JP2018137859A - Vibration wave motor and optical device including vibration wave motor - Google Patents

Vibration wave motor and optical device including vibration wave motor Download PDF

Info

Publication number
JP2018137859A
JP2018137859A JP2017029679A JP2017029679A JP2018137859A JP 2018137859 A JP2018137859 A JP 2018137859A JP 2017029679 A JP2017029679 A JP 2017029679A JP 2017029679 A JP2017029679 A JP 2017029679A JP 2018137859 A JP2018137859 A JP 2018137859A
Authority
JP
Japan
Prior art keywords
vibration wave
wave motor
vibrator
friction member
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017029679A
Other languages
Japanese (ja)
Inventor
健太 ▲高▼井
健太 ▲高▼井
Kenta Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017029679A priority Critical patent/JP2018137859A/en
Publication of JP2018137859A publication Critical patent/JP2018137859A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Lens Barrels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact linear-motion vibration wave motor having a small thickness with respect to the pressurization direction for pressing a vibrator.SOLUTION: A vibration wave motor 100 comprises: a vibrator 103 including a piezoelectric element 101 and a vibration plate 102; a friction member 104 having a friction contact surface 104c which comes into contact with the vibrator 103; pressurizing means for pressing the vibrator 103 against the friction member 104; and guide means for guiding relative moving of the vibrator 103 and the friction member 104, wherein vibration generated by the vibrator 103 causes relative moving of the vibrator 103 and the friction member 104. The guide means holds the friction member 104 in a rotatable manner with respect to the vibrator 103.SELECTED DRAWING: Figure 2

Description

本発明は、振動波モータ、特に直動型振動波モータ及びその振動波モータを有するレンズ鏡筒などの光学装置に関する。   The present invention relates to a vibration wave motor, in particular, a linear motion vibration wave motor and an optical apparatus such as a lens barrel having the vibration wave motor.

従来の直動型超音波モータでは、圧電素子に高周波電圧を印加することで圧電素子が固定された振動子を振動させている。振動子の振動により、振動子に押圧される摩擦部材が駆動される。直動型超音波モータは駆動効率が高く、高出力を維持したまま小型化するための様々な工夫が考えられている。   In a conventional direct acting ultrasonic motor, a vibrator to which a piezoelectric element is fixed is vibrated by applying a high frequency voltage to the piezoelectric element. The friction member pressed by the vibrator is driven by the vibration of the vibrator. The direct acting ultrasonic motor has high driving efficiency, and various devices for reducing the size while maintaining high output are considered.

例えば、特許文献1の直動型超音波モータは、圧電素子を有する振動子と、振動子が圧接された摩擦部材と、振動子を保持し移動する保持部材と、保持部材の移動をガイドするガイド部と、振動子を摩擦部材に圧接させる加圧部材とによって構成されている。   For example, the direct acting ultrasonic motor of Patent Document 1 guides the movement of the holding member, a vibrator having a piezoelectric element, a friction member to which the vibrator is pressed, a holding member that holds and moves the vibrator, and the like. The guide portion and the pressure member that presses the vibrator against the friction member are configured.

特開2015−220911号公報Japanese Patent Laying-Open No. 2015-220911

しかしながら、特許文献1に開示された直動型超音波モータは、摩擦部材、振動子、保持部材、加圧部材、ガイド部等の個別部品により構成されているため部品点数が多い。さらに、上記の個別部品は振動子を押圧する加圧方向に積層して配置されているため、加圧方向の厚さの低減には限界があった。   However, the direct acting ultrasonic motor disclosed in Patent Document 1 is composed of individual parts such as a friction member, a vibrator, a holding member, a pressure member, and a guide part, and thus has a large number of parts. Furthermore, since the individual parts are stacked in the pressing direction for pressing the vibrator, there is a limit to reducing the thickness in the pressing direction.

そこで、本発明の目的は、振動子を押圧する加圧方向に対する薄型化を実現したコンパクトな直動型振動波モータを提供することである。   Accordingly, an object of the present invention is to provide a compact direct-acting vibration wave motor that realizes a reduction in thickness in a pressing direction in which a vibrator is pressed.

上記目的を達成するために、本発明は、圧電素子と振動板とからなる振動子と、該振動子と接触する摩擦接触面を有する摩擦部材と、振動子を摩擦部材に押圧する加圧手段と、振動子と摩擦部材との相対移動をガイドするガイド手段とを備え、振動子に発生する振動により振動子と摩擦部材とを相対移動させる振動波モータにおいて、ガイド手段は、摩擦部材を振動子に対して回動可能に保持することを特徴とする。   In order to achieve the above object, the present invention provides a vibrator comprising a piezoelectric element and a diaphragm, a friction member having a friction contact surface in contact with the vibrator, and a pressurizing means for pressing the vibrator against the friction member. And a guide means for guiding relative movement between the vibrator and the friction member, and in the vibration wave motor for moving the vibrator and the friction member relative to each other by vibration generated in the vibrator, the guide means vibrates the friction member. It hold | maintains so that rotation with respect to a child is possible.

