JP6116391B2 - Electron microscope fine drive unit - Google Patents

Electron microscope fine drive unit Download PDF

Info

Publication number
JP6116391B2
JP6116391B2 JP2013125040A JP2013125040A JP6116391B2 JP 6116391 B2 JP6116391 B2 JP 6116391B2 JP 2013125040 A JP2013125040 A JP 2013125040A JP 2013125040 A JP2013125040 A JP 2013125040A JP 6116391 B2 JP6116391 B2 JP 6116391B2
Authority
JP
Japan
Prior art keywords
movable body
shaft
hollow movable
axis
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013125040A
Other languages
Japanese (ja)
Other versions
JP2014232714A (en
Inventor
祥悟 村中
祥悟 村中
憲幸 秋本
憲幸 秋本
季勇 秋本
季勇 秋本
Original Assignee
祥悟 村中
祥悟 村中
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 祥悟 村中, 祥悟 村中 filed Critical 祥悟 村中
Priority to JP2013125040A priority Critical patent/JP6116391B2/en
Publication of JP2014232714A publication Critical patent/JP2014232714A/en
Application granted granted Critical
Publication of JP6116391B2 publication Critical patent/JP6116391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、電子顕微鏡内部の真空度を維持すると共に浮遊磁場を遮蔽した筐体内において、電子線を絞る絞り部材及び試料を支持する支持部材の駆動機構(以下、微駆動ユニットと言う)に関し、特に、微動ユニットの可動部を圧電アクチュエータで微動位置決めする技術において、微動送り精度と微動位置決め精度とこの精度維持する耐久性とを飛躍的に向上させた新技術を提供するものである。  The present invention relates to a driving mechanism (hereinafter referred to as a fine driving unit) for a diaphragm member for narrowing an electron beam and a supporting member for supporting a sample in a housing that maintains a vacuum degree inside the electron microscope and shields a stray magnetic field. In particular, in a technique for finely positioning a movable portion of a fine movement unit with a piezoelectric actuator, a new technique is provided in which the fine movement feeding accuracy, the fine movement positioning accuracy, and the durability for maintaining this accuracy are dramatically improved.

近年、電子顕微鏡内部の真空度を維持すると共に浮遊磁場を遮蔽した筐体内に設けた微駆動ユニットの駆動機構において、上記微駆動ユニットの可動部を圧電アクチュエータで微動位置決めする技術が多く提供されている。  In recent years, many techniques have been provided for finely positioning a movable portion of the fine drive unit with a piezoelectric actuator in a fine drive unit drive mechanism provided in a housing that maintains the degree of vacuum inside the electron microscope and shields stray magnetic fields. Yes.

上記公知となっている電子顕微鏡の微駆動ユニットを幾つか紹介する。先ず、本願発明者(村中祥悟)の発明に係わる先行出願の電子顕微鏡は、XY軸中空型顕微駆動機構(試料微動ステージ)を、XY軸共に片側駆動(圧電アクチュエータ)と、片側スライド(滑りガイド)方式とし、XY軸体を一層構造としている。そして、上記圧電アクチュエータは、ニュースケールテクノロジーズ社のマイクロ・スクイグルモータが好適な駆動源として選択使用されている。その構成は、ボルト(スクリュウーで支軸53、63に相当)101に螺合する四角柱状のナット(コア)102の外側四面にピエゾ素子103(圧電体52、62に相当)を貼り付けてなるものである。これにより、XY軸体を簡易な構成となして、像障害の発生を抑制することができ、しかも、筐体内に配置された駆動対象物の位置調整を、目的に応じた速度及び精度で行うものである(例えば、特許文献1参照。)。  Several well-known electron microscope micro-drive units will be introduced. First, the electron microscope of the prior application related to the invention of the present inventor (Muranaka Shogo) has an XY-axis hollow micro-drive mechanism (sample fine movement stage), a uni-axis drive (piezoelectric actuator) on both the XY axes, and a one-side slide ( (Sliding guide) system, and the XY shaft body has a single layer structure. As the piezoelectric actuator, a micro squiggle motor manufactured by New Scale Technologies is selected and used as a suitable drive source. The structure is formed by attaching a piezo element 103 (corresponding to the piezoelectric bodies 52 and 62) to the outer four surfaces of a square columnar nut (core) 102 that is screwed into a bolt (corresponding to the spindles 53 and 63 by a screw). Is. As a result, the XY shaft body can have a simple configuration, and the occurrence of an image failure can be suppressed, and the position adjustment of the drive object arranged in the housing is performed at a speed and accuracy according to the purpose. (For example, refer to Patent Document 1).

上記圧電アクチュエータは、ニュースケールテクノロジーズ社のマイクロ・スクイグルモータ圧電アクチュエータであるが、他の実施態様として、圧電素子の伸縮を駆動部材に伝え、その駆動部材に所定の摩擦力で係合している被駆動部材を圧電素子の伸張時と縮小時との速度差を利用して移動させる超音波リニアアクチュエータがある。その構成は、振動子の振動を駆動部材に伝え、前記駆動部材に所定の摩擦力で係合している被駆動部材を、前記振動子の伸張時と縮小時との速度差を利用して移動させるアクチュエータの駆動回路において、前記振動子に駆動パルスを与えるパルス発生回路と、前記パルス発生回路の発生パルスを制御する制御回路とを含み、前記制御回路は、前記パルス発生回路に、前記振動子の系における共振周波数に対して所定数倍の駆動周波数で、かつ所定デューティの駆動パルスを発生させることで、前記駆動部材と被駆動部材との係合部分に、前記速度差を生じさせる擬似鋸歯状の変位振動を生じさせ、かつ前記被駆動部材の起動時、停止時または間欠駆動時の少なくとも1つにおいて、前記駆動周波数を維持し、かつ前記駆動パルスを前記所定デューティで規定されるパルス幅よりも短縮したパルスを出力させるものである(例えば、特許文献2参照。)。  The above-mentioned piezoelectric actuator is a micro squeegle motor piezoelectric actuator manufactured by New Scale Technologies, but as another embodiment, the expansion and contraction of the piezoelectric element is transmitted to the driving member and engaged with the driving member with a predetermined friction force. There is an ultrasonic linear actuator that moves a driven member using a speed difference between when a piezoelectric element is extended and when it is reduced. The structure transmits the vibration of the vibrator to the driving member, and the driven member engaged with the driving member with a predetermined frictional force is utilized by utilizing a speed difference between the time when the vibrator is extended and the time when the vibrator is reduced. A drive circuit for an actuator to be moved includes a pulse generation circuit that applies a drive pulse to the vibrator, and a control circuit that controls a generated pulse of the pulse generation circuit, the control circuit including the vibration in the pulse generation circuit By generating a driving pulse having a predetermined duty frequency and a predetermined duty with respect to the resonance frequency in the child system, a pseudo speed that causes the speed difference in the engaging portion between the driving member and the driven member is generated. A sawtooth-shaped displacement vibration is generated, and the drive frequency is maintained and the drive pulse is set to the predetermined value at least one of starting, stopping, or intermittent driving of the driven member. Is intended to output a shortened pulse than the pulse width defined by Yuti (e.g., see Patent Document 2.).

上記超音波リニアアクチュエータの更なる詳細構成は、図16に示すように、円板状の振動子1の振動をこの中心に貫通するシャフト1Aの駆動部材に伝え、上記シャフト1Aに支持される保持部2の途上に所定のV溝2Aと雌ネジ2Eに螺合するビスBの雄ネジ2Mで押圧力Fを微調節される薄板バネ2B(叉は厚板バネ2C)とからなる摩擦力で係合する被駆動部材Dを備え、上記振動子1によるシャフト1Aの往動時と復動時との速度差を利用して被駆動部材Dを移動させるものである。上記超音波リニアアクチュエータは電子顕微鏡以外の微駆動ユニットにも適用されている(例えば、非特許文献1。)。  As shown in FIG. 16, the ultrasonic linear actuator has a further detailed configuration in which the vibration of the disc-shaped vibrator 1 is transmitted to the drive member of the shaft 1A penetrating through the center and supported by the shaft 1A. A frictional force composed of a thin leaf spring 2B (or a thick leaf spring 2C) whose pressing force F is finely adjusted by a male screw 2M of a screw B screwed into a predetermined V groove 2A and a female screw 2E in the middle of the portion 2. The driven member D is engaged, and the driven member D is moved by utilizing the speed difference between the forward movement and the backward movement of the shaft 1A by the vibrator 1. The ultrasonic linear actuator is also applied to a fine drive unit other than an electron microscope (for example, Non-Patent Document 1).

更に、上記超音波リニアアクチュエータを顕微鏡装置の微駆動機構とした公知特許がある。その構成は、固定台と、前記固定台に対して移動可能に支持された可動体と、前記可動体と前記固定台とを相対移動させる超音波アクチュエータと、前記超音波アクチュエータの駆動信号を出力する制御装置と、を有し、微動駆動時の前記超音波アクチュエータの駆動信号は周波数が等しく且つ位相が異なる2種類のバースト信号であって、前記2種類のバースト信号の夫々の始まりと終わりは振幅が時間的に変化し、前記2種類のバースト信号の少なくとも一方は最大振幅が通常駆動時に比べて小さいことを特徴とする微動機構である(例えば、特許文献3参照。)。  Furthermore, there is a known patent in which the ultrasonic linear actuator is used as a fine drive mechanism of a microscope apparatus. The configuration includes a fixed base, a movable body supported so as to be movable with respect to the fixed base, an ultrasonic actuator that relatively moves the movable body and the fixed base, and outputs a drive signal of the ultrasonic actuator. The ultrasonic actuator drive signals at the time of fine movement are two types of burst signals having the same frequency and different phases, and the beginning and end of each of the two types of burst signals are The fine movement mechanism is characterized in that the amplitude changes with time, and at least one of the two types of burst signals has a maximum amplitude smaller than that during normal driving (see, for example, Patent Document 3).

再公表特許WO2011/034020A1公報  Republished patent WO2011 / 0334020A1 特開2011−182577号公報  JP 2011-182577 A Ultrasonic motor テクノハンズ株式会社 〒222−0037神奈川県横浜市港北区大倉山6−29−34−103  Ultrasonic motor Techno Hands Co., Ltd. 6-29-34-103, Okurayama, Kohoku-ku, Yokohama 222-0037, Japan 特開2009−27865号公報  JP 2009-27865 A

上記再公表特許WO2011/034020A1公報の電子顕微鏡は、XY軸中空型顕微鏡ユニット(絞り部材駆動機構30や支持部材駆動機構40、50)を、XY軸共に片側駆動(圧電アクチュエータ)と、片側スライド(滑りガイド)方式とし、アクチュエータを一層構造のXY軸移動体内に内装できるメリットを有する。しかし、ボルト101に螺合する四角柱状のナット102の外側四面にピエゾ素子103を貼り付けてなり、しかもXY軸共に片側駆動と片側スライド方式としたから、ボルト101に僅かな回転振れがある為にボルト両端を隙間支持する必要があり、ボルトの反転時に片側駆動と片側スライドとの間に遊びとガタが発生する問題点が指摘されている。上記問題点を解消すべく、初期調節を完璧に行っても、試料微動機構の使用頻度を重ねた反復使用とともに、片側駆動と片側スライドとの間の遊びとガタが拡大される。この為、試料微動機構の耐久性(移動特性と静止特性)の低下現象で正確な顕微鏡観察が長期間に亘り保証出来ないと言う問題がある。  The electron microscope disclosed in the re-published patent WO2011 / 034020A1 includes an XY-axis hollow microscope unit (a diaphragm member drive mechanism 30 and support member drive mechanisms 40 and 50), a uniaxial drive (piezoelectric actuator) and a unilateral slide (both XY axes). (Sliding guide) method, and has an advantage that an actuator can be housed in an XY-axis moving body having a single layer structure. However, since the piezo element 103 is attached to the outer four surfaces of the square columnar nut 102 that is screwed to the bolt 101, and the XY axis is a one-side drive and one-side slide system, the bolt 101 has a slight rotational vibration. It is necessary to support both ends of the bolt with a gap, and it has been pointed out that play and backlash occur between the one-side drive and the one-side slide when the bolt is reversed. Even if the initial adjustment is performed perfectly to solve the above problems, play and backlash between the one-side drive and the one-side slide are expanded with repeated use of the sample fine movement mechanism. For this reason, there is a problem that accurate microscopic observation cannot be guaranteed for a long period of time due to a phenomenon of deterioration in durability (moving characteristics and stationary characteristics) of the sample fine movement mechanism.

