylinder type load cell and force is continuously applied. At this time, the density measured while the particles are pressed was measured. Is. The larger the particle strength, the less the pressure is applied at the same pressure, and the lower the rolling density can be.

また、本発明の一実施例に係る負極において、前記第1負極活物質:第2負極活物質の圧縮強度比は、12から16MPaの圧力下で2:8から5:5.1、具体的に2:8から4:7範囲であり得る。   In the negative electrode according to an embodiment of the present invention, the compressive strength ratio of the first negative electrode active material: the second negative electrode active material may be 2: 8 to 5: 5.1 under a pressure of 12 to 16 MPa. The range may be from 2: 8 to 4: 7.

また、前記1次負極活物質層の全体体積に対する空隙率、例えば 0.1から10μm大きさの空隙が含まれた割合は約10から50重量%であり、前記2次負極活物質層の全体体積中に空隙率は約10から50重量%である。この際、2次負極活物質層のうち、空隙の大きさ及び/または空隙率は1次負極活物質層のそれに比べて相対的に大きいか、高いことがある。例えば、1次負極活物質層及び2次負極活物質層の空隙率が27%で同一の場合、前記1次負極活物質層の活物質と活物質との間の空隙の大きさは0.4から3μmであり、2次負極活物質層の活物質と活物質との間の空隙の大きさは0.5から3.5μmであり得る。   The porosity of the primary negative electrode active material layer, for example, the ratio of 0.1 to 10 μm voids is about 10 to 50% by weight. The porosity in the volume is about 10 to 50% by weight. At this time, in the secondary negative electrode active material layer, the size and / or porosity of the void may be relatively larger or higher than that of the primary negative electrode active material layer. For example, when the primary negative electrode active material layer and the secondary negative electrode active material layer have the same porosity of 27%, the size of the gap between the active material of the primary negative electrode active material layer is 0. 4 to 3 μm, and the size of the gap between the active materials of the secondary negative electrode active material layer may be 0.5 to 3.5 μm.

すなわち、本発明の負極は、第2負極活物質に比べて相対的に圧延密度が高く、平均粒子の大きさが小さな第1負極活物質からなる1次負極活物質層上に相対的に圧延密度が低く、平均粒子の大きさが大きい第2負極活物質からなる2次負極活物質層を形成することにより、負極活物質層の表面の空隙率を高め、圧延工程時に負極活物質層の表面の損傷を防止し、電極内部の空隙構造を改善することができる。   That is, the negative electrode of the present invention is relatively rolled on the primary negative electrode active material layer composed of the first negative electrode active material having a relatively high rolling density and a smaller average particle size than the second negative electrode active material. By forming a secondary negative electrode active material layer composed of a second negative electrode active material having a low density and a large average particle size, the porosity of the surface of the negative electrode active material layer is increased, and the negative electrode active material layer is formed during the rolling process. Surface damage can be prevented, and the void structure inside the electrode can be improved.

一方、従来のように単層活物質層からなる電極を形成する場合、圧延工程時にソフト(soft)なので応力が弱い単一負極活物質層の特性により、圧力を電極の内部まで伝達することができないため、電極表面に位置した負極活物質のみ甚だしく加圧されることになる。例えば、前記第2負極活物質のように圧延密度が低く、平均粒子の大きさが大きい単層活物質層だけで電極を形成する場合も、圧延工程時に応力の弱い単一負極活物質層の特性によって電極表面に位置した負極活物質のみ甚だしく加圧されることになる。その結果、電極表面付近の負極活物質間の空隙率が減少し、電極内部へのイオン移動性が低下し得る。このような現象は、負極の電極厚さが厚くなるか、密度が高くなるほど甚だしくなり得る。   On the other hand, when forming an electrode composed of a single-layer active material layer as in the prior art, pressure can be transmitted to the inside of the electrode due to the characteristics of a single negative electrode active material layer with low stress because it is soft during the rolling process. Since this is not possible, only the negative electrode active material located on the electrode surface is heavily pressurized. For example, even when the electrode is formed only with a single layer active material layer having a low rolling density and a large average particle size like the second negative electrode active material, the single negative electrode active material layer having a low stress during the rolling process is used. Depending on the characteristics, only the negative electrode active material located on the electrode surface is heavily pressurized. As a result, the porosity between the negative electrode active materials in the vicinity of the electrode surface can be reduced, and ion mobility into the electrode can be reduced. Such a phenomenon can become more serious as the electrode thickness of the negative electrode increases or the density increases.

しかし、本発明のように圧延密度及び平均粒子の大きさが異なって応力の高い二種以上の負極活物質、特に2次負極活物質層の圧延密度が1次負極活物質層に比べて相対的に低い負極活物質を用いることになれば、電極表面付近に塗布される負極活物質の圧縮強度に優れるほど、圧延の際、電極表面の窪み現象が緩和され得る。よって、電極内部、すなわち1次負極活物質層に比べて電極表面、すなわち2次負極活物質層の空隙率がさらに高くなるので、電極内部へのイオン移動性が有利になって、イオン移動性を向上させることができる(図2 参照)。   However, as in the present invention, two or more negative electrode active materials having different rolling density and average particle size and high stress, in particular, the rolling density of the secondary negative electrode active material layer is relative to that of the primary negative electrode active material layer. If a negative electrode active material that is extremely low is used, the dent phenomenon on the electrode surface during rolling can be alleviated as the compressive strength of the negative electrode active material applied in the vicinity of the electrode surface increases. Accordingly, the porosity of the electrode surface, that is, the secondary negative electrode active material layer is further increased as compared with the inside of the electrode, that is, the primary negative electrode active material layer. Can be improved (see FIG. 2).

本発明の第1及び第2負極活物質は、必要に応じて導電材及びバインダーなどをさらに含むことができる。   The first and second negative electrode active materials of the present invention may further include a conductive material and a binder as necessary.

この時、前記導電材はニッケル粉末、酸化コバルト、酸化チタン、カーボンなどを例示することができる。カーボンとしては、ケッチェンブラック、アセチレンブラック、ファーネスブラック、黒鉛、炭素繊維及びフラーレンからなる群から選択されたいずれか一つ、またはこれらのうち2種以上の混合物などを挙げることができる。   At this time, examples of the conductive material include nickel powder, cobalt oxide, titanium oxide, and carbon. Examples of carbon include any one selected from the group consisting of ketjen black, acetylene black, furnace black, graphite, carbon fiber, and fullerene, or a mixture of two or more thereof.

また、前記バインダーは、従来にリチウム二次電池に用いられていた全てのバインダー樹脂が用いられてもよく、その例としてはポリビニリデンフルオライド、カルボキシメチルセルロース、メチルセルロース及びポリアクリル酸ナトリウムからなる群から選択されたいずれか一つ、またはこれらのうち2種以上の混合物などがある。   In addition, the binder may be any binder resin that has been used in lithium secondary batteries, such as polyvinylidene fluoride, carboxymethylcellulose, methylcellulose, and sodium polyacrylate. Any one selected or a mixture of two or more of these may be used.