本発明によれば、振動子を押圧する加圧方向に対して薄型化を実現したコンパクトな直動型超音波モータを得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the compact direct acting type | mold ultrasonic motor which implement | achieved thickness reduction with respect to the pressurization direction which presses a vibrator | oscillator can be obtained.

本発明による振動波モータ100の正面図である。1 is a front view of a vibration wave motor 100 according to the present invention. (A)本発明による振動波モータ100の断面図である。(B)従来の直動型超音波モータ200の断面図である。(A) It is sectional drawing of the vibration wave motor 100 by this invention. (B) It is sectional drawing of the conventional linear motion type ultrasonic motor 200. FIG. 本発明による振動波モータ100の断面図であり、加圧力による荷重を示す。It is sectional drawing of the vibration wave motor 100 by this invention, and shows the load by applied pressure. (A)、(B)本発明による振動波モータ100の断面図であり、摩擦部材104が転動部材107bを中心にZ軸方向に傾いた場合の各部材の挙動を示す。(A), (B) It is sectional drawing of the vibration wave motor 100 by this invention, and the behavior of each member when the friction member 104 inclines in the Z-axis direction centering on the rolling member 107b is shown. (A)本発明による振動波モータ100の正面図である。(B)、(C)本発明による振動波モータ100の断面図であり、摩擦部材104が転動部材107bを中心にX軸方向に傾いた場合の各部材の挙動を示す断面図である。(A) It is a front view of the vibration wave motor 100 by this invention. (B), (C) It is sectional drawing of the vibration wave motor 100 by this invention, and is sectional drawing which shows the behavior of each member when the friction member 104 inclines to the X-axis direction centering on the rolling member 107b. 本発明による振動波モータ100を搭載したレンズ鏡筒20とカメラ本体10の断面図である。1 is a cross-sectional view of a lens barrel 20 and a camera body 10 equipped with a vibration wave motor 100 according to the present invention.

(実施例)
以下、本発明の好適な実施例を添付の図面に基づいて詳細に説明する。図面において、同一符号は同一部材を示している。本明細書中において、後述する振動子103と後述する摩擦部材104が相対移動する方向をX軸方向、振動子103を摩擦部材104に対して押圧する加圧方向をZ軸方向とする。Z軸方向において、振動子103から摩擦部材104への向きを−Z軸方向、摩擦部材104から振動子103への向きを+Z軸方向と定義する。また、X軸方向及びZ軸方向に直交する方向をY軸方向とする。なお、以下の説明では、デジタルカメラのレンズ鏡筒などを駆動するアクチュエータとしてユニット化された直動型振動波モータを例に説明する。しかし、本発明の使用用途はこれに限られたものではない。
(Example)
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same members. In this specification, a direction in which a vibrator 103 to be described later and a friction member 104 to be described later move relative to each other is an X-axis direction, and a pressure direction in which the vibrator 103 is pressed against the friction member 104 is a Z-axis direction. In the Z-axis direction, the direction from the vibrator 103 to the friction member 104 is defined as the −Z-axis direction, and the direction from the friction member 104 to the vibrator 103 is defined as the + Z-axis direction. A direction orthogonal to the X-axis direction and the Z-axis direction is taken as a Y-axis direction. In the following description, a direct-acting vibration wave motor unitized as an actuator for driving a lens barrel of a digital camera will be described as an example. However, the usage of the present invention is not limited to this.

図1は、本発明の実施例である直動型振動波モータ(以下、「振動波モータ100」とする。)の正面図である。また、図2(A)は、図1の断面線IIA−IIAにおける振動波モータ100の断面図であり、図2(B)は従来の直動型超音波モータ200の断面図である。本実施例における振動波モータ100はX軸方向に長軸を有し、以下に説明する各部材により構成されている。   FIG. 1 is a front view of a direct-acting vibration wave motor (hereinafter referred to as “vibration wave motor 100”) according to an embodiment of the present invention. 2A is a cross-sectional view of the vibration wave motor 100 taken along a cross-sectional line IIA-IIA in FIG. 1, and FIG. 2B is a cross-sectional view of a conventional direct acting ultrasonic motor 200. The vibration wave motor 100 according to the present embodiment has a long axis in the X-axis direction and is configured by members described below.

図1及び図2(A)を参照して、本実施例における振動波モータ100の構成を説明する。振動子103は、振動板102と圧電素子101とにより構成されている。圧電素子101は、振動板102に公知の接着剤等により固定されているが、振動板102と圧電素子101との接着は、接着されればその方法は限定されない。振動板102は、圧電素子101が固定された面の反対側の面にさらに摩擦接触部102aを備え、摩擦接触部102aは摩擦部材104に押圧を伴う加圧接触状態で接触している。圧電素子101に高周波電圧を印加することにより超音波領域の周波数の振動(超音波振動)が励振される。   With reference to FIG. 1 and FIG. 2 (A), the structure of the vibration wave motor 100 in a present Example is demonstrated. The vibrator 103 includes a diaphragm 102 and a piezoelectric element 101. The piezoelectric element 101 is fixed to the diaphragm 102 with a known adhesive or the like, but the method of bonding the diaphragm 102 and the piezoelectric element 101 is not limited as long as they are bonded. The vibration plate 102 further includes a friction contact portion 102a on the surface opposite to the surface on which the piezoelectric element 101 is fixed, and the friction contact portion 102a is in contact with the friction member 104 in a pressure contact state accompanied by pressing. By applying a high-frequency voltage to the piezoelectric element 101, vibrations with a frequency in the ultrasonic region (ultrasonic vibration) are excited.

