JP6116346B2 - Damping member and core material - Google Patents

Damping member and core material Download PDF

Info

Publication number
JP6116346B2
JP6116346B2 JP2013096876A JP2013096876A JP6116346B2 JP 6116346 B2 JP6116346 B2 JP 6116346B2 JP 2013096876 A JP2013096876 A JP 2013096876A JP 2013096876 A JP2013096876 A JP 2013096876A JP 6116346 B2 JP6116346 B2 JP 6116346B2
Authority
JP
Japan
Prior art keywords
core material
axis
restraining member
wave
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013096876A
Other languages
Japanese (ja)
Other versions
JP2014218797A (en
Inventor
伸介 山崎
伸介 山崎
直以 野呂
直以 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Engineering Co Ltd filed Critical Nippon Steel and Sumikin Engineering Co Ltd
Priority to JP2013096876A priority Critical patent/JP6116346B2/en
Publication of JP2014218797A publication Critical patent/JP2014218797A/en
Application granted granted Critical
Publication of JP6116346B2 publication Critical patent/JP6116346B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)

Description

本発明は、地震等による加振力を減衰する制振用部材、及びこれに用いられる芯材に関するものである。   The present invention relates to a vibration damping member that attenuates an excitation force due to an earthquake or the like, and a core material used therefor.

従来から、建築、橋梁構造物においては、筋交いに用いられる制振用部材として、例えば座屈拘束ブレースが知られている。この座屈拘束ブレースは、軸力を受ける芯材が外周側から鋼管によって拘束されることで、面外変形や座屈を防止されながら塑性変形し、建築や橋梁構造物の耐震・制震性能を向上させる。   Conventionally, in a building or a bridge structure, for example, a buckling restrained brace is known as a vibration damping member used for bracing. This buckling-restrained brace is plastically deformed while preventing out-of-plane deformation and buckling by restraining the core material that receives axial force from the outer peripheral side by a steel pipe, and the earthquake and vibration control performance of buildings and bridge structures. To improve.

ここで、このような座屈拘束ブレースでは、一般に芯材に平鋼板が用いられていることから、加振力が作用した際にはこの芯材における全断面の降伏によって振動エネルギーの吸収を行う。このため、断面の降伏に至らない程度の小さな加振力に対しては、芯材は剛な部材となってしまい、振動エネルギーを十分に吸収することができない。   Here, in such a buckling-restrained brace, since a flat steel plate is generally used as a core material, vibration energy is absorbed by the yielding of the entire cross section of the core material when an excitation force is applied. . For this reason, the core material becomes a rigid member with respect to an excitation force that is small enough not to yield a cross section, and cannot sufficiently absorb vibration energy.

ここで、特許文献1には、芯材に波形鋼板を適用した座屈拘束ブレースが開示されている。そして、このように芯材を波形とすることで、加振力が作用した際の芯材の変形性能の向上が可能であり、小さな地震や風等による小さな加振力に対しても、十分な振動エネルギー吸収性能を得ることができる。   Here, Patent Document 1 discloses a buckling-restrained brace in which a corrugated steel plate is applied as a core material. And by making the core material corrugated in this way, it is possible to improve the deformation performance of the core material when the excitation force is applied, and it is sufficient even for small excitation force due to small earthquakes or winds, etc. Vibration absorption performance can be obtained.

特開2008−150842号公報JP 2008-150842 A

しかしながら、特許文献1に開示された座屈拘束ブレースでは、芯材と拘束部材との間の隙間量が明確に規定されていない。これら芯材と拘束部材との間に十分な隙間がない場合には、加振力が作用した際に、芯材の波山における自由な変形を抑制してしまうことになり、芯材が十分に振動エネルギーを吸収することができないおそれがある。   However, in the buckling restrained brace disclosed in Patent Document 1, the amount of gap between the core material and the restraining member is not clearly defined. If there is not a sufficient gap between the core material and the restraining member, when an excitation force is applied, free deformation of the core material in the undulations will be suppressed, and the core material will be sufficient. The vibration energy may not be absorbed.

本発明はこのような事情を考慮してなされたものであり、加振力の大小に関わらず確実に振動エネルギーを吸収し、制振効果の向上を図った制振用部材、及びこれに用いられる芯材を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and a vibration damping member that reliably absorbs vibration energy regardless of the magnitude of the excitation force to improve the vibration damping effect, and is used for the same. An object of the present invention is to provide a core material.

上記課題を解決するため、本発明は以下の手段を採用している。
即ち、本発明に係る制振用部材は、軸線に沿って延びて、該軸線の方向に向かって波山が交互に連続して波板状に形成された芯材と、前記軸線に沿って延びて、前記芯材の前記軸線の両端部を突出させた状態で、該芯材を外周側から覆う拘束部材と、前記芯材における前記波山の谷側に配されて、該芯材に接触する凸頭部を有し、前記拘束部材の内表面に対して相対移動可能に設けられた波形状保持部材と、を備え、前記芯材における前記波山の頂部と前記拘束部材の内表面とは、該芯材に前記軸線の方向に外力が作用しない状態で非接触となっていることを特徴とする。
In order to solve the above problems, the present invention employs the following means.
That is, the vibration damping member according to the present invention extends along the axis, and extends along the axis, in which the core is formed in the shape of a corrugated plate in the direction of the axis alternately and continuously. Then, in a state where both ends of the axis of the core material are projected, a restraining member that covers the core material from the outer peripheral side, and a trough side of the corrugation in the core material are in contact with the core material A wave-shaped holding member that has a convex head and is provided so as to be relatively movable with respect to the inner surface of the restraining member, and the top of the wave mountain in the core material and the inner surface of the restraining member, The core member is non-contact in a state where no external force acts in the direction of the axis.