また、上記特開2011−182577号公報の超音波リニアアクチュエータは、XY軸中空型顕微鏡における微駆動ユニット(試料微動機構)の構成に係わるものではなく、超音波アクチュエータの駆動回路に係わるものであるから、超音波アクチュエータのシャフトと保持片のV溝と薄板バネとの三点支持の摩擦力を微調節する構成が明らかでない。従って、試料微動機構の構成において、微動送り精度と微動位置決め精度とこの精度維持が期待できない。  Further, the ultrasonic linear actuator disclosed in Japanese Patent Application Laid-Open No. 2011-182577 does not relate to the configuration of the fine drive unit (sample fine movement mechanism) in the XY-axis hollow microscope, but relates to the drive circuit of the ultrasonic actuator. Therefore, it is not clear how to finely adjust the frictional force of the three-point support of the shaft of the ultrasonic actuator, the V groove of the holding piece, and the thin plate spring. Therefore, in the configuration of the sample fine movement mechanism, fine movement feeding accuracy, fine movement positioning accuracy, and maintenance of this accuracy cannot be expected.

更に、上記非特許文献は、微駆動ユニットの可動部を超音波リニアアクチュエータで微動位置決めする技術において、シャフト1Aの保持部2の途上に所定のV溝2Aと螺子2Mで押圧力を微調節される薄板バネ2B(叉は厚板バネ2C)とからなる摩擦力で係合する被駆動部材Dは、本発明に係わる微駆動ユニットと類似する。しかし、試料微駆動ユニットの構成において、シャフトとV溝と薄板バネとの三点支持の摩擦力の微調節を螺子2Mで実行すると、調節初期には比較的高い被駆動部材の微動送り精度と微動位置決め精度が得られる。しかし、シャフトとV溝の摩耗で、微動送りの繰り返し精度が比較的早く低下してしまい、再度の微調節を余儀なくされている。即ち、上記薄板バネの押圧力を調節螺子で微調節する方式では、被駆動部材の微動送り精度と微動位置決め精度とこの精度維持とを長期間の繰り返し動作でも保証する為の製造技術上のノウハウが盛り込まれていない。この為、電子顕微鏡の微駆動ユニットとして所期の目的が期待できないと言う問題が残存する。  Further, in the above non-patent document, the pressing force is finely adjusted by a predetermined V-groove 2A and screw 2M on the way of the holding portion 2 of the shaft 1A in the technique of finely positioning the movable portion of the fine drive unit by an ultrasonic linear actuator. The driven member D that is engaged by the frictional force composed of the thin plate spring 2B (or the thick plate spring 2C) is similar to the fine drive unit according to the present invention. However, in the configuration of the sample fine drive unit, if fine adjustment of the friction force of the three-point support of the shaft, the V-groove and the thin plate spring is executed by the screw 2M, a relatively high fine feed accuracy of the driven member is obtained at the initial stage of adjustment. Fine positioning accuracy is obtained. However, due to wear of the shaft and V-groove, the repeatability of fine feed is lowered relatively quickly, necessitating fine adjustment again. That is, in the method of finely adjusting the pressing force of the thin plate spring with an adjusting screw, the know-how in manufacturing technology for guaranteeing the fine movement feeding accuracy and fine movement positioning accuracy of the driven member and maintaining this accuracy even in a long-term repeated operation. Is not included. For this reason, the problem that the intended purpose cannot be expected as a fine drive unit of an electron microscope remains.

更に、特開2009−27865号公報の微動機構を備えた顕微鏡装置は、超音波アクチュエータの駆動信号を出力する制御装置に係わるものである。従って、試料の微駆動ユニットの構成において、超音波リニアアクチュエータのシャフトと保持体のV溝と薄板バネとの三点支持による摩擦力を微調節する構成が明らかでなく、微動送り精度と微動位置決め精度とこの精度維持が期待できない。  Furthermore, a microscope apparatus provided with a fine movement mechanism disclosed in Japanese Patent Application Laid-Open No. 2009-27865 relates to a control apparatus that outputs a drive signal for an ultrasonic actuator. Therefore, in the configuration of the fine drive unit of the sample, it is not clear how to finely adjust the frictional force due to the three-point support of the shaft of the ultrasonic linear actuator, the V groove of the holding body, and the thin plate spring. The accuracy and maintenance of this accuracy cannot be expected.

本発明は、上記各公知例における微駆動ユニットの可動部を超音波リニアアクチュエータで微動位置決めする技術の問題点に鑑みてなされたもので、特に、電子顕微鏡の微駆動ユニットとして所期の目的を達成すべく、微駆動ユニットの可動部を超音波リニアアクチュエータで微動位置決めするに際して、微動送り精度と微動位置決め精度とこの精度維持する耐久性とを飛躍的に向上させた新技術を提供するものである。  The present invention has been made in view of the problems of the technique for finely positioning the movable part of the fine drive unit in each of the above known examples with an ultrasonic linear actuator, and in particular, has the intended purpose as a fine drive unit of an electron microscope. In order to achieve this, we provide a new technology that dramatically improves the fine feed accuracy, fine positioning accuracy, and durability to maintain this accuracy when finely positioning the movable part of the fine drive unit with an ultrasonic linear actuator. is there.

上記目的を達成するべく本発明の請求項1による電子顕微鏡の微駆動ユニットは、試料の像を取得すべく電子レンズを使用して電子線を収束し、上記試料に上記電子線を照射する電子顕微鏡であり、上記試料と上記電子レンズを収容し内部の真空度を維持すると共に浮遊磁場を遮断する筐体と、上記筐体内に配置された上記電子線を絞る絞り部材の第一駆動体には、超音波リニアアクチュエータを備え、パルス信号によって第一駆動体を送り制御及び位置制御する電子顕微鏡の微駆動ユニットにおいて、
上記第一駆動体は、固定枠又は試料ホルダ又はプレート内にX軸中空可動体とY軸中空可動体とを内装すべく、振動子とこの中心位置の片側に連結するシャフトとからなる一対の超音波リニアアクチュエータを、固定枠又は試料ホルダ又はプレートの両側軸受部に振動子とシャフトとを逆向きに対向支持すると共に各シャフトの中腹部でX軸中空可動体叉はY軸中空可動体の両側に設けた保持部のU字状に形成した肉厚側のV溝と肉薄側の挟持片の平面とで三点保持し、上記中空可動体を保持する各シャフトと直交する該中空可動体の両側面に別の一対の超音波リニアアクチュエータを逆向きに対向支持すると共に各シャフトの中腹部で別の中空可動体の両側に設けた保持部のV溝と挟持片の平面とで三点保持し、上記X軸中空可動体とY軸中空可動体とは、一対の超音波リニアアクチュエータに付与する逆パルス信号で付与することで同方向に両側駆動されることを特徴とする。
In order to achieve the above object, a fine drive unit of an electron microscope according to claim 1 of the present invention uses an electron lens to converge an electron beam to acquire an image of a sample, and irradiates the sample with the electron beam. A microscope that houses the sample and the electron lens, maintains a degree of vacuum inside and blocks a stray magnetic field, and a first driving body of a diaphragm member that squeezes the electron beam disposed in the case Is a fine driving unit of an electron microscope that includes an ultrasonic linear actuator and feeds and controls the position of the first driving body by a pulse signal.
The first driving body includes a pair of a vibrator and a shaft connected to one side of the central position so as to house the X-axis hollow movable body and the Y-axis hollow movable body in a fixed frame, a sample holder, or a plate. The ultrasonic linear actuator is supported on opposite sides of the fixed frame, the sample holder or the plate with the vibrator and the shaft opposed to each other in the opposite direction, and the X-axis hollow movable body or the Y-axis hollow movable body at the middle part of each shaft. The hollow movable body that is held at three points by the thick V-shaped groove formed in the U-shape of the holding portions provided on both sides and the flat side of the thin-side clamping piece, and is orthogonal to each shaft that holds the hollow movable body A pair of ultrasonic linear actuators are oppositely supported in opposite directions on both side surfaces of the shaft, and at the middle of each shaft, there are three points of the V groove of the holding portion provided on both sides of another hollow movable body and the plane of the sandwiching piece Hold the X-axis hollow movable body and Y-axis Check movable body and is characterized in that it is driven on both sides in the same direction by imparting a reverse pulse signal applied to the pair of ultrasonic linear actuator.

上記目的を達成するべく本発明の請求項2による電子顕微鏡の微駆動ユニットは、試料の像を取得すべく電子レンズを使用して電子線を収束し、上記試料に上記電子線を照射する電子顕微鏡であり、上記試料と上記電子レンズを収容し内部の真空度を維持すると共に浮遊磁場を遮断する筐体と、上記筐体内に配置された上記試料を支持する支持部材の第二駆動体には、超音波リニアアクチュエータを備え、パルス信号によって第二駆動体を送り制御及び位置制御する電子顕微鏡の微駆動ユニットにおいて、
上記第二駆動体は、固定枠又は試料ホルダ又はプレート内にX軸中空可動体とY軸中空可動体とを内装すべく、振動子とこの中心位置の片側に連結するシャフトとからなる一対の超音波リニアアクチュエータを、固定枠又は試料ホルダ又はプレートの両側軸受部に振動子とシャフトとを逆向きに対向支持すると共に各シャフトの中腹部でX軸中空可動体叉はY軸中空可動体の両側に設けた保持部のU字状に形成した肉厚側のV溝と肉薄側の挟持片の平面とで三点保持し、上記中空可動体を保持する各シャフトと直交する該中空可動体の両側面に別の一対の超音波リニアアクチュエータを逆向きに対向支持すると共に各シャフトの中腹部で別の中空可動体の両側に設けた保持部のV溝と挟持片の平面とで三点保持し、上記X軸中空可動体とY軸中空可動体とは、一対の超音波リニアアクチュエータに付与する逆パルス信号で付与することで同方向に両側駆動されることを特徴とする。
In order to achieve the above object, a fine drive unit of an electron microscope according to claim 2 of the present invention uses an electron lens to converge an electron beam to obtain an image of a sample, and irradiates the sample with the electron beam. A microscope that houses the sample and the electron lens, maintains a degree of vacuum inside and blocks a stray magnetic field, and a second driver of a support member that supports the sample disposed in the case Is a fine drive unit of an electron microscope that includes an ultrasonic linear actuator and controls the feed and position of the second drive body by a pulse signal.
The second driving body includes a pair of a vibrator and a shaft connected to one side of the central position so as to house the X-axis hollow movable body and the Y-axis hollow movable body in a fixed frame, a sample holder, or a plate. The ultrasonic linear actuator is supported on opposite sides of the fixed frame, the sample holder or the plate with the vibrator and the shaft opposed to each other in the opposite direction, and the X-axis hollow movable body or the Y-axis hollow movable body at the middle part of each shaft. The hollow movable body that is held at three points by the thick V-shaped groove formed in the U-shape of the holding portions provided on both sides and the flat side of the thin-side clamping piece, and is orthogonal to each shaft that holds the hollow movable body A pair of ultrasonic linear actuators are oppositely supported in opposite directions on both side surfaces of the shaft, and at the middle of each shaft, there are three points of the V groove of the holding portion provided on both sides of another hollow movable body and the plane of the sandwiching piece Hold the X-axis hollow movable body and Y-axis Check movable body and is characterized in that it is driven on both sides in the same direction by imparting a reverse pulse signal applied to the pair of ultrasonic linear actuator.