圧電素子101に超音波振動が発生することで、振動板102と圧電素子101とにより構成された振動子103に共振現象が起こる。その結果、振動板102の摩擦接触部102aに楕円運動が発生する。圧電素子101に印加される高周波電圧の周波数や位相を変えることで、当該楕円運動の回転方向や楕円比を適宜変化させて所望の動きを得ることができる。振動子103は、上記の共振現象を阻害しないように振動子支持部材109により相対駆動部材108に固定されている。   When ultrasonic vibration is generated in the piezoelectric element 101, a resonance phenomenon occurs in the vibrator 103 constituted by the vibration plate 102 and the piezoelectric element 101. As a result, an elliptical motion occurs in the frictional contact portion 102a of the diaphragm 102. By changing the frequency and phase of the high-frequency voltage applied to the piezoelectric element 101, a desired motion can be obtained by appropriately changing the rotational direction and ellipticity ratio of the elliptical motion. The vibrator 103 is fixed to the relative drive member 108 by a vibrator support member 109 so as not to hinder the resonance phenomenon.

摩擦部材104は、X軸方向に平行な振動板102の摩擦接触部102aが接触する摩擦接触面104cを有する。そして、摩擦部材104は、2つの転動部材107aと1つの転動部材107bとを介して相対駆動部材108に支持されるとともに、バネ105により付勢され、摩擦接触部102aと摩擦接触面104cとの加圧接触状態が保たれる。なお、バネ105は特許請求の範囲の記載における加圧手段に相当する。   The friction member 104 has a friction contact surface 104c that contacts the friction contact portion 102a of the diaphragm 102 parallel to the X-axis direction. The friction member 104 is supported by the relative drive member 108 via the two rolling members 107a and the one rolling member 107b, and is biased by the spring 105, so that the friction contact portion 102a and the friction contact surface 104c. The pressure contact state is maintained. The spring 105 corresponds to the pressurizing means in the claims.

さらに摩擦部材104は、2つの側面と底面を有し、一方の側面にはX軸方向に平行な摩擦部材104の摩擦接触面104cに対してX軸周りの角度が異なる平面である斜面部104aが設けられ、他方の側面には側面溝部104bが設けられている。斜面部104aには、2つの転動部材107aが係合し、側面溝部104bには、1つの転動部材107bが係合する。   Furthermore, the friction member 104 has two side surfaces and a bottom surface, and one side surface is a sloped portion 104a that is a plane having a different angle around the X axis with respect to the friction contact surface 104c of the friction member 104 parallel to the X axis direction. Is provided, and a side groove 104b is provided on the other side surface. Two rolling members 107a are engaged with the inclined surface portion 104a, and one rolling member 107b is engaged with the side surface groove portion 104b.

相対駆動部材108は、2つの転動部材107aが係合するX軸方向に平行な2つの溝部108aと、転動部材107bが係合するX軸方向に平行な溝部108bを有している。2つの溝部108aは、相対駆動部材108の腕部108cに備えられ、溝部108bは、腕部108cに略対峙する側壁部108dに備えられている。腕部108cは、軸110にて回転可能に保持されており、バネ105により軸110まわりのモーメントを発生させることで転動部材107a、転動部材107bへの付勢力を得ている。   The relative drive member 108 has two grooves 108a parallel to the X-axis direction with which the two rolling members 107a are engaged, and a groove 108b parallel to the X-axis direction with which the rolling members 107b are engaged. The two groove portions 108a are provided in the arm portion 108c of the relative drive member 108, and the groove portion 108b is provided in the side wall portion 108d that substantially faces the arm portion 108c. The arm portion 108c is rotatably held by the shaft 110, and a biasing force is applied to the rolling member 107a and the rolling member 107b by generating a moment around the shaft 110 by the spring 105.

すなわち、2つの転動部材107aは、摩擦部材104の斜面部104aと相対駆動部材108の腕部108cに設けられた2つの溝部108aとによって挟持される。そして、1つの転動部材107bは、摩擦部材104の側面溝部104bと相対駆動部材108の側壁部108dに設けられた溝部108bとによって狭持される。このような構成により、2つの転動部材107a及び1つの転動部材107bは、バネ105の付勢力を相対駆動部材108の腕部108cにより受けるとともに、振動子103の駆動力により転動しながらX軸方向に移動する。   That is, the two rolling members 107 a are sandwiched between the inclined surface portion 104 a of the friction member 104 and the two groove portions 108 a provided on the arm portion 108 c of the relative driving member 108. One rolling member 107b is held between the side surface groove portion 104b of the friction member 104 and the groove portion 108b provided in the side wall portion 108d of the relative drive member 108. With such a configuration, the two rolling members 107 a and the one rolling member 107 b receive the urging force of the spring 105 by the arm portion 108 c of the relative driving member 108 and roll while being driven by the driving force of the vibrator 103. Move in the X-axis direction.