このような制振用部材によると、芯材に外力が作用しない状態で、芯材と拘束部材とが非接触となっていることから、芯材と拘束部材との間には隙間が設けられていることになる。ここで、芯材に軸線の方向の圧縮外力が作用した際には、上記隙間によって芯材の波山が高くなるような変形を許容できる。従って、芯材が十分に変形して振動エネルギーを吸収するまでに、拘束部材によって波山が変形を抑制されることがなくなり、局所的に芯材の波山が変形して拘束部材の中で芯材が詰まり、芯材が拘束部材との間で相対移動できなくなってしまうことを防止できる。
さらに、芯材では、軸線の方向に引っ張る引張力が作用すると波山が低くなるように変形し、軸線の方向に押し付ける圧縮力が作用すると波山が高くなるように変形する。このような変形が芯材に生じた際、波形状保持部材の凸頭部が芯材に接触することで、波山形状を所定の形状に保持することができる。
According to such a vibration damping member, since the core member and the restraining member are not in contact with each other in a state where no external force acts on the core member, a gap is provided between the core member and the restraining member. Will be. Here, when a compressive external force in the direction of the axis acts on the core material, it is possible to allow the core material to be deformed so that the ridges of the core material become higher due to the gap. Therefore, until the core material is sufficiently deformed and absorbs vibration energy, the restraint member does not suppress the deformation of the undulation, and the core material ridge is locally deformed and the core material is contained in the restraint member. Can prevent the core material from moving relative to the restraining member.
Further, the core material is deformed so that the undulation is lowered when a tensile force pulling in the axial direction is applied, and is deformed so that the undulation is increased when a compressive force is applied in the axial direction. When such deformation occurs in the core material, the convex shape of the corrugated holding member comes into contact with the core material, so that the wave mountain shape can be held in a predetermined shape.

また、前記芯材における前記波山の頂部と前記拘束部材の内表面とは、該芯材に対して前記軸線の方向に外力が作用して最大設計変形量の圧縮変形が生じた際に、接触してもよい。   Further, the top of the wavy mountain in the core material and the inner surface of the restraining member contact each other when an external force acts on the core material in the direction of the axis to cause a maximum amount of design deformation. May be.

このように、芯材に軸線方向に押し付ける力が作用し、最大設計変形量の圧縮変形が生じた際には、拘束部材による拘束力を芯材に作用させることができる。   As described above, when a force pressing in the axial direction is applied to the core material, and a compression deformation of the maximum design deformation amount occurs, the constraint force by the constraint member can be applied to the core material.

また、本発明に係る制振用部材は、前記芯材の前記軸線方向の中途位置に設けられ、該中途位置で前記芯材と前記拘束部材とを固定する中間固定部材をさらに備えていてもよい。   The vibration damping member according to the present invention may further include an intermediate fixing member that is provided at an intermediate position in the axial direction of the core material and fixes the core material and the restraining member at the intermediate position. Good.

芯材と拘束部材との間に隙間が設けられていることで、拘束部材に対して、芯材が軸線の方向に移動し易くなってしまうが、このような中間固定部材によって芯材と拘束部材とを固定することで、芯材全体の軸線方向への移動を防止できる。   By providing a gap between the core material and the restraining member, the core material can easily move in the direction of the axis with respect to the restraining member. By fixing the member, movement of the entire core material in the axial direction can be prevented.

また、前記拘束部材には、前記軸線の方向の両端部側で内径が小さくなるように小径部が形成されていてもよい。   Further, the restraining member may be formed with a small diameter portion so that the inner diameter becomes smaller at both end sides in the direction of the axis.

本発明の制振用部材では、芯材と拘束部材との間に隙間があるために、芯材が拘束部材から軸線の方向に抜け易くなってしまうが、このような小径部によって芯材の抜けを防止することができる。   In the vibration damping member of the present invention, since there is a gap between the core material and the restraining member, the core material is likely to come off from the restraining member in the axial direction. Omission can be prevented.

さらに、前記芯材は、複数の波板が積層された積層板であってもよい。   Furthermore, the core material may be a laminated plate in which a plurality of corrugated plates are laminated.

芯材は、例えば板材をプレス成形で曲げ加工されることで製造される。ここで、芯材を積層板とすることで、降伏耐力の向上を図ることができる。そして、各々の波板をそれぞれ曲げ加工した後に積層することで、厚板を曲げ加工する場合と比べて、曲げ加工を容易に行うことができる。また、各々の波板の厚さや積層枚数を適宜調整することで、芯材の降伏耐力調整の自由度が増す。   The core material is manufactured, for example, by bending a plate material by press molding. Here, the yield strength can be improved by making the core material a laminated plate. Then, by laminating each corrugated plate after bending it, it is possible to perform bending more easily than when bending thick plates. Moreover, the freedom degree of the yield strength adjustment of a core material increases by adjusting the thickness of each corrugated sheet, and the number of lamination | stacking suitably.

また、本発明に係る芯材は、上記の制振用部材に用いられる芯材であって、複数の波板が積層された積層板であることを特徴とする。   A core material according to the present invention is a core material used for the above-described vibration damping member, and is a laminated plate in which a plurality of corrugated plates are laminated.

このような芯材によると、降伏耐力の向上を図ることができる。そして、各々の波板をそれぞれ曲げ加工した後に積層することで、厚板を曲げ加工する場合と比べて、曲げ加工を容易に行うことができる。また、降伏耐力調整の自由度が増す。   According to such a core material, the yield strength can be improved. Then, by laminating each corrugated plate after bending it, it is possible to perform bending more easily than when bending thick plates. Moreover, the freedom degree of yield strength adjustment increases.

請求項1の制振用部材によると、芯材の波山の変形を許容できることで、芯材全体が十分に振動エネルギーの吸収を行なうことが可能となり、加振力の大小に関わらず確実に振動エネルギーを吸収し、制振効果の向上を図ることができる。
さらに、波形状保持部材によって波山の形状を保持することで、芯材の全体座屈等の発生を抑え、圧縮変形時の降伏耐力の一時的な低下を抑制することが可能となる。
According to the vibration damping member of claim 1, since the deformation of the undulation of the core material can be allowed, the entire core material can sufficiently absorb the vibration energy, and the vibration can be reliably performed regardless of the magnitude of the excitation force. It can absorb energy and improve the vibration control effect.
Furthermore, by holding the wavy shape by the wave shape holding member, it is possible to suppress the occurrence of overall buckling of the core material and to suppress a temporary decrease in yield strength during compression deformation.

また、請求項2の制振用部材によると、芯材の圧縮変形を許容しながら、最大設計変形量以上の芯材の変形を抑制することができる。   Further, according to the vibration damping member of the second aspect, it is possible to suppress the deformation of the core material exceeding the maximum design deformation amount while allowing the core material to be compressed and deformed.

また、請求項3の制振用部材によると、中間固定部材によって芯材の拘束部材に対する相対的な位置ずれを防止でき、芯材に拘束部材からの拘束力を確実に作用させ、確実に振動減衰機能を発揮させることができる。 Further, according to the vibration damping member of claim 3 , the intermediate fixing member can prevent the relative displacement of the core material with respect to the restraining member, and the restraining force from the restraining member acts on the core material reliably, so that the vibration is reliably caused. Attenuation function can be exhibited.