また、本発明の請求項3の電子顕微鏡の微駆動ユニットは、請求項1または2記載の電子顕微鏡の微駆動ユニットにおいて、上記超音波リニアアクチュエータは、シャフトをカーボン材で構成し、上記シャフトが保持部のV溝と挟持片の平面との三点支持で与圧を持って常時面当たりするX軸中空可動体側及びY軸中空可動体側の保持部は、成分比率Ti−6AL−4Vからなるチタン材で構成し、上記保持部を硬く表面処理すべく、イオン窒化処理して硬化層1〜3μmの窒化チタンTiNとし、ラップ仕上げしたことを特徴とする。  The fine driving unit of the electron microscope according to claim 3 of the present invention is the fine driving unit of the electron microscope according to claim 1 or 2, wherein the ultrasonic linear actuator includes a shaft made of a carbon material, The holding part on the X-axis hollow movable body side and the Y-axis hollow movable body side that always comes into contact with the surface by three-point support of the V groove of the holding part and the plane of the holding piece is composed of a component ratio Ti-6AL-4V. It is made of a titanium material, and is characterized by being subjected to ion nitriding treatment to form a hardened layer of titanium nitride TiN having a thickness of 1 to 3 μm and lapping in order to harden the holding portion.

また、本発明の請求項4による電子顕微鏡の微駆動ユニットは、請求項1または2記載の電子顕微鏡の微駆動ユニットにおいて、上記超音波リニアアクチュエータは、シャフトをカーボン材で構成し、上記シャフトが保持部のV溝と挟持片の平面との三点支持で与圧を持って常時面当たりするX軸中空可動体側及びY軸中空可動体側の保持部は、成分比率Ti−6AL−4Vからなるチタン材で構成し、上記保持部を硬く表面処理すべく、ニッケルメッキしてメッキ層を10〜20μmとし、ラップ仕上げしたことを特徴とする。  According to a fourth aspect of the present invention, there is provided the fine driving unit for an electron microscope according to the first or second aspect, wherein the ultrasonic linear actuator comprises a shaft made of a carbon material, The holding part on the X-axis hollow movable body side and the Y-axis hollow movable body side that always comes into contact with the surface by three-point support of the V groove of the holding part and the plane of the holding piece is composed of a component ratio Ti-6AL-4V. It is made of a titanium material, and is nickel-plated to have a plated layer of 10 to 20 μm and lapped so that the holding portion is hard-treated.

また、本発明の請求項5による電子顕微鏡の微駆動ユニットは、請求項1または2記載の電子顕微鏡の微駆動ユニットにおいて、上記超音波リニアアクチュエータの振動子とシャフトの自由端とを固定枠又は試料ホルダ又はプレートとX軸中空可動体側及びY軸中空可動体側との軸受部に弾力性の有る弾性接着剤で保持したことを特徴とする。  The electron microscope fine drive unit according to claim 5 of the present invention is the electron microscope fine drive unit according to claim 1 or 2, wherein the transducer of the ultrasonic linear actuator and the free end of the shaft are connected to a fixed frame or It is characterized in that the bearing portion between the sample holder or the plate and the X-axis hollow movable body side and the Y-axis hollow movable body side is held by a resilient elastic adhesive.

また、本発明の請求項6による電子顕微鏡の微駆動ユニットは、請求項5記載の電子顕微鏡の微駆動ユニットにおいて、上記弾性接着剤は、例えばアクリル変成シリコン樹脂であることを特徴とする。  According to a sixth aspect of the present invention, there is provided a fine driving unit for an electron microscope according to the fifth aspect, wherein the elastic adhesive is, for example, an acryl-modified silicone resin.

本発明の請求項1と2の電子顕微鏡の微駆動ユニットによると、X軸中空可動体とY軸中空可動体との微動送り制御と定位置停止制御との繰り返しは、逆向き配置した一対の超音波リニアアクチュエータに逆パルス信号で付与することで同方向に両側駆動させたから、各可動体の重量バランスが最適となって両側駆動で高精度に実行でき、電子顕微鏡における鮮明な観察と画像を記録できる。  According to the fine driving unit of the electron microscope of the first and second aspects of the present invention, the repetition of the fine feed control and the fixed position stop control of the X-axis hollow movable body and the Y-axis hollow movable body is a pair of oppositely arranged. Since both sides are driven in the same direction by applying an inverse pulse signal to the ultrasonic linear actuator, the weight balance of each movable body is optimized and can be executed with high precision by both sides driving, and clear observation and images in an electron microscope are possible. Can record.

また、請求項3と4の電子顕微鏡の微駆動ユニットによると、顕微鏡内の高真空の環境でも高い耐摩耗性により滑り易く長期間に亘り高いガイド性を維持した駆動が可能である。具体的数値で示すと、50万回以上の繰り返し往復移動に対して、初期の微動送り精度と微動位置決め精度が維持できる。更に、カーボン材のシャフトは、自己潤滑性が良く耐摩耗性も高いので、微動送り精度と微動位置決め精度とこの精度維持を保証する耐久性とを飛躍的に向上できる。  Further, according to the fine driving unit of the electron microscope according to claims 3 and 4, even in a high vacuum environment in the microscope, driving with high wear resistance and easy sliding is possible for a long period of time. In terms of specific numerical values, the initial fine movement feed accuracy and fine movement positioning accuracy can be maintained for repeated reciprocating movements of 500,000 times or more. Furthermore, since the shaft made of carbon material has high self-lubricating properties and high wear resistance, it is possible to dramatically improve the fine feed accuracy, the fine positioning accuracy, and the durability that guarantees the maintenance of this accuracy.

また、請求項5と6の電子顕微鏡の微駆動ユニットによると、超音波リニアアクチュエータにおける振動子とシャフトの自由端を固定枠及びX軸及びY軸中空可動体との軸受部に弾力性の有る弾性接着剤で保持したから、シャフトの軸芯ブレが起きず、円滑な微動送り制御と定位置停止制御が長期間にわたり保証できる。また、超音波リニアアクチュエータの耐久性も高められる。  According to the fine drive unit of the electron microscope according to claims 5 and 6, the free end of the vibrator and the shaft in the ultrasonic linear actuator is elastic to the bearing portion of the fixed frame and the X-axis and Y-axis hollow movable body. Since it is held by the elastic adhesive, the shaft core is not shaken, and smooth fine feed control and fixed position stop control can be guaranteed over a long period of time. In addition, the durability of the ultrasonic linear actuator can be improved.

本発明の第1の実施の形態を示し、走査型電子顕微鏡の断面図である。  1 is a cross-sectional view of a scanning electron microscope according to a first embodiment of the present invention. 本発明の第1の実施の微駆動ユニットにおける第二駆動体の展開斜視図である。  It is an expansion | deployment perspective view of the 2nd drive body in the fine drive unit of the 1st Embodiment of this invention. 本発明の第1の実施の微駆動ユニットにおける第二駆動体の底面図である。  It is a bottom view of the 2nd drive body in the fine drive unit of the 1st Embodiment of this invention. 本発明の第1の実施の形態を示し、第二駆動体のX−X断面図である。  FIG. 3 is a sectional view taken along line XX of the second driving body, showing the first embodiment of the present invention. 本発明の第1の実施の形態を示し、第二駆動体のY−Y断面図である。  FIG. 3 is a YY sectional view of the second driving body, showing the first embodiment of the present invention. 本発明の第1の実施の形態を示し、保持部の断面図である。  FIG. 2 is a cross-sectional view of a holding portion according to the first embodiment of the present invention. 本発明の第2の実施の形態を示し、第一駆動体の展開斜視図である。  FIG. 6 is a developed perspective view of a first driving body, showing a second embodiment of the present invention. 第一駆動体と第二駆動体の成分特性図である。  It is a component characteristic view of a 1st drive body and a 2nd drive body. 本発明の第二駆動体における第2実施例の展開斜視図である。  It is an expansion | deployment perspective view of 2nd Example in the 2nd drive body of this invention. 第二駆動体における第2実施例の平面図である。  It is a top view of 2nd Example in a 2nd drive body. 第二駆動体における第2実施例の側面図である。  It is a side view of 2nd Example in a 2nd drive body. 本発明の第一駆動体及び第二駆動体の電気駆動図である。  It is an electric drive figure of the 1st drive body and the 2nd drive body of the present invention. 本発明の第3の実施の形態を示し、透過型電子顕微鏡の断面図である。  FIG. 6 is a cross-sectional view of a transmission electron microscope, showing a third embodiment of the present invention. 本発明の第3の実施の形態を示し、第一駆動体の展開斜視図である。  FIG. 6 is a developed perspective view of a first driving body, showing a third embodiment of the present invention. 本発明の第3の実施の形態となる第一駆動体の第2実施例の展開斜視図である。  It is an expansion | deployment perspective view of 2nd Example of the 1st drive body used as the 3rd Embodiment of this invention. 公知例を示し、超音波リニアアクチュエータのシャフトをV溝と薄板バネとで三点支持する断面図である。  It is sectional drawing which shows a well-known example and supports the shaft of an ultrasonic linear actuator three points with a V groove and a thin leaf | plate spring.

以下、図1乃至図15を参照して本発明の電子顕微鏡において、電子線を絞る絞り部材の微駆動ユニット及び試料を支持する資料ホルダの微駆動ユニットについて、各実施の形態を順次に説明する。  Hereinafter, in the electron microscope of the present invention, each embodiment of the fine drive unit of the diaphragm member for narrowing down the electron beam and the fine drive unit of the material holder for supporting the sample will be sequentially described with reference to FIGS. .

本発明の第1の実施の形態となる走査型電子顕微鏡100は、図1にその構成の概要を示す。走査型電子顕微鏡100は、電子線を絞る絞り部材11,12及び試料Sを支持する資料ホルダ10の微駆動ユニット(以下、第一駆動体20と第二駆動体微動30と言う)20´、30´について、薄膜試料の透過2次電子像観察を行うもので、試料台3に試料ホルダ10がボルト2で固定されている。試料ホルダ10は、観察対象の試料Sを保持する。上記試料Sの像を取得するには、電子レンズを用いて電子線を収束させ、試料Sに電子線を照射して行われる。尚、上記試料Sは、メッシュ状のグリッドに貼った薄膜試料である。  The scanning electron microscope 100 according to the first embodiment of the present invention is schematically shown in FIG. The scanning electron microscope 100 includes a fine drive unit (hereinafter referred to as a first drive body 20 and a second drive body fine movement 30) 20 ′ of diaphragm members 11 and 12 for narrowing an electron beam and a material holder 10 that supports a sample S. 30 ′ is used to observe a transmission secondary electron image of a thin film sample, and a sample holder 10 is fixed to the sample stage 3 with bolts 2. The sample holder 10 holds a sample S to be observed. In order to acquire the image of the sample S, the electron beam is converged using an electron lens, and the sample S is irradiated with the electron beam. The sample S is a thin film sample attached to a mesh-like grid.