さらに、摩擦部材104は1つの転動部材107bを中心に回動可能に保持されており、転動部材107bはバネ105による加圧方向の位置決めをしている。なお、2つの転動部材107a、摩擦部材104の斜面部104a、相対駆動部材108の溝部108aのいずれか又はこれらの組み合わせによりガイド機構106aが構成される。このガイド機構106aは、振動子103と摩擦部材104との相対移動を直進ガイドし、特許請求の範囲の記載におけるガイド手段に相当する。同様に、転動部材107b、摩擦部材104の側面溝部104b、相対駆動部材108の溝部108bのいずれか又はこれらの組み合わせによりガイド機構106bが構成される。このガイド機構106bは、振動子103と摩擦部材104との相対移動を直進ガイドし、特許請求の範囲の記載におけるガイド手段に相当する。   Further, the friction member 104 is rotatably held around one rolling member 107 b, and the rolling member 107 b is positioned in the pressurizing direction by the spring 105. The guide mechanism 106a is configured by any one of the two rolling members 107a, the inclined surface portion 104a of the friction member 104, the groove portion 108a of the relative drive member 108, or a combination thereof. The guide mechanism 106a guides the relative movement between the vibrator 103 and the friction member 104 in a straight line, and corresponds to the guide means in the claims. Similarly, the guide mechanism 106b is configured by any one or a combination of the rolling member 107b, the side surface groove portion 104b of the friction member 104, the groove portion 108b of the relative drive member 108. The guide mechanism 106b guides the relative movement between the vibrator 103 and the friction member 104 in a straight line, and corresponds to the guide means in the claims.

上記の各部材が組み込まれ、振動波モータ100としてユニット化される。本実施例では、摩擦部材104の斜面部104aを平面、相対駆動部材108の溝部108aを溝形状としているが、平面と溝形状とが入れ換わった構成をとることも可能である。また、相対駆動部材108の溝部108bと摩擦部材104の側面溝部104bとは、転動部材107bを転動可能に保持できればよく、様々な溝形状をとることも可能である。   Each member described above is incorporated and unitized as the vibration wave motor 100. In this embodiment, the inclined surface portion 104a of the friction member 104 is a flat surface, and the groove portion 108a of the relative drive member 108 is a groove shape. However, a configuration in which the flat surface and the groove shape are interchanged is also possible. Further, the groove 108b of the relative drive member 108 and the side surface groove 104b of the friction member 104 only have to be able to hold the rolling member 107b in a rollable manner, and can take various groove shapes.

次に、図2(A)及び(B)を参照して本発明の振動波モータ100と従来の直動型超音波モータ200のZ軸方向の大きさについて説明する。図2(B)は、従来の直動型超音波モータ200の断面図であり、Z軸方向の構成部材として、固定部材211、摩擦部材204、振動子203、振動子支持部材209、バネ支持部材212、バネ205、転動部材207、ガイド206が配列されている。   Next, the size of the vibration wave motor 100 of the present invention and the conventional direct acting ultrasonic motor 200 in the Z-axis direction will be described with reference to FIGS. 2 (A) and 2 (B). FIG. 2B is a cross-sectional view of a conventional direct acting ultrasonic motor 200. As constituent members in the Z-axis direction, a fixing member 211, a friction member 204, a vibrator 203, a vibrator support member 209, and a spring support. A member 212, a spring 205, a rolling member 207, and a guide 206 are arranged.

従来の直動型超音波モータ200では、バネ205の加圧方向がZ軸方向となっており、転動部材207は加圧力を受けるように相対駆動部材208の溝部208aとガイド206とによりZ軸方向に挟持される必要がある。一方、本発明の振動波モータ100では、図2(A)に示すようにZ軸方向の構成部材として、バネ105、摩擦部材104、振動子103、振動子支持部材109、相対駆動部材108が配列されている。しかしながら、バネ105の付勢力の発生方向をY軸方向としてバネ105を配置しており、ガイド機構106a、ガイド機構106bと摩擦部材104とをY軸方向に並設することができる。このように本発明による振動波モータ100は、従来の直動型超音波モータ200と比べ、Z軸方向に積層する構成部材の厚みが少ないため、加圧方向に対して薄型化が実現できる。また、ガイド手段、加圧手段、部材のイコライズ機構を一体構成で実現できるため、本発明の振動波モータ100は、小型化、部品点数の削減ができるといった優れた効果を有する。   In the conventional direct acting ultrasonic motor 200, the pressing direction of the spring 205 is the Z-axis direction, and the rolling member 207 receives the applied pressure by the groove 208 a of the relative driving member 208 and the guide 206. It must be clamped in the axial direction. On the other hand, in the vibration wave motor 100 of the present invention, as shown in FIG. 2A, a spring 105, a friction member 104, a vibrator 103, a vibrator support member 109, and a relative drive member 108 are used as constituent members in the Z-axis direction. It is arranged. However, the spring 105 is disposed with the generation direction of the biasing force of the spring 105 as the Y-axis direction, and the guide mechanism 106a, the guide mechanism 106b, and the friction member 104 can be arranged in parallel in the Y-axis direction. As described above, the vibration wave motor 100 according to the present invention can be reduced in thickness in the pressing direction because the thickness of the constituent members laminated in the Z-axis direction is smaller than that of the conventional direct acting ultrasonic motor 200. Further, since the guide means, the pressurizing means, and the member equalizing mechanism can be realized in an integrated configuration, the vibration wave motor 100 of the present invention has excellent effects such as downsizing and reduction in the number of parts.