また、請求項4の制振用部材によると、拘束部材の小径部によって芯材の抜けを防止し、芯材に拘束部材からの拘束力を確実に作用させることができる。 According to the vibration damping member of the fourth aspect , the core member can be prevented from coming off by the small diameter portion of the restraining member, and the restraining force from the restraining member can be reliably applied to the core member.

さらに、請求項5の制振用部材によると、降伏耐力を維持しながら芯材の加工が容易となることで、製作性向上によるコスト低減につながる。 Furthermore, according to the vibration damping member of the fifth aspect, the core material can be easily processed while maintaining the yield strength, which leads to cost reduction due to improvement in manufacturability.

また、請求項6の芯材によると、降伏耐力を維持しながら加工が容易となることで、製作性向上によるコスト低減につながる。 Moreover, according to the core material of Claim 6 , it becomes easy to process, maintaining yield strength, and leads to the cost reduction by improvement of manufacturability.

本発明の第一実施形態に係る制振用部材を示す全体斜視図である。It is a whole perspective view which shows the member for damping | damping which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る制振用部材を示す軸線を含む断面図であって、芯材を板幅方向から見たものである。It is sectional drawing containing the axis line which shows the member for damping | damping which concerns on 1st embodiment of this invention, Comprising: The core material is seen from the plate width direction. 本発明の第一実施形態に係る制振用部材に関し、波形状保持部材の周辺を示す断面図であって、図2のA部詳細を示すものである。FIG. 3 is a cross-sectional view showing the periphery of a corrugated holding member with respect to the vibration damping member according to the first embodiment of the present invention, and shows the details of part A in FIG. 2. 本発明の第一実施形態に係る制振用部材に関し、中間固定部材の周辺を示す断面図であって、図2のB部詳細を示すものである。FIG. 3 is a cross-sectional view showing the periphery of an intermediate fixing member with respect to the vibration damping member according to the first embodiment of the present invention, and shows details of a B part in FIG. 2. 制振用部材の断面図であって、仮に波形状保持部材が設けられていない場合の、芯材に変形が生じた状態を示すものである。It is sectional drawing of the member for damping | damping, Comprising: If the waveform holding member is not provided, the state which the deformation | transformation produced in the core material will be shown. 本発明の第一実施形態の制振用部材に関し、芯材の変形の様子を模式的に示す上面図であって、(a)は芯材に変形が生じていない状態を、(b)は芯材に引っ張り変形が生じた場合を、(c)は芯材に圧縮変形が生じた場合を示すものである。FIG. 4 is a top view schematically showing a state of deformation of the core material in relation to the vibration damping member of the first embodiment of the present invention, where (a) shows a state where the core material is not deformed, (b) (C) shows the case where compressive deformation occurs in the core material when tensile deformation occurs in the core material. 本発明の第二実施形態の制振用部材に関し、芯材を示す上面図であって、(a)は積層前の状態を、(b)は積層後の状態を示すものである。It is a top view which shows a core material regarding the member for damping | damping of 2nd embodiment of this invention, Comprising: (a) shows the state before lamination | stacking, (b) shows the state after lamination | stacking. 本発明の第二実施形態の変形例の制振用部材に関し、芯材を示す上面図であって、(a)は積層前の状態を、(b)は積層後の状態を示すものである。It is a top view which shows a core material regarding the damping member of the modification of 2nd embodiment of this invention, Comprising: (a) shows the state before lamination | stacking, (b) shows the state after lamination | stacking. .

〔第一実施形態〕
以下、本発明の第一実施形態に係る制振用部材1について説明する。
制振用部材1は、例えば建築、橋梁構造物において筋交い等に用いられ、これらの耐震・制震性能を向上する座屈拘束ブレースである。
[First embodiment]
Hereinafter, the vibration damping member 1 according to the first embodiment of the present invention will be described.
The damping member 1 is a buckling-restrained brace that is used, for example, for bracing in a building or a bridge structure and improves the seismic resistance and damping performance.

図1に示すように、この制振用部材1は、軸線Pに沿って延びる芯材3と、一対の芯材3を軸線Pの方向の両端部で突出させた状態で外周側から覆う拘束部材4とを備えている。   As shown in FIG. 1, the vibration damping member 1 includes a core member 3 extending along the axis P, and a constraint covering the pair of core members 3 from the outer peripheral side in a state where the core member 3 protrudes at both ends in the direction of the axis P. And a member 4.

図2に示すように、芯材3は、軸線Pの方向に向かって波山5が交互に連続していることで波板状に形成され、波山5の頂部が拘束部材4の内表面に当接するようになっている。   As shown in FIG. 2, the core material 3 is formed in a corrugated plate shape by the undulations 5 being alternately continued in the direction of the axis P, and the top of the undulations 5 contacts the inner surface of the restraining member 4. It comes to touch.

さらに、芯材3は、軸線Pの方向に外力を受けることで、軸線Pの方向に伸縮変形する。   Furthermore, the core material 3 is expanded and contracted in the direction of the axis P by receiving an external force in the direction of the axis P.

さらに、芯材3には、拘束部材4の外部に位置する軸線Pの方向の両端部で、芯材3を板厚方向から挟持するとともに、構造物に制振用部材1を設置する際の取付部となる端部材7が設けられている。この端部材7は、拘束部材4の軸線Pの方向の端部に対向する位置にブロック状をなす当接部7aを有している。この当接部7aは、芯材3に外力が作用して最大設計変形量の圧縮変形が生じた際に、拘束部材4の軸線Pの方向の端面にちょうど当接するようになっている。   Furthermore, the core material 3 is sandwiched from the plate thickness direction at both ends in the direction of the axis P located outside the restraining member 4, and the damping member 1 is installed in the structure. An end member 7 serving as an attachment portion is provided. The end member 7 has a contact portion 7a having a block shape at a position facing the end portion of the restraining member 4 in the direction of the axis P. The abutting portion 7a is just abutted against the end surface of the restraining member 4 in the direction of the axis P when an external force is applied to the core member 3 and a maximum amount of compressive deformation occurs.

また、拘束部材4は、角筒状の鋼材を材料としており、波山5の頂部と拘束部材4の内表面とが、芯材3に対して軸線Pの方向に外力が作用しない状態で非接触となるように形成されている。そして、芯材3に外力が作用して最大設計変形量の圧縮変形が生じた際には、波山5の頂部と拘束部材4の内表面とが接触するようになっている。   In addition, the restraining member 4 is made of a square tube-shaped steel material, and the top of the wavy mountain 5 and the inner surface of the restraining member 4 are not in contact with each other in the state where no external force acts on the core member 3 in the direction of the axis P. It is formed to become. And when the external force acts on the core material 3 and the maximum amount of compressive deformation occurs, the top of the wavy mountain 5 and the inner surface of the restraining member 4 come into contact with each other.