また、本発明の一実施例によれば、電極集電体上に第1負極活物質及びバインダー樹脂を含む第1負極活物質スラリーを塗布する段階; 前記第1負極活物質スラリーを乾燥して1次負極活物質層を形成する段階; 前記1次負極活物質層上に第2負極活物質及びバインダー樹脂を含む第2負極活物質スラリーを塗布する段階; 前記第2負極活物質スラリーを乾燥して2次負極活物質層を形成する段階; 及び前記1次及び2次負極活物質層が形成された電極集電体を圧延する段階を含むリチウム二次電池用負極製造方法を提供する。   According to another embodiment of the present invention, a step of applying a first negative electrode active material slurry containing a first negative electrode active material and a binder resin on an electrode current collector; drying the first negative electrode active material slurry; Forming a primary negative electrode active material layer; applying a second negative electrode active material slurry containing a second negative electrode active material and a binder resin on the primary negative electrode active material layer; drying the second negative electrode active material slurry And forming a secondary negative electrode active material layer; and rolling the electrode current collector on which the primary and secondary negative electrode active material layers are formed.

また、前記方法は、第1負極活物質スラリーが乾燥される前に第2負極活物質スラリーを塗布することもできる。すなわち、前記第1負極活物質スラリーと第2負極活物質スラリーを塗布する段階は、乾燥段階なしに引き続き行われてもよく、塗布されたスラリーを乾燥し、圧延する段階もまた一斉に行われてもよい。   In the method, the second negative electrode active material slurry may be applied before the first negative electrode active material slurry is dried. That is, the step of applying the first negative electrode active material slurry and the second negative electrode active material slurry may be continued without a drying step, and the steps of drying and rolling the applied slurry are also performed simultaneously. May be.

前記圧延工程は、通常の電極製造方法と同一の工程条件下で行われてもよい。   The rolling process may be performed under the same process conditions as those of a normal electrode manufacturing method.

本発明の方法において、前記圧延工程前の前記1次負極活物質層の内部の空隙の大きさは約1から20μmであり、1次負極活物質層の全体体積のうち空隙率は約50%である。しかし、圧延工程後、1次負極活物質層内部の空隙の大きさは約0.1から3μmであり、1次負極活物質層の全体体積のうち空隙率は約10%から約50%である。   In the method of the present invention, the size of voids in the primary negative electrode active material layer before the rolling step is about 1 to 20 μm, and the porosity of the total volume of the primary negative electrode active material layer is about 50%. It is. However, after the rolling process, the size of the void inside the primary negative electrode active material layer is about 0.1 to 3 μm, and the porosity of the total volume of the primary negative electrode active material layer is about 10% to about 50%. is there.

また、前記圧延工程前の前記2次負極活物質層の内部の空隙の大きさは約1から30μmであり、2次負極活物質層の全体体積中の空隙率は約50%である。しかし、圧延工程後、2次負極活物質層内部の空隙の大きさは約0.1から5μmであり、2次負極活物質層の全体体積のうち空隙率は約10%から50%である。   In addition, the size of the voids in the secondary negative electrode active material layer before the rolling step is about 1 to 30 μm, and the porosity in the total volume of the secondary negative electrode active material layer is about 50%. However, after the rolling process, the size of the void in the secondary negative electrode active material layer is about 0.1 to 5 μm, and the porosity of the total volume of the secondary negative electrode active material layer is about 10% to 50%. .

前記1次負極活物質層と2次負極活物質層において、圧延前の空隙率比は5:5.1から4:6であり、圧延後の空隙率の比は5:5.1から2:8であり得る。   In the primary negative electrode active material layer and the secondary negative electrode active material layer, the porosity ratio before rolling is 5: 5.1 to 4: 6, and the porosity ratio after rolling is 5: 5.1 to 2 : 8.

また、2次負極活物質層中の空隙の大きさ及び/または空隙率は、1次負極活物質層のそれに比べて相対的に大きいか高いことがあるが、例えば、1次負極活物質層及び2次負極活物質層の空隙率の比が4:6(20%:30%)の場合、前記1次負極活物質層の空隙の大きさは0.4から3μmであり、2次負極活物質層の空隙の大きさは0.5から3.5 μmであり得る。   In addition, the size and / or porosity of the void in the secondary negative electrode active material layer may be relatively larger or higher than that of the primary negative electrode active material layer. For example, the primary negative electrode active material layer When the ratio of the porosity of the secondary negative electrode active material layer is 4: 6 (20%: 30%), the size of the void of the primary negative electrode active material layer is 0.4 to 3 μm. The size of the voids in the active material layer may be 0.5 to 3.5 μm.

通常、負極活物質を適用した負極では、0.1から10μmの大きさの空隙が電解液の含湿速度とリチウムイオンの伝達速度を向上させる役割を果たす。従来のように単層活物質層のみからなる負極を利用することになれば、圧延工程後、負極上の空隙率、例えば5μm以上の空隙の割合が50%以下に減少されながら、密度が高まることになる。   Usually, in a negative electrode to which a negative electrode active material is applied, a void having a size of 0.1 to 10 μm plays a role of improving the moisture content rate of the electrolytic solution and the transmission rate of lithium ions. If a negative electrode consisting of only a single layer active material layer is used as in the prior art, the density increases after the rolling step while the porosity on the negative electrode, for example, the proportion of voids of 5 μm or more is reduced to 50% or less. It will be.

前記空隙率の測定は特に限定されず、本発明の一実施例により、例えば BET(Brunauer-Emmett-Teller) 測定法、または水銀浸透法 (Hg porosimeter)によって測定され得る。   The measurement of the porosity is not particularly limited, and can be measured by, for example, a BET (Brunauer-Emmett-Teller) measurement method or a mercury permeation method (Hg porosimeter) according to an embodiment of the present invention.

本発明では、圧延密度及び平均粒子の大きさが互いに異なる二種類の負極活物質を利用する多層活物質層からなる負極を提供することにより、圧延工程後も負極上部の空隙率が負極下部に比べて相対的に高いので、負極上部の密度が低くなることになる。したがって、電極内部への電解液含浸を容易にし、イオン移動性をさらに向上させることができる。さらに、追って電極製造のための圧延工程時にも電極表面が容易に壊れるか、窪まない活物質の形態を維持することができる。   In the present invention, by providing a negative electrode composed of a multilayer active material layer using two types of negative electrode active materials having different rolling densities and average particle sizes, the porosity of the upper portion of the negative electrode remains in the lower portion of the negative electrode even after the rolling process. Since it is relatively high, the density of the upper part of the negative electrode is lowered. Accordingly, it is possible to easily impregnate the electrode with the electrolytic solution and further improve the ion mobility. Furthermore, it is possible to maintain the form of the active material in which the electrode surface is easily broken or not recessed during the rolling process for manufacturing the electrode.