次に、図3を参照して本発明の振動波モータ100の構成部材に作用する力について説明する。図3は、図2(A)と同様な本発明の振動波モータ100の断面図である。相対駆動部材108の腕部108cにバネ105により荷重F1を付勢した時、荷重F1は軸110を中心とした腕部108cの回転軌道の接線方向の力F1aと法線方向の力F1bに分解することができる。接線方向の力F1aは、腕部108cに軸110を中心としたモーメントM1を発生させる。   Next, with reference to FIG. 3, the force which acts on the structural member of the vibration wave motor 100 of this invention is demonstrated. FIG. 3 is a cross-sectional view of the vibration wave motor 100 of the present invention similar to FIG. When the load F1 is biased by the spring 105 to the arm portion 108c of the relative drive member 108, the load F1 is decomposed into a tangential force F1a and a normal force F1b of the rotation trajectory of the arm portion 108c around the shaft 110. can do. The tangential force F1a generates a moment M1 about the axis 110 in the arm portion 108c.

転動部材107aは、腕部108cと当接しており、この転動部材107aにはモーメントM1により荷重F2が付与される。摩擦部材104の斜面部104aは、転動部材107aと当接しており、斜面部104aにも同様の荷重F2が付与される。荷重F2は、転動部材107bを中心とした摩擦部材104の回転軌道の接線方向の力F2aと法線方向の力F2bに分解することができる。接線方向の力F2aは、摩擦部材104に転動部材107bを中心としたモーメントM2を発生させる。   The rolling member 107a is in contact with the arm portion 108c, and a load F2 is applied to the rolling member 107a by a moment M1. The slope portion 104a of the friction member 104 is in contact with the rolling member 107a, and a similar load F2 is applied to the slope portion 104a. The load F2 can be decomposed into a tangential force F2a and a normal force F2b of the rotation track of the friction member 104 around the rolling member 107b. The tangential force F2a causes the friction member 104 to generate a moment M2 about the rolling member 107b.

振動板102の摩擦接触部102aは、摩擦部材104の摩擦接触面104cと当接しており、この振動板102の摩擦接触部102aにはモーメントM2により荷重F3が付与される。この荷重F3は、振動子103を摩擦部材104に押圧する押圧力となる。   The friction contact portion 102a of the vibration plate 102 is in contact with the friction contact surface 104c of the friction member 104, and a load F3 is applied to the friction contact portion 102a of the vibration plate 102 by a moment M2. This load F3 is a pressing force that presses the vibrator 103 against the friction member 104.

次に、図4(A)、(B)及び図5(A)〜(C)を参照して、本発明の振動波モータ100における摩擦部材104が振動板102に対して傾いた場合の各部材の挙動を説明する。図4(A)、(B)はいずれも図2(A)と同様な断面図であり、各構成部材の形状誤差やクリアランスなどにより、摩擦部材104の摩擦接触面104cが振動板102に対して図2(A)で示した位置よりもZ軸方向に変化した場合の各部材の挙動を示す。   Next, with reference to FIGS. 4A and 4B and FIGS. 5A to 5C, each of the friction members 104 in the vibration wave motor 100 of the present invention is tilted with respect to the diaphragm 102. The behavior of the member will be described. 4A and 4B are both cross-sectional views similar to FIG. 2A, and the friction contact surface 104c of the friction member 104 is in contact with the diaphragm 102 due to the shape error and clearance of each component member. The behavior of each member when changed in the Z-axis direction from the position shown in FIG.

図4(A)は、摩擦部材104が図2(A)で示した位置(図の破線で示す摩擦部材104の位置)よりも+Z軸方向に変化した場合を示す。摩擦部材104が+Z軸方向に変化しているので、腕部108cは、図3で示した接線方向の力F1aにより軸110を中心としてR2方向に破線で示す位置から回転する。一方、摩擦部材104は、転動部材107aと斜面部104aを介して荷重F2を受け、図3で示した接線方向の力F2aにより転動部材107bを中心としてR1方向に回転し、振動子103を押圧する。   FIG. 4A shows a case where the friction member 104 is changed in the + Z-axis direction from the position shown in FIG. 2A (the position of the friction member 104 shown by a broken line in the drawing). Since the friction member 104 changes in the + Z axis direction, the arm portion 108c rotates from the position indicated by the broken line in the R2 direction around the axis 110 by the tangential force F1a shown in FIG. On the other hand, the friction member 104 receives the load F2 via the rolling member 107a and the slope portion 104a, and rotates in the R1 direction around the rolling member 107b by the tangential force F2a shown in FIG. Press.