上記走査型電子顕微鏡100の軸線L上において、試料台3と対向する位置には、試料ホルダ10に向かって電子線を出射する電子銃4A、及び電子銃4Aから出射された電子線を試料ホルダ10に向かって加速させるアノード6が設置されている。軸線L上においてアノード6と試料ホルダ10との間には、電子線の中心線を軸線Lに位置合わせする軸合せコイル1、電子線を収束させる電子レンズとしての収束レンズ5及び対物レンズ7、並びに電子線を偏向させる偏向コイル8が設置されている。また、軸線L上において、収束レンズ5と偏向コイル8との間に、収束レンズ5によって収束させられた電子線を絞る絞り部材11が設置されている。また、軸線L上において対物レンズ7と試料ホルダ4との間には、対物レンズ7によって収束させられた電子線を絞る支持部材11,12が設置されている。各部材11,12は、各駆動機構となる第一駆動体20の微駆動ユニット20´によって駆動される。また、試料ホルダ10上の試料Sは、第二駆動体30の微駆動ユニット30´によって駆動される。  On the axis L of the scanning electron microscope 100, at a position facing the sample stage 3, an electron gun 4A that emits an electron beam toward the sample holder 10 and an electron beam emitted from the electron gun 4A are sample holders. An anode 6 that accelerates toward 10 is installed. Between the anode 6 and the sample holder 10 on the axis L, an alignment coil 1 for aligning the center line of the electron beam with the axis L, a converging lens 5 as an electron lens for converging the electron beam, and an objective lens 7, In addition, a deflection coil 8 for deflecting the electron beam is provided. On the axis L, a diaphragm member 11 is provided between the converging lens 5 and the deflection coil 8 to narrow down the electron beam converged by the converging lens 5. On the axis L, between the objective lens 7 and the sample holder 4, support members 11 and 12 for narrowing the electron beam converged by the objective lens 7 are installed. The members 11 and 12 are driven by a fine drive unit 20 ′ of the first drive body 20 serving as each drive mechanism. The sample S on the sample holder 10 is driven by the fine drive unit 30 ′ of the second drive body 30.

上記走査型電子顕微鏡100は、試料Sを透過した電子線の照射によって試料ホルダ10から発生させられた2次電子を検出する2次電子検出器13と、走査型電子顕微鏡100の全体を制御するパーソナルコンピュータの制御装置PCと、を備えている。ディスプレイには、試料Sの透過2次電子像等が表示される。  The scanning electron microscope 100 controls the secondary electron detector 13 that detects secondary electrons generated from the sample holder 10 by irradiation of an electron beam that has passed through the sample S, and the entire scanning electron microscope 100. And a personal computer control device PC. On the display, a transmitted secondary electron image of the sample S is displayed.

上記試料台3、試料ホルダ10、電子銃4A、アノード6、軸合せコイル1、収束レンズ5、対物レンズ7、偏向コイル8、各絞り部材11,12を駆動させる第一駆動体20と、試料ホルダ10の試料Sを駆動する第二駆動体30、及び2次電子検出器13の2次電子検出部は、真空引きされる筐体15内に収容されている。筐体15の上部及び下部には、筐体15の内部を真空引きするための排気管16が設けられ、筐体15の中間部には、筐体15の内部を上部と下部とに仕切るための仕切弁が設けられている。筐体15は、鉄又はアルミニウム合金からなり、内部の真空度を維持すると共に浮遊磁場を遮蔽している。上記試料ホルダ4について、図2に示すように、X軸、Y軸、Z軸が設定されている。Y軸方向において2次電子検出器13側を前側とし、その反対側を後側とする。Z軸方向において電子銃4A側を上側とし、その反対側を下側としている。  Sample holder 3, sample holder 10, electron gun 4A, anode 6, axis alignment coil 1, converging lens 5, objective lens 7, deflection coil 8, first driving body 20 for driving each diaphragm member 11, 12, and sample The second driver 30 that drives the sample S of the holder 10 and the secondary electron detector of the secondary electron detector 13 are housed in a housing 15 that is evacuated. An exhaust pipe 16 for evacuating the inside of the housing 15 is provided at the upper and lower portions of the housing 15, and an intermediate portion of the housing 15 is used to partition the inside of the housing 15 into an upper portion and a lower portion. A gate valve is provided. The housing 15 is made of iron or an aluminum alloy, maintains the internal vacuum, and shields the stray magnetic field. As for the sample holder 4, as shown in FIG. 2, an X axis, a Y axis, and a Z axis are set. In the Y-axis direction, the secondary electron detector 13 side is the front side, and the opposite side is the rear side. In the Z-axis direction, the electron gun 4A side is the upper side, and the opposite side is the lower side.

上記第二駆動体30の微駆動ユニット30´は、図2に示すように、例えばアルミニウム合金からなる直方体状の試料ホルダ10を備えている。試料ホルダ10の前面には、断面V字状の切欠き部4Bが形成されており、試料ホルダ10の上に突出した部分には、断面円形状の電子線通過孔4Cが形成されている。試料ホルダ10の下面には、試料台3の挿通孔を介してボルトを螺合するネジ穴4Dが形成されている。上記試料ホルダ10において電子線通過孔4Cと対向する傾斜面は、電子線通過孔4Cを通過した電子線が照射されて2次電子を発生する2次電子発生面(2次電子発生部)4Eとなっている。  As shown in FIG. 2, the fine drive unit 30 ′ of the second drive body 30 includes a rectangular parallelepiped sample holder 10 made of, for example, an aluminum alloy. A notch 4B having a V-shaped cross section is formed on the front surface of the sample holder 10, and an electron beam passage hole 4C having a circular cross section is formed in a portion protruding above the sample holder 10. On the lower surface of the sample holder 10, a screw hole 4 </ b> D for screwing a bolt through an insertion hole of the sample table 3 is formed. In the sample holder 10, the inclined surface facing the electron beam passage hole 4C is irradiated with the electron beam that has passed through the electron beam passage hole 4C to generate secondary electrons (secondary electron generation portion) 4E. It has become.

更に、図2において、試料ホルダ10の上面には、例えばアルミニウム合金からなる直方体の固定枠21が固定されている。固定枠21は、その四隅に形成された孔22を介して試料ホルダ10の上面にボルトを介して取り付けられる。固定枠21には、Z軸方向において試料ホルダ10の電子線通過孔4Cと対向する電子線通過孔21Aが形成され、この上側部分は、径方向に拡幅されている。電子線通過孔21Aの拡幅部の底面において、薄膜状の試料Sを支持して固定されている。更に、固定枠21の下面には、下側と前側に開口した断面長方形状の凹部21Bが形成されている。凹部21Bは、左側及び右側に拡幅され、右側には切欠き部21Cが形成されており、後側には切欠き部21Dが形成されている。  Further, in FIG. 2, a rectangular parallelepiped fixing frame 21 made of, for example, an aluminum alloy is fixed to the upper surface of the sample holder 10. The fixed frame 21 is attached to the upper surface of the sample holder 10 via bolts 22 formed at the four corners thereof via bolts. The fixed frame 21 is formed with an electron beam passage hole 21A that faces the electron beam passage hole 4C of the sample holder 10 in the Z-axis direction, and this upper portion is widened in the radial direction. A thin film sample S is supported and fixed on the bottom surface of the widened portion of the electron beam passage hole 21A. Furthermore, a concave portion 21B having a rectangular cross section that opens to the lower side and the front side is formed on the lower surface of the fixed frame 21. The recess 21B is widened on the left and right sides, a notch 21C is formed on the right side, and a notch 21D is formed on the rear side.

図2〜図6に示されるように、固定枠21の凹部21B内には、アルミニウム合金のY軸中空可動体23が配置されている。図3に示すように、Y軸中空可動体23には、一対の超音波リニアアクチュエータ50,51を逆向きにして両側に備える。その構成は、円板状の各振動子25とこの中心に貫通し片側へ連結するシャフト26を備えている。上記各振動子25とシャフトの自由端26Aは、固定枠21の側面四か所に設けた軸受部21Eに、弾力性の有る弾性接着剤Uを充填して保持されている。上記弾性接着剤は、例えばアクリル変成シリコン樹脂が使用される。この製品は、セメダイン社の工業用セメダイン(スーパーXNo8008、弾性接着剤)である。その主成分は、アクリル変成シリコン樹脂であり、粘度:85,0(PaS/23℃)、密度:1,27(g/cm)である。勿論、上記弾性接着剤に類似する弾性接着剤は、各メーカーで数多く取り揃えられ市販されているから、何れも使用可能である。As shown in FIGS. 2 to 6, a Y-axis hollow movable body 23 made of an aluminum alloy is disposed in the recess 21 </ b> B of the fixed frame 21. As shown in FIG. 3, the Y-axis hollow movable body 23 is provided with a pair of ultrasonic linear actuators 50 and 51 on opposite sides. The configuration includes each disk-shaped vibrator 25 and a shaft 26 that penetrates through the center and is connected to one side. Each of the vibrators 25 and the free end 26A of the shaft is held by filling the elastic adhesive U having elasticity in bearing portions 21E provided at four positions on the side surface of the fixed frame 21. As the elastic adhesive, for example, acrylic modified silicone resin is used. This product is Cemedine for industrial use (Super X No 8008, elastic adhesive). The main component is an acrylic modified silicone resin, which has a viscosity of 85,000 (PaS / 23 ° C.) and a density of 1,27 (g / cm 3 ). Of course, many elastic adhesives similar to the above elastic adhesives are available from various manufacturers and are commercially available.

更に、図6に示すように、上記超音波リニアアクチュエータ50,51の各シャフト26は、その中腹部でY軸中空可動体23の前後両側に設けた各保持部28における肉厚側Aと肉薄側BのU字状に形成した肉厚側のV溝28Aと、肉薄側の平面がバネ作用を持つ挟持片28Bとでシャフト26を三点保持している。これにより、Y軸中空可動体23は、一対の超音波リニアアクチュエータ50,51のシャフト26が保持部28の溝28Aと平面の挟持片28Bとに与圧を持って支持されるとともに、常時面当たりによる摩擦がブレーキ力として働かせている。そして、図12に示すように、各超音波リニアアクチュエータ50,51の各振動子25に付勢されるパルス信号E(逆パルス信号E1,E2を付与することで同方向に両側駆動)により、Y軸方向に所定の範囲内を両側駆動で往復動可能となる。  Further, as shown in FIG. 6, the shafts 26 of the ultrasonic linear actuators 50 and 51 are thin on the thick side A of the holding portions 28 provided on the front and rear sides of the Y-axis hollow movable body 23 in the middle. The shaft 26 is held at three points by a thick-side V-shaped groove 28A formed in a U-shape on the side B and a sandwiching piece 28B whose thin-side plane has a spring action. Thus, the Y-axis hollow movable body 23 is supported by the shaft 26 of the pair of ultrasonic linear actuators 50 and 51 with pressure applied to the groove 28A of the holding portion 28 and the flat clamping piece 28B. Friction caused by hitting works as a braking force. Then, as shown in FIG. 12, by the pulse signal E (both sides driven in the same direction by applying reverse pulse signals E1 and E2) urged to the transducers 25 of the ultrasonic linear actuators 50 and 51, It is possible to reciprocate within a predetermined range in the Y-axis direction by driving on both sides.

更に、上記第二駆動体30のY軸中空可動体23内には、図2と図3に示すように、X軸中空可動体24が配置されている。このX軸中空可動体24も同様に、逆向きにした一対の超音波リニアアクチュエータ52,53を構成する円板状の振動子25とこの中心に貫通する各シャフト26を挿通し、各振動子25とシャフトの自由端26A,26AをY軸中空可動体23の側面四か所に設けた軸受部23Eに弾力性の有る弾性接着剤Uを充填して保持され、逆向きに対向支持されている。上記各シャフト26は、図6に示すように、その中腹部でX軸中空可動体24の前後両側に設けた保持部29における肉厚側Aと肉薄側BのU字状に形成した肉厚側のV溝29Aと、肉薄側の平面がバネ作用を持つ挟持片29Bとでシャフト26を三点保持している。これにより、X軸中空可動体24は、一対の超音波リニアアクチュエータ52,53のシャフト26が保持部29の溝29Aと平面の挟持片29Bとに与圧を持って支持されるとともに、常時当接による摩擦がブレーキ力として働かせている。そして、図12に示すように、各超音波リニアアクチュエータ52,53の各振動子25に付勢されるパルス信号E(逆パルス信号E1,E2を付与することで同方向に両側駆動)により、各振動子25に付勢されるパルス駆動により、X軸方向に所定の範囲内を両側駆動で往復動可能となる。  Further, an X-axis hollow movable body 24 is arranged in the Y-axis hollow movable body 23 of the second drive body 30 as shown in FIGS. Similarly, the X-axis hollow movable body 24 is inserted through a disc-like vibrator 25 constituting a pair of ultrasonic linear actuators 52 and 53 and a shaft 26 penetrating through the center. 25 and the free ends 26A and 26A of the shaft are held by filling elastic elastic adhesives U in bearing portions 23E provided at four positions on the side surface of the Y-axis hollow movable body 23, and are supported in opposite directions. Yes. As shown in FIG. 6, each shaft 26 is formed in a U-shape of a thick side A and a thin side B in a holding portion 29 provided on both front and rear sides of the X-axis hollow movable body 24 at its middle part. The shaft 26 is held at three points by the V groove 29A on the side and the clamping piece 29B having a spring action on the thin side plane. As a result, the X-axis hollow movable body 24 is supported by the shaft 26 of the pair of ultrasonic linear actuators 52 and 53 with pressure applied to the groove 29A of the holding portion 29 and the flat clamping piece 29B. Friction due to contact acts as a braking force. Then, as shown in FIG. 12, by the pulse signal E (both sides driven in the same direction by applying the reverse pulse signals E1 and E2) biased to the transducers 25 of the ultrasonic linear actuators 52 and 53, By the pulse drive energized by each vibrator 25, it is possible to reciprocate within the predetermined range in the X-axis direction by both-side drive.

図6に示すように、上記超音波リニアアクチュエータ50,51,52,53のシャフトは、1φmm前後の直径に形成され、その成分は自己潤滑性が良く耐摩耗性も高いカーボン材とした。また、保持部28,29は、その分比率Ti−6AL−4Vからなる最良のチタン材で構成されている。上記チタン材の成分分析結果を図8に示す。図示により、各成分分析の数値を%で示している。上記シャフトをV溝と挟持片の平面との三点支持で常時面当たりするX軸中空可動体側とY軸中空可動体側の保持部28,29は、各シャフト26を受けるV溝28A,29Aの深さを約1mmとし、溝の長さは約6ミリの構成としている。更に、保持部28,29は、表面の硬度を硬くして耐磨耗性を向上させている。例えば、表面温度を低く処理でき変形を防ぐイオン窒化処理により、その表面硬化を高めた窒化チタンTiNにより硬化層Hを膜厚1〜3μmに形成し、最後にラップ仕上げで表面処理されている。更に、上記イオン窒化処理に替えて、保持部の表面をニッケルメッキしてメッキ層を10〜20μmとし、保持部を硬く表面処理してラップ仕上げとしても良い。As shown in FIG. 6, the shafts of the ultrasonic linear actuators 50, 51, 52, and 53 are formed to have a diameter of about 1φ mm, and the components thereof are carbon materials that have high self-lubricity and high wear resistance. The holding portions 28 and 29 is composed of the best titanium material composed of the Ingredient ratio Ti-6AL-4V. The component analysis results of the titanium material are shown in FIG. The numerical value of each component analysis is shown by% by illustration. The holding portions 28 and 29 on the X-axis hollow movable body side and the Y-axis hollow movable body side where the shaft constantly contacts the surface by three-point support of the V-groove and the plane of the clamping piece are V The depth is about 1 mm, and the groove length is about 6 mm. In addition, the holding portions 28 and 29 are hardened on the surface to improve wear resistance. For example, a hardened layer H is formed to a film thickness of 1 to 3 μm by titanium nitride TiN whose surface hardening is enhanced by ion nitriding treatment that can treat the surface temperature at a low temperature to prevent deformation, and is finally surface-treated by lapping. Further, instead of the above ion nitriding treatment, the surface of the holding portion may be nickel-plated so that the plating layer has a thickness of 10 to 20 μm, and the holding portion may be hard-treated to be lapped.

上記各シャフト26,26をカーボン材とし、保持部28,29とこの挟持片28B、29Bの表面は、窒化チタンTiNにより膜厚1〜3μmの硬化層Hを形成するか、叉は保持部の表面をニッケルメッキしてメッキ層を10〜20μmとし、ラップ仕上げで表面処理されている。更に、保持部28,29の挟持片28B、29Bは、ばね効果を持たせてシャフト26,26をV溝面に与圧を持って常時当接させて挟み込んでいる。これにより、50万回以上の繰り返し往復移動に対して、初期の繰り返し精度保証が得られることを、繰り返しテストにより確認した。上記超音波リニアアクチュエータ50,51,52,53の配線54は、走査型電子顕微鏡100の外に配置したパーソナルコンピュータの制御装置PCに繋がれている。  The shafts 26 and 26 are made of a carbon material, and the holding portions 28 and 29 and the surfaces of the sandwiching pieces 28B and 29B are formed with a hardened layer H having a film thickness of 1 to 3 μm by titanium nitride TiN, or The surface is nickel-plated so that the plating layer has a thickness of 10 to 20 μm and is surface-treated by lapping. Further, the holding pieces 28B and 29B of the holding portions 28 and 29 are sandwiched by always bringing the shafts 26 and 26 into contact with the V-groove surface with pressure by giving a spring effect. As a result, it was confirmed by repeated tests that an initial repeat accuracy guarantee could be obtained for repeated reciprocating movements of 500,000 times or more. The wiring 54 of the ultrasonic linear actuators 50, 51, 52 and 53 is connected to a control device PC of a personal computer arranged outside the scanning electron microscope 100.

以上のように構成された第二駆動体30の微駆動ユニット30´は、試料ホルダ10の上面に備えられている。然して、図3〜5に示すように、固定枠21内に支持されたY軸中空可動体23と、Y軸中空可動体23内に支持されたX軸中空可動体24とは、各々逆向きに配置した一対の超音波リニアアクチュエータ50,51と52,53とを構成する円板状の各振動子25とこの中心から片側に付設するシャフト26,26により、Y軸方向とX軸方向に所定の範囲で荒い往復動と、位置合わせ移動と、微動位置合わせされる。  The fine driving unit 30 ′ of the second driving body 30 configured as described above is provided on the upper surface of the sample holder 10. However, as shown in FIGS. 3 to 5, the Y-axis hollow movable body 23 supported in the fixed frame 21 and the X-axis hollow movable body 24 supported in the Y-axis hollow movable body 23 are in opposite directions. In the Y-axis direction and the X-axis direction, the disk-shaped transducers 25 constituting the pair of ultrasonic linear actuators 50, 51 and 52, 53 arranged on the shaft and the shafts 26, 26 attached to one side from the center are provided. Rough reciprocation within a predetermined range, alignment movement, and fine movement alignment are performed.

上記超音波リニアアクチュエータ50,51,52,53の駆動回路PDは、図12に示すように、プログラミングコントローラ又はパーソナルコンピュータの制御装置PCで制御されている。即ち、電源部Pと、パルス信号E(+側のパルスE1,−側のパルスE2からなる逆パルス信号)を発信する発振部Gと、発振周波数F及びパルス信号E(逆パルス信号E1とE2)を制御する発振制御部GPと、発振出力部PPとからなり、この各発振出力部PPから上記超音波リニアアクチュエータ50,51,52,53に接続されている。上記発振制御部GPにより、Y軸中空可動体23とX軸中空可動体24とは、所定の送り速度と送り精度で制御される。勿論、上記駆動回路PDは、Y軸中空可動体23とX軸中空可動体24の送り速度をパルス数で制御するものであるから、超音波リニアアクチュエータ50,51,52,53の制御基板に内蔵されている市販セットの制御回路でも良い。  The drive circuit PD of the ultrasonic linear actuators 50, 51, 52, 53 is controlled by a programming controller or a control device PC of a personal computer as shown in FIG. That is, the power supply unit P, an oscillation unit G that transmits a pulse signal E (a reverse pulse signal composed of a positive pulse E1 and a negative pulse E2), an oscillation frequency F and a pulse signal E (reverse pulse signals E1 and E2). ) And an oscillation output unit PP, which are connected to the ultrasonic linear actuators 50, 51, 52, 53. The oscillation control unit GP controls the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 with a predetermined feed speed and feed accuracy. Of course, the drive circuit PD controls the feed speeds of the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 by the number of pulses, so that the control circuit for the ultrasonic linear actuators 50, 51, 52, 53 is provided. A commercially available set of control circuits may be used.

上記超音波リニアアクチュエータ50,51,52,53の動作原理は、シャフト26,26の根元に振動子(圧電セラミック)25が固定され、シャフト26,26に与圧が掛かった摩擦体の保持部28,29のV溝28A、29Aと挟持片28B、29Bとで常時面当たりに挟み込んでいる。これで、停止時は、摩擦で保持されて微振動が生じず、発熱も無い。送り動作は、振動子25がパルス波Eでシャフトを軸方向に振動させ、この振動の行きと帰りのDuty比を変えることで保持片を微小に置き去り、叉は引き寄せ動作する。この微少移動の動作は、高い振動周波数(超音波振動)のパルス波E(E1,E2)でコントロールされて超小型の形状体となるY軸中空可動体23とX軸中空可動体24に対して、高い推進力・保持力が得られる。  The principle of operation of the ultrasonic linear actuators 50, 51, 52, 53 is that a vibrator (piezoelectric ceramic) 25 is fixed to the roots of the shafts 26, 26, and a friction body holding portion in which pressure is applied to the shafts 26, 26. The 28 and 29 V grooves 28A and 29A and the sandwiching pieces 28B and 29B are always sandwiched between the surfaces. Thus, at the time of stopping, it is held by friction and does not generate fine vibration, and there is no heat generation. In the feeding operation, the vibrator 25 vibrates the shaft in the axial direction with the pulse wave E, and the holding piece is left minutely by changing the duty ratio between the direction of the vibration and the return, or the drawing operation is performed. The movement of this minute movement is performed with respect to the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 which are controlled by the pulse wave E (E1, E2) having a high vibration frequency (ultrasonic vibration) and become ultra-compact shapes. High propulsion and holding power can be obtained.

即ち、上記駆動回路PDにおける発振部Gの発振出力Fとパルス信号E(逆パルス信号E1,E2)によりY軸中空可動体23とX軸中空可動体24が駆動される。即ち、パルス信号E1により超音波リニアアクチュエータ50,52が保持片28,29を左移動する推進力E1´を発生させ,パルス信号E2により超音波リニアアクチュエータ51,53が保持片28,29を右移動する推進力E2´を発生する。しかし、各超音波リニアアクチュエータは相互に逆向き配置されているから、Y軸中空可動体23とX軸中空可動体24とは、各々独立して同方向に両側駆動される。また、パルス信号E(逆パルス信号E1,E2)を逆向きとすれば、両側駆動で往復動可能となる。また、上記XY軸中空可動体23,24の移動速度と移動量とその方向は、発振出力Fとパルス信号E(逆パルス信号E1,E2)の制御によって行われる。  That is, the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 are driven by the oscillation output F of the oscillation unit G and the pulse signal E (reverse pulse signals E1, E2) in the drive circuit PD. That is, the ultrasonic linear actuators 50 and 52 generate a propulsive force E1 ′ that moves the holding pieces 28 and 29 to the left by the pulse signal E1, and the ultrasonic linear actuators 51 and 53 move the holding pieces 28 and 29 to the right by the pulse signal E2. A moving propulsion force E2 'is generated. However, since the respective ultrasonic linear actuators are arranged in opposite directions, the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 are independently driven on both sides in the same direction. Further, if the pulse signal E (reverse pulse signals E1, E2) is in the reverse direction, it can be reciprocated by double-sided driving. The moving speed, moving amount, and direction of the XY-axis hollow movable bodies 23 and 24 are controlled by controlling the oscillation output F and pulse signals E (reverse pulse signals E1 and E2).

上記第二駆動体30の微駆動ユニット30´は、図9〜図11に示すように、試料ホルダ10の上面4Aに、Y軸中空可動体23とX軸中空可動体24とを直に装備させた微駆動ユニット300´の第2実施例としても良い。また、固定枠21は、平板状体21´としている。以下、その構成を説明する。先ず、X軸中空可動体23は、その前後両側の保持部28,28に保持された超音波リニアアクチュエータ50,51の各振動子25とシャフトの自由端26A,26Aとは、上面4Aの片隅に設けた突座4Fと途中の突座4Gに開けた軸受部4Hに弾性接着剤Uを充填して保持されている。また、Y軸中空可動体24も同様に、この底面の保持部29に保持された超音波リニアアクチュエータ52,53の各振動子25とシャフトの自由端26A,26Aとは、X軸中空可動体23の枠体の前後に開けた軸受部4Hに弾性接着剤Uを充填して保持されている。そして、平板状体21´がビス60により一体連結される。その他構成は、上記微駆動ユニット30´と同一である。  The fine drive unit 30 ′ of the second drive body 30 is directly equipped with a Y-axis hollow movable body 23 and an X-axis hollow movable body 24 on the upper surface 4A of the sample holder 10, as shown in FIGS. A second embodiment of the fine driving unit 300 ′ may be used. The fixed frame 21 is a flat plate 21 '. The configuration will be described below. First, in the X-axis hollow movable body 23, each transducer 25 of the ultrasonic linear actuators 50 and 51 and the free ends 26A and 26A of the shaft held by the holding portions 28 and 28 on both front and rear sides thereof are arranged at one corner of the upper surface 4A. The bearing 4H opened on the projecting seat 4F and the projecting seat 4G in the middle are filled with an elastic adhesive U and held. Similarly, in the Y-axis hollow movable body 24, the transducers 25 of the ultrasonic linear actuators 52 and 53 and the free ends 26A and 26A of the shaft held by the holding portion 29 on the bottom surface are the X-axis hollow movable body. The bearing 4H opened before and after the frame 23 is filled with an elastic adhesive U and held. The flat plate 21 ′ is integrally connected by a screw 60. Other configurations are the same as those of the fine drive unit 30 '.

続いて、上記電子線を絞る絞り部材11,12の第一駆動体20となる微駆動ユニット20´について説明する。図7に示すように、第1実施例の微駆動ユニット20´は、上記微駆動ユニット30´と異なる構成は、試料ホルダ10に替えて長方形板状のプレート4´とし、固定枠21がプレート4´を螺子手段により支持したことである。その他の構成は、微駆動ユニット30´と同一構成であるから、同一符号を付して説明を省略する。  Next, the fine drive unit 20 ′ that is the first drive body 20 of the aperture members 11 and 12 for focusing the electron beam will be described. As shown in FIG. 7, the fine drive unit 20 ′ of the first embodiment is different from the fine drive unit 30 ′ in that a rectangular plate-like plate 4 ′ is used instead of the sample holder 10, and the fixed frame 21 is a plate. 4 'is supported by screw means. Other configurations are the same as those of the fine drive unit 30 ′, and thus the same reference numerals are given and description thereof is omitted.

上記走査型電子顕微鏡100における微駆動ユニット20´、30´、300´は、上記の構成からなり、以下のように作用する。先ず、微駆動ユニット20´、30´、300´は、Y軸中空可動体23とY軸中空可動体23内に支持されたX軸中空可動体24を駆動するには、上記超音波リニアアクチュエータ50,51,52,53の駆動回路PDの発振制御部GPにより、発振部Gで発振出力F及びパルス信号E(逆パルス信号E1,E2)を制御し、発振出力部PPから上記超音波リニアアクチュエータ50,51,52,53を送り制御し、Y軸中空可動体23とX軸中空可動体24とは、所定の送り速度と送り精度で制御される。即ち、対向する超音波リニアアクチュエータ50,51及び52,53は、逆パルス信号E1,E2によりY軸中空可動体23とX軸中空可動体24を左右のバラツキ移動無く円滑に安定して駆動される。その送り速度は、パルスの発振周波数(パルス数)で制御される。  The fine drive units 20 ′, 30 ′, and 300 ′ in the scanning electron microscope 100 have the above-described configuration and operate as follows. First, the fine drive units 20 ′, 30 ′, and 300 ′ use the ultrasonic linear actuator to drive the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 supported in the Y-axis hollow movable body 23. The oscillation control unit GP of the drive circuit PD of 50, 51, 52, 53 controls the oscillation output F and the pulse signal E (reverse pulse signals E1, E2) by the oscillation unit G, and the ultrasonic linear from the oscillation output unit PP. The actuators 50, 51, 52, and 53 are controlled to feed, and the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 are controlled with a predetermined feed speed and feed accuracy. That is, the opposing ultrasonic linear actuators 50, 51 and 52, 53 are smoothly and stably driven by the reverse pulse signals E1 and E2 to move the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 without movement from side to side. The The feed rate is controlled by the pulse oscillation frequency (number of pulses).

以下、具体的な送り速度と送り精度との関係を説明する。例えば、40〜60倍の像倍率でY軸中空可動体23とX軸中空可動体24を駆動させるときは、超音波リニアアクチュエータ50,51,52,53は、Y軸中空可動体23とX軸中空可動体24とを、0.5〜1mm/sの移動速度で移動する。また、100〜200倍の像倍率で駆動させるには、超音波リニアアクチュエータ50,51,52,53は、100〜200μm/sの移動速度でY軸中空可動体23とX軸中空可動体24とを移動させ、3000〜5000倍の像倍率で駆動するには、5〜10μm/sの移動速度でY軸中空可動体23とX軸中空可動体24とを移動させ、30000〜50000倍の像倍率で駆動するには、超音波リニアアクチュエータ50,51,52,53は、0.5〜3μm/sの移動速度でY軸中空可動体23とX軸中空可動体24とを移動させ、50000倍を超える像倍率で駆動させときは、超音波リニアアクチュエータ50,51,52,53は、0.5μm/s未満の移動速度でY軸中空可動体23とX軸中空可動体24とを移動させる。  Hereinafter, a specific relationship between the feed speed and the feed accuracy will be described. For example, when driving the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 at an image magnification of 40 to 60 times, the ultrasonic linear actuators 50, 51, 52, 53 are connected to the Y-axis hollow movable body 23 and the X-axis hollow movable body 23. The shaft hollow movable body 24 is moved at a moving speed of 0.5 to 1 mm / s. Further, in order to drive at an image magnification of 100 to 200 times, the ultrasonic linear actuators 50, 51, 52, and 53 have a Y-axis hollow movable body 23 and an X-axis hollow movable body 24 at a moving speed of 100 to 200 μm / s. And moving at a moving speed of 5 to 10 μm / s, the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 are moved at a speed of 30000 to 50000 times. In order to drive at an image magnification, the ultrasonic linear actuators 50, 51, 52, and 53 move the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 at a moving speed of 0.5 to 3 μm / s, When driven at an image magnification exceeding 50,000 times, the ultrasonic linear actuators 50, 51, 52, 53 move the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 at a moving speed of less than 0.5 μm / s. Move .

上記Y軸中空可動体23とX軸中空可動体24における超音波リニアアクチュエータ50,51,52,53のシャフト26,26は、カーボン材とし、保持部28,29とこの挟持片28B、29Bは、その成分比率Ti−6AL−4Vからなる非磁性体のチタン材で構成されている。更に、シャフトと三点支持で常時面当たりする保持部28,29は、表面が窒化チタンTiNにより硬化層Hを膜厚1〜3μmに形成し、ラップ仕上げで表面処理されているから、50万回以上の繰り返し往復移動に対して、初期の繰り返し精度保証が得られることが確認された。勿論、シャフト26,26と保持片28,29との表面処理をニッケルメッキとし、メッキ層を10〜20μmとし、ラップ仕上げした時も、同様に初期の繰り返し精度保証が得られる。  The shafts 26 and 26 of the ultrasonic linear actuators 50, 51, 52, and 53 in the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 are made of carbon, and the holding portions 28 and 29 and the sandwiching pieces 28B and 29B are , And is composed of a non-magnetic titanium material having a component ratio of Ti-6AL-4V. Furthermore, the holding portions 28 and 29 that always come into contact with the shaft and the three-point support have a surface formed by forming a hardened layer H with a thickness of 1 to 3 μm with titanium nitride TiN, and are surface-treated with a lapping finish. It was confirmed that the initial repeatability guarantee was obtained for repeated reciprocating movements more than once. Of course, when the surface treatment of the shafts 26 and 26 and the holding pieces 28 and 29 is nickel plating, the plating layer is 10 to 20 μm, and lapping is performed, the initial repeatability guarantee can be similarly obtained.

上記微駆動ユニット20´、30´、300´において、50万回以上の繰り返し往復移動後でも、初期の繰り返し精度が保証されたから、走査型電子顕微鏡100における微駆動ユニット20´、30´、300´の作用上の多くのメリットが確認された。
以下、その細部にわたる作用上のメリットを列記する。
(1)、減速機不要で、超音波リニアアクチュエータにおけるシャフトの低速・高トルク(高推力)及軽量化が可能となった。(2)、無通電時でも保持力が高く、無発熱である。(3)、停止時に摩擦力にて完全停止・しかも無振動である。(4)、ダイレクト機構でハイレスポンス(振動動作の為)になった。(5)、シンプルで部品点数が少なく、軽量小型化が達成された。(6)、非磁性体(チタン材)で構成したから、顕微鏡内の強磁場環境でも駆動可能である。(7)、チタン材は、電位差を生じないから電食を起こさない。(8)、真空空間(−6パスカル)にも対応可能である。(9)、シャフト(カーボン材)の高い耐摩耗性と自己潤滑性とにより、滑り易くガイドを兼用可能になった。(10)、また、駆動側とシャフト先端を弾性接着剤で樹脂固定して、芯ブレ振動を吸収する両持ち構造となる。(11)、駆動体は、両側に配置した超音波リニアアクチュエータのシャフトにより、両持ち支持作用と両側駆動作用とが兼用できる。省スペースできる。(12)、一つの駆動源パルスで、両側の超音波リニアアクチュエータを同時駆動でき、左右のバラツキ移動が無く円滑な移動が可能になった。
In the fine drive units 20 ′, 30 ′, and 300 ′, the initial repeat accuracy is guaranteed even after repeated reciprocating movements of 500,000 times or more. Therefore, the fine drive units 20 ′, 30 ′, and 300 in the scanning electron microscope 100 are guaranteed. Many merits of ´ were confirmed.
In the following, the merit of action in detail is listed.
(1) The speed reducer, high torque (high thrust), and light weight of the shaft in the ultrasonic linear actuator can be achieved without a reduction gear. (2) Even when no current is applied, the holding force is high and no heat is generated. (3) Full stop and no vibration by friction force when stopping. (4) High response (due to vibration operation) with direct mechanism. (5) Simple, small number of parts, lightweight and downsized. (6) Since it is composed of a non-magnetic material (titanium material), it can be driven even in a strong magnetic field environment in a microscope. (7) Since the titanium material does not cause a potential difference, it does not cause electrolytic corrosion. (8) It can also deal with vacuum space (−6 Pascals). (9) Due to the high wear resistance and self-lubricating property of the shaft (carbon material), it becomes easy to slip and can also be used as a guide. (10) Further, the drive side and the shaft tip are resin-fixed with an elastic adhesive to provide a double-supported structure that absorbs the vibration of the core blur. (11) The drive body can be used for both the dual-supporting action and the double-sided driving action by the shafts of the ultrasonic linear actuators arranged on both sides. Space can be saved. (12) The ultrasonic linear actuators on both sides can be simultaneously driven with one drive source pulse, and smooth movement is possible with no left-right variation movement.

上記微駆動ユニット20´、30´、300´による効果を説明する。
本発明の電子顕微鏡の微駆動ユニットによると、Y軸中空可動体23とX軸中空可動体24の微動送り制御と定位置停止制御との繰り返しは、逆向き配置した一対の超音波リニアアクチュエータに付与する逆パルス信号E1,E2で互いに両側駆動させたから、各可動体の重量バランスが最適となって両側駆動で高精度に実行でき、鮮明な観察と画像を記録できる。また、電子顕微鏡の微駆動ユニットによると、成分比率Ti−6AL−4Vからなる非磁性体のチタン材で中空可動体側の保持片を構成したから、顕微鏡内の高真空の環境でも高い耐摩耗性により滑り易く長期間に亘り高いガイド性を維持した駆動が可能である。
The effects of the fine drive units 20 ′, 30 ′, and 300 ′ will be described.
According to the fine driving unit of the electron microscope of the present invention, the fine movement feed control and the fixed position stop control of the Y-axis hollow movable body 23 and the X-axis hollow movable body 24 are repeated in a pair of ultrasonic linear actuators arranged in opposite directions. Since both sides are driven by the reverse pulse signals E1 and E2 to be applied, the weight balance of each movable body is optimized, and the both sides can be executed with high accuracy, and clear observation and images can be recorded. Also, according to the fine driving unit of the electron microscope, the holding piece on the hollow movable body side is made of a non-magnetic titanium material having a component ratio of Ti-6AL-4V, so that it has high wear resistance even in a high vacuum environment in the microscope. Therefore, it is possible to drive while being easy to slip and maintaining a high guide property for a long period of time.

また、電子顕微鏡の微駆動ユニット20´、30´、300´によると、自己潤滑性のあるカーボン材のシャフトとし、三点支持で与圧を持って常時面当たりするチタン材の保持部は、硬い表面にすべく窒化チタンTiNによる硬化層Hを膜厚1〜3μmとするか、叉は保持部の表面をニッケルメッキしてメッキ層を10〜20μmとし、ラップ仕上げされているから、50万回以上の繰り返し往復移動に対して、初期の精度が維持できる。更に、微駆動ユニットによると、超音波リニアアクチュエータにおける駆動側とシャフトの自由端を固定枠及び中空可動体との軸受部に設けた弾性接着剤の樹脂材で保持したから、シャフトの芯ブレ振動を吸収でき、円滑な微動送り制御と定位置停止制御が長期間にわたり保証できる。また、超音波リニアアクチュエータの耐久性も向上できる。  Further, according to the micro-drive units 20 ′, 30 ′, and 300 ′ of the electron microscope, a self-lubricating carbon material shaft is used, and the titanium material holding portion that constantly contacts the surface with a pressure by three-point support, Since the hardened layer H made of titanium nitride TiN has a film thickness of 1 to 3 μm to make a hard surface, or the surface of the holding portion is nickel-plated to make the plated layer 10 to 20 μm, and lapping is performed, 500,000 The initial accuracy can be maintained with respect to repeated reciprocating movements more than once. Further, according to the fine drive unit, the driving side of the ultrasonic linear actuator and the free end of the shaft are held by the resin material of the elastic adhesive provided on the bearing portion of the fixed frame and the hollow movable body. Can be absorbed and smooth fine feed control and fixed position stop control can be guaranteed for a long time. In addition, the durability of the ultrasonic linear actuator can be improved.

本発明の電子顕微鏡の微駆動ユニット20´、30´、300´は、上記実施例の他、図13に示す透過型電子顕微鏡200の微駆動ユニット40´にも実施可能である。透過型電子顕微鏡200は、観察対象となる試料Sを支持する支持部材の駆動機構となる微駆動ユニット40´を固定枠21に備えている。この第3の実施の形態の構成は、図14に示し、図7の走査型電子顕微鏡100における微駆動ユニット20´と同一構成につき、同一符号を付して説明を省略する。  The fine drive units 20 ′, 30 ′, and 300 ′ of the electron microscope of the present invention can be implemented in the fine drive unit 40 ′ of the transmission electron microscope 200 shown in FIG. The transmission electron microscope 200 includes a fine drive unit 40 ′ serving as a drive mechanism for a support member that supports the sample S to be observed in the fixed frame 21. The configuration of the third embodiment is shown in FIG. 14, and the same components as those of the fine drive unit 20 ′ in the scanning electron microscope 100 of FIG.

上記透過型電子顕微鏡200は、軸線L上において、電子線を出射する電子銃4Aから収束レンズ6を介した下側には、資料Sを備えた微駆動ユニット40´と、この真下に微駆動ユニット20´を二段重ねにして配置されている。更に、偏向コイル9の下側に微駆動ユニット20´を備え、中間レンズ72からの電子線像を蛍光板71に投射する投射レンズ73が設置されている。蛍光板71で生じた蛍光像は、カメラ等によって撮像され、制御装置PCのディスプレイには、試料Sの透過2次電子像等が表示される。尚、透過型電子顕微鏡200の底部には、内部を真空引きするための排気管16が設けられている。  The transmission electron microscope 200 includes, on the axis L, a fine drive unit 40 ′ having a material S on the lower side of the electron gun 4 A that emits an electron beam through the converging lens 6, and a fine drive just below the fine drive unit 40 ′. Units 20 'are arranged in two stages. Further, a fine drive unit 20 ′ is provided below the deflection coil 9, and a projection lens 73 that projects an electron beam image from the intermediate lens 72 onto the fluorescent plate 71 is installed. The fluorescent image generated on the fluorescent plate 71 is picked up by a camera or the like, and the transmitted secondary electron image of the sample S is displayed on the display of the control device PC. An exhaust pipe 16 for evacuating the inside is provided at the bottom of the transmission electron microscope 200.

更に、上記透過型電子顕微鏡200の微駆動ユニット40´は、図15に示すように、長方形板状のプレート4´の上面4Aに、Y軸中空可動体23とX軸中空可動体24とを直に装備させた微駆動ユニット400´の第2実施例としても良い。以下、その構成を説明する。先ず、X軸中空可動体23は、その前後両側の保持部28,28に保持された超音波リニアアクチュエータ50,51の各振動子25とシャフトの自由端26A,26Aとは、上面4Aの片隅に設けた突座4Fと途中の突座4Gに開けた軸受部4Hに弾性接着剤Uを充填して保持されている。また、Y軸中空可動体24も同様に、この底面の保持部29に保持された超音波リニアアクチュエータ52,53の各振動子25とシャフトの自由端26A,26Aとは、図10に示すと同様に、X軸中空可動体23の枠体の前後に開けた軸受部23Hに弾性接着剤Uを充填して保持されている。そして、平板状体21´がビス60により一体連結される。他構成は、上記微駆動ユニット40´と同一である。  Further, as shown in FIG. 15, the fine drive unit 40 ′ of the transmission electron microscope 200 includes a Y-axis hollow movable body 23 and an X-axis hollow movable body 24 on the upper surface 4A of a rectangular plate-shaped plate 4 ′. A second embodiment of the fine drive unit 400 ′ that is directly equipped may be used. The configuration will be described below. First, in the X-axis hollow movable body 23, each transducer 25 of the ultrasonic linear actuators 50 and 51 and the free ends 26A and 26A of the shaft held by the holding portions 28 and 28 on both front and rear sides thereof are arranged at one corner of the upper surface 4A. The bearing 4H opened on the projecting seat 4F and the projecting seat 4G in the middle are filled with an elastic adhesive U and held. Similarly, in the Y-axis hollow movable body 24, the transducers 25 of the ultrasonic linear actuators 52 and 53 and the free ends 26A and 26A of the shaft held by the holding portion 29 on the bottom surface are shown in FIG. Similarly, the elastic adhesive U is filled and held in the bearing portion 23 </ b> H opened before and after the frame of the X-axis hollow movable body 23. The flat plate 21 ′ is integrally connected by a screw 60. Other configurations are the same as those of the fine drive unit 40 '.

上記透過型電子顕微鏡200における微駆動ユニット40´、400´は、上記の構成からなり、走査型電子顕微鏡100の微駆動ユニット20´、30´、300´と同様に作用する。また、これに伴う効果は、走査型電子顕微鏡100の微駆動ユニット20´、30´、300´と同一の効果が得られるから、説明を省略する。  The fine drive units 40 ′ and 400 ′ in the transmission electron microscope 200 are configured as described above, and operate in the same manner as the fine drive units 20 ′, 30 ′, and 300 ′ of the scanning electron microscope 100. Moreover, since the effect which accompanies this is the same effect as fine drive unit 20 ', 30', 300 'of the scanning electron microscope 100, description is abbreviate | omitted.

本発明は、その対象を各種電子顕微鏡の微駆動ユニットにおいて、各微駆動ユニットの微動送り精度と微動位置決め精度とこの精度維持を高める実施例で説明したが、ICチップ製造装置他における微動送りの微駆動ユニットを対象としての適用が可能である。  Although the present invention has been described in the embodiment of the fine driving unit of various electron microscopes, the fine movement feeding accuracy and fine movement positioning accuracy of each fine driving unit and the maintenance of this accuracy are improved. Application to the fine drive unit is possible.

3 試料台
4´ プレート
4A 電子銃
4C 電子線通過孔
4E 突座
4F 突座
4G 突座
4H 軸受部
5 収束レンズ
6 アノード
7 対物レンズ
8 偏向コイル
10 試料ホルダ
10A 支持部材
11,12 絞り部材
13 2次電子検出器
15 筐体
16 排気管
20,40 第二駆動体
30 第一駆動体
20´、30´300´微駆動ユニット
40´,400´ 微駆動ユニット
21 固定枠
21A 電子線通過孔
21B 凹部
21C,21D 切欠き部
21E 軸受部
22 孔
23 Y軸中空可動体
23E 軸受部
24 X軸中空可動体
25 振動子
26 シャフト
26A シャフト自由端
27 電子線通過孔
28,29 保持部
28A,29A V溝
28B,29B 挟持片
50〜53 超音波リニアアクチュエータ
54 配線
100 走査型電子顕微鏡
200 透過型電子顕微鏡
A 肉厚側
B 肉薄側
E パルス信号
E1,E2 逆パルス信号
E1´,E2´ 推進力
F 発振出力
G 発振部
GP 発振制御部
H 硬化層
S 試料
PC 制御装置
P 電源部
PD 駆動回路
PP 発振出力部
U 弾性樹脂剤
3 Sample stage 4 'Plate 4A Electron gun 4C Electron beam passage hole 4E Projection seat 4F Projection seat 4G Projection seat 4H Bearing portion 5 Converging lens 6 Anode 7 Objective lens 8 Deflection coil 10 Sample holder 10A Support members 11, 12 Aperture member 13 2 Secondary electron detector 15 Housing 16 Exhaust pipe 20, 40 Second drive body 30 First drive body 20 ', 30'300' Fine drive unit 40 ', 400' Fine drive unit 21 Fixed frame 21A Electron beam passage hole 21B Recess 21C, 21D Notch part 21E Bearing part 22 Hole 23 Y-axis hollow movable body 23E Bearing part 24 X-axis hollow movable body 25 Vibrator 26 Shaft 26A Shaft free end 27 Electron beam passage hole 28, 29 Holding part 28A, 29A V groove 28B, 29B Nipping pieces 50 to 53 Ultrasonic linear actuator 54 Wiring 100 Scanning electron microscope 200 Transmission electron microscope A Thick side Thin side E pulse signals E1, E2 inversion pulse signal E1 ', E2' thrust F oscillation output G oscillating unit GP oscillation control unit H hardened layer S sample PC controller P Power unit PD driving circuit PP oscillation output unit U elastic resin agent

Claims (6)

試料の像を取得すべく電子レンズを使用して電子線を収束し、上記試料に上記電子線を照射する電子顕微鏡であり、上記試料と上記電子レンズを収容し内部の真空度を維持すると共に浮遊磁場を遮断する筐体と、上記筐体内に配置された上記電子線を絞る絞り部材の第一駆動体には、超音波リニアアクチュエータを備え、パルス信号によって第一駆動体を送り制御及び位置制御する電子顕微鏡の微駆動ユニットにおいて、
上記第一駆動体は、固定枠又は試料ホルダ又はプレート内にX軸中空可動体とY軸中空可動体とを内装すべく、振動子とこの中心位置の片側に連結するシャフトとからなる一対の超音波リニアアクチュエータを、固定枠又は試料ホルダ又はプレートの両側軸受部に振動子とシャフトとを逆向きに対向支持すると共に各シャフトの中腹部でX軸中空可動体叉はY軸中空可動体の両側に設けた保持部のU字状に形成した肉厚側のV溝と肉薄側の挟持片の平面とで三点保持し、上記中空可動体を保持する各シャフトと直交する該中空可動体の両側面に別の一対の超音波リニアアクチュエータを逆向きに対向支持すると共に各シャフトの中腹部で別の中空可動体の両側に設けた保持部のV溝と挟持片の平面とで三点保持し、上記X軸中空可動体とY軸中空可動体とは、一対の超音波リニアアクチュエータを逆パルス信号で付与することで同方向に両側駆動されることを特徴とする電子顕微鏡の微駆動ユニット。
An electron microscope that converges an electron beam using an electron lens to acquire an image of the sample, and irradiates the sample with the electron beam, contains the sample and the electron lens, and maintains an internal vacuum. The first drive body of the casing that blocks the stray magnetic field and the diaphragm member that squeezes the electron beam disposed in the casing includes an ultrasonic linear actuator, and the first drive body is controlled by feeding and controlling the position by a pulse signal. In the fine drive unit of the electron microscope to be controlled,
The first driving body includes a pair of a vibrator and a shaft connected to one side of the central position so as to house the X-axis hollow movable body and the Y-axis hollow movable body in a fixed frame, a sample holder, or a plate. The ultrasonic linear actuator is supported on opposite sides of the fixed frame, the sample holder or the plate with the vibrator and the shaft opposed to each other in the opposite direction, and the X-axis hollow movable body or the Y-axis hollow movable body at the middle part of each shaft. The hollow movable body that is held at three points by the thick V-shaped groove formed in the U-shape of the holding portions provided on both sides and the flat side of the thin-side clamping piece, and is orthogonal to each shaft that holds the hollow movable body A pair of ultrasonic linear actuators are oppositely supported in opposite directions on both side surfaces of the shaft, and at the middle of each shaft, there are three points of the V groove of the holding portion provided on both sides of another hollow movable body and the plane of the sandwiching piece Hold the X-axis hollow movable body and Y-axis Sky and the movable member, the fine driving unit for an electronic microscope, characterized in that it is driven on both sides in the same direction by applying a pair of ultrasonic linear actuator in the reverse pulse signal.
試料の像を取得すべく電子レンズを使用して電子線を収束し、上記試料に上記電子線を照射する電子顕微鏡であり、上記試料と上記電子レンズを収容し内部の真空度を維持すると共に浮遊磁場を遮断する筐体と、上記筐体内に配置された上記試料を支持する支持部材の第二駆動体には、超音波リニアアクチュエータを備え、パルス信号によって第二駆動体を送り制御及び位置制御する電子顕微鏡の微駆動ユニットにおいて、
上記第二駆動体は、固定枠又は試料ホルダ又はプレート内にX軸中空可動体とY軸中空可動体とを内装すべく、振動子とこの中心位置の片側に連結するシャフトとからなる一対の超音波リニアアクチュエータを、固定枠又は試料ホルダ又はプレートの両側軸受部に振動子とシャフトとを逆向きに対向支持すると共に各シャフトの中腹部でX軸中空可動体叉はY軸中空可動体の両側に設けた保持部のU字状に形成した肉厚側のV溝と肉薄側の挟持片の平面とで三点保持し、上記中空可動体を保持する各シャフトと直交する該中空可動体の両側面に別の一対の超音波リニアアクチュエータを逆向きに対向支持すると共に各シャフトの中腹部で別の中空可動体の両側に設けた保持部のV溝と挟持片の平面とで三点保持し、上記X軸中空可動体とY軸中空可動体とは、一対の超音波リニアアクチュエータを逆パルス信号で付与することで同方向に両側駆動されることを特徴とする電子顕微鏡の微駆動ユニット。
An electron microscope that converges an electron beam using an electron lens to acquire an image of the sample, and irradiates the sample with the electron beam, contains the sample and the electron lens, and maintains an internal vacuum. The second drive body of the housing that blocks the stray magnetic field and the support member that supports the sample disposed in the housing is provided with an ultrasonic linear actuator, and the second drive body is controlled to feed and control by the pulse signal. In the fine drive unit of the electron microscope to be controlled,
The second driving body includes a pair of a vibrator and a shaft connected to one side of the central position so as to house the X-axis hollow movable body and the Y-axis hollow movable body in a fixed frame, a sample holder, or a plate. The ultrasonic linear actuator is supported on opposite sides of the fixed frame, the sample holder or the plate with the vibrator and the shaft opposed to each other in the opposite direction, and the X-axis hollow movable body or the Y-axis hollow movable body at the middle part of each shaft. The hollow movable body that is held at three points by the thick V-shaped groove formed in the U-shape of the holding portions provided on both sides and the flat side of the thin-side clamping piece, and is orthogonal to each shaft that holds the hollow movable body A pair of ultrasonic linear actuators are oppositely supported in opposite directions on both side surfaces of the shaft, and at the middle of each shaft, there are three points of the V groove of the holding portion provided on both sides of another hollow movable body and the plane of the sandwiching piece Hold the X-axis hollow movable body and Y-axis Sky and the movable member, the fine driving unit for an electronic microscope, characterized in that it is driven on both sides in the same direction by applying a pair of ultrasonic linear actuator in the reverse pulse signal.
上記超音波リニアアクチュエータは、シャフトをカーボン材で構成し、上記シャフトが保持部のV溝と挟持片の平面との三点支持で与圧を持って常時面当たりするX軸中空可動体側及びY軸中空可動体側の保持部は、成分比率Ti−6AL−4Vからなるチタン材で構成し、上記保持部を硬く表面処理すべく、イオン窒化処理して硬化層1〜3μmの窒化チタンTiNとし、ラップ仕上げしたことを特徴とする請求項1または2記載の電子顕微鏡の微駆動ユニット。  In the ultrasonic linear actuator, the shaft is made of a carbon material, and the shaft is always in contact with the X-axis hollow movable body side with pressure by three-point support of the V groove of the holding portion and the plane of the clamping piece, and the Y-axis. The holding portion on the side of the hollow shaft movable body is made of a titanium material having a component ratio of Ti-6AL-4V. In order to harden the holding portion, the holding portion is ion nitrided to obtain titanium nitride TiN having a hardened layer of 1 to 3 μm. 3. The fine driving unit of an electron microscope according to claim 1, wherein the fine driving unit is lapped. 上記超音波リニアアクチュエータは、シャフトをカーボン材で構成し、上記シャフトが保持部のV溝と挟持片の平面との三点支持で与圧を持って常時面当たりするX軸中空可動体側及びY軸中空可動体側の保持部は、成分比率Ti−6AL−4Vからなるチタン材で構成し、上記保持部を硬く表面処理すべく、ニッケルメッキしてメッキ層を10〜20μmとし、ラップ仕上げしたことを特徴とする請求項1または2記載の電子顕微鏡の微駆動ユニット。  In the ultrasonic linear actuator, the shaft is made of a carbon material, and the shaft is always in contact with the X-axis hollow movable body side with pressure by three-point support of the V groove of the holding portion and the plane of the clamping piece, and the Y-axis. The holding part on the shaft hollow movable body side is made of a titanium material having a component ratio of Ti-6AL-4V, and nickel plating is applied to make the holding part a hard surface, and the plating layer is 10 to 20 μm and lapped. The fine driving unit of the electron microscope according to claim 1 or 2, characterized in that. 上記超音波リニアアクチュエータの振動子とシャフトの自由端とを固定枠又は試料ホルダ又はプレートとX軸中空可動体側及びY軸中空可動体側との軸受部に弾力性の有る弾性接着剤で保持したことを特徴とする請求項1または2記載の電子顕微鏡の微駆動ユニット。  The ultrasonic linear actuator vibrator and the free end of the shaft are held with a resilient elastic adhesive in the bearings of the fixed frame, the sample holder or the plate, and the X-axis hollow movable body side and the Y-axis hollow movable body side. The fine driving unit of the electron microscope according to claim 1 or 2, characterized in that. 上記弾性接着剤は、例えばアクリル変成シリコン樹脂であることを特徴とする請求項5記載の電子顕微鏡の微駆動ユニット。  6. The fine driving unit of an electron microscope according to claim 5, wherein the elastic adhesive is, for example, an acrylic modified silicon resin.
JP2013125040A 2013-05-28 2013-05-28 Electron microscope fine drive unit Active JP6116391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013125040A JP6116391B2 (en) 2013-05-28 2013-05-28 Electron microscope fine drive unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013125040A JP6116391B2 (en) 2013-05-28 2013-05-28 Electron microscope fine drive unit

Publications (2)

Publication Number Publication Date
JP2014232714A JP2014232714A (en) 2014-12-11
JP6116391B2 true JP6116391B2 (en) 2017-04-19

Family

ID=52125959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013125040A Active JP6116391B2 (en) 2013-05-28 2013-05-28 Electron microscope fine drive unit

Country Status (1)

Country Link
JP (1) JP6116391B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224234A (en) * 2008-03-18 2009-10-01 Hitachi High-Technologies Corp Stage, and electron microscope device
JP5610491B2 (en) * 2009-09-15 2014-10-22 国立大学法人浜松医科大学 electronic microscope
JP2012019656A (en) * 2010-07-09 2012-01-26 Konica Minolta Opto Inc Driver, image blur correction device and imaging device using the same

Also Published As

Publication number Publication date
JP2014232714A (en) 2014-12-11

Similar Documents

Publication Publication Date Title
Uchino FEM and Micromechatronics with ATILA Software
US10498261B2 (en) Vibration-type actuator that moves vibrating body and driven body relatively to each other, and electronic apparatus
JP2014014256A (en) An oscillatory wave drive unit, a two-dimensional drive unit, an image blur correction device, an interchangeable lens, an imaging apparatus, and an automatic stage
JP2007288828A (en) Inertia-driven actuator
JPH10145892A (en) Supermagnetostrictive actuator and supermagnetostrictive speaker using the same
JP2013158165A (en) Oscillatory wave driver, two-dimensional driver and image blur correction device
CN111525834A (en) Nano linear motion control mechanism based on screw
JP2017127127A5 (en)
JP2009177974A (en) Inertia-driven actuator
JP6116391B2 (en) Electron microscope fine drive unit
WO2011055427A1 (en) Drive unit
JP5269009B2 (en) Drive device
JP6415195B2 (en) Drive device
CN113272701A (en) Actuator for optical device and lens barrel provided with actuator for optical device
JP6152019B2 (en) Linear drive unit using ultrasonic motor
JP2008122381A (en) Stage using piezoelectric actuator and electronic device using stage
US11437933B2 (en) Vibration wave motor and electronic apparatus having an electrical-mechanical energy conversion element
JP6356903B2 (en) Precision drive device
JP5714196B1 (en) Galvano scanner and laser processing equipment
Tan et al. Large stroke and high precision positioning using iron–gallium alloy (Galfenol) based multi-DOF impact drive mechanism
JP2016063712A (en) Vibrator, vibration type actuator, imaging apparatus, and stage device
JP2018101094A (en) Vibration type actuator, lens driving device, optical instrument, and electronic apparatus
JP2022136602A (en) Vibration type actuator, universal head having the same, and electronic apparatus
WO2024116905A1 (en) Vibration type actuator and medical device and electronic device having same
JP2018137859A (en) Vibration wave motor and optical device including vibration wave motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160527

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160527

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160901

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R150 Certificate of patent or registration of utility model

Ref document number: 6116391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150