また、本発明は前記負極と、正極、セパレーター及び電解質を一般的な方法により電池ケースに封入して製造したリチウム二次電池を提供する。   The present invention also provides a lithium secondary battery manufactured by enclosing the negative electrode, the positive electrode, a separator, and an electrolyte in a battery case by a general method.

前記正極は、リチウム二次電池の製造時に用いられる通常の正極であれば非制限的に用いられてもよく、例えば、正極活物質粉末、バインダーと導電材を混合したスラリーを電極集電体に塗布、乾燥した後、圧延して成型することができる。   The positive electrode may be used without limitation as long as it is a normal positive electrode used in the manufacture of a lithium secondary battery. For example, a positive electrode active material powder, a slurry obtained by mixing a binder and a conductive material is used as an electrode current collector. After coating and drying, it can be rolled and molded.

前記正極活物質としては、例えば、LiMnO、LiCoO、LiNiO、LiFeO 及び VO からなる群から選択されたいずれか一つ、またはこれらのうち2種以上の混合物などが好ましい。また、TiS、MoS、有機ジスルフィド化合物または有機ポリスルフィド化合物などのリチウムの吸蔵及び脱離が可能なものを用いることがよい。 Examples of the positive electrode active material include one selected from the group consisting of LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2, and V 2 O 5 , or a mixture of two or more thereof. preferable. In addition, it is preferable to use a material capable of inserting and extracting lithium, such as TiS, MoS, an organic disulfide compound, or an organic polysulfide compound.

前記バインダーとしてはポリビニリデンフルオライド、カルボキシメチルセルロース、メチルセルロース、ポリアクリル酸ナトリウムなどを挙げることができ、前記導電材としてはアセチレンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレンなどの伝導性助材料などを挙げることができる。   Examples of the binder include polyvinylidene fluoride, carboxymethylcellulose, methylcellulose, sodium polyacrylate, and the like, and examples of the conductive material include conductive auxiliary materials such as acetylene black, furnace black, graphite, carbon fiber, and fullerene. Can be mentioned.

また、セパレーターとしては、リチウム二次電池に用いられるものであればいずれも用いることができ、例えば、ポリエチレン、ポリプロピレン、またはこれらの多層膜、ポリビニリデンフルオライド、ポリアミド、ガラス繊維などを例として挙げることができる。   As the separator, any separator can be used as long as it is used for a lithium secondary battery. For example, polyethylene, polypropylene, or a multilayer film thereof, polyvinylidene fluoride, polyamide, glass fiber, and the like are given as examples. be able to.

リチウム二次電池の電解質としては、例えば非水性溶媒にリチウム塩が溶解された有機電解液、またはポリマー電解液を例として挙げることができる。   Examples of the electrolyte of the lithium secondary battery include an organic electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent or a polymer electrolytic solution.

前記有機電解液を構成する非水性溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ガンマブチロラクトン、ジオキソラン、4-メチルジオキソラン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキサイド、ジオキサン、1,2-ジメトキシエタン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジエチレングリコール、ジメチルエーテルなどの非水性溶媒、またはこれら溶媒のうち二種類以上を混合した混合溶媒、さらにリチウム二次電池用溶媒として従来から知られていたものを例として挙げることができ、特にプロピレンカーボネート、エチレンカーボネート、ブチルカーボネートのうち一つを含むものにジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートのうち一つを混合したものが好ましい。   Nonaqueous solvents constituting the organic electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, gamma butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide. , Dimethylacetamide, dimethyl sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl Carbonate, diisopropyl carbonate, dibutyl carbonate, diethylene glycol Nonaqueous solvents such as dimethyl ether, mixed solvents in which two or more of these solvents are mixed, and those conventionally known as solvents for lithium secondary batteries can be cited as examples, particularly propylene carbonate, ethylene What mixed one in dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate in what contained one in carbonate and butyl carbonate is preferable.

前記リチウム塩としては、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、CHSOLi、CFSOLi、(CFSO)NLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム及び4-フェニルホウ酸リチウムの中から選択された1種または2種以上のリチウム塩を用いることができる。 Examples of the lithium salt, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li Use one or more lithium salts selected from among CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate and lithium 4-phenylborate Can do.

前記ポリマー電解液は、前記有機電解液と前記有機電解液に対して膨潤性に優れたポリエチレンオキサイド、ポリプロピレンオキサイド、ポリアセトニトリル、ポリビニリデンフルオライド、ポリメタアクリレート、ポリメチルメタアクリレートなどの(共)重合体が含まれたものを例として挙げることができる。   The polymer electrolyte includes polyethylene oxide, polypropylene oxide, polyacetonitrile, polyvinylidene fluoride, polymethacrylate, polymethyl methacrylate, and the like that are excellent in swelling property with respect to the organic electrolyte and the organic electrolyte. An example in which a polymer is contained can be given.

本発明に係る二次電池は、高エネルギー密度、高出力特性、向上した安全性及び安定性を奏するので、特に中大型電池モジュールの構成電池として好ましく用いられ得る。よって、本発明は、さらに前記のような二次電池を単位電池として含む中大型電池モジュールを提供する。   Since the secondary battery according to the present invention exhibits high energy density, high output characteristics, improved safety and stability, it can be preferably used particularly as a constituent battery of a medium- or large-sized battery module. Therefore, the present invention further provides a medium-to-large battery module including the secondary battery as described above as a unit battery.

このような中大型電池モジュールは、電気自動車、ハイブリッド電気自動車、電力貯蔵装置などのように高出力、大容量が求められる動力源に好ましく適用可能である。   Such medium and large-sized battery modules are preferably applicable to power sources that require high output and large capacity, such as electric vehicles, hybrid electric vehicles, and power storage devices.

以下、本発明の実施例及び比較例を記載する。ところが、下記実施例は、本発明の好ましい一実施例を記載したものであって、本発明が下記の実施例により限定されるものではない。
[発明を実施するための形態]
Examples of the present invention and comparative examples will be described below. However, the following examples describe preferred examples of the present invention, and the present invention is not limited to the following examples.
[Mode for Carrying Out the Invention]

(実施例1)
12.3MPaの圧力を加えた時、負極密度が1.79g/ccの第1負極活物質(人造黒鉛) 97.3重量部と導電材(Super-P) 0.7重量部、増粘剤(カルボキシメチルセルロース) 1.0重量部及びバインダー(スチレンブタジエンゴム) 1.0重量部を混合して第1負極活物質スラリーを製造した。
(Example 1)
When a pressure of 12.3 MPa is applied, 97.3 parts by weight of the first negative electrode active material (artificial graphite) having a negative electrode density of 1.79 g / cc and 0.7 parts by weight of a conductive material (Super-P), a thickener (Carboxymethylcellulose) 1.0 part by weight and binder (styrene butadiene rubber) 1.0 part by weight were mixed to prepare a first negative electrode active material slurry.