図4(B)は、摩擦部材104が図2(A)で示した位置(図の破線で示す摩擦部材104の位置)よりも−Z軸方向に変化した場合を示す。摩擦部材104が−Z軸方向に変化しているので、摩擦部材104は、振動子103との押圧力(荷重F3)の反力F3’により、転動部材107bを中心としてR3方向に回転する。一方、腕部108cは、斜面部104aと転動部材107aを介して荷重F2の反力F2’を受け、この反力F2’により軸110を中心としてR4方向に破線で示す位置から回転する。結果、摩擦接触部102aと摩擦接触面104cとの加圧接触状態が保たれる。   FIG. 4B shows a case where the friction member 104 changes in the −Z-axis direction from the position shown in FIG. 2A (the position of the friction member 104 shown by a broken line in the drawing). Since the friction member 104 changes in the −Z-axis direction, the friction member 104 rotates in the R3 direction around the rolling member 107b by the reaction force F3 ′ of the pressing force (load F3) with the vibrator 103. . On the other hand, the arm portion 108c receives a reaction force F2 'of the load F2 through the slope portion 104a and the rolling member 107a, and rotates from the position indicated by the broken line in the R4 direction around the shaft 110 by the reaction force F2'. As a result, the pressure contact state between the friction contact portion 102a and the friction contact surface 104c is maintained.

図5(A)〜(C)は、振動板102と摩擦部材104の距離がX軸方向の位置によって変化した場合の各部材の挙動を示す。図5(A)は振動波モータ100の正面図であり、図5(B)は図5(A)の断面線VB−VBにおける断面図であり、図5(C)は図5(A)の断面線VC−VCにおける断面図である。摩擦部材104の摩擦接触面104cが各構成部材の形状誤差やクリアランスなどにより、+X軸側で−Z軸方向に、−X軸側で+Z軸方向にそれぞれ変位した場合の摩擦部材104と腕部108cの挙動を考える。   5A to 5C show the behavior of each member when the distance between the diaphragm 102 and the friction member 104 changes depending on the position in the X-axis direction. 5A is a front view of the vibration wave motor 100, FIG. 5B is a cross-sectional view taken along a cross-sectional line VB-VB in FIG. 5A, and FIG. 5C is FIG. It is sectional drawing in the sectional line VC-VC. Friction member 104 and arm when friction contact surface 104c of friction member 104 is displaced in the -Z-axis direction on the + X-axis side and in the + Z-axis direction on the -X-axis side due to shape error or clearance of each component member Consider the behavior of 108c.

−X軸側における状態を示す図5(B)では、摩擦接触面104cが−X軸側において+Z軸方向に変位すると、摩擦部材104は、図3で示した荷重F3の反力F3’により振動子103に押圧され、転動部材107bを中心としてR5方向に回転する。腕部108cは図3で示した荷重F2の反力F2’によりR5方向に回転した摩擦部材104に押圧され、軸110を中心としてR6方向に回転する。   In FIG. 5B showing the state on the −X axis side, when the friction contact surface 104c is displaced in the + Z axis direction on the −X axis side, the friction member 104 is caused by the reaction force F3 ′ of the load F3 shown in FIG. It is pressed by the vibrator 103 and rotates in the R5 direction around the rolling member 107b. The arm portion 108c is pressed against the friction member 104 rotated in the R5 direction by the reaction force F2 'of the load F2 shown in FIG. 3, and rotates in the R6 direction about the shaft 110.

一方、+X軸側における状態を示す図5(C)では、摩擦接触面104cが+X軸側において−Z軸方向に変位すると、摩擦部材104は、図3で示した接線方向の力F2aにより転動部材107bを中心としてR5方向に回転する。腕部108cは、軸110を中心としてR7方向に回転し、摩擦部材104を押圧するとともに振動子103を押圧する。   On the other hand, in FIG. 5C showing the state on the + X-axis side, when the friction contact surface 104c is displaced in the −Z-axis direction on the + X-axis side, the friction member 104 is rotated by the tangential force F2a shown in FIG. It rotates in the R5 direction around the moving member 107b. The arm portion 108c rotates in the R7 direction around the shaft 110, presses the friction member 104, and presses the vibrator 103.

以上のように本発明の振動波モータ100は、ガイド機構106a、ガイド機構106bが、X軸方向の直動ガイドをするとともに、部材のイコライズ機構を一体構成で実現できるため、摩擦接触部102aと摩擦接触面104cの安定した摩擦接触を実現している。   As described above, in the vibration wave motor 100 of the present invention, the guide mechanism 106a and the guide mechanism 106b can linearly guide in the X-axis direction and the member equalizing mechanism can be realized in an integrated configuration. Stable frictional contact of the frictional contact surface 104c is realized.

図6は、本発明の振動波モータ100が組み込まれているレンズ装置の一例として、レンズ鏡筒20を示している。なお、当該レンズ鏡筒20は略回転対称形であるため、上側半分のみ図示している。   FIG. 6 shows a lens barrel 20 as an example of a lens apparatus in which the vibration wave motor 100 of the present invention is incorporated. Since the lens barrel 20 is substantially rotationally symmetric, only the upper half is shown.

撮像装置としてのカメラ本体10には、レンズ鏡筒20が着脱自在に取り付けられ、カメラ本体10内には、撮像素子1aが設けられている。カメラ本体10のマウント11には、レンズ鏡筒20をカメラ本体10に取り付けるためのバヨネット部が設けられている。レンズ鏡筒20は、固定筒21を有しており、固定筒21がマウント11のフランジ部に当接している。そして、固定筒21とマウント11とは不図示のビスに固定されている。固定筒21にはさらに、レンズG1を保持する前鏡筒22とレンズG3を保持する後鏡筒23とが固定されている。レンズ鏡筒20はさらにフォーカスレンズ保持枠25を備え、フォーカスレンズG2を保持している。フォーカスレンズ保持枠25はさらに、前鏡筒22と後鏡筒23に保持されたガイドバー26によって直進移動可能に保持されている。振動波モータ100の摩擦部材104には、不図示の固定部が形成されており、後鏡筒23にビス等で固定されている。   A lens barrel 20 is detachably attached to a camera body 10 as an imaging device, and an imaging element 1 a is provided in the camera body 10. The mount 11 of the camera body 10 is provided with a bayonet portion for attaching the lens barrel 20 to the camera body 10. The lens barrel 20 has a fixed cylinder 21, and the fixed cylinder 21 is in contact with the flange portion of the mount 11. The fixed cylinder 21 and the mount 11 are fixed to screws (not shown). Further, the front barrel 22 holding the lens G1 and the rear barrel 23 holding the lens G3 are fixed to the fixed barrel 21. The lens barrel 20 further includes a focus lens holding frame 25 and holds the focus lens G2. The focus lens holding frame 25 is further held by a guide bar 26 held by the front lens barrel 22 and the rear lens barrel 23 so as to be linearly movable. The friction member 104 of the vibration wave motor 100 is formed with a fixing portion (not shown) and is fixed to the rear barrel 23 with a screw or the like.

上記のような構成で、振動波モータ100の相対駆動部材108を含む可動部が駆動されると、振動波モータ100の駆動力は、相対駆動部材108を介してフォーカスレンズ保持枠25に伝達される。フォーカスレンズ保持枠25は、ガイドバー26によって案内されて直線移動する。   When the movable part including the relative drive member 108 of the vibration wave motor 100 is driven with the above configuration, the drive force of the vibration wave motor 100 is transmitted to the focus lens holding frame 25 via the relative drive member 108. The The focus lens holding frame 25 moves linearly while being guided by the guide bar 26.

以上のような構成で、加圧方向に対して薄型化を達成した小型の振動波モータ100を得ることができるとともに、薄型化した振動波モータ100を搭載した光学装置を得ることができる。本発明は上記実施例に限定されるものではなく、請求項記載の範囲に示したものであればどのような形態をとることも可能である。   With the configuration as described above, it is possible to obtain a small vibration wave motor 100 that is thinned in the pressurizing direction, and it is possible to obtain an optical device on which the thinned vibration wave motor 100 is mounted. The present invention is not limited to the above embodiments, and can take any form as long as it is within the scope of the claims.

100 振動波モータ
101 圧電素子
102 振動板
103 振動子
104 摩擦部材
104a 斜面部(ガイド手段)
104b 溝部(ガイド手段)
104c 摩擦接触面
105 バネ(加圧手段)
106a、b ガイド機構(ガイド手段)
107a、b 転動部材(ガイド手段)
DESCRIPTION OF SYMBOLS 100 Vibration wave motor 101 Piezoelectric element 102 Diaphragm 103 Vibrator 104 Friction member 104a Slope part (guide means)
104b Groove (guide means)
104c Friction contact surface 105 Spring (pressurizing means)
106a, b Guide mechanism (guide means)
107a, b Rolling member (guide means)

Claims (10)