さらに、この拘束部材4には、軸線P方向の両端部側で、波山5の頂部に当接する方向の内径寸法が小さくなった小径部4aが形成されている。具体的には、この小径部4aは、芯材3の軸線P方向への拘束部材4からの抜けを防止するように、軸線Pの方向に隣接する波山5の頂部同士の間の距離(波山5の振幅の二倍)よりも内径寸法が小さく形成されており、芯材3とわずかな隙間をあけた状態で芯材3に対向している。
ここで、この小径部4aは、拘束部材4の内径が小さくなるように形成されていればどのような形状でもよく、例えば、拘束部材4の内表面から突出する突起などであってもよい。
Further, the constraining member 4 is formed with a small diameter portion 4a having a smaller inner diameter dimension in a direction in contact with the top of the wavy mountain 5 on both end sides in the axis P direction. Specifically, the small-diameter portion 4a has a distance between the tops of the undulations 5 adjacent to each other in the direction of the axis P (the undulations) so as to prevent the core member 3 from coming off from the restraining member 4 in the direction of the axis P. The inner diameter dimension is smaller than twice the amplitude of 5), and faces the core material 3 with a slight gap from the core material 3.
Here, the small diameter portion 4a may have any shape as long as the inner diameter of the restraining member 4 is reduced. For example, the small diameter portion 4a may be a protrusion protruding from the inner surface of the restraining member 4.

ここで、図2から図4に示すように、制振用部材1は、拘束部材4の内部に設けられた波形状保持部材10、及び、芯材3の軸線P方向の中途位置で芯材3と拘束部材4とを固定する中間固定部材15をさらに備えている。   Here, as shown in FIG. 2 to FIG. 4, the damping member 1 includes a corrugated holding member 10 provided inside the restraining member 4 and a core material at a midway position in the axis P direction of the core material 3. 3 and an intermediate fixing member 15 for fixing the restraining member 4.

波形状保持部材10は、芯材3における波山5と、この波山5に当接する拘束部材4の内表面との間に配されている。具体的にはこの波形状保持部材10は、波山5の谷側となる位置で、芯材3と拘束部材4との間に挿入されて、芯材3の板幅方向から拘束部材4の内表面によって支持されている。これにより、波形状保持部材10は、拘束部材4の内表面及び芯材3に対して、相対移動可能に設けられている。   The wave shape holding member 10 is arranged between the wave crest 5 in the core material 3 and the inner surface of the restraining member 4 in contact with the wave crest 5. Specifically, the wave shape holding member 10 is inserted between the core material 3 and the restraining member 4 at a position on the valley side of the wave mountain 5, and the inner side of the restraining member 4 from the plate width direction of the core material 3. Supported by the surface. Thereby, the wave shape holding member 10 is provided so as to be relatively movable with respect to the inner surface of the restraining member 4 and the core material 3.

ここで、本実施形態では、この波形状保持部材10は、芯材3における軸線P方向の中央位置を挟んで、軸線Pの方向の一方側(図2の紙面に向かって左側)と他方側の位置に形成された波山5に対応する各々の位置で、隣接する波山5の谷側に、複数(本実施形態では三つずつ)が設けられている。
また本実施形態では、波形状保持部材10の設置位置は、後述する中間固定部材15と、芯材の一方側(他方側)の端部との間のちょうど中央に位置する三つの波山5に対応する位置となっている。
Here, in the present embodiment, the wave shape holding member 10 has one side in the direction of the axis P (left side as viewed in FIG. 2) and the other side across the center position of the core material 3 in the direction of the axis P. A plurality (three in the present embodiment) are provided on the valley side of the adjacent wave mountain 5 at each position corresponding to the wave mountain 5 formed at the position.
Moreover, in this embodiment, the installation position of the waveform holding member 10 is set to three wave peaks 5 located at the center between the intermediate fixing member 15 described later and one end (the other side) of the core member. It is a corresponding position.

そして、各々の波形状保持部材10は、波山5の形状に沿って波山5に対向する湾曲面11aが形成された凸頭部11と、凸頭部11と拘束部材4の内表面との間に配されて凸頭部11と一体に形成されたブロック状をなす土台部12とを有している。そしてこの波形状保持部材10は、芯材3に外力が作用しない自然状態で波山5の頂部との間に隙間が形成されている。   Each corrugated holding member 10 includes a convex head 11 formed with a curved surface 11 a facing the corrugated mountain 5 along the shape of the corrugated mountain 5, and between the convex head 11 and the inner surface of the restraining member 4. And a base portion 12 in the form of a block formed integrally with the convex head portion 11. In addition, a gap is formed between the wave shape holding member 10 and the top of the wave mountain 5 in a natural state where no external force acts on the core material 3.

この隙間に関しては、芯材3に対して軸線Pの方向に引っ張る引張力が作用して、予め設定された最大設計変形量の引っ張り変形が芯材3に生じた際に、ちょうど波山5と、波形状保持部材10における凸頭部11の湾曲面11aとが、芯材3の板幅方向から接触する寸法に設定されている(図6(b)参照)。   With respect to this gap, when a tensile force pulling in the direction of the axis P acts on the core material 3 and a tensile deformation of a preset maximum design deformation amount is generated in the core material 3, just the wavy mountain 5 and The curved surface 11a of the convex head 11 in the wave shape holding member 10 is set to a dimension that comes into contact with the core material 3 from the plate width direction (see FIG. 6B).

さらに、この隙間は、芯材3に対して軸線Pの方向に押し込む圧縮力が作用して、予め設定された最大設計変形量の圧縮変形が芯材3に生じた際に、ちょうど波山5と湾曲面11aとが、軸線Pの方向から接触する寸法に設定されている(図6(c)参照)。   Further, the gap is formed by a compressive force that pushes the core material 3 in the direction of the axis P, and when the compression deformation of the preset maximum design deformation amount occurs in the core material 3, The dimension is set such that the curved surface 11a comes into contact with the direction of the axis P (see FIG. 6C).