次いで、12.3MPaの圧力を加えた時、負極密度が1.51g/ccの第2負極活物質 (人造黒鉛) 97.3重量部と導電材(Super-P) 0.7重量部、増粘剤(カルボキシメチルセルロース)1.0重量部及びバインダー(スチレンブタジエンゴム) 1.0重量部を混合して第2負極活物質スラリーを製造した。   Next, when a pressure of 12.3 MPa was applied, 97.3 parts by weight of a second negative electrode active material (artificial graphite) having a negative electrode density of 1.51 g / cc and 0.7 parts by weight of a conductive material (Super-P) were increased. A second negative electrode active material slurry was prepared by mixing 1.0 part by weight of a sticking agent (carboxymethylcellulose) and 1.0 part by weight of a binder (styrene butadiene rubber).

銅集電体上に前記第1負極活物質スラリー及び第2負極活物質スラリーを順次塗布した後、これを乾燥して1次及び2次負極活物質層が積層された多層活物質層を形成した。   After sequentially applying the first negative electrode active material slurry and the second negative electrode active material slurry on the copper current collector, the slurry is dried to form a multilayer active material layer in which the primary and secondary negative electrode active material layers are laminated. did.

次に、ロールプレスで前記多層活物質層が形成された負極を圧延した。この際、負極密度は1.6g/ccであった。また、同一の方法で負極密度が1.64g/ccであるさらに他の負極を得た。   Next, the negative electrode on which the multilayer active material layer was formed was rolled by a roll press. At this time, the negative electrode density was 1.6 g / cc. Further, another negative electrode having a negative electrode density of 1.64 g / cc was obtained by the same method.

次いで、正極活物質(LiCoO) 97.2重量部、バインダー(ポリビニリデンフルオライド) 1.5重量部及び導電材(Super-P) 1.3重量部をN-メチルピロリドンに分散させて正極活物質スラリーを製造した。前記スラリーをアルミニウム集電体上に塗布した後、ロールプレスで圧延して正極 (正極密度:3.4g/cc)を製造した。 Next, 97.2 parts by weight of a positive electrode active material (LiCoO 2 ), 1.5 parts by weight of a binder (polyvinylidene fluoride) and 1.3 parts by weight of a conductive material (Super-P) are dispersed in N-methylpyrrolidone to form a positive electrode. An active material slurry was produced. The slurry was applied on an aluminum current collector and then rolled with a roll press to produce a positive electrode (positive electrode density: 3.4 g / cc).

前記負極と正極との間にポリエチレンセパレーターを投入し、これを電池ケースに入れた後、電解液を注入して二次電池を製造した。この際、電解液は1.0M LiPFが溶解されたエチレンカーボネート/エチルメチルカーボネート及びジエチルカーボネート(1/2/1体積比)の混合溶液を用いて二次電池を製造した。 A polyethylene separator was inserted between the negative electrode and the positive electrode, and this was put in a battery case, and then an electrolyte solution was injected to manufacture a secondary battery. At this time, a secondary battery was manufactured using a mixed solution of ethylene carbonate / ethyl methyl carbonate and diethyl carbonate (1/2/1 volume ratio) in which 1.0 M LiPF 6 was dissolved.

(比較例1)
12.3MPaの圧力を加えた時、圧延密度が1.51g/ccの負極活物質(人造黒鉛) 97.3重量部と導電材(Super-P) 0.7重量部、増粘剤(カルボキシメチルセルロース) 1.0重量部及びバインダー(スチレンブタジエンゴム) 1.0重量部を混合して負極活物質スラリーを製造した。
(Comparative Example 1)
When a pressure of 12.3 MPa is applied, 97.3 parts by weight of a negative electrode active material (artificial graphite) having a rolling density of 1.51 g / cc, 0.7 parts by weight of a conductive material (Super-P), a thickener (carboxy A negative electrode active material slurry was prepared by mixing 1.0 part by weight of methyl cellulose) and 1.0 part by weight of a binder (styrene butadiene rubber).

銅集電体上に前記負極活物質スラリーを塗布した後、これを乾燥して単層活物質層を形成した。以後、実施例1と同一の方法で負極密度が1.6g/cc及び1.64g/ccである2種の負極及び二次電池を製造した。   After apply | coating the said negative electrode active material slurry on a copper electrical power collector, this was dried and the single layer active material layer was formed. Thereafter, two types of negative electrodes and secondary batteries having negative electrode densities of 1.6 g / cc and 1.64 g / cc were manufactured in the same manner as in Example 1.

(比較例2)
12.3MPaの力で加圧した時、負極密度が1.79g/ccの負極活物質を用いたことを除き、比較例1と同一の方法で負極密度が1.6 g/ccの負極及び二次電池を製造した。
(Comparative Example 2)
A negative electrode having a negative electrode density of 1.6 g / cc and a negative electrode active material having a negative electrode density of 1.79 g / cc was used in the same manner as in Comparative Example 1 except that a negative electrode active material having a negative electrode density of 1.79 g / cc was used. A secondary battery was manufactured.

(実験例1. 圧延密度及び平均粒子の大きさの測定)
実施例1及び比較例1と2で製造された負極活物質の粒子の圧延密度の測定は、三菱化学の粉体抵抗測定器MCP-PD51を用いて圧延密度を測定した。
(Experimental example 1. Measurement of rolling density and average particle size)
The rolling density of the negative electrode active material particles produced in Example 1 and Comparative Examples 1 and 2 was measured using a MCP-PD51 powder resistance measuring instrument manufactured by Mitsubishi Chemical.

前記粉体抵抗測定器の場合、シリンダータイプロードセル(load cell)に一定量の負極活物質パウダーを入れ、力を持続的に加え、この際、粒子が押圧されながら測定される密度を測定したものである。よって、負極活物質粒子の強度が大きいほど、同一圧力で充分に押されないようになって密度が低く表れることになる。この際、加えられる圧力は約12から16MPa程度に表れた。   In the case of the powder resistance measuring device, a certain amount of negative electrode active material powder is put into a cylinder type load cell, and a force is continuously applied. At this time, the density measured while the particles are pressed is measured. It is. Therefore, as the strength of the negative electrode active material particles increases, the negative electrode active material particles are not sufficiently pressed at the same pressure, and the density appears lower. At this time, the applied pressure appeared at about 12 to 16 MPa.

実施例1及び比較例1と2で製造された負極活物質の平均粒子の大きさは、レーザー回折法(laser diffraction method)を利用して測定した。   The average particle size of the negative electrode active materials prepared in Example 1 and Comparative Examples 1 and 2 was measured using a laser diffraction method.

前記のように測定された粒子の圧延密度及び平均粒子の大きさを、下記表1に示した。
The rolling density and average particle size measured as described above are shown in Table 1 below.