圧電素子と振動板とからなる振動子と、
該振動子と接触する摩擦接触面を有する摩擦部材と、
前記振動子を前記摩擦部材に押圧する加圧手段と、
前記振動子と前記摩擦部材との相対移動をガイドするガイド手段とを備え、
前記振動子が発生する振動により前記振動子と前記摩擦部材とを相対移動させる振動波モータにおいて、
前記ガイド手段は、前記摩擦部材を前記振動子に対して回動可能に保持することを特徴とする振動波モータ。
A vibrator comprising a piezoelectric element and a diaphragm;
A friction member having a friction contact surface in contact with the vibrator;
Pressurizing means for pressing the vibrator against the friction member;
A guide means for guiding relative movement between the vibrator and the friction member;
In a vibration wave motor that relatively moves the vibrator and the friction member by vibration generated by the vibrator,
The vibration wave motor characterized in that the guide means holds the friction member rotatably with respect to the vibrator.
前記ガイド手段は、前記相対移動するための直進ガイドをすることを特徴とする、請求項1に記載の振動波モータ。   The vibration wave motor according to claim 1, wherein the guide means performs a straight guide for the relative movement. 前記ガイド手段は、前記摩擦部材を支持する転動部材で構成され、前記加圧手段からの加圧力を伝達することを特徴とする、請求項1又は2に記載の振動波モータ。   3. The vibration wave motor according to claim 1, wherein the guide unit is configured by a rolling member that supports the friction member, and transmits the pressure applied from the pressurizing unit. 前記ガイド手段は、前記転動部材が係合する斜面部を前記摩擦部材にさらに備えて構成され、前記斜面部は前記相対移動の方向に平行で、前記摩擦部材の前記摩擦接触面と異なる角度であることを特徴とする、請求項3に記載の振動波モータ。   The guide means further includes an inclined surface portion that engages with the rolling member on the friction member, and the inclined surface portion is parallel to the direction of the relative movement and has an angle different from the friction contact surface of the friction member. The vibration wave motor according to claim 3, wherein: 前記ガイド手段は、前記転動部材が係合する溝部を前記摩擦部材にさらに備えて構成され、前記溝部は前記相対移動の方向に平行であることを特徴とする、請求項3又は4に記載の振動波モータ。   The said guide means is further provided in the said friction member, and is comprised, and the said groove part with which the said rolling member engages is comprised, The said groove part is parallel to the direction of the said relative movement, The Claim 3 or 4 characterized by the above-mentioned. Vibration wave motor. 前記転動部材は、前記加圧手段により前記摩擦部材の前記溝部に挟持され、前記摩擦部材は、前記転動部材を中心として回動可能に保持されることを特徴とする、請求項5に記載の振動波モータ。   The said rolling member is clamped by the said groove part of the said friction member by the said pressurization means, The said friction member is hold | maintained so that rotation is possible centering | focusing on the said rolling member. The described vibration wave motor. 前記転動部材は、前記摩擦部材の前記溝部に1つ挟持され、前記加圧手段による加圧方向の位置決めをすることを特徴とする、請求項5又は6に記載の振動波モータ。   The vibration wave motor according to claim 5 or 6, wherein one of the rolling members is sandwiched between the groove portions of the friction member and positioned in the pressurizing direction by the pressurizing unit. 前記加圧手段は、前記押圧の方向と前記相対移動の方向とに直交する方向に配置されていることを特徴とする、請求項1〜7のいずれか一項に記載の振動波モータ。   The vibration wave motor according to any one of claims 1 to 7, wherein the pressurizing unit is arranged in a direction orthogonal to the direction of the pressing and the direction of the relative movement. 前記振動波モータは、超音波領域の周波数の振動を用いた超音波モータであることを特徴とする、請求項1〜8のいずれか一項に記載の振動波モータ。   The vibration wave motor according to any one of claims 1 to 8, wherein the vibration wave motor is an ultrasonic motor using vibration of a frequency in an ultrasonic region. 請求項1〜9のいずれか一項に記載の振動波モータを有する光学装置。   An optical device having the vibration wave motor according to claim 1.
JP2017029679A 2017-02-21 2017-02-21 Vibration wave motor and optical device including vibration wave motor Pending JP2018137859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017029679A JP2018137859A (en) 2017-02-21 2017-02-21 Vibration wave motor and optical device including vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017029679A JP2018137859A (en) 2017-02-21 2017-02-21 Vibration wave motor and optical device including vibration wave motor

Publications (1)

Publication Number Publication Date
JP2018137859A true JP2018137859A (en) 2018-08-30

Family

ID=63366152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017029679A Pending JP2018137859A (en) 2017-02-21 2017-02-21 Vibration wave motor and optical device including vibration wave motor

Country Status (1)

Country Link
JP (1) JP2018137859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187231A (en) * 2019-05-13 2020-11-19 キヤノン株式会社 Optical device and imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187231A (en) * 2019-05-13 2020-11-19 キヤノン株式会社 Optical device and imaging apparatus

Similar Documents

Publication Publication Date Title
JP5955347B2 (en) Linear ultrasonic motor and optical apparatus using the same
US10972019B2 (en) Ultrasonic motor and lens driving apparatus
US9705426B2 (en) Ultrasonic motor and lens apparatus including the same
JP6271963B2 (en) Vibration type actuator
JP6188366B2 (en) Actuator and optical equipment
JP5683643B2 (en) Linear ultrasonic motor and optical apparatus having the same
JP2017200361A (en) Vibration wave motor and electronic apparatus mounting vibration wave motor
US10804820B2 (en) Motor and apparatus using the same
KR20150127852A (en) Ultrasonic motor and lens apparatus including the same
JP2017200366A (en) Vibration wave motor and electronic apparatus loading the same
JP6122452B2 (en) Actuator
US9653675B2 (en) Driving apparatus, lens apparatus including the same, and imaging apparatus
JP2018137859A (en) Vibration wave motor and optical device including vibration wave motor
JP7112250B2 (en) Oscillating wave motor and drive
JP2018148626A (en) Vibration wave motor and optical device including the same
JP6602037B2 (en) DRIVE DEVICE AND OPTICAL DEVICE HAVING THE SAME
JP6429516B2 (en) Ultrasonic motor
JP2015104140A (en) Ultrasonic actuator
JP2019088048A (en) Ultrasonic motor, lens device and imaging apparatus
JP2016101023A (en) Vibration wave motor and optical device including the same
JP2017200355A (en) Vibration wave motor and electronic apparatus mounting vibration wave motor
JP6708471B2 (en) Vibration wave motor and optical device equipped with the vibration wave motor
JP2015159725A (en) Oscillation type motor and lens device including the same
JP2019083664A (en) Vibration wave motor, lens device, and imaging apparatus
JP2018148683A (en) Vibration wave motor

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126