中間固定部材15は、拘束部材4の内部で、拘束部材4の内表面と芯材3との間に設けられ、芯材3を芯材3の板厚方向から挟み込むとともに、例えばボルト等によって芯材3及び拘束部材4に固定され、芯材3を拘束部材4とを相対移動不能としている。   The intermediate fixing member 15 is provided inside the restraining member 4 between the inner surface of the restraining member 4 and the core material 3, sandwiches the core material 3 from the thickness direction of the core material 3, and uses, for example, a core by a bolt or the like. It is fixed to the material 3 and the restraining member 4, and the core material 3 cannot be moved relative to the restraining member 4.

なお、この中間固定部材15は、本実施形態では芯材3における軸線P方向の中央位置に設けられているが、この位置に限定されず、軸線P方向の中途位置であればどこでもよい。
また中間固定部材15は、芯材3における板幅方向の全域に延びて設けられていてもよいし、板幅方向に間隔をあけて複数が設けられていてもよい。
In the present embodiment, the intermediate fixing member 15 is provided at the central position in the axis P direction of the core member 3, but is not limited to this position, and may be anywhere in the middle of the axis P direction.
Further, the intermediate fixing member 15 may be provided so as to extend over the entire region in the plate width direction of the core material 3, or a plurality of intermediate fixing members 15 may be provided at intervals in the plate width direction.

このような制振用部材1においては、芯材3に外力が作用しない自然状態では、芯材3と拘束部材4とは非接触となっており、即ち、これら芯材3と拘束部材4との間には隙間が設けられている。   In such a vibration damping member 1, the core material 3 and the restraining member 4 are not in contact with each other in a natural state where no external force acts on the core material 3. There is a gap between them.

ここで、芯材3が軸線Pの方向に押し付けられるように、芯材3に圧縮力が作用すると、波山5が高くなるように芯材3が変形する。この際、本実施形態では芯材3と拘束部材4との間の隙間によって、このような芯材3の変形を許容できる。   Here, when a compressive force is applied to the core material 3 so that the core material 3 is pressed in the direction of the axis P, the core material 3 is deformed so that the wave mountain 5 becomes higher. At this time, in the present embodiment, such a deformation of the core material 3 can be allowed by the gap between the core material 3 and the restraining member 4.

従って、十分に芯材3が変形して振動エネルギーを吸収するまでに拘束部材4によって波山5が変形を抑制されることがなくなり、隙間がない場合のように局所的に芯材3の波山5が変形し、拘束部材4の中で芯材3が詰まってしまい、芯材3が拘束部材4との間で相対移動できなくなってしまうことを防止できる。   Accordingly, the wave member 5 is not suppressed from being deformed by the restraining member 4 until the core member 3 is sufficiently deformed to absorb the vibration energy, and the wave mountain 5 of the core member 3 is locally increased as in the case where there is no gap. Is deformed, and the core material 3 is clogged in the restraint member 4, and the core material 3 can be prevented from being unable to move relative to the restraint member 4.

さらに、芯材3に対して軸線Pの方向に外力が作用し、最大設計変形量の圧縮変形が生じた際には、波山5の頂部と拘束部材4の内表面とが接触することで、拘束部材4による拘束力が芯材3に作用することになる。また、最大設計変形量の圧縮変形が生じた際には、端部材7の当接部7aが拘束部材4の軸線Pの方向の端面に当接し、これ以上の芯材3の圧縮変形を抑制する。
従って、最大設計変形量の圧縮変形が生じるまでは芯材3の圧縮変形を許容し、振動エネルギーを吸収しつつ、最大設計変形量以上の芯材3の変形を抑制することができる。
Furthermore, when an external force acts on the core material 3 in the direction of the axis P and the maximum deformation amount of compression deformation occurs, the top of the wavy mountain 5 and the inner surface of the restraining member 4 come into contact with each other. The restraining force by the restraining member 4 acts on the core material 3. Further, when the maximum deformation amount of the compression deformation occurs, the contact portion 7a of the end member 7 contacts the end surface of the restraining member 4 in the direction of the axis P, and further compression deformation of the core material 3 is suppressed. To do.
Therefore, the compression deformation of the core material 3 is allowed until the maximum design deformation amount of the compression deformation occurs, and the deformation of the core material 3 exceeding the maximum design deformation amount can be suppressed while absorbing the vibration energy.

また、芯材3と拘束部材4との間には隙間が設けられているため、芯材3が引っ張り変形から圧縮変形に移行する際に、図5に示すように、中間固定部材15と軸線P方向の一方側(他方側)との間で、芯材3に微小な全体座屈が生じてしまうおそれがある(図5では一次モードの変形)。この点、本実施形態では、このような全体座屈を抑制するように、波形状保持部材10によって芯材3が所定の形状となるように変形が抑制される。即ち、波山5の高さ寸法、波山5の軸線P方向の幅寸法が、凸頭部11の湾曲面11aの形状に応じて、所定の値の範囲内に収まることになる。   In addition, since a gap is provided between the core material 3 and the restraining member 4, when the core material 3 shifts from tensile deformation to compression deformation, as shown in FIG. There is a possibility that minute overall buckling occurs in the core material 3 between one side (the other side) in the P direction (deformation of the primary mode in FIG. 5). In this regard, in the present embodiment, the deformation is suppressed by the wave shape holding member 10 so that the core material 3 has a predetermined shape so as to suppress such overall buckling. That is, the height dimension of the wavy mountain 5 and the width dimension in the direction of the axis P of the wavy mountain 5 fall within a predetermined value range according to the shape of the curved surface 11 a of the convex head 11.

具体的には、芯材3に対して、図6(a)に示すように外力が作用していない状態から、図6(b)に示すように引張力が作用する状態となると、波山5と湾曲面11aとが板厚方向から接触し、波山5の高さがこれ以上に低くならないように変形を抑制する。   Specifically, when the tensile force acts on the core material 3 as shown in FIG. 6B from the state where no external force acts on the core material 3 as shown in FIG. And the curved surface 11a come into contact with each other from the plate thickness direction, and deformation is suppressed so that the height of the wave mountain 5 does not become lower than this.

そして、芯材3に対して、図6(c)に示すように、圧縮力が作用すると、波山5と湾曲面11aとが軸線Pの方向から接触し、波山5がこれ以上に高くならないように変形を抑制する。   And as shown in FIG.6 (c), if a compressive force acts with respect to the core material 3, the wavy mountain 5 and the curved surface 11a will contact from the direction of the axis P, and the wavy mountain 5 may not become higher than this. Suppresses deformation.