(実験例2. 充電特性)
前記実施例1と比較例1及び比較例2で製造した二次電池の充電特性を評価するため、実施例1と比較例1及び比較例2で製造された二次電池を23℃で定電流/定電圧(CC/CV) 条件で 4.2V、0.05Cまで0.1 Cで充電した後、定電流(CC) 条件で3Vまで0.1Cで放電し、容量を2回測定した。以後は定電流/定電圧(CC/CV) 条件で4.2V、0.05Cまで0.5Cで充電した後、定電流(CC) 条件で3Vまで0.2Cで放電し、0.5C-レート充電特性を測定した。その結果を図3に示した。
(Experimental example 2. Charging characteristics)
In order to evaluate the charging characteristics of the secondary batteries manufactured in Example 1, Comparative Example 1 and Comparative Example 2, the secondary batteries manufactured in Example 1, Comparative Example 1 and Comparative Example 2 were constant current at 23 ° C. After charging at 0.1 C to 4.2 V and 0.05 C under constant voltage (CC / CV) conditions, the battery was discharged at 0.1 C to 3 V under constant current (CC) conditions, and the capacity was measured twice. After that, it was charged at 4.2C under constant current / constant voltage (CC / CV) conditions at 0.5C to 0.05C, then discharged at 0.2C up to 3V under constant current (CC) conditions, and 0.5C- Rate charge characteristics were measured. The results are shown in FIG.

すなわち、図3を検討してみれば、0.5C-rateの一定電流を充電すれば、比較例1及び比較例2の電池に比べて実施例1の電池の定電流充電時間が長く表れた。よって、単層活物質層を含む負極を備えた比較例1及び2の電池に比べ、多層活物質層を含む負極を備えた実施例1の電池の充電特性が一層優秀なことを確認することができた。   That is, when FIG. 3 is examined, if the constant current of 0.5 C-rate is charged, the constant current charging time of the battery of Example 1 appears longer than the batteries of Comparative Example 1 and Comparative Example 2. . Therefore, it is confirmed that the charging characteristics of the battery of Example 1 including the negative electrode including the multilayer active material layer are more excellent than those of Comparative Examples 1 and 2 including the negative electrode including the single layer active material layer. I was able to.

(実験例3. 寿命特性)
前記実験例2の条件で行った後、以後、定電流/定電圧(CC/CV) 条件で4.2V、0.05Cまで0.2Cで充電した後、定電流(CC) 条件で3Vまで0.2Cで放電し、これを 80回サイクルで繰り返して実施した。これに対する、寿命特性の結果を図4及び図5に示した。
(Experimental example 3. Life characteristics)
After performing under the conditions of the experimental example 2, after charging at 4.2C to constant current / constant voltage (CC / CV) conditions to 0.2C to 0.05C, to 3V under constant current (CC) conditions. The discharge was performed at 0.2 C, and this was repeated 80 cycles. The results of the life characteristics against this are shown in FIGS.

この際、図4には実施例1及び比較例1と2の負極密度が1.6g/ccである二次電池等の寿命特性を示し、図5には実施例1及び比較例1の負極密度が1.64 g/ccである二次電池等の寿命特性を示した。   At this time, FIG. 4 shows the life characteristics of the secondary battery having the negative electrode density of 1.6 g / cc in Example 1 and Comparative Examples 1 and 2, and FIG. 5 shows the negative electrode in Example 1 and Comparative Example 1. The lifetime characteristics of a secondary battery having a density of 1.64 g / cc were shown.

先ず、図4を検討してみれば、負極密度が1.6g/ccで低い時は、単層活物質層を含む負極を備えた比較例1及び2の電池、及び多層活物質層を含む負極を備えた実施例1の電池全てが類似した水準の寿命特性を表すことを確認することができる。   First, considering FIG. 4, when the negative electrode density is as low as 1.6 g / cc, the batteries of Comparative Examples 1 and 2 having a negative electrode including a single layer active material layer, and a multilayer active material layer are included. It can be confirmed that all the batteries of Example 1 equipped with the negative electrode exhibit similar levels of life characteristics.

しかし、図5を検討してみれば、負極密度が1.64 g/ccに増加する時は、多層負極活物質層を含む電極を備えた実施例1の電極の場合は、負極密度が高くても負極寿命特性は優秀に維持される反面、単層負極活物質層を含む電極を備えた比較例1の電池の場合は、負極密度が高くなれば寿命特性が低下することを確認した。   However, considering FIG. 5, when the negative electrode density increases to 1.64 g / cc, the negative electrode density is high in the case of the electrode of Example 1 including the electrode including the multilayer negative electrode active material layer. However, while the negative electrode life characteristics were maintained excellent, in the case of the battery of Comparative Example 1 provided with the electrode including the single-layer negative electrode active material layer, it was confirmed that the life characteristics deteriorated as the negative electrode density increased.

したがって、本発明から得られた多層活物質層を含む電極を備えた実施例1の電極が、比較例1の電極に比べてイオン移動性が向上して速度及びサイクル特性が改善されることが分かる。   Therefore, the electrode of Example 1 provided with the electrode including the multilayer active material layer obtained from the present invention has improved ion mobility and improved speed and cycle characteristics as compared with the electrode of Comparative Example 1. I understand.

本発明の一実施例に係る負極は、電極集電体上に負極活物質の圧延密度及び平均粒子の大きさが異なる二種類の負極活物質を含む多層活物質層を含むことにより、圧延工程後にも電極表面の空隙率 (porosity)を向上させ、電極内部へのイオン移動性を向上させることができるので、リチウム二次電池に有用に適用可能である。   The negative electrode according to an embodiment of the present invention includes a multilayer active material layer including two types of negative electrode active materials having different rolling densities and average particle sizes of the negative electrode active material on the electrode current collector. Since the porosity of the electrode surface can be improved and ion mobility into the electrode can be improved later, it can be usefully applied to a lithium secondary battery.