このようにして図5に示すような芯材3の全体座屈を抑制でき、波山5が所定の形状を保ったまま、芯材3が伸縮変形可能となるため、圧縮変形時に全体座屈が発生することによる降伏耐力の一時的な低下を抑制することが可能となる。また、芯材3に対して、芯材3全体に均一にひずみを生じさせることができる。   In this way, the overall buckling of the core material 3 as shown in FIG. 5 can be suppressed, and the core material 3 can be stretched and deformed while the wavy mountain 5 maintains a predetermined shape. It is possible to suppress a temporary decrease in yield strength due to the occurrence. Further, the core material 3 can be uniformly strained with respect to the core material 3.

また、例えば、一部の波山5で、板厚が極端に薄くなっている等、芯材3に製作誤差が生じている場合には、芯材3が伸縮変形する際に、この波山5には他の波山5よりも大きな変形が生じてしまうことがある。そこで、このような製作誤差のある波山5の谷側に、波形状保持部材10を設けることで、このような一部の波山5が局所的に変形してしまうことを抑制できる。   In addition, for example, when a manufacturing error has occurred in the core material 3 such as a part of the wave mountain 5 being extremely thin, when the core material 3 expands and contracts, May cause larger deformation than other wave mountains 5. Therefore, by providing the wave shape holding member 10 on the valley side of the wave mountain 5 having such a manufacturing error, it is possible to suppress such partial wave mountain 5 from being locally deformed.

本実施形態では、波形状保持部材10は、芯材3における軸線Pの方向の中央位置の波山5に対応する位置に設けられているため、芯材3での一次モードの変形を抑制可能である。ここで、波形状保持部材10の設置箇所は本実施形態の場合に限定されず、波山5の数量に応じて決定すればよい。また、二次モード以上の振動モードの変形を抑制するように、波形状保持部材10の設置位置は適宜選択することも可能である。
即ち、波形状保持部材10は、少なくとも隣接する二つの波山5の谷側に設けられていればよい。
In the present embodiment, since the wave shape holding member 10 is provided at a position corresponding to the wavy mountain 5 at the center position in the direction of the axis P in the core material 3, deformation of the primary mode in the core material 3 can be suppressed. is there. Here, the installation location of the wave shape holding member 10 is not limited to the case of the present embodiment, and may be determined according to the number of wave mountains 5. In addition, the installation position of the waveform holding member 10 can be appropriately selected so as to suppress deformation of the vibration mode higher than the secondary mode.
That is, the wave shape holding member 10 only needs to be provided on the valley side of at least two adjacent wave peaks 5.

なお、波形状保持部材10における凸頭部11については、波山5に対向する面が必ずしも湾曲面11aに形成されている必要はない。例えば、凸頭部11が芯材3の板幅方向から見て断面三角形状とされ、三角形の頂点が波山5の頂部に対応する谷側の位置に接触するようになっていてもよい。また土台部12の形状も様々に選択可能である。   In addition, about the convex head 11 in the waveform holding member 10, the surface which opposes the wave mountain 5 does not necessarily need to be formed in the curved surface 11a. For example, the convex head 11 may have a triangular cross section when viewed from the plate width direction of the core member 3, and the apex of the triangle may come into contact with the position on the valley side corresponding to the top of the wave mountain 5. Various shapes of the base portion 12 can be selected.

ここで、波形状保持部材10は、芯材3の板幅方向全域にわたって上下に延びる形状となっていなくともよく、例えば板幅方向に間隔をあけて複数が設けられていてもよい。   Here, the wave shape holding member 10 does not have to have a shape extending vertically across the entire plate width direction of the core material 3. For example, a plurality of wave shape holding members 10 may be provided at intervals in the plate width direction.

さらに、芯材3と拘束部材4との間に隙間が設けられていることで、拘束部材4に対して、芯材3が軸線Pの方向に相対的に移動し易くなってしまうが、中間固定部材15によって芯材3と拘束部材4とを固定することで、このような芯材3の軸線P方向への移動を防止できる。従って、芯材3の拘束部材4に対する軸線Pの方向の位置ずれを防止でき、芯材3に拘束部材4からの拘束力を確実に作用させ、確実に振動減衰機能を発揮させることができる。   Furthermore, since the gap is provided between the core material 3 and the restraining member 4, the core material 3 is likely to move relatively in the direction of the axis P with respect to the restraining member 4. By fixing the core material 3 and the restraining member 4 with the fixing member 15, such movement of the core material 3 in the direction of the axis P can be prevented. Accordingly, it is possible to prevent the displacement of the core material 3 in the direction of the axis P with respect to the restraining member 4, and to reliably apply the restraining force from the restraining member 4 to the core material 3, thereby surely exerting the vibration damping function.

また、拘束部材4に形成された小径部4aによっても、芯材3が軸線Pの方向へ移動して、拘束部材4からの芯材3が抜けてしまうことを防止でき、芯材3に拘束部材4からの拘束力を確実に作用させることができる。   Further, the small diameter portion 4 a formed on the restraining member 4 can also prevent the core material 3 from moving in the direction of the axis P and the core material 3 from the restraining member 4 being pulled out. The restraining force from the member 4 can be made to act reliably.

本実施形態の制振用部材1によると、芯材3の波山5の変形を許容できることで、芯材3全体が十分に振動エネルギーの吸収を行なうことが可能となり、加振力の大小に関わらず確実に振動エネルギーを吸収し、制振効果の向上を図ることができる。   According to the vibration damping member 1 of the present embodiment, the deformation of the wave crest 5 of the core material 3 can be allowed, so that the entire core material 3 can sufficiently absorb vibration energy, regardless of the magnitude of the excitation force. Therefore, it is possible to reliably absorb vibration energy and improve the damping effect.

〔第二実施形態〕
次に、本発明の第二実施形態に係る制振用部材21について説明する。
なお、第一実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
本実施形態の制振用部材21は、芯材23が第一実施形態の制振用部材1と異なっている。
[Second Embodiment]
Next, the vibration damping member 21 according to the second embodiment of the present invention will be described.
In addition, the same code | symbol is attached | subjected to the same component as 1st embodiment, and detailed description is abbreviate | omitted.
The damping member 21 of the present embodiment is different from the damping member 1 of the first embodiment in the core material 23.

図7に示すように、波山5が形成された芯材3は、第一の波板23aと第二の波板23bとが、板厚方向に積層された積層板となっている。
具体的には、第一の波板23aには、軸線Pの方向に一方(図7の紙面に向かって左側)から他方に向かって、第一の波山25a、第二の波山25bが交互に形成されている。また、第二の波板23bには、軸線Pの方向に他方から一方に向かって、第二の波山25b、第一の波山25aが交互に形成されている。
As shown in FIG. 7, the core material 3 on which the wavy mountain 5 is formed is a laminated plate in which a first corrugated plate 23 a and a second corrugated plate 23 b are laminated in the thickness direction.
Specifically, on the first corrugated plate 23a, the first wave mountain 25a and the second wave mountain 25b are alternately arranged in the direction of the axis P from one side (left side toward the paper surface of FIG. 7) to the other. Is formed. The second corrugated plate 23b is alternately formed with second wave peaks 25b and first wave peaks 25a in the direction of the axis P from the other side to the other side.

そして、第一の波山25aの山側の曲率半径R1と、第二の波山25bの谷側の曲率半径R2とが一致するように、これら波山5の形状が決定されている。これにより、第一の波板23aにおける第一の波山25aの山側が第二の波板23bにおける第二の波山25bの谷側に入り込むように第一の波板23aと第二の波板23bとを板厚方向に積層した際には、第一の波板23aと第二の波板23bとが隙間無く接触した状態で積層される。   The shapes of the wave peaks 5 are determined so that the curvature radius R1 on the mountain side of the first wave mountain 25a and the curvature radius R2 on the valley side of the second wave mountain 25b coincide. Accordingly, the first corrugated plate 23a and the second corrugated plate 23b are arranged so that the peak side of the first corrugated mountain 25a in the first corrugated plate 23a enters the valley side of the second corrugated mountain 25b in the second corrugated plate 23b. Are stacked in a state in which the first corrugated plate 23a and the second corrugated plate 23b are in contact with each other without any gap.

このような制振用部材21によると、芯材23は例えば板材をプレス成形で曲げ加工して製造される。
ここで、芯材23が積層板となっていることで、第一の波板23a、第二の波板23bの各々の板厚を薄くしても、降伏耐力の向上を図ることができる。
According to such a damping member 21, the core member 23 is manufactured by bending a plate material by press molding, for example.
Here, since the core material 23 is a laminated plate, the yield strength can be improved even if the thickness of each of the first corrugated plate 23a and the second corrugated plate 23b is reduced.

また、第一の波板23a、第二の波板23bの各々をそれぞれ曲げ加工した後に積層することで、曲げ加工を容易に行うことが可能となる。   Further, by bending each of the first corrugated sheet 23a and the second corrugated sheet 23b and then laminating them, the bending process can be easily performed.

さらに、積層する波板各々の厚さや、積層する波板の枚数を適宜調整することで芯材23の降伏耐力調整の自由度が増す。
具体的には例えば、図8に示すように三枚の波板を積層してもよく、即ち、第一の波板23a及び第二の波板23bに加えて、第三の波板23cをさらに設ける。第三の波板23cには、軸線Pの方向に一方から他方に向かって、第三の波山25c、第四の波山25dが交互に形成されている。そして、第二の波山25bの山側の曲率半径R3と、第三の波山25cの谷側の曲率半径R5とが一致するように、また、第一の波山25aの谷側の曲率半径R4と、第四の波山25dの山側の曲率半径R6とが一致するようにこれら波山25の形状が決定されている。
Furthermore, the freedom degree of the yield strength adjustment of the core material 23 increases by adjusting suitably the thickness of each corrugated sheet to be laminated, and the number of corrugated sheets to be laminated.
Specifically, for example, three corrugated plates may be laminated as shown in FIG. 8, that is, in addition to the first corrugated plate 23a and the second corrugated plate 23b, a third corrugated plate 23c is provided. Provide further. In the third corrugated plate 23c, third wave peaks 25c and fourth wave peaks 25d are alternately formed in the direction of the axis P from one to the other. Then, the curvature radius R3 on the mountain side of the second wave mountain 25b and the curvature radius R5 on the valley side of the third wave mountain 25c coincide with each other, and the curvature radius R4 on the valley side of the first wave mountain 25a, The shapes of the wave peaks 25 are determined so that the curvature radius R6 on the peak side of the fourth wave peak 25d matches.

本実施形態の制振用部材21によると、降伏耐力を維持しながら芯材23の加工が容易となることで、製作性向上によるコスト低減につながる。   According to the vibration damping member 21 of the present embodiment, the core material 23 can be easily processed while maintaining the yield strength, which leads to cost reduction due to improvement in manufacturability.

以上、本発明の実施形態について詳細を説明したが、本発明の技術的思想を逸脱しない範囲内において、多少の設計変更も可能である。
例えば芯材3(23)は、波山5(25)が完全な波形をなしていなくともよい。具体的には、円弧形状、サインカーブ状、台形状、凹凸形状などが例示される。そして、同じ形状の波山5(25)が並んでいなくともよく、波山5のピッチも等間隔でなくともよい。
Although the embodiment of the present invention has been described in detail above, some design changes can be made without departing from the technical idea of the present invention.
For example, in the core material 3 (23), the wave mountain 5 (25) may not have a complete waveform. Specifically, an arc shape, a sine curve shape, a trapezoid shape, an uneven shape, and the like are exemplified. And the wave mountain 5 (25) of the same shape does not need to be located, and the pitch of the wave mountain 5 does not need to be equal intervals.

また、芯材3(23)は、上述したように鋼板をプレス成形したものであり、冷間加工によって製造されるため、プレス加工後にSR(Stress Relieving)処理が施されることが好ましい。これによって、冷間加工で生じた鋼板の加工硬化によるひずみを除去し、設計値通りの降伏耐力を得ることができる。   Moreover, since the core material 3 (23) is formed by press-molding a steel plate as described above and is manufactured by cold working, it is preferable that SR (Stress Relieving) treatment be performed after the press working. As a result, distortion due to work hardening of the steel sheet caused by cold working can be removed, and yield strength as designed can be obtained.