11、21 電極集電体
13 負極活物質
23 第1負極活物質
24 第2負極活物質
A 1次負極活物質層
B 2次負極活物質層
11, 21 Electrode current collector 13 Negative electrode active material 23 First negative electrode active material 24 Second negative electrode active material
A Primary negative electrode active material layer
B Secondary negative electrode active material layer

Claims (12)

電極集電体; 及び
前記電極集電体上に形成された多層活物質層を含み、
前記多層活物質層は、前記電極集電体上に形成されており、第1負極活物質を含む1次負極活物質層; 及び
前記1次負極活物質層上に形成されており、前記第1負極活物質より相対的に低い圧延密度及び相対的に大きい平均粒子の大きさを有する第2負極活物質を含む2次負極活物質層を含み、
前記第1負極活物質及び前記第2負極活物質は、共に結晶質系炭素であり
前記結晶質系炭素は、球形または類似球形を有する天然黒鉛、人造黒鉛、またはこれらの混合物を含み、
前記第1負極活物質と前記第2負極活物質の平均粒子の大きさの比は、1:9から5:5.1であることを特徴とする負極。
An electrode current collector; and a multilayer active material layer formed on the electrode current collector,
The multilayer active material layer is formed on the electrode current collector and includes a first negative electrode active material layer including a first negative electrode active material; and
A secondary negative electrode active material formed on the primary negative electrode active material layer and including a second negative electrode active material having a lower rolling density and a relatively larger average particle size than the first negative electrode active material. Including a material layer,
The first negative active material and the second negative electrode active material, are both crystalline system-carbon,
The crystalline carbon includes natural graphite having a spherical shape or a similar spherical shape, artificial graphite, or a mixture thereof.
The negative electrode characterized in that the ratio of the average particle size of the first negative electrode active material and the second negative electrode active material is 1: 9 to 5: 5.1.
前記第1負極活物質と前記第2負極活物質の平均粒子の大きさの比は1:1.3から1:4であることを特徴とする請求項に記載の負極。 Wherein the ratio of the size of the first negative electrode active material and the average particle of the second negative electrode active material 1: 1.3 to 1: negative electrode according to claim 1, characterized in that a 4. 前記第1負極活物質と前記第2負極活物質の圧延密度比は、12から16MPaの圧力下で1.1:1から3:1であることを特徴とする請求項1または2に記載の負極。 Rolling density ratio of the second negative electrode active material and the first negative electrode active material, 1.1 to 12 at a pressure of 16 MPa: 1 to 3: according to claim 1 or 2, characterized in that one Negative electrode. 前記第1負極活物質と前記第2負極活物質の圧縮強度比は、12から16MPaの圧力下で2:8から5:5.1であることを特徴とする請求項1からの何れか1項に記載の負極。 The compressive strength ratio of the first negative active material and the second negative electrode active material, 2 to 12 at a pressure of 16 MPa: 8 to 5: any of claims 1 to 3, characterized in that 5.1 The negative electrode according to Item 1. 前記2次負極活物質層の空隙率は、前記1次負極活物質層の空隙率に比べて大きいことを特徴とする請求項1からの何れか1項に記載の負極。 The porosity of the secondary negative active material layer, the negative electrode according to claim 1, any one of 4, wherein the greater than the porosity of the primary negative electrode active material layer. 前記1次負極活物質及び前記2次負極活物質は、それぞれ導電材及びバインダーをさらに含むことを特徴とする請求項1からの何れか1項に記載の負極。 The primary negative electrode active material layer and the second negative active material layer, the negative electrode according to claim 1, any one of 5, characterized in that each further comprising a conductive material and a binder. 電極集電体上に第1負極活物質及びバインダー樹脂を含む第1負極活物質スラリーを塗布する段階;
前記第1負極活物質スラリーを乾燥して1次負極活物質層を形成する段階;
前記1次負極活物質層上に第2負極活物質及びバインダー樹脂を含む第2負極活物質スラリーを塗布する段階;
前記第2負極活物質スラリーを乾燥して2次負極活物質層を形成する段階; 及び
前記1次負極活物質及び前記2次負極活物質層が形成された電極集電体に圧延する段階を含み、
前記第1負極活物質及び前記第2負極活物質は、共に結晶質系炭素であり
前記結晶質系炭素は、球形または類似球形を有する天然黒鉛、人造黒鉛、またはこれらの混合物を含み、
前記第1負極活物質と前記第2負極活物質の平均粒子の大きさの比は、1:9から5:5.1であることを特徴とする負極の製造方法。
Applying a first negative electrode active material slurry containing a first negative electrode active material and a binder resin on the electrode current collector;
Drying the first negative electrode active material slurry to form a primary negative electrode active material layer;
Applying a second negative electrode active material slurry containing a second negative electrode active material and a binder resin on the primary negative electrode active material layer;
Rolling the second negative electrode active material slurry to form a secondary negative electrode active material layer; and rolling the electrode negative electrode current collector on which the primary negative electrode active material and the secondary negative electrode active material layer are formed. Including
The first negative active material and the second negative electrode active material, are both crystalline system-carbon,
The crystalline carbon includes natural graphite having a spherical shape or a similar spherical shape, artificial graphite, or a mixture thereof.
The method for producing a negative electrode, wherein the ratio of the average particle size of the first negative electrode active material and the second negative electrode active material is 1: 9 to 5: 5.1.
電極集電体上に第1負極活物質及びバインダー樹脂を含む第1負極活物質スラリーを塗布する段階;
前記第1負極活物質スラリー上に第2負極活物質及びバインダー樹脂を含む第2負極活物質スラリーを塗布する段階;
前記第1及び第2負極活物質スラリーを乾燥して、1次負極活物質層及び2次負極活物質層を含む多層負極活物質層を形成する段階; 及び
前記多層負極活物質層が形成された電極集電体に圧延する段階を含み、
前記第1負極活物質及び前記第2負極活物質は、共に結晶質系炭素であり
前記結晶質系炭素は、球形または類似球形を有する天然黒鉛、人造黒鉛、またはこれらの混合物を含み、
前記第1負極活物質と前記第2負極活物質の平均粒子の大きさの比は、1:9から5:5.1であることを特徴とする負極の製造方法。
Applying a first negative electrode active material slurry containing a first negative electrode active material and a binder resin on the electrode current collector;
Applying a second negative electrode active material slurry containing a second negative electrode active material and a binder resin on the first negative electrode active material slurry;
Drying the first and second negative electrode active material slurries to form a multilayer negative electrode active material layer including a primary negative electrode active material layer and a secondary negative electrode active material layer; and the multilayer negative electrode active material layer is formed. Rolling into an electrode current collector,
The first negative active material and the second negative electrode active material, are both crystalline system-carbon,
The crystalline carbon includes natural graphite having a spherical shape or a similar spherical shape, artificial graphite, or a mixture thereof.
The method for producing a negative electrode, wherein the ratio of the average particle size of the first negative electrode active material and the second negative electrode active material is 1: 9 to 5: 5.1.
前記2次負極活物質層の空隙率は、前記1次負極活物質層の空隙率に比べて相対的に大きいことを特徴とする請求項7または8に記載の負極の製造方法。 The method for producing a negative electrode according to claim 7 or 8 , wherein a porosity of the secondary negative electrode active material layer is relatively larger than a porosity of the primary negative electrode active material layer. 前記1次負極活物質層と前記2次負極活物質層の圧延前の空隙率比は、5:5.1から4:6であることを特徴とする請求項に記載の負極の製造方法。 10. The method of manufacturing a negative electrode according to claim 9 , wherein a porosity ratio before rolling of the primary negative electrode active material layer and the secondary negative electrode active material layer is from 5: 5.1 to 4: 6. 11. . 前記1次負極活物質層と前記2次負極活物質層の圧延後の空隙率比は、5:5.1から2:8であることを特徴とする請求項または10に記載の負極の製造方法。 Porosity ratio after rolling of the primary negative electrode active material layer and the second negative active material layer, 5: 5.1 to 2: a negative electrode according to claim 9 or 10, characterized in that it is 8 Production method. 請求項1からの何れか1項に記載の負極を含むリチウム二次電池。 The lithium secondary battery containing the negative electrode of any one of Claim 1 to 6 .
JP2014558703A 2013-01-25 2014-01-22 Negative electrode for lithium secondary battery and lithium secondary battery including the same Active JP6120382B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2013-0008785 2013-01-25
KR20130008785 2013-01-25
KR10-2014-0007308 2014-01-21
KR1020140007308A KR101560471B1 (en) 2013-01-25 2014-01-21 Anode for lithium secondary battery and lithium secondary battery comprising the same
PCT/KR2014/000636 WO2014116029A1 (en) 2013-01-25 2014-01-22 Anode for lithium secondary battery and lithium secondary battery including same

Publications (2)

Publication Number Publication Date
JP2015511389A JP2015511389A (en) 2015-04-16
JP6120382B2 true JP6120382B2 (en) 2017-04-26

Family

ID=51744172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014558703A Active JP6120382B2 (en) 2013-01-25 2014-01-22 Negative electrode for lithium secondary battery and lithium secondary battery including the same

Country Status (3)

Country Link
JP (1) JP6120382B2 (en)
KR (1) KR101560471B1 (en)
CN (2) CN106935793B (en)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579747C1 (en) * 2015-01-21 2016-04-10 Александр Сергеевич Логинов Method for producing lithium-ion battery
KR101810185B1 (en) * 2015-04-29 2017-12-19 주식회사 엘지화학 An electrode for an electrochemical device and a method for manufacturing the same
KR102096821B1 (en) * 2015-09-11 2020-04-03 주식회사 엘지화학 Method of Manufacturing Negative Electrode for Secondary Battery Comprising Active Material Layers Having Different Hardness of Negative Active Material
KR101950086B1 (en) 2016-03-15 2019-02-19 가부시끼가이샤 도시바 Non-aqueous electrolyte battery, battery pack and vehicle
KR102143953B1 (en) 2016-03-24 2020-08-12 주식회사 엘지화학 Composition for preparing positive electrode of secondary battery, and positive electrode of secondary battery and secondary battery prepared using the same
KR101991846B1 (en) * 2016-07-04 2019-06-24 주식회사 엘지화학 Anode and lithium secondarty battery comprising the same
WO2018008955A1 (en) * 2016-07-04 2018-01-11 주식회사 엘지화학 Negative electrode and secondary battery including same negative electrode
CN108352505B (en) * 2016-07-04 2021-07-30 株式会社Lg化学 Negative electrode and secondary battery comprising same
KR101995373B1 (en) 2016-07-04 2019-09-24 주식회사 엘지화학 Negative electrode for secondary battery
KR102034809B1 (en) * 2016-07-18 2019-10-21 주식회사 엘지화학 Method for preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared by the same
KR101986626B1 (en) * 2016-08-26 2019-09-30 주식회사 엘지화학 Anode for lithium secondary battery and lithium secondary battery comprising the same
KR101966144B1 (en) * 2016-09-29 2019-04-05 주식회사 엘지화학 Multi-layer Anode Comprising Natural Graphite and Artificial Graphite and Lithium Secondary Battery Comprising the Same
PL3396745T3 (en) * 2016-09-29 2024-04-08 Lg Energy Solution, Ltd. Multi-layer negative electrode comprising natural graphite and artificial graphite and lithium secondary battery comprising the same
KR102053063B1 (en) * 2016-10-12 2019-12-06 주식회사 엘지화학 Multi-layer anode with Different Binder Content and Different Particle Size of Active Material in each layer and Lithium Secondary Battery Comprising the Same
US11094921B2 (en) 2016-11-21 2021-08-17 Lg Chem, Ltd. Electrode for electrochemical device and method for manufacturing the same
KR102365132B1 (en) * 2017-01-20 2022-02-17 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
JP6804052B2 (en) * 2017-03-31 2020-12-23 株式会社村田製作所 Lithium ion secondary battery
CN108807843A (en) * 2017-05-04 2018-11-13 中国科学院物理研究所 MULTILAYER COMPOSITE cathode and preparation method thereof and alkali metal battery including it
KR102308943B1 (en) * 2017-05-15 2021-10-01 주식회사 엘지에너지솔루션 Anode Having Double Active Material Layers, Method of Preparing the Same, and Secondary Battery Comprising the Same
KR20190031174A (en) * 2017-09-15 2019-03-25 주식회사 엘지화학 Negative electrode for lithium secondary battery and lithium secondary battery comprising the same
JP2019071167A (en) * 2017-10-05 2019-05-09 トヨタ自動車株式会社 Lithium ion secondary battery
KR102557446B1 (en) * 2017-11-07 2023-07-18 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
KR102304736B1 (en) 2018-03-15 2021-09-24 주식회사 엘지에너지솔루션 Negative electrode active material for lithium secondary battery and negative electrode comprising the same
EP3809492A4 (en) * 2018-06-15 2021-07-28 SANYO Electric Co., Ltd. Non-aqueous electrolyte secondary cell
JP7228786B2 (en) * 2018-07-25 2023-02-27 パナソニックIpマネジメント株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN109004178A (en) * 2018-08-02 2018-12-14 天津普兰能源科技有限公司 A kind of high-pressure solid, high-flexibility metatitanic acid pole piece
CN110867560B (en) * 2018-08-28 2021-04-02 宁德时代新能源科技股份有限公司 Negative pole piece and secondary battery
WO2020110666A1 (en) * 2018-11-29 2020-06-04 株式会社村田製作所 Solid-state battery
JP6750663B2 (en) * 2018-12-12 2020-09-02 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN109659493B (en) * 2018-12-26 2021-03-23 国联汽车动力电池研究院有限责任公司 Low-porosity negative electrode containing solid electrolyte and lithium battery applying negative electrode
CN111490253B (en) * 2019-01-29 2021-12-10 宁德时代新能源科技股份有限公司 Negative pole piece and lithium ion secondary battery thereof
CN113330600B (en) * 2019-03-01 2023-11-14 日本汽车能源株式会社 Electrode for lithium secondary battery and lithium secondary battery
CN111668452B (en) * 2019-03-06 2021-06-04 宁德时代新能源科技股份有限公司 Negative electrode and lithium ion secondary battery thereof
CN110010902A (en) 2019-03-29 2019-07-12 宁德新能源科技有限公司 Electrode plates and electrochemical appliance comprising the electrode plates
CN109980177B (en) 2019-03-29 2021-10-22 东莞新能安科技有限公司 Electrode sheet and electrochemical device comprising same
KR102536366B1 (en) * 2019-04-24 2023-05-23 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
CN110112366A (en) * 2019-06-18 2019-08-09 珠海冠宇电池有限公司 A kind of electrodes of lithium-ion batteries and lithium ion battery
JP7136017B2 (en) * 2019-06-25 2022-09-13 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
US20210151761A1 (en) * 2019-11-18 2021-05-20 GM Global Technology Operations LLC Electrode and composition having tailored porosity for a lithium-ion electrochemical cell
US20230006253A1 (en) 2019-11-27 2023-01-05 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
CN113036298B (en) * 2019-12-06 2022-02-11 宁德时代新能源科技股份有限公司 Negative pole piece and secondary battery and device containing same
US20230018422A1 (en) * 2019-12-13 2023-01-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US20230025345A1 (en) 2019-12-13 2023-01-26 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
CN114793478A (en) * 2019-12-24 2022-07-26 三洋电机株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7383510B2 (en) * 2020-02-12 2023-11-20 パナソニックホールディングス株式会社 Non-aqueous electrolyte secondary batteries and secondary battery modules
CN111326710B (en) * 2020-03-02 2022-07-19 合肥学院 Sandwich structure electrode
CN113875051B (en) 2020-04-30 2023-12-19 宁德时代新能源科技股份有限公司 Secondary battery, method for manufacturing the same, and device comprising the same
JP7496872B2 (en) * 2020-04-30 2024-06-07 寧徳時代新能源科技股▲分▼有限公司 Secondary battery, its preparation method, and device including said secondary battery
HUE064549T2 (en) * 2020-04-30 2024-03-28 Contemporary Amperex Technology Co Ltd Secondary battery, process for preparing the same and apparatus containing the secondary battery
CN111725485B (en) * 2020-06-23 2021-10-15 珠海冠宇电池股份有限公司 Negative plate and battery
CN112018327B (en) * 2020-09-21 2021-10-15 珠海冠宇电池股份有限公司 Negative plate, preparation method and battery
KR102622786B1 (en) * 2020-10-15 2024-01-08 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Secondary batteries, manufacturing methods thereof, and battery modules, battery packs and devices related thereto
CN112271270B (en) * 2020-10-22 2022-06-24 天目湖先进储能技术研究院有限公司 Lithium ion battery electrode, preparation method thereof and lithium ion battery
CN114447262B (en) * 2020-10-30 2024-07-23 北京小米移动软件有限公司 Pole piece, coating device, battery cell, battery pack and manufacturing method of battery cell
CN112614976A (en) * 2020-12-17 2021-04-06 惠州亿纬锂能股份有限公司 Silicon negative electrode material of lithium ion battery and preparation method and application thereof
JPWO2022158375A1 (en) * 2021-01-21 2022-07-28
JP7273869B2 (en) * 2021-01-21 2023-05-15 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
JP7430692B2 (en) * 2021-10-27 2024-02-13 プライムプラネットエナジー&ソリューションズ株式会社 Negative electrode and battery
CN114335419A (en) * 2021-12-23 2022-04-12 蜂巢能源科技股份有限公司 Lithium battery negative pole piece and lithium battery
WO2024020964A1 (en) * 2022-07-28 2024-02-01 宁德时代新能源科技股份有限公司 Secondary battery, preparation method therefor, and device containing secondary battery
CN118476077A (en) * 2022-10-24 2024-08-09 宁德时代新能源科技股份有限公司 Battery cell, manufacturing method thereof, battery and electricity utilization device
WO2024106063A1 (en) * 2022-11-17 2024-05-23 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274892B1 (en) * 1998-05-13 2001-02-01 김순택 Lithium secondary battery
JP4580949B2 (en) 2006-06-02 2010-11-17 株式会社東芝 Non-aqueous electrolyte battery, battery pack and rechargeable vacuum cleaner
JP2008059999A (en) * 2006-09-01 2008-03-13 Sony Corp Negative electrode and nonaqueous electrolyte secondary battery using it
JP5213015B2 (en) * 2007-09-04 2013-06-19 Necエナジーデバイス株式会社 Lithium ion secondary battery
JP6029200B2 (en) * 2008-10-06 2016-11-24 日本カーボン株式会社 Method for producing negative electrode active material for lithium ion secondary battery
KR101105878B1 (en) * 2008-12-02 2012-01-16 주식회사 코캄 Core-shell type anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries comprising the same
KR101319676B1 (en) * 2009-03-30 2013-10-17 쥬오 덴끼 고교 가부시키가이샤 Mixed carbon material and negative electrode for nonaqueous secondary battery
US9997768B2 (en) * 2010-12-06 2018-06-12 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
CN102263287B (en) * 2011-06-17 2013-05-08 东莞市迈科科技有限公司 Lithium ion battery using graphite having multiphase structure as negative pole material
CN102361069A (en) * 2011-09-30 2012-02-22 深圳市沃特玛电池有限公司 Lithium ion battery negative electrode and its manufacturing method

Also Published As

Publication number Publication date
CN104126242A (en) 2014-10-29
KR101560471B1 (en) 2015-10-15
JP2015511389A (en) 2015-04-16
CN106935793A (en) 2017-07-07
KR20140095980A (en) 2014-08-04
CN106935793B (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP6120382B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
US10263242B2 (en) Anode for lithium secondary battery and lithium secondary battery including the same
TWI496333B (en) Use of expanded graphite in lithium/sulphur batteries
US9577286B2 (en) Method of producing solid state lithium battery module
KR102434887B1 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery
JP7367201B2 (en) Secondary batteries, devices, artificial graphite and manufacturing methods
KR101444189B1 (en) Nagative active material for sodium ion battery, method of preparing elecrode using thereof and sodium ion battery comprising same
KR102080255B1 (en) Negative electrode active material and negative electrode for secondary battery comprising the same
US20110195310A1 (en) Production method for electrode for battery, electrode produced by production method, and battery including electrode
KR101520138B1 (en) Anode active agent and electrochemical device comprising the same
JP6338840B2 (en) Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
CN111048768B (en) Method for producing active material, and battery
KR20110023820A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
KR20140108380A (en) Secondary battery including silicon-metal alloy-based negative active material
US12080889B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising the same
CN107528065B (en) Lithium secondary battery
KR20160034516A (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
JP6567289B2 (en) Lithium ion secondary battery
KR102690256B1 (en) Cathode for lithium secondary battery comprising sulfur-montmorillonite composite, and lithium secondary battery comprising the same
KR101977973B1 (en) Negative electrode for fast charging, battery comprising the same and fabricating methods thereof
KR102320977B1 (en) Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same
CN110391404B (en) Positive electrode active material for magnesium secondary battery and magnesium secondary battery using same
CN112786879A (en) Negative electrode material for sodium ion battery and sodium ion battery
US20170149055A1 (en) Lithium-ion secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160907

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170323

R150 Certificate of patent or registration of utility model

Ref document number: 6120382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250