1…制振用部材 3…芯材 4…拘束部材 4a…小径部 5…波山 7…端部材 7a…当接部 10…波形状保持部材 11…凸頭部 11a…湾曲面 12…土台部 15…中間固定部材 P…軸線 21…制振用部材 23…芯材 23a…第一の波板 23b…第二の波板 23c…第三の波板 25…波山 25a…第一の波山 25b…第二の波山 25c…第三の波山 25d…第四の波山 R1、R2、R3、R4、R5、R6…曲率半径 DESCRIPTION OF SYMBOLS 1 ... Damping member 3 ... Core material 4 ... Restraining member 4a ... Small diameter part 5 ... Wave mountain 7 ... End member 7a ... Contact part 10 ... Wave shape holding member 11 ... Convex head 11a ... Curved surface 12 ... Base part 15 ... Intermediate fixing member P ... Axis 21 ... Damping member 23 ... Core material 23a ... First corrugated plate 23b ... Second corrugated plate 23c ... Third corrugated plate 25 ... Wave mountain 25a ... First wave mountain 25b ... First 2nd wave mountain 25c ... 3rd wave mountain 25d ... 4th wave mountain R1, R2, R3, R4, R5, R6 ... radius of curvature

Claims (6)

軸線に沿って延びて、該軸線の方向に向かって波山が交互に連続して波板状に形成された芯材と、
前記軸線に沿って延びて、前記芯材の前記軸線の両端部を突出させた状態で、該芯材を外周側から覆う拘束部材と、
前記芯材における前記波山の谷側に配されて、該芯材に接触する凸頭部を有し、前記拘束部材の内表面に対して相対移動可能に設けられた波形状保持部材と、
を備え、
前記芯材における前記波山の頂部と前記拘束部材の内表面とは、該芯材に前記軸線の方向に外力が作用しない状態で非接触となっていることを特徴とする制振用部材。
A core material that extends along the axis and is formed into a corrugated plate shape in which the wave peaks are alternately continuous toward the direction of the axis;
A restraining member that extends along the axis and covers the core from the outer peripheral side in a state where both ends of the axis of the core are protruded,
A wave-shaped holding member that is arranged on the valley side of the corrugation in the core material, has a convex head that contacts the core material, and is provided so as to be relatively movable with respect to the inner surface of the restraining member;
With
The damping member according to claim 1, wherein a top portion of the undulation in the core material and an inner surface of the restraining member are not in contact with each other when no external force acts on the core material in the direction of the axis.
前記芯材における前記波山の頂部と前記拘束部材の内表面とは、該芯材に対して前記軸線の方向に外力が作用して最大設計変形量の圧縮変形が生じた際に、接触することを特徴とする請求項1に記載の制振用部材。   The top of the ridge in the core material and the inner surface of the restraining member are in contact with each other when an external force acts on the core material in the direction of the axis to cause a maximum amount of design deformation. The vibration damping member according to claim 1. 前記芯材の前記軸線方向の中途位置に設けられ、該中途位置で前記芯材と前記拘束部材とを固定する中間固定部材をさらに備えることを特徴とする請求項1又は2に記載の制振用部材。 3. The vibration damping device according to claim 1, further comprising an intermediate fixing member that is provided at an intermediate position in the axial direction of the core material and fixes the core material and the restraining member at the intermediate position. Materials. 前記拘束部材には、前記軸線の方向の両端部側で内径が小さくなるように小径部が形成されていることを特徴とする請求項1から3のいずれか一項に記載の制振用部材。 The damping member according to any one of claims 1 to 3 , wherein a small-diameter portion is formed in the restraining member so that the inner diameter becomes smaller at both end portions in the direction of the axis. . 前記芯材は、複数の波板が積層された積層板であることを特徴とする請求項1から4のいずれか一項に記載の制振用部材。 The core material, the vibration damping member according to claim 1, any one of 4, wherein the plurality of corrugated plates is a laminated plate which are stacked. 請求項1から4のいずれか一項に記載の制振用部材に用いられる芯材であって、
複数の波板が積層された積層板であることを特徴とする芯材。
A core material used for the vibration damping member according to any one of claims 1 to 4 ,
A core material, characterized in that the core material is a laminated plate in which a plurality of corrugated plates are laminated.
JP2013096876A 2013-05-02 2013-05-02 Damping member and core material Expired - Fee Related JP6116346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013096876A JP6116346B2 (en) 2013-05-02 2013-05-02 Damping member and core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013096876A JP6116346B2 (en) 2013-05-02 2013-05-02 Damping member and core material

Publications (2)

Publication Number Publication Date
JP2014218797A JP2014218797A (en) 2014-11-20
JP6116346B2 true JP6116346B2 (en) 2017-04-19

Family

ID=51937512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013096876A Expired - Fee Related JP6116346B2 (en) 2013-05-02 2013-05-02 Damping member and core material

Country Status (1)

Country Link
JP (1) JP6116346B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109235733A (en) * 2018-10-16 2019-01-18 北京工业大学 A kind of assembled plate column structure using prestressed steel bar and the anti-buckling support of inner core bending-type

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303448A (en) * 1998-04-27 1999-11-02 Shimizu Corp Framework reinforcing material having damping function
JP2007191987A (en) * 2006-01-23 2007-08-02 Shimizu Corp Earthquake resisting brace
JP3965210B1 (en) * 2006-06-21 2007-08-29 競人 吉田 Unbonded brace
JP4879723B2 (en) * 2006-12-18 2012-02-22 大和ハウス工業株式会社 Buckling restraint brace
JP4879827B2 (en) * 2007-06-18 2012-02-22 大和ハウス工業株式会社 Buckling restraint brace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109235733A (en) * 2018-10-16 2019-01-18 北京工业大学 A kind of assembled plate column structure using prestressed steel bar and the anti-buckling support of inner core bending-type

Also Published As

Publication number Publication date
JP2014218797A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5762780B2 (en) Hysteretic damper
JP5726590B2 (en) Connection structure of reinforced concrete beams or columns
JP5589127B2 (en) Vibration control device, vibration control device installation method, and corrugated plate
US20150044494A1 (en) Optimal sandwich core structures and forming tools for the mass production of sandwich structures
JP2004340301A (en) Seismic isolator
CA2754675A1 (en) Metal joint, damping structure, and architectural construction
JP5646209B2 (en) Concrete column reinforcement structure
JP5216050B2 (en) Hysteretic damper structure
JP5822203B2 (en) Brace damper
JP4879723B2 (en) Buckling restraint brace
JP4608002B2 (en) Friction damper
JP6116346B2 (en) Damping member and core material
JP5958757B2 (en) Brace damper
JP5968706B2 (en) Buckling restraint brace
JP5408672B2 (en) High bearing support system for structures
JP2532310B2 (en) Vibration suppression device for buildings
JP2006207680A (en) Laminated rubber supporter
JP2012067805A (en) Vibration control structure of joint part
WO2014178158A1 (en) Vibration control device, vibration control device installation method, and waveform plate
JP4736715B2 (en) Seismic isolation device
JP2017128896A (en) Vibration damper and cumulative plastic deformation measuring device
JP4296541B2 (en) Brace damper
JP6295180B2 (en) Damping device and installation method of damping device
JP6447227B2 (en) Damper structure
JP6196065B2 (en) Buckling restraint brace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R150 Certificate of patent or registration of utility model

Ref document number: 6116346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees