WO2014178158A1 - Vibration control device, vibration control device installation method, and waveform plate - Google Patents

Vibration control device, vibration control device installation method, and waveform plate Download PDF

Info

Publication number
WO2014178158A1
WO2014178158A1 PCT/JP2013/084705 JP2013084705W WO2014178158A1 WO 2014178158 A1 WO2014178158 A1 WO 2014178158A1 JP 2013084705 W JP2013084705 W JP 2013084705W WO 2014178158 A1 WO2014178158 A1 WO 2014178158A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrugated plate
control device
vibration control
plate
restraining member
Prior art date
Application number
PCT/JP2013/084705
Other languages
French (fr)
Japanese (ja)
Inventor
伸介 山崎
直以 野呂
Original Assignee
新日鉄住金エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013096872A external-priority patent/JP5393914B1/en
Application filed by 新日鉄住金エンジニアリング株式会社 filed Critical 新日鉄住金エンジニアリング株式会社
Publication of WO2014178158A1 publication Critical patent/WO2014178158A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D1/00Bridges in general
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/024Structures with steel columns and beams

Definitions

  • the present invention relates to a structure damping device, a corrugated plate used in the damping device, and a method of installing the damping device.
  • Patent Document 1 discloses a bearing structure including a movable panel and a shear panel type damper using a low yield point steel between upper and lower structures in a bridge.
  • the shear panel type damper first reaches the yield point, and then the movable bearing functions as a movable bearing for the first time. For this reason, it is possible to reduce the seismic response applied to the lower structure to less than the holding strength while solving problems such as an increase in the amount of movement of the upper structure.
  • Patent Document 2 discloses a shear panel type damper that is installed between upper and lower structures such as a bridge and absorbs vibration energy by shear plastic deformation in response to an earthquake of a predetermined level or higher.
  • the web has a shear panel and a lower restraint panel having a yield shear strength greater than that of the shear panel, so that low cycle fatigue durability can be improved.
  • the shear panel type dampers disclosed in Patent Document 1 and Patent Document 2 absorb earthquake energy by shear plastic deformation when an earthquake occurs. For this reason, the deformation limit is reduced. Therefore, if an earthquake outside the expected range occurs and the relative displacement between the superstructure and the substructure becomes greater than the deformation limit of the shear panel type damper, the seismic energy must be sufficiently absorbed. Is difficult. The increase in yield strength accompanying shear deformation is large, and it is difficult to absorb vibration energy for earthquake motions that have a certain degree of magnitude that does not lead to shear deformation. Therefore, there is a possibility that the foundation and the bridge pier which become the substructure will be damaged.
  • the present invention provides a vibration control device, a vibration control device installation method, and a corrugated plate that can reliably absorb vibration energy regardless of the vibration level and can improve the vibration control effect.
  • the vibration control device includes a corrugated plate in which wave peaks are alternately and continuously formed in a first direction, and the corrugated plate is sandwiched from both sides, and the corrugated plate includes the first corrugated plate. And a restraining member that supports one end in one direction.
  • a relatively small vibration for example, level 1 ground motion
  • the corrugated plate is forced in the first direction by the structure.
  • the corrugated plate is elastically and plastically deformed like an accordion in the first direction to suppress the displacement.
  • a larger earthquake for example, a level 2 earthquake
  • the corrugated plate is plastically deformed in the first direction, thereby absorbing the larger vibration energy and suppressing the displacement.
  • the structure will eventually come into contact with the restraining member, and the restraining member will suppress further displacement of the structure. To do.
  • the restraining member acts as a stopper. Further, in a larger earthquake (for example, level 3 ground motion), the restraining member receives a pressing force by the structure and the restraining member is plastically deformed, so that larger seismic energy can be absorbed. Furthermore, even when the corrugated plate is pressed and the top of the wave mountain comes into contact with the restraining member and a large frictional force acts between them, the restraining member is deformed even when the movement of the corrugated plate is restricted by this frictional force. As a result, vibration energy can be absorbed.
  • the yield strength against the external force acting in the first direction is greater in the restraining member than in the corrugated plate in the first aspect. Also good.
  • the corrugated plate is first deformed to reach the yield point, and then the restraining member is deformed to reach the yield point. Therefore, the vibration energy can be absorbed in two stages.
  • a viscous fluid may be filled between the corrugated plate and the restraining member in the first or second aspect.
  • Such a viscous fluid consumes part of the vibration energy due to the viscous damping force caused by the shear resistance generated when the corrugated plate is operated, so that the damping effect of the vibration energy can be improved.
  • the viscous fluid in the third aspect may be a viscoelastic body.
  • Such a viscoelastic body can provide hysteresis damping in addition to viscous damping force due to shear resistance.
  • a friction adjusting means part for adjusting a friction force may be provided on the inner surface of the restraining member in the first or second aspect.
  • the corrugated plate when the friction is reduced by such friction adjusting means, the corrugated plate can operate smoothly between the restraining member and the effect of absorbing the vibration energy with respect to the minute vibration can be enhanced.
  • the friction when the friction is increased, a part of the vibration energy is consumed by the friction force when the corrugated plate is operated, so that the damping effect of the vibration energy can be improved with respect to a larger vibration.
  • the restraining member in any one of the first to fifth aspects is arranged on the outer surface corresponding to the position where the corrugated plate is sandwiched. Reinforcing ribs extending in the direction may be provided.
  • the top of the corrugated plate of the corrugated plate and the inner surface of the restraining member in any one of the first to sixth aspects are attached to the corrugated plate. You may be non-contact in the state where an external force does not act on said 1st direction.
  • the top of the wave mountain of the corrugated plate and the inner surface of the restraining member in the seventh aspect are the first An external force may act in the direction and contact may occur when a preset maximum design deformation amount of compressive deformation occurs.
  • the restraining force by the restraining member can be applied to the corrugated plate.
  • the vibration damping device according to the present invention in the seventh or eighth aspect is arranged on the valley side of the wave mountain of the corrugated plate.
  • a corrugated holding member having a convex head that contacts the corrugated plate when the plate is deformed and provided so as to be relatively movable with respect to the inner surface may be further provided.
  • the corrugated plate is deformed so that the wave peak is lowered when a tensile force pulling in the first direction is applied, and is deformed so that the wave peak is increased when a compressive force is applied in the first direction.
  • the wave head shape can be held by the convex head of the wave shape holding member coming into contact with the corrugated plate.
  • the constraining member in any one of the first to ninth aspects is provided on the outer surface corresponding to the position where the corrugated plate is sandwiched. You may have the window part which visually recognizes.
  • Such a window allows visual confirmation of the deformation state of the corrugated plate and the occurrence of cracks.
  • the corrugated plate in any one of the first to tenth aspects may be a laminated plate in which a plurality of plates are laminated.
  • the corrugated plate is manufactured, for example, by bending a plate material by press molding.
  • the yield strength can be improved by using the corrugated plate as a laminated plate.
  • the degree of freedom in adjusting the yield strength of the corrugated plate is increased by appropriately adjusting the thickness of each plate and the number of stacked layers.
  • the vibration damping device installation method includes a corrugated plate in which wave peaks are alternately and continuously formed in the first direction, and the corrugated plate sandwiched from both sides. And a restraining member for supporting one end of the corrugated plate in the first direction, wherein the restraining member is coupled to a first structural member, and the corrugated plate includes the first member in the corrugated plate. The other end in one direction is connected to the second structural member.
  • the corrugated plate is coupled to the second structural member. For this reason, the vibration energy from a comparatively small vibration to a large vibration can be absorbed only by the vibration control device, and the relative displacement between the first structural member and the second structural member is suppressed. Further, the restraining member acts as a stopper function, and safety can be ensured.
  • the installation method of the vibration control device includes a corrugated plate in which wave peaks are alternately and continuously formed in the first direction, and the corrugated plate sandwiched from both sides. And a restraining member for supporting one end of the corrugated plate in the first direction, wherein the restraining member is coupled to a first structural member, and the corrugated plate includes the first member in the corrugated plate. The other end side in one direction is spaced apart from the second structural member.
  • the damping device of the present invention can be used as a fail-safe function of the damping structure. Therefore, it is possible to reliably absorb vibration energy and secure further safety.
  • the first structural member and the second structural member are arranged.
  • a movable support may be further provided between the structural members.
  • the movable bearing in the fourteenth aspect may have a seismic isolation function.
  • Such a movable bearing having a seismic isolation function can attenuate the vibration energy and further improve the absorption effect of the vibration energy.
  • the vibration control device in the vibration control device installation method according to any one of the twelfth to fifteenth aspects, is You may install in a pair on both sides of two structural members.
  • the corrugated plate according to the seventeenth aspect of the present invention is a corrugated plate used in the vibration control device according to any one of the first to tenth aspects, and is a laminated plate in which a plurality of plates are laminated. is there.
  • Such a corrugated plate can improve the yield strength equivalent to that of a corrugated plate manufactured by bending a thick plate. Further, bending can be easily performed by laminating each plate after bending. Moreover, the freedom degree of yield strength adjustment increases.
  • the corrugated plate and the restraining member that covers the corrugated plate can reliably absorb the vibration energy regardless of the vibration level and improve the vibration control effect. Become.
  • a higher vibration control effect can be obtained by absorbing vibration energy in two stages.
  • a damping effect can be obtained by the viscous fluid, and the vibration damping effect can be further improved.
  • the vibration control device according to the fourth aspect of the present invention, it is possible to obtain the hysteresis attenuation by the viscoelastic body, and it is possible to further improve the vibration control effect.
  • the vibration control effect can be further improved by the friction adjustment unit.
  • the reinforcing ribs can ensure the flexibility of deformation of the restraining member while securing the strength of the restraining member, so that the vibration damping effect can be further improved.
  • the vibration damping device according to the seventh aspect of the present invention, local deformation of the corrugated plate is suppressed, the entire corrugated plate sufficiently absorbs the vibration energy, and the corrugated plate has a sufficient vibration damping function. It can be demonstrated.
  • the deformation of the corrugated plate exceeding the maximum design deformation amount can be suppressed while the compressive deformation of the corrugated plate is allowed.
  • the corrugated plate retains the corrugated plate so as to prevent the buckling of the corrugated plate and the like, and suppresses a temporary decrease in yield strength during compression deformation. Is possible.
  • the vibration damping device according to the tenth aspect of the present invention, it can be easily determined whether or not the corrugated plate is functioning by the window portion, leading to improved usability.
  • the corrugated plate can be easily processed while maintaining the yield strength, which leads to cost reduction due to improvement in manufacturability.
  • the vibration control device according to the twelfth aspect of the present invention, it is possible to improve the vibration control effect while ensuring safety by coupling the corrugated plate to the second structural member. .
  • the vibration control device can be used as a fail-safe function by installing the corrugated plate apart from the second structural member.
  • the seismic effect can be improved while ensuring safety.
  • the vibration control effect can be further improved by the synergistic effect of the movable support and the vibration control device.
  • the seismic isolation function of the movable bearing can further improve the seismic isolation / damping effect.
  • the vibration control device according to the sixteenth aspect of the present invention, by installing the vibration control device in pairs, stable absorption of vibration energy can be expected, and the vibration control effect is further improved. Is possible.
  • the processing becomes easy while maintaining the yield strength, which leads to cost reduction by improving the manufacturability.
  • FIG. 1 is a perspective view of a bridge provided with a vibration control device according to a first embodiment of the present invention. It is a principal part enlarged view of the bridge provided with the damping device which concerns on 1st embodiment of this invention. It is a perspective view of the damping device of a first embodiment of the present invention. It is a side view of the damping device of a first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the vibration damping device of the first embodiment of the present invention, and shows a cross section AA in FIG. 4. It is sectional drawing of the damping device of 1st embodiment of this invention, Comprising: The case where all the wave mountains of a corrugated plate are non-contact with a restraint member is shown.
  • FIG. 2 shows a force-displacement curve in the vibration damping device of the first embodiment of the present invention. It is sectional drawing of the damping device of 2nd embodiment of this invention, Comprising: The same cross-sectional position as FIG. 5 is shown. It is sectional drawing of the damping device of the 1st modification of 2nd embodiment of this invention, Comprising: The same cross-sectional position as FIG. 5 is shown. It is sectional drawing of the damping device of the 2nd modification of 2nd embodiment of this invention, Comprising: The same cross-sectional position as FIG. 5 is shown. It is a perspective view of the damping device of a third embodiment of the present invention. It is a side view of the damping device of a third embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a vibration control device that is not provided with a corrugated holding member, and shows the same cross-sectional position as FIG. 5.
  • FIG. 5 is a schematic top view showing a deformation state in the analysis of the specimen 5 in the example using the vibration control device of the present invention, and shows a case where the horizontal displacement is ⁇ 5 mm.
  • FIG. 6 is a schematic top view showing a deformation state in the analysis of the specimen 5 in the example using the vibration control device of the present invention, and shows a case where the horizontal displacement is ⁇ 10 mm.
  • FIG. 5 is a schematic top view showing a deformation state in the analysis of the specimen 5 in the example using the vibration control device of the present invention, and shows a case where the horizontal displacement is ⁇ 15 mm.
  • the bridge 11 provided with the vibration control device 1 will be described.
  • the bridge 11 includes a plurality of base piers 12, a plurality of main girders 13 placed on the pier 12 across the plurality of piers 12, and adjacent main girders 13.
  • the bridge 11 has a holding beam 15 which is arranged between adjacent main girders 13 on the bridge pier 12 and serves as a reaction force receiving base of the vibration control device 1.
  • the bridge 11 has a floor slab laid on the main girder 13, the cross girder 14, and the holding beam 15.
  • the vibration control device 1 has an attachment surface directed to the longitudinal direction of the bridge 11 in the extending direction of the main girder 13 on the bridge pier 12 and extending to the orthogonal direction perpendicular to the longitudinal direction. It is installed in contact with. That is, it is disposed between the main girder 13, the cross girder 14, and the pressing beam 15 that are the upper structure (second structural member) and the pier 12 that is the lower structure (first structural member).
  • the vibration control device 1 is a vibration control stopper device that absorbs vibration energy caused by an earthquake or the like.
  • the vibration control device 1 is not necessarily provided on the bridge 11. This embodiment demonstrates the case where it installs in the bridge 11 as an example.
  • the vibration control device 1 includes a corrugated plate 21 in which a plurality of (four in this embodiment) wave mountains 20 are arranged in the first direction D ⁇ b> 1, and the corrugated plate 21. And a restraining member 22 that is sandwiched from a second direction D2 orthogonal to the first direction D1, that is, the direction of the top of the wave mountain 20.
  • the vibration control device 1 is installed such that the first direction D1 is parallel to the longitudinal direction of the bridge 11 (see FIGS. 1 and 2).
  • the clamping means that the corrugated plate 21 may be in contact with the restraining member 22 in a natural state where no external force acts on the corrugated plate 21 or may be non-contacted. It means that it is held in contact with.
  • the non-contact means not only the case where all of the undulations 20 of the corrugated plate 21 are not in contact with the restraining member 22 on both sides in the second direction D2, but also as shown in FIG. 6B. This includes the case where all the wave peaks 20 are not in contact with each other only on one side in the second direction D2.
  • non-contact means that at least one wave mountain 20 is not in contact with the restraining member 22.
  • the corrugated plate 21 is formed by pressing a steel plate or the like, for example, and forming a plurality of wave peaks 20 alternately continuous in the first direction D1 on the plate.
  • the corrugated plate 21 is fixed to and supported by the restraining member 22 at one end side 21a in the first direction D1.
  • a plate-like reaction force receiving plate 31 is attached to the other end side 21b with the surface facing in the first direction D1.
  • Bolts 32 are inserted into the reaction force receiving plate 31, and the corrugated plate 21 is coupled to the pressing beam 15 by the bolts 32.
  • the reaction force receiving plate 31 is provided with a rib 34 that protrudes from the surface of the reaction force receiving plate 31 in the first direction D1 and is connected to the surface of the corrugated plate 21 at the other end 21b.
  • a plurality of the ribs 34 are provided at predetermined intervals in the vertical direction (in this embodiment, three on each side with the corrugated plate 21 in between).
  • the corrugated plate 21 is prepared by adjusting the material and the corrugated shape so that the yield strength is about 200 [kN], for example.
  • This numerical value can be appropriately changed according to the size and shape of the bridge 11 to which the vibration control device 1 is attached and the magnitude of the assumed vibration.
  • the restraining member 22 is coupled to the pair of side plate portions 25 so as to sandwich and cover the corrugated plate 21 from both surfaces in the second direction D2 so as to contact the top of the wave mountain 20 and the corrugated plate. And an upper plate portion 26 that covers 21 from above. Furthermore, it has an end plate 27 that is coupled to the two side plate portions 25 and the upper plate portion 26 and covers the corrugated plate 21 from one end side 21 a of the corrugated plate 21.
  • the corrugated plate 21 is fixed to the end plate 27 by, for example, welding.
  • the corrugated plate 21 is disposed at an upper portion between the pair of side plate portions 25.
  • the restraining member 22 is provided with reinforcing ribs 33 (three in this embodiment) extending from the surface of the end plate 27 to the outer surface of the side plate portion 25 in the first direction D1.
  • the reinforcing rib 33 is a member provided at a position where the side plate portion 25 covers the corrugated plate 21, that is, an upper portion of the outer surface of the restraining member 22, and is a member for improving the strength of the restraining member 22.
  • the restraining member 22 has a yield strength greater than that of the corrugated plate 21, and is adjusted in material, thickness, width, etc., for example, so that the yield strength is about 1000 [kN]. It is. This numerical value can be changed as appropriate according to the size and shape of the structure to which the vibration control device 1 is attached and the magnitude of the assumed vibration similarly to the corrugated plate 21.
  • the restraining member 22 has a base plate 28 having a plate shape coupled to the lower side of the side plate portion 25 and the end plate 27.
  • the base plate 28 is provided in a flange shape so as to protrude from the side plate portion 25 and the end plate 27 in the first direction D1 and the second direction D2.
  • a vibration control device 1 for example, when a ground motion of level 1 or lower occurs in the main beam 13 and the horizontal beam 14, the vibration is transmitted to the corrugated plate 21 through the pressing beam 15.
  • the corrugated plate 21 expands and contracts like an accordion in the first direction D1.
  • the corrugated plate 21 is elastically deformed, or plastically deformed in some cases, and absorbs the relative displacement between the upper structure and the lower structure due to vibration.
  • the corrugated plate 21 further plastically deforms in the first direction D1 and absorbs this ground motion energy.
  • the restraining member 22 acts as a stopper, and the restraining member 22 is plastically deformed to absorb the vibration energy. More specifically, when a force is applied in the direction in which the corrugated plate 21 is pressed, the upper structure finally contacts the restraining member 22 via the reaction force receiving plate 31 on the other end 21b of the corrugated plate 21. To do.
  • the restraining member 22 acts as a stopper, and the restraining member 22 suppresses further displacement of the superstructure.
  • the restraining member 22 receives a pressing force and the restraining member 22 itself is plastically deformed by the abutting upper structure, so that greater vibration energy can be absorbed. . Furthermore, the corrugated plate 21 is pressed, the top of the wave mountain 20 and the restraining member 22 come into contact, and a large frictional force acts between them. Even when the movement of the corrugated plate 21 is restricted by this frictional force, the restraining member 22 is deformed and the vibration energy can be absorbed.
  • the reinforcing rib 33 is provided on the outer surface of the restraining member 22 at the upper part thereof, the deformation restraining force on the corrugated plate 21 is maintained, and the shear deformation of the restraining member 22 is performed at a portion where the reinforcing rib 33 is not provided. Can be encouraged. For this reason, for example, when a large earthquake outside the assumed range occurs (for example, when a level 3 earthquake motion occurs), the restraining member 22 restrains the deformation of the corrugated plate 21 and prevents the entire damping device 1 from being damaged. The deformation of 22 itself can be facilitated, and the absorption effect of vibration energy can be improved. In addition, it has also been confirmed by analysis that the restraining member 22 is rigid at the upper part and soft at the lower part by the structure of this embodiment.
  • FIG. 8 is a graph in which FIGS. 7A and 7B are collected and only a graph in the positive direction is drawn.
  • the corrugated plate 21 is first deformed in the elastic region A1, and then reaches the yield point YP1. After the yield point YP1, the corrugated plate 21 is deformed in the plastic region A2. After plastic deformation for a while, deformation of the corrugated plate 21 is restricted by the restraining member 22.
  • the restraining member 22 is first deformed in the elastic region A3, and then the restraining member 22 reaches the yield point YP2 and starts deforming in the plastic region A4. In this way, it is possible to absorb the seismic energy from small to large.
  • the initial rigidity can be adjusted and the yield displacement can be increased by appropriately changing the material of the corrugated plate 21 and the pitch of the wave mountain 20. Therefore, it is possible to efficiently absorb the vibration energy from a relatively small earthquake motion to a large earthquake motion.
  • the corrugated plate 21 and the restraining member 22 that covers the corrugated plate 21 can reliably absorb the vibration energy regardless of the vibration level, thereby improving the vibration control effect. Further, by providing the reinforcing rib 33 in the restraining member 22, it is possible to secure flexibility of the restraining member 22 while deforming the restraining member 22 while securing the strength of the restraining member 22. Therefore, the vibration control effect can be further improved.
  • the yield strength is made close by adjusting the material and shape, that is, the yield points YP1 and YP2 are brought close to each other, so that the deformation from the corrugated plate 21 to the restraint member 22 is smooth. Can be migrated to. That is, it is possible to mitigate the impact that may occur when the corrugated plate 21 is shifted from the plastic deformation to the elastic deformation of the restraining member 22, thereby improving the vibration energy absorption effect.
  • one damping device 1 is disposed in contact with the surface of one side of the pressing beam 15 for each pressing beam 15, but the present invention is not limited to this. What is necessary is just to arrange
  • the lower part of the restraining member 22 in the vibration control device 1 is coupled to the pier 12 by the base plate 28.
  • the restraining member 22 and the lower part may be coupled to the lower structure on the end plate 27 side.
  • the coupling position with the structure is not limited to this embodiment.
  • the reinforcing ribs 33 do not necessarily have to be provided, and the installation quantity can be appropriately selected according to the strength required for the restraining member 22.
  • the corrugated plate 21 may not be connected to the presser beam 15, that is, may be installed separately. In this case, when the relative displacement between the upper structure and the lower structure when a vibration occurs is larger than the separation distance between the corrugated plate 21 and the retainer beam 15, the corrugated plate 21 is not moved to the retainer beam 15 for the first time. Will come into contact.
  • Such an installation example will be described in detail in a second installation example described later.
  • the vibration control device 41 further includes a viscous fluid 55 filled between the corrugated plate 21 and the restraining member 52.
  • the viscous fluid 55 is, for example, a Bingham fluid.
  • a viscoelastic body may be filled as the viscous fluid 55 between the corrugated plate 21 and the restraining member 52.
  • the viscoelastic body include an acrylic viscoelastic body, a rubber asphalt viscoelastic body, natural rubber, and a high damping rubber.
  • the restraining member 52 is coupled to the side plate portion 25 and the upper plate portion 26 with respect to the restraining member 22 of the first embodiment, and is the end portion in the first direction D1 on the same side as the other end side 21b of the corrugated plate 21.
  • a closing plate 53 for preventing the viscous fluid 55 from flowing out and entering water or the like from the outside.
  • the vibration control device 41 of the present embodiment by filling the viscous fluid 55, in addition to absorbing the vibration energy of the microearthquake, a damping effect can be obtained, and the vibration control effect can be further improved.
  • the vibration control device includes a friction reducing unit (friction adjusting unit) 60 that reduces the frictional force between the corrugated plate 21 and the restraining member 52 instead of the viscous fluid 55.
  • the vibration control device 61 may be used.
  • the friction reducing portion 60 is, for example, a coating made of PTFE (polytetrafluoroethylene), which is an adhesion preventing agent, applied to the inner surface of the restraining member 52, or a lubricant simply applied to the inner surface of the restraining member 52. It is.
  • PTFE polytetrafluoroethylene
  • Such a friction reducing portion 60 enables the corrugated plate 21 to operate smoothly with the restraining member 52, and can improve the effect of absorbing vibration energy caused by a relatively small earthquake.
  • the closing plate 53 in the restraining member 52 is not necessarily provided.
  • the vibration control device includes a friction increasing portion (friction adjusting portion) 70 that increases the frictional force between the corrugated plate 21 and the restraining member 52 instead of the friction reducing portion 60.
  • the vibration control device 71 may be used.
  • Such a friction increasing portion 70 is obtained by, for example, performing blasting or resin coating on the inner surface of the restraining member 52.
  • Such a friction increasing part 70 consumes a part of the vibration energy by the frictional force generated when the corrugated plate 21 is operated. That is, the frictional force-displacement curve draws hysteresis, and the damping effect of vibration energy can be improved.
  • the restraining member 82 is integrally coupled to each of the pair of side plate portions 84 and the side plate portions 84 that sandwich and cover the corrugated plate 21 from both surfaces in the second direction D2 so as to contact the top of the wave mountain 20.
  • the corrugated plate 21 has a pair of bent portions 85 that are bent at the one end side 21a of the corrugated plate 21 so as to be separated from each other in the second direction D2.
  • the restraint member 82 is attached to the pair of bent portions 85 in contact with the first direction D1, and has an end plate 86 that sandwiches the one end side 21a of the corrugated plate 21 from the second direction D2. Yes.
  • the end plate 86 is integrally coupled to each of the pair of side portions 87 that sandwich one end side 21a of the corrugated plate 21 from both sides in the second direction D2, and from the first direction D1. It is comprised from a pair of contact part 88 formed by bending so that it might mutually be spaced apart in the 2nd direction D2 so that the bending part 85 might be contact
  • the bolt 90 is inserted so as to pass through them, and the bent portion 85 and the contact portion 88 are fastened by the nut 91.
  • the corrugated plate 21 is sandwiched between the side portions 87 of the end plate 86, bolts 90 are inserted through the corrugated plate 21, and the corrugated plate 21 and the end plate 86 are fastened by nuts 91. In this way, the restraining member 82 and the one end side 21a of the corrugated plate 21 are fixed.
  • the restraining member 82 is provided with four reinforcing ribs 89 extending in the first direction D1 from the surface of the bent portion 85 to the outer surface of the side plate portion 84.
  • the quantity is the same as that of the first embodiment. Three may be sufficient like the reinforcement rib 33, and quantity is not limited.
  • the reaction force receiving plate 83 is integrally coupled to the pair of side portions 92 that sandwich the other end side 21b of the corrugated plate 21 and the pair of side portions 92, and is coupled to the pressing beam 15 from the first direction D1. It is comprised from a pair of contact part 93 formed so that it might be spaced apart in the 2nd direction D2 so that it might become possible.
  • the corrugated plate 21 can be securely fixed to the restraining member 82 and the reaction force receiving plate 83, and even when a large earthquake outside the assumed range occurs, the vibration damping is reliably performed. The effect can be improved.
  • the base plate 98 may be divided into two at the center in the second direction D2.
  • the installation position of the restraining member 82 can be adjusted with respect to the dimensional tolerance of the corrugated plate 21.
  • requirement with respect to the dimensional tolerance of the corrugated plate 21 becomes small, and it is preferable in terms of quality control.
  • the restraining member 94 is integrally joined to each of the pair of side plate portions 84, and is bent at the other end side 21 b of the corrugated plate 21 so as to be separated from each other in the second direction D ⁇ b> 2.
  • the rigidity of the restraining member 94 is increased and the restraining force of the restraining member 94 can be increased. Accordingly, it is possible to improve the strength of the vibration control device.
  • the reinforcing rib 89 does not necessarily have to be provided as shown in FIG. 16, but the restraining force is smaller than in the case where the reinforcing rib 89 is provided.
  • the upper portion of the restraining member 82 is open and the corrugated plate 21 is exposed.
  • the upper plate portion 26 and the like of the first embodiment are covered and the upper portion is covered. May be.
  • the vibration damping device 81 of the third embodiment further includes a wave shape holding member 130.
  • the wave shape holding member 130 is disposed between the wave crest 20 on the corrugated plate 21 and the inner surface of the restraining member 94 that contacts the wave crest 20. Specifically, it is inserted between the corrugated plate 21 and the restraining member 94 at a position on the valley side of the wave mountain 20 and is supported by the base plate 98 from below. Accordingly, the wave shape holding member 130 is provided so as to be relatively movable with respect to the inner surface of the restraining member 94 and the corrugated plate 21.
  • a plurality of wave shape holding members 130 are provided on the valley side of the adjacent wave mountain 20 at the position corresponding to the wave mountain 20 formed at the center position in the first direction D1 on the wave plate 21 (this embodiment). In the form, three) are provided.
  • Each of the wave shape holding members 130 is arranged between the convex head 131 in which a curved surface 131 a facing the wave mountain 20 is formed along the shape of the wave mountain 20, and between the convex head 131 and the inner surface of the restraining member 94.
  • a base 132 having a block shape formed integrally with the convex head 131.
  • a gap is formed between the wave shape holding member 130 and the top of the wave mountain 20 in a natural state where no external force acts.
  • This gap is just curved with the undulation 20 when a compressive force that pushes the corrugated plate 21 in the first direction D1 acts on the corrugated plate 21 with a preset maximum design deformation amount.
  • the surface 131a is set to a dimension that comes into contact with the first direction D1 (see FIG. 19C).
  • the top of the corrugated plate 21 of the corrugated plate 21 and the inner surface of the restraining member 94 that abuts the corrugated plate 20 are not in contact with the corrugated plate 21 when no external force acts in the first direction D1. ing. Further, when an external force acts on the corrugated plate 21 in the first direction D1 to cause a maximum design deformation amount of compressive deformation, the top of the wave mountain 20 and the inner surface of the restraining member 94 come into contact with each other. ing.
  • a gap is provided between the corrugated plate 21 and the restraining member 94 so that the corrugated plate 21 and the restraining member 94 are not. In contact.
  • the corrugated plate 21 When the compressive force is applied to the corrugated plate 21 so that the corrugated plate 21 is pressed in the first direction D1, the corrugated plate 21 is deformed such that the wave mountain 20 becomes higher. At this time, in this embodiment, such a deformation of the corrugated plate 21 can be allowed by the gap between the corrugated plate 21 and the restraining member 94. Therefore, it is possible to prevent the wave mountain 20 from being locally deformed, and the entire corrugated plate 21 can sufficiently absorb the vibration energy, so that the corrugated plate 21 can sufficiently exhibit the vibration damping function.
  • deformation is suppressed by the wave shape holding member 130 so that the corrugated plate has a predetermined shape so as to suppress such overall buckling. That is, the height dimension of the wavy mountain 20 and the width dimension in the first direction D1 of the wavy mountain 20 fall within a predetermined value range according to the shape of the curved surface 131a of the convex head 131.
  • the corrugated plate 21 when a manufacturing error has occurred in the corrugated plate 21 such as when the corrugated plate 21 is extremely thin at some of the corrugated mountains 20, when the corrugated plate 21 expands and contracts, There may be a case where deformation larger than the wave mountain 20 occurs. Therefore, by providing the wave shape holding member 130 on the valley side of the wave mountain 20 having such a manufacturing error, it is possible to suppress such partial deformation of the wave mountain 20.
  • the wave shape holding member 130 is provided on the wave mountain 20 at the center position of the corrugated plate 21 in the first direction D1. For this reason, deformation of the primary mode in the corrugated plate 21 can be suppressed.
  • the installation location of the wave shape holding member 130 is not limited to the case of the present embodiment, and may be determined according to the number of wave mountains 20.
  • the installation position of the waveform holding member 130 can be appropriately selected so as to suppress the deformation of the vibration mode higher than the secondary mode. That is, the wave shape holding member 130 only needs to be provided on the valley side of at least two adjacent wave peaks 20.
  • the surface facing the wave mountain 20 does not necessarily have to be formed in the curved surface 131a.
  • the convex head 131 may have a triangular cross section when viewed from above, and the apex of the triangle may come into contact with the valley side position corresponding to the top of the wave mountain 20.
  • Various shapes of the base portion 132 can be selected.
  • the wave shape holding member 130 ⁇ / b> A does not have to have a shape that extends vertically across the entire area of the corrugated plate 21.
  • a plurality of wave shape holding members 130 ⁇ / b> May be provided three by three).
  • a guide that sandwiches and supports the waveform holding member 130A from above and below is provided on the inner surface of the restraining member 94 so that the waveform holding member 130A does not move in the vertical direction. .
  • the number of wave peaks 20 of the corrugated plate 21 is larger than that of the third embodiment, but the same number as in the third embodiment may be used, and the number of wave peaks 20 is not limited. Although no gap is provided between the base plate 98 and the corrugated plate 21, a gap may be provided as in the case of the vibration control device 81 of the third embodiment.
  • the restraining member 94 of the vibration control device 81 of the third embodiment further includes a window portion 140.
  • the reinforcing rib 89 is not provided as in the case shown in FIG.
  • the window portion 140 is formed in the side plate portion 84 corresponding to the position where the restraining member 94 sandwiches the corrugated plate 21, and is provided in the opening portion 84a that communicates the inside and the outside in the second direction D2.
  • the window part 140 has, for example, a tempered glass 141 and a window frame 142 in which the tempered glass 141 is fitted, and the corrugated plate 21 can be visually recognized from the outside.
  • the deformation state of the corrugated plate 21 and the occurrence of cracks and the like can be confirmed by the window 140. Therefore, it is easy to determine whether or not the corrugated plate 21 is functioning, and the replacement time of the corrugated plate 21 can be easily grasped, leading to improved usability.
  • the vibration control device 1B further includes a ruler 144 provided above the window 140.
  • the scoring device 144 supports a scratch plate 145 having a plate shape attached to the side plate portion 84 of the restraining member 94, a scoring needle 146 that contacts the surface of the scratch plate 145, and the scoring needle 146.
  • the support member 147 penetrates the bent portion 95 of the restraining member 94 so as to be relatively movable, and is fixed to the contact portion 93 of the reaction force receiving plate 83. With such a scoring device 144, the scoring needle 146 moves on the scratch plate 145 according to the expansion and contraction of the corrugated plate 21, and the deformation history of the corrugated plate 21 can be recorded.
  • the corrugated plate 151 on which the wave peaks 150 are formed is a laminated plate in which the first plate 151a and the second plate 151b are laminated in the second direction D2. .
  • the second wave crest 150b and the first wave crest 150a are alternately formed on the first plate 151a from the end plate 86 toward the reaction force receiving plate 83 in the first direction D1.
  • first wave peaks 150a and second wave peaks 150b are alternately formed in the first direction D1 from the end plate 86 toward the reaction force receiving plate 83.
  • the shape of the wave mountain 150 is determined so that the curvature radius R1 on the mountain side of the first wave mountain 150a coincides with the curvature radius R2 on the valley side of the second wave mountain 150b.
  • the first plate 151a and the second plate 151b are moved in the second direction so that the peak side of the first wave peak 150a in the first plate 151a enters the valley side of the second wave peak 150b in the second plate 151b.
  • the first plate 151a and the second plate 151b are stacked with no gap therebetween.
  • the corrugated plate 151 is manufactured, for example, by bending a plate material by press molding. Since the corrugated plate 151 is a laminated plate, the yield strength can be improved even if the thickness of each of the first plate 151a and the second plate 151b is reduced.
  • the degree of freedom for adjusting the yield strength of the corrugated plate 151 is increased by appropriately adjusting the thickness of each of the stacked plates and the number of stacked plates. Specifically, for example, three plates may be stacked as shown in FIGS. 23A and 23B, that is, in addition to the first plate 151a and the second plate 151b, a third plate 151c is further added. Provide.
  • the fourth wave peak 150d and the third wave peak 150c are alternately formed in the first direction D1 from the end plate 86 toward the reaction force receiving plate 83.
  • the curvature radius R3 on the mountain side of the second wave peak 150b and the curvature radius R5 on the valley side of the third wave peak 150c coincide with each other, the curvature radius R4 on the valley side of the first wave peak 150a,
  • the shape of the wave mountain 150 is determined so that the curvature radius R6 on the mountain side of the wave mountain 150d is equal.
  • the vibration control device 1 which may be the vibration control devices 41, 61, 71, 81, 1A, and 1B1C
  • the vibration control device 1 will be described using a first installation example.
  • the bridge 11 includes a plurality of (four in this installation example) main girders 13 and a plurality of horizontal girders 14 that connect adjacent main girders 13 to each other.
  • the bridge 11 includes a pressing beam 15 provided between the main girders 13 positioned outside in the orthogonal direction on the pier 12 and a central pressing provided between the main girders 13 in the center in the orthogonal direction on the pier 12.
  • a beam 105 is disposed in a state of being spaced upward from the pier 12, and a projecting member 106 that protrudes downward between the main beams 13 is coupled to the lower surface of the central pressing beam 105.
  • the protruding member 106 has a plate-like portion 107 whose surface is arranged in the longitudinal direction, and a pair of flange portions 108 provided on both sides of the plate-like portion 107 in the orthogonal direction. That is, the projecting member 106 has an H-shaped cross section when viewed from above.
  • the bridge 11 has a movable bearing 109 provided between the main girder 13 and the pier 12 and having a seismic isolation function such as a rubber bearing, a sliding bearing, a friction bearing, and a friction pendulum type spherical bearing.
  • This movable bearing 109 may not have a seismic isolation function.
  • the vibration control device 1 includes a base plate 28 and anchor bolts 30 so that the reaction force receiving plate 31 attached to the corrugated plate 21 faces each pressing beam 15 from one side in the longitudinal direction. Are installed on the pier 12 one by one.
  • the pair of vibration control devices 1 are installed so that the reaction force receiving plate 31 attached to the corrugated plate 21 faces each flange portion 108 of the protruding member 106 from the orthogonal direction. .
  • the reaction force receiving plate 31 in all of the vibration control devices 1 is coupled to the protruding members 106 of the pressing beam 15 and the central pressing beam 105 which are the upper structure.
  • the vibration control device 1 is installed so that the first direction D1 is parallel to the longitudinal direction of the bridge 11, and for the central retaining beam 105, the vibration control device 1 is the first one. It is installed so that the direction D1 is parallel to the orthogonal direction of the bridge 11.
  • the corrugated plate 21 is coupled to the presser beam 15 and the central presser beam 105, which are superstructures, so that vibration energy from a relatively small vibration to a large vibration is controlled. It can be absorbed only by the device 1 to improve the vibration control effect. Further, the restraining member 52 acts as a stopper function that suppresses deformation and breakage of the corrugated plate 21, so that safety can be ensured.
  • the movable support 109 is also provided, it is possible to further improve the seismic isolation / seismic effect by the synergistic effect with the seismic control device 1.
  • vibration energy can be absorbed from two directions, the longitudinal direction and the orthogonal direction, an improvement in the vibration control effect can be expected.
  • the damping device 1 in a pair with respect to the central presser beam 105, when a tensile force acts on the corrugated plate 21 in one damping device 1, the other damping device 1 A pressing force acts on the corrugated plate 21.
  • the energy absorption history at the time of pressing of the corrugated plate 21 and the energy absorption history at the time of pulling act simultaneously, and the energy absorption history that is slightly different can be averaged. Therefore, more stable absorption of vibration energy can be expected, and the vibration control effect can be further improved.
  • the movable support 109 is not necessarily installed.
  • only one seismic control device 1 may be installed on the protruding member 106 of the central pressing beam 105.
  • vibration control device 1 the vibration control devices 41, 61, 71, 81, 1A, 1B, and 1C
  • one seismic control device 1 is installed for each pressing beam 15 and two for the central pressing beam 105.
  • the reaction force receiving plate 31 in the vibration control device 1 is installed separately from the holding beam 15 and the central holding beam 105, which are the upper structure.
  • the vibration control device 1 By installing the vibration control device 1 in this way, the base is first isolated by the movable support 109. Then, when the vibration energy exceeds a predetermined value, the relative displacement between the pressing beam 15 and the central pressing beam 105 and the pier 12 is between the pressing beam 15 and the central pressing beam 105 and the reaction force receiving plate 31. If the separation distance is exceeded, the vibration control device 1 will function for the first time.
  • the vibration control device 1 as a fail-safe function, to reliably absorb vibration energy, and to ensure further safety.
  • the wave mountain 20 (150) may not have a complete waveform. Specifically, an arc shape, a sine curve shape, a trapezoid shape, an uneven shape, and the like are exemplified. And the wave mountain 20 of the same shape does not need to be located in a line, and the pitch of the wave mountain 20 may not be equal intervals.
  • the corrugated plate 21 (151) is formed by press-forming a steel plate as described above and is manufactured by cold working, it is preferable that SR (Stress Relieving) treatment be performed after the press forming. As a result, distortion due to work hardening of the steel sheet caused by cold working can be removed, and yield strength as designed can be obtained.
  • SR Stress Relieving
  • the corrugated plate 21 and the restraining member 22 (such that the corrugated plate 20 (150) of the corrugated plate 21 (151) protrudes up and down, not in the second direction D2. 52, 82, 94) may be provided.
  • a block-shaped support base 200 is provided between the lower restraining member 22 (52, 82, 94) and the base plate 28 to support the restraining member 22 (52, 82, 94) from below. ing.
  • the structure in which the vibration control devices 1, 41, 61, 71, 81 are installed is described as the bridge 11.
  • the structure is not limited to the bridge 11, and the building 120 as shown in FIG. 28. May be provided.
  • the present invention can be applied to an LNG tank 121 or the like.
  • the specimens 1 to 4 having a gap have a higher vibration control effect than the specimen 5 having no gap between the corrugated plate and the restraining member, and a wave shape holding member is provided. It was confirmed that the specimens 3 and 4 obtained and the specimens 2 and 4 subjected to the SR treatment had a higher vibration control effect.
  • the corrugated plate and the restraining member that covers the corrugated plate reliably absorbs seismic energy regardless of the magnitude of the seismic level, thereby suppressing the seismic effect. Can be improved.

Abstract

A vibration control device, comprising a waveform plate (21) formed so that wave peaks (20) successively alternate in a first direction (D1), and a restraining member (22) that clamps the waveform plate (21) on both sides facing in a second direction (D2) and that supports one end (21a) of the waveform plate (21), is provided between a first structural member (12) and second structural members (13, 14, 15) of a bridge (11), for example.

Description

制震装置、制震装置の設置方法、及び波形プレートVibration control device, vibration control device installation method, and corrugated plate
 本発明は、構造物の制震装置、制震装置に用いられる波形プレート、及びこの制震装置の設置方法に関するものである。
 本願は、2013年5月2日に出願された特願2013-096872に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a structure damping device, a corrugated plate used in the damping device, and a method of installing the damping device.
This application claims priority based on Japanese Patent Application No. 2013-096872 for which it applied on May 2, 2013, and uses the content here.
 従来、橋梁や建築物、プラントなどの構造物において、躯体などの上部構造と基礎などの下部構造との間に配置され、地震などの大きな震動が作用したときにこの震動エネルギーを吸収し、下部構造に対する上部構造の相対変位を抑制する制震装置が提案されている。 Conventionally, in structures such as bridges, buildings, plants, etc., they are arranged between the upper structure such as the frame and the lower structure such as the foundation. Seismic control devices that suppress the relative displacement of the superstructure relative to the structure have been proposed.
 このような制震装置は、例えば特許文献1や特許文献2に開示されている。
 特許文献1には、橋梁における上下部構造間に、可動支承及び低降伏点鋼を用いたせん断パネル型ダンパーを併設して備えた支承構造が示されている。この支承構造によっては、レベルの高い地震発生時には、まずせん断パネル型ダンパーが降伏点に達し、その後に初めて可動支承が可動支承として機能するようになっている。このため上部構造の移動量が増大するなどの問題を解決しつつ、下部構造に加わる地震応答を保有耐力以下に低減することを可能としている。
Such a vibration control device is disclosed in Patent Document 1 and Patent Document 2, for example.
Patent Document 1 discloses a bearing structure including a movable panel and a shear panel type damper using a low yield point steel between upper and lower structures in a bridge. Depending on this bearing structure, when a high level earthquake occurs, the shear panel type damper first reaches the yield point, and then the movable bearing functions as a movable bearing for the first time. For this reason, it is possible to reduce the seismic response applied to the lower structure to less than the holding strength while solving problems such as an increase in the amount of movement of the upper structure.
 また、特許文献2には、橋梁などの上下部構造間に設置され、所定レベル以上の地震に対してせん断塑性変形することで震動エネルギーを吸収するせん断パネル型ダンパーが示されている。このせん断パネル型ダンパーにおいては、ウェブが、せん断パネルと、このせん断パネルよりも降伏せん断耐力の大きな下部拘束パネルとを有していることで、低サイクル疲労耐久性を向上可能としている。 Patent Document 2 discloses a shear panel type damper that is installed between upper and lower structures such as a bridge and absorbs vibration energy by shear plastic deformation in response to an earthquake of a predetermined level or higher. In this shear panel type damper, the web has a shear panel and a lower restraint panel having a yield shear strength greater than that of the shear panel, so that low cycle fatigue durability can be improved.
日本国特許第3755886号公報Japanese Patent No. 3755886 日本国特許第4192225号公報Japanese Patent No. 4192225
 しかしながら、特許文献1及び特許文献2に開示されたせん断パネル型ダンパーにおいては、地震発生時にはせん断塑性変形することで地震エネルギーを吸収している。このため変形限界が小さくなっている。従って、想定範囲外の地震が発生して上部構造と下部構造との間の相対変位がこのせん断パネル型ダンパーの変形限界以上に大きくなってしまった場合には、震動エネルギーを十分に吸収することが難しい。そしてせん断変形に伴う耐力増加が大きく、また、せん断変形には至らないようなある程度の大きさを持つ地震動については震動エネルギーの吸収は難しい。従って、下部構造となる基礎や橋脚が損傷してしまう可能性がある。 However, the shear panel type dampers disclosed in Patent Document 1 and Patent Document 2 absorb earthquake energy by shear plastic deformation when an earthquake occurs. For this reason, the deformation limit is reduced. Therefore, if an earthquake outside the expected range occurs and the relative displacement between the superstructure and the substructure becomes greater than the deformation limit of the shear panel type damper, the seismic energy must be sufficiently absorbed. Is difficult. The increase in yield strength accompanying shear deformation is large, and it is difficult to absorb vibration energy for earthquake motions that have a certain degree of magnitude that does not lead to shear deformation. Therefore, there is a possibility that the foundation and the bridge pier which become the substructure will be damaged.
 本発明は、震動レベルの大小に関わらず確実に震動エネルギーを吸収し、制震効果の向上が可能な制震装置、制震装置の設置方法、及び波形プレートを提供する。 The present invention provides a vibration control device, a vibration control device installation method, and a corrugated plate that can reliably absorb vibration energy regardless of the vibration level and can improve the vibration control effect.
 本発明の第一態様に係る制震装置は、第一の方向に向かって波山が交互に連続して形成された波形プレートと、前記波形プレートを両面から挟持するとともに、該波形プレートにおける前記第一の方向の一端側を支持する拘束部材とを備える。 The vibration control device according to the first aspect of the present invention includes a corrugated plate in which wave peaks are alternately and continuously formed in a first direction, and the corrugated plate is sandwiched from both sides, and the corrugated plate includes the first corrugated plate. And a restraining member that supports one end in one direction.
 このような制震装置によると、例えば構造物に比較的小さな震動(例えばレベル1地震動)が生じて構造物が第一の方向に変位し、この構造物によって波形プレートが第一の方向に力を受けた場合、波形プレートは第一の方向にアコーディオンのように弾性変形及び塑性変形して上記変位を抑制する。さらに大きな震動(例えばレベル2地震動)が発生した際には、この波形プレートは第一の方向に塑性変形することで、このより大きな震動エネルギーを吸収して変位を抑制する。さらにそれ以上の震動に対しては、波形プレートを押し付ける方向に力が作用した際には、最終的に構造物が拘束部材に接触することとなり、拘束部材が構造物のそれ以上の変位を抑制する。即ち、拘束部材がストッパとして作用する。また、より大きな地震(例えばレベル3地震動)では、構造物によって拘束部材が押し付け力を受けて拘束部材が塑性変形することで、より大きな震動エネルギーを吸収することができる。さらに、波形プレートが押し付けられ、波山の頂部と拘束部材とが接触してこれらの間に大きな摩擦力が作用し、この摩擦力によって波形プレートの動きが規制された場合においても、拘束部材が変形して震動エネルギーの吸収が可能である。 According to such a vibration control device, for example, a relatively small vibration (for example, level 1 ground motion) is generated in the structure and the structure is displaced in the first direction, and the corrugated plate is forced in the first direction by the structure. The corrugated plate is elastically and plastically deformed like an accordion in the first direction to suppress the displacement. When a larger earthquake (for example, a level 2 earthquake) occurs, the corrugated plate is plastically deformed in the first direction, thereby absorbing the larger vibration energy and suppressing the displacement. For further vibrations, when a force acts in the direction of pressing the corrugated plate, the structure will eventually come into contact with the restraining member, and the restraining member will suppress further displacement of the structure. To do. That is, the restraining member acts as a stopper. Further, in a larger earthquake (for example, level 3 ground motion), the restraining member receives a pressing force by the structure and the restraining member is plastically deformed, so that larger seismic energy can be absorbed. Furthermore, even when the corrugated plate is pressed and the top of the wave mountain comes into contact with the restraining member and a large frictional force acts between them, the restraining member is deformed even when the movement of the corrugated plate is restricted by this frictional force. As a result, vibration energy can be absorbed.
 また、本発明の第二の態様に係る制震装置では、上記第一の態様における前記波形プレートよりも前記拘束部材の方が前記第一の方向へ作用する外力に対する降伏耐力が大きくなっていてもよい。 Further, in the vibration damping device according to the second aspect of the present invention, the yield strength against the external force acting in the first direction is greater in the restraining member than in the corrugated plate in the first aspect. Also good.
 このように、構造物に震動が発生して第一の方向に力が作用した際には、まず波形プレートが変形して降伏点に達し、その後、拘束部材が変形して降伏点に達する。よって、二段階での震動エネルギーの吸収が可能となる。 Thus, when a vibration occurs in the structure and a force is applied in the first direction, the corrugated plate is first deformed to reach the yield point, and then the restraining member is deformed to reach the yield point. Therefore, the vibration energy can be absorbed in two stages.
 また、本発明の第三の態様に係る制震装置では、上記第一又は第二の態様における前記波形プレートと前記拘束部材との間に粘性流体が充填されていてもよい。 Further, in the vibration damping device according to the third aspect of the present invention, a viscous fluid may be filled between the corrugated plate and the restraining member in the first or second aspect.
 このような粘性流体によって、波形プレートが動作した際に発生するせん断抵抗による粘性減衰力で震動エネルギーの一部が消費されるため、震動エネルギーの減衰効果を向上できる。 Such a viscous fluid consumes part of the vibration energy due to the viscous damping force caused by the shear resistance generated when the corrugated plate is operated, so that the damping effect of the vibration energy can be improved.
 また、本発明の第四の態様に係る制震装置では、上記第三の態様における前記粘性流体は粘弾性体であってもよい。 Also, in the vibration damping device according to the fourth aspect of the present invention, the viscous fluid in the third aspect may be a viscoelastic body.
 このような粘弾性体によって、せん断抵抗による粘性減衰力に加え、履歴減衰を得ることができる。 Such a viscoelastic body can provide hysteresis damping in addition to viscous damping force due to shear resistance.
 さらに、本発明の第五の態様に係る制震装置では、上記第一又は第二の態様における前記拘束部材の内表面に摩擦力を調整する摩擦調整手段部が設けられていてもよい。 Furthermore, in the vibration damping device according to the fifth aspect of the present invention, a friction adjusting means part for adjusting a friction force may be provided on the inner surface of the restraining member in the first or second aspect.
 このような摩擦調整手段によって、例えば低摩擦化すると拘束部材との間で波形プレートが円滑に動作可能となり、微小震動に対する震動エネルギーの吸収効果を高めることができる。あるいは高摩擦化すると、波形プレートが動作した際の摩擦力で震動エネルギーの一部が消費されるため、より大きな震動に対して震動エネルギーの減衰効果を向上できる。 For example, when the friction is reduced by such friction adjusting means, the corrugated plate can operate smoothly between the restraining member and the effect of absorbing the vibration energy with respect to the minute vibration can be enhanced. Alternatively, when the friction is increased, a part of the vibration energy is consumed by the friction force when the corrugated plate is operated, so that the damping effect of the vibration energy can be improved with respect to a larger vibration.
 さらに、本発明の第六の態様に係る制震装置では、上記第一から第五のいずれかの態様における前記拘束部材は、前記波形プレートを挟持する位置に対応する外表面に、前記第一の方向に延在する補強リブが設けられていてもよい。 Furthermore, in the vibration damping device according to the sixth aspect of the present invention, the restraining member in any one of the first to fifth aspects is arranged on the outer surface corresponding to the position where the corrugated plate is sandwiched. Reinforcing ribs extending in the direction may be provided.
 このような補強リブによって、拘束部材による波形プレートに対する変形拘束力を維持しながら、一方では、補強リブの設けられていない部分でせん断変形を促すことが可能となる。このため、例えば想定範囲外の大地震発生時には、波形プレートの変形を拘束して破損を防止しつつ自身の変形を容易とし、震動エネルギーの吸収効果を向上できる。 With such a reinforcing rib, it is possible to promote shear deformation at a portion where the reinforcing rib is not provided while maintaining the deformation restraining force against the corrugated plate by the restraining member. For this reason, for example, when a large earthquake outside the assumed range occurs, the deformation of the corrugated plate is restrained to prevent the damage while facilitating its own deformation, and the effect of absorbing the vibration energy can be improved.
 また、本発明の第七の態様に係る制震装置では、上記第一から第六のいずれかの態様における前記波形プレートの前記波山の頂部と前記拘束部材の内表面とは、該波形プレートに前記第一の方向に外力が作用しない状態で非接触となっていてもよい。 Further, in the vibration damping device according to the seventh aspect of the present invention, the top of the corrugated plate of the corrugated plate and the inner surface of the restraining member in any one of the first to sixth aspects are attached to the corrugated plate. You may be non-contact in the state where an external force does not act on said 1st direction.
 このように波形プレートに外力が作用しない状態で非接触となっていることから、波形プレートと拘束部材との間には隙間が設けられていることになる。ここで、波形プレートに第一の方向の外力が作用した際には、上記隙間によって波形プレートの波山が高くなるような変形を許容できる。従って、局所的に波山が変形してしまうことを防止できる。 Since there is no contact in the state where no external force is applied to the corrugated plate in this way, a gap is provided between the corrugated plate and the restraining member. Here, when an external force in the first direction is applied to the corrugated plate, the corrugated plate can be deformed so that the corrugated plate becomes high due to the gap. Therefore, it is possible to prevent the wave mountain from being locally deformed.
 さらに、本発明の第八の態様に係る制震装置では、上記第七の態様における前記波形プレートの前記波山の頂部と前記拘束部材の内表面とは、該波形プレートに対して前記第一の方向に外力が作用して、予め設定された最大設計変形量の圧縮変形が生じた際に接触してもよい。 Furthermore, in the vibration damping device according to the eighth aspect of the present invention, the top of the wave mountain of the corrugated plate and the inner surface of the restraining member in the seventh aspect are the first An external force may act in the direction and contact may occur when a preset maximum design deformation amount of compressive deformation occurs.
 このように、波形プレートに押し付ける方向の力が作用して最大設計変形量の圧縮変形が生じた際に、拘束部材による拘束力を波形プレートに作用させることができる。 As described above, when the force in the direction of pressing against the corrugated plate is applied to cause the maximum design deformation amount of compressive deformation, the restraining force by the restraining member can be applied to the corrugated plate.
 また、本発明の第九の態様に係る制震装置では、上記第七又は第八の態様における本発明に係る制震装置は、前記波形プレートの前記波山の谷側に配されて、該波形プレートが変形した際に該波形プレートに接触する凸頭部を有し、前記内表面に対して相対移動可能に設けられた波形状保持部材をさらに備えていてもよい。 Further, in the vibration damping device according to the ninth aspect of the present invention, the vibration damping device according to the present invention in the seventh or eighth aspect is arranged on the valley side of the wave mountain of the corrugated plate. A corrugated holding member having a convex head that contacts the corrugated plate when the plate is deformed and provided so as to be relatively movable with respect to the inner surface may be further provided.
 波形プレートでは、第一の方向に引っ張る引張力が作用すると波山が低くなるように変形し、第一の方向に押し付ける圧縮力が作用すると波山が高くなるように変形する。このような変形が生じた際、波形状保持部材の凸頭部が波形プレートに接触することで、波山形状を保持することができる。 The corrugated plate is deformed so that the wave peak is lowered when a tensile force pulling in the first direction is applied, and is deformed so that the wave peak is increased when a compressive force is applied in the first direction. When such deformation occurs, the wave head shape can be held by the convex head of the wave shape holding member coming into contact with the corrugated plate.
 さらに、本発明の第十の態様に係る制震装置では、上記第一から第九のいずれかの態様における前記拘束部材は、前記波形プレートを挟持する位置に対応する外表面に、該波形プレートを視認する窓部を有していてもよい。 Furthermore, in the vibration damping device according to the tenth aspect of the present invention, the constraining member in any one of the first to ninth aspects is provided on the outer surface corresponding to the position where the corrugated plate is sandwiched. You may have the window part which visually recognizes.
 このような窓部によって、波形プレートの変形状態や亀裂等の発生状況を目視等によって確認することができる。 Such a window allows visual confirmation of the deformation state of the corrugated plate and the occurrence of cracks.
 また、本発明の第十一の態様に係る制震装置では、上記第一から第十のいずれかの態様における前記波形プレートは、複数のプレートが積層された積層プレートであってもよい。 Further, in the vibration damping device according to the eleventh aspect of the present invention, the corrugated plate in any one of the first to tenth aspects may be a laminated plate in which a plurality of plates are laminated.
 波形プレートは、例えば板材をプレス成形で曲げ加工されることで製造される。ここで、波形プレートを積層プレートとすることで、降伏耐力の向上を図ることができる。そして、各々のプレートをそれぞれ曲げ加工した後に積層することで、厚板を曲げ加工する場合と比べ曲げ加工を容易に行うことができる。また、各々のプレートの厚さや積層枚数を適宜調整することで、波形プレートの降伏耐力調整の自由度が増す。 The corrugated plate is manufactured, for example, by bending a plate material by press molding. Here, the yield strength can be improved by using the corrugated plate as a laminated plate. And by bending each plate after bending, it is possible to easily perform bending as compared with the case of bending a thick plate. In addition, the degree of freedom in adjusting the yield strength of the corrugated plate is increased by appropriately adjusting the thickness of each plate and the number of stacked layers.
 また、本発明の第十二の態様に係る制震装置の設置方法は、第一の方向に向かって波山が交互に連続して形成された波形プレートと、前記波形プレートを両面から挟持するとともに、該波形プレートにおける前記第一の方向の一端側を支持する拘束部材とを備える制震装置の設置方法であって、前記拘束部材を第一の構造部材に結合し、前記波形プレートにおける前記第一の方向の他端側を第二の構造部材に結合して設置する。 The vibration damping device installation method according to the twelfth aspect of the present invention includes a corrugated plate in which wave peaks are alternately and continuously formed in the first direction, and the corrugated plate sandwiched from both sides. And a restraining member for supporting one end of the corrugated plate in the first direction, wherein the restraining member is coupled to a first structural member, and the corrugated plate includes the first member in the corrugated plate. The other end in one direction is connected to the second structural member.
 このような制震装置の設置方法によると、波形プレートが第二の構造部材に結合されている。このため、比較的小さな震動から大きな震動までの震動エネルギーを制震装置のみで吸収でき、第一の構造部材と第二の構造部材との間の相対変位を抑制する。また、拘束部材がストッパ機能として作用し、安全性の確保も可能となる。 According to the installation method of such a vibration control device, the corrugated plate is coupled to the second structural member. For this reason, the vibration energy from a comparatively small vibration to a large vibration can be absorbed only by the vibration control device, and the relative displacement between the first structural member and the second structural member is suppressed. Further, the restraining member acts as a stopper function, and safety can be ensured.
 さらに、本発明の第十三の態様に係る制震装置の設置方法は、第一の方向に向かって波山が交互に連続して形成された波形プレートと、前記波形プレートを両面から挟持するとともに、該波形プレートにおける前記第一の方向の一端側を支持する拘束部材とを備える制震装置の設置方法であって、前記拘束部材を第一の構造部材に結合し、前記波形プレートにおける前記第一の方向の他端側を第二の構造部材と対向した状態で離間して設置する。 Furthermore, the installation method of the vibration control device according to the thirteenth aspect of the present invention includes a corrugated plate in which wave peaks are alternately and continuously formed in the first direction, and the corrugated plate sandwiched from both sides. And a restraining member for supporting one end of the corrugated plate in the first direction, wherein the restraining member is coupled to a first structural member, and the corrugated plate includes the first member in the corrugated plate. The other end side in one direction is spaced apart from the second structural member.
 このような制震装置の設置方法によると、例えば、既存の免震構造や制震構造を有する構造物に対して制震装置をさらに追加して設置することで、想定範囲外の地震によって第一の構造部材に対する第二の構造部材の相対変位が所定の値を超過した際などに、制震構造のフェールセーフ機能として本発明の制震装置を使用することが可能となる。従って、確実に震動エネルギーの吸収を行い、また、さらなる安全性の確保も可能となる。 According to such a method of installing a seismic control device, for example, by installing an additional seismic control device on an existing seismic isolation structure or structure having a seismic control structure, When the relative displacement of the second structural member with respect to the one structural member exceeds a predetermined value, the damping device of the present invention can be used as a fail-safe function of the damping structure. Therefore, it is possible to reliably absorb vibration energy and secure further safety.
 また、本発明の第十四の態様に係る制震装置の設置方法では、上記第十二又は第十三の態様における制震装置の設置方法において、前記第一の構造部材と前記第二の構造部材との間に、可動支承をさらに設けてもよい。 According to a fourteenth aspect of the present invention, in the method for installing a vibration control device, in the vibration control device installation method according to the twelfth or thirteenth aspect, the first structural member and the second structural member are arranged. A movable support may be further provided between the structural members.
 このように可動支承と制震装置とを併設することで、これらの相乗効果によって震動エネルギーの吸収効果をさらに向上できる。 By installing the movable bearing and the vibration control device in this way, the absorption effect of the vibration energy can be further improved by the synergistic effect of these.
 また、本発明の第十五の態様に係る制震装置の設置方法では、上記第十四の態様における前記可動支承は、免震機能を有していてもよい。 Further, in the vibration damping device installation method according to the fifteenth aspect of the present invention, the movable bearing in the fourteenth aspect may have a seismic isolation function.
 このような免震機能を有する可動支承によって、震動エネルギーを減衰させ、震動エネルギーの吸収効果のさらなる向上が可能となる。 Such a movable bearing having a seismic isolation function can attenuate the vibration energy and further improve the absorption effect of the vibration energy.
 さらに、本発明の第十六の態様に係る制震装置の設置方法では、上記第十二から第十五のいずれかの態様における制震装置の設置方法において、前記制震装置を、前記第二の構造部材を挟んで対をなして設置してもよい。 Furthermore, in the installation method of the vibration control device according to the sixteenth aspect of the present invention, in the vibration control device installation method according to any one of the twelfth to fifteenth aspects, the vibration control device is You may install in a pair on both sides of two structural members.
 このようにすることで、対をなす制震装置のうち一方の制震装置における波形プレートに引張力が作用した際には、他方の制震装置における波形プレートには押し付け力が作用することとなる。このため、波形プレートの押し付け時のエネルギー吸収履歴と引っ張り時のエネルギー吸収履歴とが同時に作用し、微妙に相違するエネルギー吸収履歴を平均化することができ、より安定した震動エネルギーの吸収を期待できる。 By doing in this way, when a tensile force acts on the corrugated plate in one of the seismic control devices in a pair, a pressing force acts on the corrugated plate in the other seismic control device. Become. For this reason, the energy absorption history at the time of pressing the corrugated plate and the energy absorption history at the time of pulling act simultaneously, it is possible to average the energy absorption history that is slightly different, and more stable absorption of vibration energy can be expected .
 また、本発明の第十七の態様に係る波形プレートは、上記第一から第十のいずれかの態様における制震装置に用いられる波形プレートであって、複数のプレートが積層された積層プレートである。 The corrugated plate according to the seventeenth aspect of the present invention is a corrugated plate used in the vibration control device according to any one of the first to tenth aspects, and is a laminated plate in which a plurality of plates are laminated. is there.
 このような波形プレートによると、厚板を曲げ加工して製造した波形プレートと同等の降伏耐力の向上を図ることができる。また、各々のプレートをそれぞれ曲げ加工した後に積層することで、曲げ加工を容易に行うことができる。また、降伏耐力調整の自由度が増す。 Such a corrugated plate can improve the yield strength equivalent to that of a corrugated plate manufactured by bending a thick plate. Further, bending can be easily performed by laminating each plate after bending. Moreover, the freedom degree of yield strength adjustment increases.
 本発明の第一の態様に係る制震装置によると、波形プレートと、これを覆う拘束部材とによって、震動レベルの大小に関わらず確実に震動エネルギーを吸収し、制震効果の向上が可能となる。 According to the vibration control device according to the first aspect of the present invention, the corrugated plate and the restraining member that covers the corrugated plate can reliably absorb the vibration energy regardless of the vibration level and improve the vibration control effect. Become.
 また、本発明の第二の態様に係る制震装置によると、二段階での震動エネルギーの吸収で、より高い制震効果を得ることができる。 Also, according to the vibration control device according to the second aspect of the present invention, a higher vibration control effect can be obtained by absorbing vibration energy in two stages.
 また、本発明の第三の態様に係る制震装置によると、粘性流体によって減衰効果を得ることができ、制震効果のさらなる向上が可能となる。 Further, according to the vibration damping device according to the third aspect of the present invention, a damping effect can be obtained by the viscous fluid, and the vibration damping effect can be further improved.
 また、本発明の第四の態様に係る制震装置によると、粘弾性体によって履歴減衰を得ることができ、制震効果のさらなる向上が可能となる。 Further, according to the vibration control device according to the fourth aspect of the present invention, it is possible to obtain the hysteresis attenuation by the viscoelastic body, and it is possible to further improve the vibration control effect.
 さらに、本発明の第五の態様に係る制震装置によると、摩擦調整部によっても、制震効果のさらなる向上が可能となる。 Furthermore, according to the vibration control device according to the fifth aspect of the present invention, the vibration control effect can be further improved by the friction adjustment unit.
さらに、本発明の第六の態様に係る制震装置によると、補強リブによって、拘束部材の強度を確保しながら拘束部材の変形に対する柔軟性も確保できるため、制震効果のさらなる向上が可能となる。 Furthermore, according to the vibration damping device according to the sixth aspect of the present invention, the reinforcing ribs can ensure the flexibility of deformation of the restraining member while securing the strength of the restraining member, so that the vibration damping effect can be further improved. Become.
 また、本発明の第七の態様に係る制震装置によると、波形プレートの局所的な変形を抑え、波形プレート全体が十分に震動エネルギーの吸収を行なって、波形プレートが震動減衰機能を十分に発揮することができる。 Further, according to the vibration damping device according to the seventh aspect of the present invention, local deformation of the corrugated plate is suppressed, the entire corrugated plate sufficiently absorbs the vibration energy, and the corrugated plate has a sufficient vibration damping function. It can be demonstrated.
 さらに、本発明の第八の態様に係る制震装置によると、波形プレートの圧縮変形を許容しながら、最大設計変形量以上の波形プレートの変形を抑制することができる。 Furthermore, according to the vibration damping device according to the eighth aspect of the present invention, the deformation of the corrugated plate exceeding the maximum design deformation amount can be suppressed while the compressive deformation of the corrugated plate is allowed.
 また、本発明の第九の態様に係る制震装置によると、波形状保持部材によって、波形プレートの全体座屈等の発生を抑え、圧縮変形時の降伏耐力の一時的な低下を抑制することが可能となる。 Further, according to the vibration damping device according to the ninth aspect of the present invention, the corrugated plate retains the corrugated plate so as to prevent the buckling of the corrugated plate and the like, and suppresses a temporary decrease in yield strength during compression deformation. Is possible.
 さらに、本発明の第十の態様に係る制震装置によると、窓部によって波形プレートが機能しているか否かの判断が容易にでき、使用性の向上につながる。 Furthermore, according to the vibration damping device according to the tenth aspect of the present invention, it can be easily determined whether or not the corrugated plate is functioning by the window portion, leading to improved usability.
 また、本発明の第十一の態様に係る制震装置によると、降伏耐力を維持しながら波形プレートの加工が容易となることで、製作性向上によるコスト低減につながる。 In addition, according to the vibration control device according to the eleventh aspect of the present invention, the corrugated plate can be easily processed while maintaining the yield strength, which leads to cost reduction due to improvement in manufacturability.
 また、本発明の第十二の態様に係る制震装置の設置方法によると、波形プレートを第二の構造部材に結合することで、安全性を確保しながら制震効果の向上が可能となる。 Moreover, according to the installation method of the vibration control device according to the twelfth aspect of the present invention, it is possible to improve the vibration control effect while ensuring safety by coupling the corrugated plate to the second structural member. .
 さらに、本発明の第十三の態様に係る制震装置の設置方法によると、波形プレートを第二の構造部材と離間して設置することで、フェールセーフ機能として制震装置を使用でき、さらに安全性を確保しながら制震効果の向上が可能となる。 Furthermore, according to the installation method of the vibration control device according to the thirteenth aspect of the present invention, the vibration control device can be used as a fail-safe function by installing the corrugated plate apart from the second structural member. The seismic effect can be improved while ensuring safety.
 また、本発明の第十四の態様に係る制震装置の設置方法によると、可動支承と制震装置との相乗効果で、制震効果のさらなる向上が可能となる。 Further, according to the installation method of the vibration control device according to the fourteenth aspect of the present invention, the vibration control effect can be further improved by the synergistic effect of the movable support and the vibration control device.
 また、本発明の第十五の態様に係る制震装置の設置方法によると、可動支承の免震機能によって、免震・制震効果のさらなる向上が可能となる。 Further, according to the method for installing the vibration control device according to the fifteenth aspect of the present invention, the seismic isolation function of the movable bearing can further improve the seismic isolation / damping effect.
 さらに、本発明の第十六の態様に係る制震装置の設置方法によると、対をなして制震装置を設置することで、安定した震動エネルギーの吸収を期待でき、制震効果のさらなる向上が可能となる。 Furthermore, according to the installation method of the vibration control device according to the sixteenth aspect of the present invention, by installing the vibration control device in pairs, stable absorption of vibration energy can be expected, and the vibration control effect is further improved. Is possible.
 また、本発明の第十七の態様に係る波形プレートによると、降伏耐力を維持しながら加工が容易となることで、製作性向上によるコスト低減につながる。 Further, according to the corrugated plate according to the seventeenth aspect of the present invention, the processing becomes easy while maintaining the yield strength, which leads to cost reduction by improving the manufacturability.
本発明の第一実施形態に係る制震装置が設けられた橋梁の斜視図である。1 is a perspective view of a bridge provided with a vibration control device according to a first embodiment of the present invention. 本発明の第一実施形態に係る制震装置が設けられた橋梁の要部拡大図である。It is a principal part enlarged view of the bridge provided with the damping device which concerns on 1st embodiment of this invention. 本発明の第一実施形態の制震装置の斜視図である。It is a perspective view of the damping device of a first embodiment of the present invention. 本発明の第一実施形態の制震装置の側面図である。It is a side view of the damping device of a first embodiment of the present invention. 本発明の第一実施形態の制震装置の断面図であって、図4のA-A断面を示すものである。FIG. 5 is a cross-sectional view of the vibration damping device of the first embodiment of the present invention, and shows a cross section AA in FIG. 4. 本発明の第一実施形態の制震装置の断面図であって、波形プレートの波山すべてが拘束部材に非接触となっている場合を示す。It is sectional drawing of the damping device of 1st embodiment of this invention, Comprising: The case where all the wave mountains of a corrugated plate are non-contact with a restraint member is shown. 本発明の第一実施形態の制震装置の断面図であって、波形プレートの波山のうちの片側の波山すべてが拘束部材に非接触となっている場合を示す。It is sectional drawing of the damping device of 1st embodiment of this invention, Comprising: The case where all the undulations of one side among the undulations of a corrugated plate are non-contacting is shown. 本発明の第一実施形態の制震装置の断面図であって、波形プレートの波山のうちの一部の波山が拘束部材に非接触となっている場合を示す。It is sectional drawing of the damping device of 1st embodiment of this invention, Comprising: The one part of the undulation of the corrugated plate of the corrugated plate shows the case where it is non-contact with a restraint member. 本発明の第一実施形態の制震装置の波形プレートにおける力-変位履歴曲線の例を示すものである。2 shows an example of a force-displacement history curve in a corrugated plate of the vibration damping device of the first embodiment of the present invention. 本発明の第一実施形態の制震装置の拘束部材における力-変位曲線の例を示すものである。2 shows an example of a force-displacement curve in a restraining member of the vibration damping device of the first embodiment of the present invention. 本発明の第一実施形態の制震装置における力-変位曲線を示すものである。2 shows a force-displacement curve in the vibration damping device of the first embodiment of the present invention. 本発明の第二実施形態の制震装置の断面図であって、図5と同じ断面位置を示すものである。It is sectional drawing of the damping device of 2nd embodiment of this invention, Comprising: The same cross-sectional position as FIG. 5 is shown. 本発明の第二実施形態の第一変形例の制震装置の断面図であって、図5と同じ断面位置を示すものである。It is sectional drawing of the damping device of the 1st modification of 2nd embodiment of this invention, Comprising: The same cross-sectional position as FIG. 5 is shown. 本発明の第二実施形態の第二変形例の制震装置の断面図であって、図5と同じ断面位置を示すものである。It is sectional drawing of the damping device of the 2nd modification of 2nd embodiment of this invention, Comprising: The same cross-sectional position as FIG. 5 is shown. 本発明の第三実施形態の制震装置の斜視図である。It is a perspective view of the damping device of a third embodiment of the present invention. 本発明の第三実施形態の制震装置の側面図である。It is a side view of the damping device of a third embodiment of the present invention. 本発明の第三実施形態の第一変形例に係る制震装置の斜視図である。It is a perspective view of the damping device which concerns on the 1st modification of 3rd embodiment of this invention. 本発明の第三実施形態の第二変形例に係る制震装置の斜視図である。It is a perspective view of the damping device which concerns on the 2nd modification of 3rd embodiment of this invention. 本発明の第三実施形態の第三変形例に係る制震装置の斜視図である。It is a perspective view of the vibration damping device which concerns on the 3rd modification of 3rd embodiment of this invention. 本発明の第四実施形態の制震装置の斜視図である。It is a perspective view of the damping device of a fourth embodiment of the present invention. 本発明の第四実施形態の制震装置の断面図であって図5と同じ断面位置を示すものである。It is sectional drawing of the damping device of 4th embodiment of this invention, Comprising: The same cross-sectional position as FIG. 5 is shown. 仮に波形状保持部材が設けられていない制震装置の断面図であって図5と同じ断面位置を示すものである。FIG. 6 is a cross-sectional view of a vibration control device that is not provided with a corrugated holding member, and shows the same cross-sectional position as FIG. 5. 本発明の第四実施形態の制震装置における波形プレートの変形の様子を示す上面図であって、波形プレートに変形が生じていない状態を示すものである。It is a top view which shows the mode of a deformation | transformation of the corrugated plate in the damping device of 4th embodiment of this invention, Comprising: The state which has not deform | transformed the corrugated plate is shown. 本発明の第四実施形態の制震装置における波形プレートの変形の様子を示す上面図であって、波形プレートに引っ張り変形が生じた場合を示すものである。It is a top view which shows the mode of a deformation | transformation of the corrugated plate in the damping device of 4th embodiment of this invention, Comprising: The case where tensile deformation | transformation arises in the corrugated plate is shown. 本発明の第四実施形態の制震装置における波形プレートの変形の様子を示す上面図であって、波形プレートに圧縮変形が生じた場合を示すものである。It is a top view which shows the mode of a deformation | transformation of the corrugated plate in the damping device of 4th embodiment of this invention, Comprising: The case where compressive deformation arises in a corrugated plate is shown. 本発明の第四実施形態の変形例に係る制震装置の斜視図である。It is a perspective view of the damping device which concerns on the modification of 4th embodiment of this invention. 本発明の第五実施形態の制震装置の斜視図である。It is a perspective view of the damping device of a fifth embodiment of the present invention. 本発明の第六実施形態の制震装置における波形プレートを示す上面図であって、積層前の状態を示すものである。It is a top view which shows the corrugated plate in the damping device of 6th embodiment of this invention, Comprising: The state before lamination | stacking is shown. 本発明の第六実施形態の制震装置における波形プレートを示す上面図であって、積層後の状態を示すものである。It is a top view which shows the corrugated plate in the damping device of 6th embodiment of this invention, Comprising: The state after lamination | stacking is shown. 本発明の第六実施形態の変形例の制震装置における波形プレートを示す上面図であって、積層前の状態を示すものである。It is a top view which shows the corrugated plate in the damping device of the modification of 6th embodiment of this invention, Comprising: The state before lamination | stacking is shown. 本発明の第六実施形態の変形例の制震装置における波形プレートを示す上面図であって、積層後の状態を示すものである。It is a top view which shows the corrugated plate in the damping device of the modification of 6th embodiment of this invention, Comprising: The state after lamination | stacking is shown. 本発明の制震装置の第一の設置例を示す図である。It is a figure which shows the 1st installation example of the damping device of this invention. 本発明の制震装置の第一の設置例の他の例を示す図である。It is a figure which shows the other example of the 1st installation example of the damping device of this invention. 本発明の制震装置の第二の設置例を示す図である。It is a figure which shows the 2nd example of installation of the damping device of this invention. 本発明の実施形態の制震装置における波形プレートの設置方向が異なる場合の例を示す斜視図である。It is a perspective view which shows an example in case the installation direction of the corrugated plate in the vibration damping device of embodiment of this invention differs. 本発明の制震装置を建築物に適用した例を示す図である。It is a figure which shows the example which applied the damping device of this invention to the building. 本発明の制震装置をLNGタンクに適用した例を示す図である。It is a figure which shows the example which applied the damping device of this invention to the LNG tank. 本発明の制震装置の制震効果を確認する実験を行った実施例での波形プレートと拘束部材との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the corrugated plate and restraint member in the Example which conducted the experiment which confirms the damping effect of the damping device of this invention. 本発明の制震装置を用いた実施例での供試体1の実験結果を示す変形履歴ループであり、横軸は水平方向(第一の方向D1)の変位を、縦軸は水平荷重を示す。It is a deformation | transformation history loop which shows the experimental result of the test body 1 in the Example using the damping device of this invention, a horizontal axis shows the displacement of a horizontal direction (1st direction D1), and a vertical axis | shaft shows a horizontal load. . 本発明の制震装置を用いた実施例での供試体2の実験結果を示す変形履歴ループであり、横軸は水平方向(第一の方向D1)の変位を、縦軸は水平荷重を示す。It is a deformation | transformation history loop which shows the experimental result of the test body 2 in the Example using the damping device of this invention, a horizontal axis shows the displacement of a horizontal direction (1st direction D1), and a vertical axis | shaft shows a horizontal load. . 本発明の制震装置を用いた実施例での供試体3の実験結果を示す変形履歴ループであり、横軸は水平方向(第一の方向D1)の変位を、縦軸は水平荷重を示す。It is a deformation | transformation history loop which shows the experimental result of the specimen 3 in the Example using the damping device of this invention, a horizontal axis shows the displacement of a horizontal direction (1st direction D1), and a vertical axis | shaft shows a horizontal load. . 本発明の制震装置を用いた実施例での供試体4の実験結果を示す変形履歴ループであり、横軸は水平方向(第一の方向D1)の変位を、縦軸は水平荷重を示す。It is a deformation | transformation history loop which shows the experimental result of the test body 4 in the Example using the damping device of this invention, a horizontal axis shows the displacement of a horizontal direction (1st direction D1), and a vertical axis | shaft shows a horizontal load. . 本発明の制震装置を用いた実施例での供試体5の解析結果を示す変形履歴ループであり、横軸は水平方向(第一の方向D1)の変位を、縦軸は水平荷重を示す。It is a deformation | transformation history loop which shows the analysis result of the specimen 5 in the Example using the damping device of this invention, a horizontal axis shows the displacement of a horizontal direction (1st direction D1), and a vertical axis | shaft shows a horizontal load. . 本発明の制震装置を用いた実施例での供試体5の解析での変形の様子を示す概略上面図であって、水平変位が0mmの場合を示す。It is a schematic top view which shows the mode of a deformation | transformation in the analysis of the test body 5 in the Example using the damping device of this invention, Comprising: The case where a horizontal displacement is 0 mm is shown. 本発明の制震装置を用いた実施例での供試体5の解析での変形の様子を示す概略上面図であって、水平変位が-5mmの場合を示す。FIG. 5 is a schematic top view showing a deformation state in the analysis of the specimen 5 in the example using the vibration control device of the present invention, and shows a case where the horizontal displacement is −5 mm. 本発明の制震装置を用いた実施例での供試体5の解析での変形の様子を示す概略上面図であって、水平変位が-10mmの場合を示す。FIG. 6 is a schematic top view showing a deformation state in the analysis of the specimen 5 in the example using the vibration control device of the present invention, and shows a case where the horizontal displacement is −10 mm. 本発明の制震装置を用いた実施例での供試体5の解析での変形の様子を示す概略上面図であって、水平変位が-15mmの場合を示す。FIG. 5 is a schematic top view showing a deformation state in the analysis of the specimen 5 in the example using the vibration control device of the present invention, and shows a case where the horizontal displacement is −15 mm.
〔第一実施形態〕
 以下、本発明の第一実施形態に係る制震装置1について説明する。
 まず、制震装置1の設けられる橋梁11について説明する。
 図1及び図2に示すように、橋梁11は、基礎となる複数の橋脚12と、これら複数の橋脚12間にわたって橋脚12上に載置された複数の主桁13と、隣接する主桁13同士の間にこれら主桁13に直角に配されて、隣接する主桁13同士を接続する複数の横桁14とを有している。
 またこの橋梁11は、橋脚12上で、隣接する主桁13同士の間に配されて制震装置1の反力受け架台となる押さえ梁15を有している。図示はしないが橋梁11は、これら主桁13、横桁14、押さえ梁15の上部に床版が敷設される。
[First embodiment]
Hereinafter, the damping device 1 which concerns on 1st embodiment of this invention is demonstrated.
First, the bridge 11 provided with the vibration control device 1 will be described.
As shown in FIGS. 1 and 2, the bridge 11 includes a plurality of base piers 12, a plurality of main girders 13 placed on the pier 12 across the plurality of piers 12, and adjacent main girders 13. There are a plurality of cross beams 14 arranged at right angles to these main beams 13 and connecting adjacent main beams 13 to each other.
Further, the bridge 11 has a holding beam 15 which is arranged between adjacent main girders 13 on the bridge pier 12 and serves as a reaction force receiving base of the vibration control device 1. Although not shown, the bridge 11 has a floor slab laid on the main girder 13, the cross girder 14, and the holding beam 15.
 制震装置1は、橋脚12上で、主桁13の延在方向となる橋梁11の長手方向に取り付け面を向け、当該長手方向に直交する直交方向に延びる押さえ梁15に対し、この取り付け面に当接して設置されている。即ち、上部構造(第二の構造部材)となる主桁13、横桁14、押さえ梁15と、下部構造(第一の構造部材)となる橋脚12との間に配置されている。制震装置1は、地震などに起因する震動エネルギーを吸収する制震ストッパ装置となっている。
 制震装置1は必ずしも橋梁11に設けられるものではない。本実施形態では一例として橋梁11に設置した場合について説明を行う。
The vibration control device 1 has an attachment surface directed to the longitudinal direction of the bridge 11 in the extending direction of the main girder 13 on the bridge pier 12 and extending to the orthogonal direction perpendicular to the longitudinal direction. It is installed in contact with. That is, it is disposed between the main girder 13, the cross girder 14, and the pressing beam 15 that are the upper structure (second structural member) and the pier 12 that is the lower structure (first structural member). The vibration control device 1 is a vibration control stopper device that absorbs vibration energy caused by an earthquake or the like.
The vibration control device 1 is not necessarily provided on the bridge 11. This embodiment demonstrates the case where it installs in the bridge 11 as an example.
 次に制震装置1について説明する。
 図3から図5に示すように、制震装置1は、第一の方向D1に向かって複数(本実施形態では4つ)の波山20が配された波形プレート21と、この波形プレート21を第一の方向D1に直交する第二の方向D2、即ち波山20の頂部の方向から挟持する拘束部材22とを備えている。本実施形態では、第一の方向D1が橋梁11の長手方向と平行となるように制震装置1が設置されている(図1及び図2参照)。
Next, the vibration control device 1 will be described.
As shown in FIGS. 3 to 5, the vibration control device 1 includes a corrugated plate 21 in which a plurality of (four in this embodiment) wave mountains 20 are arranged in the first direction D <b> 1, and the corrugated plate 21. And a restraining member 22 that is sandwiched from a second direction D2 orthogonal to the first direction D1, that is, the direction of the top of the wave mountain 20. In the present embodiment, the vibration control device 1 is installed such that the first direction D1 is parallel to the longitudinal direction of the bridge 11 (see FIGS. 1 and 2).
 ここで挟持とは、波形プレート21に外力が作用しない自然状態では拘束部材22と接触していてもよいし非接触となっていてもよく、外力が作用した状態で波形プレート21が拘束部材22に当接して挟持されることを意味している。
 そして非接触とは、図6Aに示すように、波形プレート21の波山20すべてが拘束部材22に第二の方向D2の両側で非接触となっている場合だけでなく、図6Bに示すように第二の方向D2の片側でのみ波山20すべてが非接触となっている場合を含んでいる。また、図6Cに示すように、波形プレート21が波打って波形プレート21の波山20のうちの一部の波山20のみが非接触している場合も含んでいる。即ち、非接触とは少なくとも一つの波山20が拘束部材22に非接触となっていることを示している。
In this case, the clamping means that the corrugated plate 21 may be in contact with the restraining member 22 in a natural state where no external force acts on the corrugated plate 21 or may be non-contacted. It means that it is held in contact with.
As shown in FIG. 6A, the non-contact means not only the case where all of the undulations 20 of the corrugated plate 21 are not in contact with the restraining member 22 on both sides in the second direction D2, but also as shown in FIG. 6B. This includes the case where all the wave peaks 20 are not in contact with each other only on one side in the second direction D2. In addition, as illustrated in FIG. 6C, a case where the corrugated plate 21 is waved and only a part of the corrugated mountain 20 of the corrugated plate 21 is not in contact is included. That is, non-contact means that at least one wave mountain 20 is not in contact with the restraining member 22.
 波形プレート21は、例えば鋼板などをプレス成形して、第一の方向D1に向かって交互に連続した複数の波山20を板上に形成したものである。波形プレート21は、第一の方向D1の一端側21aで拘束部材22に固定され、支持されている。また、他端側21bには、第一の方向D1に表面を向けて板状の反力受けプレート31が取り付けられている。この反力受けプレート31にボルト32が挿通され、このボルト32によって波形プレート21が押さえ梁15に結合されている。
 この反力受けプレート31には、反力受けプレート31の表面から第一の方向D1に突出して、波形プレート21の他端側21bにおける表面に接続されるリブ34が設けられている。このリブ34は上下に所定間隔をあけて複数(本実施形態では、波形プレート21を挟んで片側に3つずつ)が設けられている。
The corrugated plate 21 is formed by pressing a steel plate or the like, for example, and forming a plurality of wave peaks 20 alternately continuous in the first direction D1 on the plate. The corrugated plate 21 is fixed to and supported by the restraining member 22 at one end side 21a in the first direction D1. Further, a plate-like reaction force receiving plate 31 is attached to the other end side 21b with the surface facing in the first direction D1. Bolts 32 are inserted into the reaction force receiving plate 31, and the corrugated plate 21 is coupled to the pressing beam 15 by the bolts 32.
The reaction force receiving plate 31 is provided with a rib 34 that protrudes from the surface of the reaction force receiving plate 31 in the first direction D1 and is connected to the surface of the corrugated plate 21 at the other end 21b. A plurality of the ribs 34 are provided at predetermined intervals in the vertical direction (in this embodiment, three on each side with the corrugated plate 21 in between).
 この波形プレート21は、図7Aに示すように、例えば降伏耐力が200[kN]程度となるように、材料及び波形形状などを調整したものである。この数値は、制震装置1が取り付けられる橋梁11の寸法や形状、及び想定する震動の大きさに応じて適宜変更可能である。 As shown in FIG. 7A, the corrugated plate 21 is prepared by adjusting the material and the corrugated shape so that the yield strength is about 200 [kN], for example. This numerical value can be appropriately changed according to the size and shape of the bridge 11 to which the vibration control device 1 is attached and the magnitude of the assumed vibration.
 拘束部材22は、上記波形プレート21を、波山20の頂部に当接するように、第二の方向D2の両面から挟持して覆う一対の側板部25と、これら側板部25に結合され、波形プレート21を上方から覆う上板部26とを有している。さらにこれら2つの側板部25と、上板部26とに結合されて波形プレート21における一端側21aから波形プレート21を覆うエンドプレート27を有している。波形プレート21はこのエンドプレート27に例えば溶接などによって固定されている。波形プレート21は、一対の側板部25同士の間の上部に配置されている。 The restraining member 22 is coupled to the pair of side plate portions 25 so as to sandwich and cover the corrugated plate 21 from both surfaces in the second direction D2 so as to contact the top of the wave mountain 20 and the corrugated plate. And an upper plate portion 26 that covers 21 from above. Furthermore, it has an end plate 27 that is coupled to the two side plate portions 25 and the upper plate portion 26 and covers the corrugated plate 21 from one end side 21 a of the corrugated plate 21. The corrugated plate 21 is fixed to the end plate 27 by, for example, welding. The corrugated plate 21 is disposed at an upper portion between the pair of side plate portions 25.
 この拘束部材22には、エンドプレート27の表面上から側板部25の外表面上にわたって第一の方向D1に延びて、補強リブ33(本実施形態では3つ)が設けられている。この補強リブ33は、側板部25が波形プレート21を覆っている位置、即ち、拘束部材22の外表面の上部に設けられており、拘束部材22の強度向上を図る部材である。 The restraining member 22 is provided with reinforcing ribs 33 (three in this embodiment) extending from the surface of the end plate 27 to the outer surface of the side plate portion 25 in the first direction D1. The reinforcing rib 33 is a member provided at a position where the side plate portion 25 covers the corrugated plate 21, that is, an upper portion of the outer surface of the restraining member 22, and is a member for improving the strength of the restraining member 22.
 この拘束部材22は、図7Bに示すように、波形プレート21よりも降伏耐力を大きくし、例えば降伏耐力が1000[kN]程度となるように、材料、板厚、板幅などを調整したものである。この数値は、波形プレート21と同様に制震装置1が取り付けられる構造物の寸法や形状、及び想定する震動の大きさに応じて適宜変更可能である。 As shown in FIG. 7B, the restraining member 22 has a yield strength greater than that of the corrugated plate 21, and is adjusted in material, thickness, width, etc., for example, so that the yield strength is about 1000 [kN]. It is. This numerical value can be changed as appropriate according to the size and shape of the structure to which the vibration control device 1 is attached and the magnitude of the assumed vibration similarly to the corrugated plate 21.
 拘束部材22は、側板部25及びエンドプレート27の下部に結合された板状をなすベースプレート28を有している。このベースプレート28は側板部25及びエンドプレート27に対して、第一の方向D1、第二の方向D2にはみ出すようにフランジ状に設けられている。ベースプレート28にアンカーボルト30が挿通されることで、拘束部材22が橋脚12の上部に載置され、橋脚12の上部に結合されている。 The restraining member 22 has a base plate 28 having a plate shape coupled to the lower side of the side plate portion 25 and the end plate 27. The base plate 28 is provided in a flange shape so as to protrude from the side plate portion 25 and the end plate 27 in the first direction D1 and the second direction D2. When the anchor bolt 30 is inserted into the base plate 28, the restraining member 22 is placed on the upper portion of the pier 12 and is coupled to the upper portion of the pier 12.
 このような制震装置1においては、例えばレベル1以下の地震動が主桁13、横桁14に発生した場合には、押さえ梁15を介して波形プレート21に震動が伝達される。この結果、図5の実線及び2点鎖線で示すように、波形プレート21が第一の方向D1にアコーディオンのように伸縮する。この際、波形プレート21は弾性変形、場合によっては塑性変形して、震動による上部構造と下部構造との間の相対変位を吸収する。 In such a vibration control device 1, for example, when a ground motion of level 1 or lower occurs in the main beam 13 and the horizontal beam 14, the vibration is transmitted to the corrugated plate 21 through the pressing beam 15. As a result, as shown by a solid line and a two-dot chain line in FIG. 5, the corrugated plate 21 expands and contracts like an accordion in the first direction D1. At this time, the corrugated plate 21 is elastically deformed, or plastically deformed in some cases, and absorbs the relative displacement between the upper structure and the lower structure due to vibration.
 そして、例えばレベル1地震動を超えるレベル2地震動が発生した場合には、波形プレート21は、さらに第一の方向D1に塑性変形してこの震動エネルギーを吸収する。 And, for example, when a level 2 ground motion exceeding a level 1 ground motion occurs, the corrugated plate 21 further plastically deforms in the first direction D1 and absorbs this ground motion energy.
 そして想定範囲外の大きな震動に対しては、拘束部材22がストッパとなり、この拘束部材22が塑性変形して震動エネルギーを吸収する。より具体的には、波形プレート21を押し付ける方向に力が作用した際には、最終的に波形プレート21の他端側21bの反力受けプレート31を介して、拘束部材22に上部構造が接触する。拘束部材22がストッパとして作用して拘束部材22が上部構造のそれ以上の変位を抑制する。また、より大きな地震(例えばレベル3地震動)では、当接した上部構造によって、拘束部材22が押し付け力を受けて拘束部材22自身が塑性変形することで、より大きな震動エネルギーを吸収することができる。さらに、波形プレート21が押し付けられ、波山20の頂部と拘束部材22とが接触してこれらの間に大きな摩擦力が作用する。この摩擦力によって波形プレート21の動きが規制された場合においても、拘束部材22が変形して震動エネルギーの吸収が可能である。 And, for a large vibration outside the assumed range, the restraining member 22 acts as a stopper, and the restraining member 22 is plastically deformed to absorb the vibration energy. More specifically, when a force is applied in the direction in which the corrugated plate 21 is pressed, the upper structure finally contacts the restraining member 22 via the reaction force receiving plate 31 on the other end 21b of the corrugated plate 21. To do. The restraining member 22 acts as a stopper, and the restraining member 22 suppresses further displacement of the superstructure. Further, in a larger earthquake (for example, level 3 ground motion), the restraining member 22 receives a pressing force and the restraining member 22 itself is plastically deformed by the abutting upper structure, so that greater vibration energy can be absorbed. . Furthermore, the corrugated plate 21 is pressed, the top of the wave mountain 20 and the restraining member 22 come into contact, and a large frictional force acts between them. Even when the movement of the corrugated plate 21 is restricted by this frictional force, the restraining member 22 is deformed and the vibration energy can be absorbed.
 拘束部材22には、その上部で外表面に補強リブ33が設けられているため、波形プレート21に対する変形拘束力を維持する一方で補強リブ33の設けられていない部分で拘束部材22のせん断変形を促すことができる。このため、例えば想定範囲外の大地震発生時(例えばレベル3地震動発生時)には、波形プレート21の変形を拘束部材22が拘束して制震装置1全体の破損を防止しつつ、拘束部材22自身の変形を容易とし、震動エネルギーの吸収効果を向上できる。なお、このような本実施形態の構造によって、拘束部材22が上部で剛となり下部で柔となることは解析によっても確認されている。 Since the reinforcing rib 33 is provided on the outer surface of the restraining member 22 at the upper part thereof, the deformation restraining force on the corrugated plate 21 is maintained, and the shear deformation of the restraining member 22 is performed at a portion where the reinforcing rib 33 is not provided. Can be encouraged. For this reason, for example, when a large earthquake outside the assumed range occurs (for example, when a level 3 earthquake motion occurs), the restraining member 22 restrains the deformation of the corrugated plate 21 and prevents the entire damping device 1 from being damaged. The deformation of 22 itself can be facilitated, and the absorption effect of vibration energy can be improved. In addition, it has also been confirmed by analysis that the restraining member 22 is rigid at the upper part and soft at the lower part by the structure of this embodiment.
 ここで、波形プレート21及び拘束部材22が震動による荷重を受けた際の反力と、第一の方向D1への変位量との関係については図8に示す通りとなる。なお図8は、図7A及び図7Bをまとめて正の方向のグラフのみ描いたものである。図8の実線に示すように、まず波形プレート21が弾性域A1で変形し、その後、降伏点YP1に達する。降伏点YP1以降は波形プレート21が塑性域A2で変形することとなる。しばらく塑性変形した後、波形プレート21の変形が拘束部材22によって規制される。この際、拘束部材22はまず弾性域A3で変形し、その後、拘束部材22が降伏点YP2に達して塑性域A4での変形を開始する。このようにして微小震動から大きな震動までの震動エネルギーを吸収することが可能となっている。 Here, the relationship between the reaction force when the corrugated plate 21 and the restraining member 22 receive a load due to vibration and the amount of displacement in the first direction D1 is as shown in FIG. FIG. 8 is a graph in which FIGS. 7A and 7B are collected and only a graph in the positive direction is drawn. As shown by the solid line in FIG. 8, the corrugated plate 21 is first deformed in the elastic region A1, and then reaches the yield point YP1. After the yield point YP1, the corrugated plate 21 is deformed in the plastic region A2. After plastic deformation for a while, deformation of the corrugated plate 21 is restricted by the restraining member 22. At this time, the restraining member 22 is first deformed in the elastic region A3, and then the restraining member 22 reaches the yield point YP2 and starts deforming in the plastic region A4. In this way, it is possible to absorb the seismic energy from small to large.
 また、図8の破線に示すように、仮に、波形プレート21が設けられず、主に塑性変形によって震動エネルギーを吸収するせん断パネル型ダンパーを橋梁11に設置した場合には、本実施形態の制震装置1と比較して、変形開始時の初期剛性が高くなり、降伏点YPに至るまでより立ち上がりが急なグラフとなる。即ちこの場合、降伏変位が極めて小さくなるばかりか、比較的小さな震動(例えばレベル1地震動)に対して十分に震動エネルギーを吸収することができない。また、大きな地震動(例えばレベル2地震動)に対しても十分な降伏変位を確保することができず、押さえ梁15とその周辺の部材の剛性が十分に大きくない場合において設計通りのエネルギー吸収が期待できない。一方で、本実施形態の制震装置1では、波形プレート21の材質、波山20のピッチを適宜変更することで初期剛性を調整でき、かつ降伏変位を大きくできる。よって、比較的小さな地震動から大きな地震動に対して震動エネルギーを効率良く吸収することが可能となる。 Further, as shown by a broken line in FIG. 8, if the corrugated plate 21 is not provided and a shear panel type damper that absorbs vibration energy mainly by plastic deformation is installed on the bridge 11, the control of this embodiment is performed. Compared with the seismic device 1, the initial stiffness at the start of deformation becomes higher, and the graph rises more rapidly until reaching the yield point YP. That is, in this case, not only the yield displacement is extremely small, but also the vibration energy cannot be sufficiently absorbed for a relatively small vibration (for example, level 1 earthquake vibration). In addition, sufficient yield displacement cannot be ensured even for large earthquake motions (for example, level 2 earthquake motions), and energy absorption as designed is expected when the stiffness of the retaining beam 15 and its surrounding members is not sufficiently high. Can not. On the other hand, in the vibration damping device 1 of the present embodiment, the initial rigidity can be adjusted and the yield displacement can be increased by appropriately changing the material of the corrugated plate 21 and the pitch of the wave mountain 20. Therefore, it is possible to efficiently absorb the vibration energy from a relatively small earthquake motion to a large earthquake motion.
 本実施形態の制震装置1によると、波形プレート21とこれを覆う拘束部材22とによって、震動レベルの大小に関わらず確実に震動エネルギーを吸収し、制震効果の向上が可能となる。また、拘束部材22においては補強リブ33が設けられていることによって、拘束部材22の強度を確保しながらも、拘束部材22の変形に対する柔軟性も確保できる。従って、制震効果のさらなる向上が可能となる。 According to the vibration damping device 1 of this embodiment, the corrugated plate 21 and the restraining member 22 that covers the corrugated plate 21 can reliably absorb the vibration energy regardless of the vibration level, thereby improving the vibration control effect. Further, by providing the reinforcing rib 33 in the restraining member 22, it is possible to secure flexibility of the restraining member 22 while deforming the restraining member 22 while securing the strength of the restraining member 22. Therefore, the vibration control effect can be further improved.
 波形プレート21及び拘束部材22については、材料及び形状を調整することによって降伏耐力を近いものとし、即ち降伏点YP1、YP2同士を近づけることで、波形プレート21の変形から拘束部材22の変形へ滑らかに移行させることができる。即ち、波形プレート21の塑性変形時から拘束部材22の弾性変形時に移行する際に発生し得る衝撃を緩和することができ、震動エネルギーの吸収効果の向上が可能となる。 For the corrugated plate 21 and the restraining member 22, the yield strength is made close by adjusting the material and shape, that is, the yield points YP1 and YP2 are brought close to each other, so that the deformation from the corrugated plate 21 to the restraint member 22 is smooth. Can be migrated to. That is, it is possible to mitigate the impact that may occur when the corrugated plate 21 is shifted from the plastic deformation to the elastic deformation of the restraining member 22, thereby improving the vibration energy absorption effect.
 本実施形態では、押さえ梁15各々に対して1つの制震装置1が、押さえ梁15の片側の表面に当接して配置されているが、これに限定されることはない。上部構造となる主桁13及び横桁14と、下部構造となる橋脚12との間で、これらの相対移動を規制するように配置されていればよい。即ち、押さえ梁15ではなく、直接主桁13などを支持してもよい。 In this embodiment, one damping device 1 is disposed in contact with the surface of one side of the pressing beam 15 for each pressing beam 15, but the present invention is not limited to this. What is necessary is just to arrange | position so that these relative movement may be controlled between the main girder 13 and the horizontal girder 14 used as an upper structure, and the bridge pier 12 used as a lower structure. That is, the main beam 13 or the like may be directly supported instead of the pressing beam 15.
 本実施形態では、制震装置1における拘束部材22の下部をベースプレート28によって橋脚12に結合しているが、例えば、エンドプレート27側で下部構造に結合されていてもよく、拘束部材22と下部構造との結合位置は、本実施形態には限定されない。 In the present embodiment, the lower part of the restraining member 22 in the vibration control device 1 is coupled to the pier 12 by the base plate 28. However, for example, the restraining member 22 and the lower part may be coupled to the lower structure on the end plate 27 side. The coupling position with the structure is not limited to this embodiment.
 補強リブ33は必ずしも設けなくともよく、設置数量も拘束部材22に必要とされる強度に応じて適宜選択可能である。 The reinforcing ribs 33 do not necessarily have to be provided, and the installation quantity can be appropriately selected according to the strength required for the restraining member 22.
 波形プレート21は、押さえ梁15に結合されて設置されていなくともよく、即ち、離間して設置されていてもよい。この場合、震動が発生した際の上部構造と下部構造との間の相対変位が、波形プレート21と押さえ梁15との間の離間距離よりも大きくなった際に初めて押さえ梁15に波形プレート21が当接することとなる。このような設置例は、後述する第二の設置例にて詳細を説明する。 The corrugated plate 21 may not be connected to the presser beam 15, that is, may be installed separately. In this case, when the relative displacement between the upper structure and the lower structure when a vibration occurs is larger than the separation distance between the corrugated plate 21 and the retainer beam 15, the corrugated plate 21 is not moved to the retainer beam 15 for the first time. Will come into contact. Such an installation example will be described in detail in a second installation example described later.
〔第二実施形態〕
 次に、本発明の第二実施形態に係る制震装置41について説明する。
 第一実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 図9に示すように、制震装置41は、波形プレート21と拘束部材52との間に充填された粘性流体55をさらに有している。この粘性流体55は、例えばビンガム流体などである。ここで、波形プレート21と拘束部材52との間に粘性流体55として、粘弾性体を充填してもよい。この粘弾性体は、例えばアクリル系粘弾性体、ゴムアスファルト系粘弾性体、天然ゴム、高減衰ゴムなどである。
[Second Embodiment]
Next, the vibration control device 41 according to the second embodiment of the present invention will be described.
Constituent elements common to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
As shown in FIG. 9, the vibration control device 41 further includes a viscous fluid 55 filled between the corrugated plate 21 and the restraining member 52. The viscous fluid 55 is, for example, a Bingham fluid. Here, a viscoelastic body may be filled as the viscous fluid 55 between the corrugated plate 21 and the restraining member 52. Examples of the viscoelastic body include an acrylic viscoelastic body, a rubber asphalt viscoelastic body, natural rubber, and a high damping rubber.
 拘束部材52は、第一実施形態の拘束部材22に対して、側板部25及び上板部26に結合されて、波形プレート21の他端側21bと同じ側の第一の方向D1の端部を閉塞し、粘性流体55の流出や外部からの水などの浸入を防止する塞ぎ板53をさらに有している。 The restraining member 52 is coupled to the side plate portion 25 and the upper plate portion 26 with respect to the restraining member 22 of the first embodiment, and is the end portion in the first direction D1 on the same side as the other end side 21b of the corrugated plate 21. And a closing plate 53 for preventing the viscous fluid 55 from flowing out and entering water or the like from the outside.
 このような制震装置41においては、波形プレート21が動作した際に発生する粘性減衰力で震動エネルギーの一部が消費される。このため、波形プレート21の弾性域A1の範囲内においても、微小地震の震動エネルギーの減衰効果を期待できる。 In such a vibration control device 41, a part of the vibration energy is consumed by the viscous damping force generated when the corrugated plate 21 is operated. For this reason, even within the range of the elastic region A1 of the corrugated plate 21, it is possible to expect the damping effect of the vibration energy of the microearthquake.
 本実施形態の制震装置41によると、粘性流体55を充填したことによって、微小地震の震動エネルギーの吸収に加え、減衰効果も得られ、制震効果のさらなる向上が可能となる。 According to the vibration control device 41 of the present embodiment, by filling the viscous fluid 55, in addition to absorbing the vibration energy of the microearthquake, a damping effect can be obtained, and the vibration control effect can be further improved.
 なお図10に示すように、制震装置は、粘性流体55に代えて、波形プレート21と拘束部材52との間の摩擦力を低減する摩擦低減部(摩擦調整部)60を有している制震装置61であってもよい。 As shown in FIG. 10, the vibration control device includes a friction reducing unit (friction adjusting unit) 60 that reduces the frictional force between the corrugated plate 21 and the restraining member 52 instead of the viscous fluid 55. The vibration control device 61 may be used.
 この摩擦低減部60は、例えば付着防止剤であるPTFE(ポリテトラフルオロエチレン)によるコーティングを拘束部材52の内表面に施したものや、単純に潤滑油を拘束部材52の内表面に塗布したものである。 The friction reducing portion 60 is, for example, a coating made of PTFE (polytetrafluoroethylene), which is an adhesion preventing agent, applied to the inner surface of the restraining member 52, or a lubricant simply applied to the inner surface of the restraining member 52. It is.
 このような摩擦低減部60によって、拘束部材52との間で波形プレート21が円滑に動作可能となり、比較的小さな地震による震動エネルギーの吸収効果を向上できる。 Such a friction reducing portion 60 enables the corrugated plate 21 to operate smoothly with the restraining member 52, and can improve the effect of absorbing vibration energy caused by a relatively small earthquake.
 潤滑油などが漏れ出さない場合には、拘束部材52における塞ぎ板53は必ずしも設けなくともよい。 When the lubricating oil or the like does not leak out, the closing plate 53 in the restraining member 52 is not necessarily provided.
 さらに、図11に示すように、制震装置は、摩擦低減部60に代えて、波形プレート21と拘束部材52との間の摩擦力を増大する摩擦増大部(摩擦調整部)70を設けた制震装置71であってもよい。このような摩擦増大部70は、例えば、ブラスト加工や樹脂塗装などを拘束部材52の内表面に施したものである。 Furthermore, as shown in FIG. 11, the vibration control device includes a friction increasing portion (friction adjusting portion) 70 that increases the frictional force between the corrugated plate 21 and the restraining member 52 instead of the friction reducing portion 60. The vibration control device 71 may be used. Such a friction increasing portion 70 is obtained by, for example, performing blasting or resin coating on the inner surface of the restraining member 52.
 このような摩擦増大部70によって、波形プレート21が動作した際に発生する摩擦力で震動エネルギーの一部が消費される。即ち、摩擦力-変位曲線がヒステリシスを描き、震動エネルギーの減衰効果を向上できる。 Such a friction increasing part 70 consumes a part of the vibration energy by the frictional force generated when the corrugated plate 21 is operated. That is, the frictional force-displacement curve draws hysteresis, and the damping effect of vibration energy can be improved.
〔第三実施形態〕
 次に、本発明の第三実施形態に係る制震装置81について説明する。
 第一実施形態及び第二実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 図12及び図13に示すように、制震装置81は、第一実施形態における制震装置1とは、拘束部材82、反力受けプレート83の形状が異なっている。
[Third embodiment]
Next, the vibration control device 81 according to the third embodiment of the present invention will be described.
Constituent elements common to the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
As shown in FIG.12 and FIG.13, the shape of the restraining member 82 and the reaction force receiving plate 83 differs in the damping device 81 from the damping device 1 in 1st embodiment.
 拘束部材82は、波形プレート21を、波山20の頂部に当接するように、第二の方向D2の両面から挟持して覆う側板部84と、これら一対の側板部84各々に一体に結合されて、波形プレート21の一端側21aで第二の方向D2に互いに離間するように折れ曲がって形成された一対の屈曲部85とを有している。 The restraining member 82 is integrally coupled to each of the pair of side plate portions 84 and the side plate portions 84 that sandwich and cover the corrugated plate 21 from both surfaces in the second direction D2 so as to contact the top of the wave mountain 20. The corrugated plate 21 has a pair of bent portions 85 that are bent at the one end side 21a of the corrugated plate 21 so as to be separated from each other in the second direction D2.
 拘束部材82は、これら一対の屈曲部85に第一の方向D1から接触して取り付けられているとともに、波形プレート21の一端側21aを第二の方向D2から挟持するエンドプレート86を有している。 The restraint member 82 is attached to the pair of bent portions 85 in contact with the first direction D1, and has an end plate 86 that sandwiches the one end side 21a of the corrugated plate 21 from the second direction D2. Yes.
 エンドプレート86は、波形プレート21の一端側21aを第二の方向D2の両側から挟持する一対の側部87と、これら一対の側部87各々に一体に結合されて、第一の方向D1から屈曲部85に接するように第二の方向D2に互いに離間するように折れ曲がって形成された一対の接触部88とから構成されている。 The end plate 86 is integrally coupled to each of the pair of side portions 87 that sandwich one end side 21a of the corrugated plate 21 from both sides in the second direction D2, and from the first direction D1. It is comprised from a pair of contact part 88 formed by bending so that it might mutually be spaced apart in the 2nd direction D2 so that the bending part 85 might be contact | connected.
 そして、屈曲部85と接触部88とが接触した状態で、これらを貫通するようにボルト90が挿通され、ナット91によって屈曲部85と接触部88とが締結されている。波形プレート21をエンドプレート86の側部87が挟持した状態で、これらを貫通するようにボルト90が挿通され、ナット91によって波形プレート21とエンドプレート86とが締結されている。このようにして、拘束部材82と波形プレート21の一端側21aとが固定されている。 Then, in a state where the bent portion 85 and the contact portion 88 are in contact with each other, the bolt 90 is inserted so as to pass through them, and the bent portion 85 and the contact portion 88 are fastened by the nut 91. In a state where the corrugated plate 21 is sandwiched between the side portions 87 of the end plate 86, bolts 90 are inserted through the corrugated plate 21, and the corrugated plate 21 and the end plate 86 are fastened by nuts 91. In this way, the restraining member 82 and the one end side 21a of the corrugated plate 21 are fixed.
 この拘束部材82には、屈曲部85の表面上から側板部84の外表面上にわたって第一の方向D1に延びて、4つの補強リブ89が設けられているが、数量は第一実施形態の補強リブ33のように3つであってもよく、数量は限定されない。 The restraining member 82 is provided with four reinforcing ribs 89 extending in the first direction D1 from the surface of the bent portion 85 to the outer surface of the side plate portion 84. The quantity is the same as that of the first embodiment. Three may be sufficient like the reinforcement rib 33, and quantity is not limited.
 反力受けプレート83は、波形プレート21の他端側21bを挟持する一対の側部92と、これら一対の側部92各々に一体に結合されて、第一の方向D1から押さえ梁15に結合可能となるように第二の方向D2に互いに離間するように折れ曲がって形成された一対の当接部93とから構成されている。 The reaction force receiving plate 83 is integrally coupled to the pair of side portions 92 that sandwich the other end side 21b of the corrugated plate 21 and the pair of side portions 92, and is coupled to the pressing beam 15 from the first direction D1. It is comprised from a pair of contact part 93 formed so that it might be spaced apart in the 2nd direction D2 so that it might become possible.
 波形プレート21を側部92が第二の方向D2の両側から挟持した状態で、これらを貫通するようにボルト90が挿通されて、ナット91によって波形プレート21と側部92とが締結されている。このようにして波形プレート21に反力受けプレート83が取り付けられている。 In a state where the corrugated plate 21 is sandwiched from both sides in the second direction D <b> 2, a bolt 90 is inserted so as to penetrate the corrugated plate 21, and the corrugated plate 21 and the side portion 92 are fastened by the nut 91. . In this way, the reaction force receiving plate 83 is attached to the corrugated plate 21.
 本実施形態の制震装置81によると、波形プレート21を拘束部材82及び反力受けプレート83に確実に固定することができ、想定範囲外の大地震発生時であっても、確実に制震効果の向上を図ることができる。 According to the vibration damping device 81 of the present embodiment, the corrugated plate 21 can be securely fixed to the restraining member 82 and the reaction force receiving plate 83, and even when a large earthquake outside the assumed range occurs, the vibration damping is reliably performed. The effect can be improved.
 図14に示すように、ベースプレート98は第二の方向D2の中央で二つに分割されて構成されていてもよい。このような構成によって、例えば、波形プレート21の寸法公差に対しても拘束部材82の設置位置を調整することができる。このため波形プレート21の寸法公差に対する要求が小さくなり、品質管理の面で好ましい。
 このような分割構成によって、拘束部材82による波形プレート21の拘束度の調整が可能となり、設置時の作業性向上につながる。
As shown in FIG. 14, the base plate 98 may be divided into two at the center in the second direction D2. With such a configuration, for example, the installation position of the restraining member 82 can be adjusted with respect to the dimensional tolerance of the corrugated plate 21. For this reason, the request | requirement with respect to the dimensional tolerance of the corrugated plate 21 becomes small, and it is preferable in terms of quality control.
With such a divided configuration, it is possible to adjust the degree of restraint of the corrugated plate 21 by the restraining member 82, leading to improved workability during installation.
 図15に示すように、拘束部材94は、一対の側板部84各々に一体に結合されて、波形プレート21の他端側21bで第二の方向D2に互いに離間するように折れ曲がって形成された一対の屈曲部95をさらに有していてもよい。即ち、側板部84、屈曲部85、屈曲部95が一体としてC型鋼となっている。このようなC型鋼を拘束部材94に適用することで、拘束部材94の剛性が増大し、拘束部材94の拘束力を大きくすることができる。従って制震装置の耐力を向上することが可能となる。ここで、補強リブ89は、図16に示すように必ずしも設けられなくともよいが、補強リブ89が設けられる場合と比較して拘束力は小さくなる。 As shown in FIG. 15, the restraining member 94 is integrally joined to each of the pair of side plate portions 84, and is bent at the other end side 21 b of the corrugated plate 21 so as to be separated from each other in the second direction D <b> 2. You may further have a pair of bending part 95. FIG. That is, the side plate portion 84, the bent portion 85, and the bent portion 95 are integrally formed into C-shaped steel. By applying such C-shaped steel to the restraining member 94, the rigidity of the restraining member 94 is increased and the restraining force of the restraining member 94 can be increased. Accordingly, it is possible to improve the strength of the vibration control device. Here, the reinforcing rib 89 does not necessarily have to be provided as shown in FIG. 16, but the restraining force is smaller than in the case where the reinforcing rib 89 is provided.
 本実施形態では、拘束部材82の上方は開口しており、波形プレート21は露出した状態となっているが、例えば、第一実施形態の上板部26等を有し、上部が覆われていてもよい。 In the present embodiment, the upper portion of the restraining member 82 is open and the corrugated plate 21 is exposed. For example, the upper plate portion 26 and the like of the first embodiment are covered and the upper portion is covered. May be.
〔第四実施形態〕
 次に、本発明の第四実施形態に係る制震装置81について説明する。
 第一実施形態から第三実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 図17及び図18Aに示すように、制震装置1Aは、第三実施形態の制震装置81が、波形状保持部材130をさらに備えている。
[Fourth embodiment]
Next, a vibration control device 81 according to a fourth embodiment of the present invention will be described.
Constituent elements common to the first to third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
As shown in FIGS. 17 and 18A, in the vibration damping device 1A, the vibration damping device 81 of the third embodiment further includes a wave shape holding member 130.
 波形状保持部材130は、波形プレート21における波山20と、この波山20に当接する拘束部材94の内表面との間に配されている。具体的には、波山20の谷側となる位置で波形プレート21と拘束部材94との間に挿入されて、下方からベースプレート98によって支持されている。これにより、波形状保持部材130は、拘束部材94の内表面及び波形プレート21に対して、相対移動可能に設けられている。 The wave shape holding member 130 is disposed between the wave crest 20 on the corrugated plate 21 and the inner surface of the restraining member 94 that contacts the wave crest 20. Specifically, it is inserted between the corrugated plate 21 and the restraining member 94 at a position on the valley side of the wave mountain 20 and is supported by the base plate 98 from below. Accordingly, the wave shape holding member 130 is provided so as to be relatively movable with respect to the inner surface of the restraining member 94 and the corrugated plate 21.
 本実施形態では、この波形状保持部材130は、波形プレート21で第一の方向D1の中央位置に形成された波山20に対応する位置で、隣接する波山20の谷側に、複数(本実施形態では三つ)が設けられている。
 各々の波形状保持部材130は、波山20の形状に沿って波山20に対向する湾曲面131aが形成された凸頭部131と、凸頭部131と拘束部材94の内表面との間に配されて凸頭部131と一体に形成されたブロック状をなす土台部132とを有している。そしてこの波形状保持部材130は、外力が作用しない自然状態で波山20の頂部との間に隙間が形成されている。
In the present embodiment, a plurality of wave shape holding members 130 are provided on the valley side of the adjacent wave mountain 20 at the position corresponding to the wave mountain 20 formed at the center position in the first direction D1 on the wave plate 21 (this embodiment). In the form, three) are provided.
Each of the wave shape holding members 130 is arranged between the convex head 131 in which a curved surface 131 a facing the wave mountain 20 is formed along the shape of the wave mountain 20, and between the convex head 131 and the inner surface of the restraining member 94. And a base 132 having a block shape formed integrally with the convex head 131. In addition, a gap is formed between the wave shape holding member 130 and the top of the wave mountain 20 in a natural state where no external force acts.
 この隙間に関しては、波形プレート21に対して第一の方向D1に引っ張る引張力が作用して、予め設定された最大設計変形量の引っ張り変形が波形プレート21に生じた際に、ちょうど波山20と、波形状保持部材130における凸頭部131の湾曲面131aとが、第二の方向D2から接触する寸法に設定されている(図19B参照)。 With respect to this gap, when a tensile force pulling in the first direction D1 acts on the corrugated plate 21 and a tensile deformation of a preset maximum design deformation amount occurs in the corrugated plate 21, it is exactly the same as the wavy mountain 20 The curved surface 131a of the convex head 131 in the wave shape holding member 130 is set to a dimension that comes into contact with the second direction D2 (see FIG. 19B).
 この隙間は、波形プレート21に対して第一の方向D1に押し込む圧縮力が作用して、予め設定された最大設計変形量の圧縮変形が波形プレート21に生じた際に、ちょうど波山20と湾曲面131aとが、第一の方向D1から接触する寸法に設定されている(図19C参照)。 This gap is just curved with the undulation 20 when a compressive force that pushes the corrugated plate 21 in the first direction D1 acts on the corrugated plate 21 with a preset maximum design deformation amount. The surface 131a is set to a dimension that comes into contact with the first direction D1 (see FIG. 19C).
 本実施形態では、波形プレート21の波山20の頂部と波山20に当接する拘束部材94の内表面とは、波形プレート21に対して第一の方向D1に外力が作用しない状態で非接触となっている。また、波形プレート21に対して第一の方向D1に外力が作用して最大設計変形量の圧縮変形が生じた際に、波山20の頂部と拘束部材94の内表面とが接触するようになっている。 In the present embodiment, the top of the corrugated plate 21 of the corrugated plate 21 and the inner surface of the restraining member 94 that abuts the corrugated plate 20 are not in contact with the corrugated plate 21 when no external force acts in the first direction D1. ing. Further, when an external force acts on the corrugated plate 21 in the first direction D1 to cause a maximum design deformation amount of compressive deformation, the top of the wave mountain 20 and the inner surface of the restraining member 94 come into contact with each other. ing.
 本実施形態の制震装置1Aによると、波形プレート21に外力が作用しない自然状態では、波形プレート21と拘束部材94との間には隙間が設けられて波形プレート21と拘束部材94とは非接触となっている。 According to the vibration damping device 1A of the present embodiment, in a natural state where no external force acts on the corrugated plate 21, a gap is provided between the corrugated plate 21 and the restraining member 94 so that the corrugated plate 21 and the restraining member 94 are not. In contact.
 波形プレート21が第一の方向D1に押し付けられるように、波形プレート21に圧縮力が作用すると、波山20が高くなるように波形プレート21が変形する。この際、本実施形態では波形プレート21と拘束部材94との間の隙間によって、このような波形プレート21の変形を許容できる。従って、局所的に波山20が変形してしまうことを防止でき、波形プレート21全体が十分に震動エネルギーの吸収を行なって、波形プレート21が震動減衰機能を十分に発揮することができる。 When the compressive force is applied to the corrugated plate 21 so that the corrugated plate 21 is pressed in the first direction D1, the corrugated plate 21 is deformed such that the wave mountain 20 becomes higher. At this time, in this embodiment, such a deformation of the corrugated plate 21 can be allowed by the gap between the corrugated plate 21 and the restraining member 94. Therefore, it is possible to prevent the wave mountain 20 from being locally deformed, and the entire corrugated plate 21 can sufficiently absorb the vibration energy, so that the corrugated plate 21 can sufficiently exhibit the vibration damping function.
 波形プレート21に対して第一の方向D1に外力が作用し、最大設計変形量の圧縮変形が生じた際には、波山20の頂部と拘束部材94の内表面とが接触することで、拘束部材94による拘束力が波形プレート21に作用する。従って、最大設計変形量の圧縮変形が生じるまでは波形プレート21の圧縮変形を許容し、震動エネルギーを吸収しつつ、最大設計変形量以上の波形プレート21の変形を抑制することができる。 When an external force is applied to the corrugated plate 21 in the first direction D1 and a maximum amount of design deformation occurs, the top of the wave mountain 20 and the inner surface of the restraining member 94 come into contact with each other. The restraining force by the member 94 acts on the corrugated plate 21. Therefore, until the maximum design deformation amount of compressive deformation occurs, the corrugated plate 21 is allowed to compress and deform, and the deformation of the corrugated plate 21 exceeding the maximum design deformation amount can be suppressed while absorbing vibration energy.
 波形プレート21と拘束部材94との間には隙間が設けられているため、波形プレート21が引っ張り変形から圧縮変形に移行する際に、図19Bに示すように、波形プレート21に微小な全体座屈が生じてしまうおそれがある(本図では一次モードの変形)。この点、本実施形態では、このような全体座屈を抑制するように、波形状保持部材130によって波形プレートが所定の形状となるように変形が抑制される。即ち、波山20の高さ寸法、波山20の第一の方向D1の幅寸法が凸頭部131の湾曲面131aの形状に応じて所定の値の範囲内に収まることになる。 Since a gap is provided between the corrugated plate 21 and the restraining member 94, when the corrugated plate 21 shifts from a tensile deformation to a compressive deformation, as shown in FIG. There is a risk that bending will occur (in this figure, deformation of the primary mode). In this regard, in the present embodiment, deformation is suppressed by the wave shape holding member 130 so that the corrugated plate has a predetermined shape so as to suppress such overall buckling. That is, the height dimension of the wavy mountain 20 and the width dimension in the first direction D1 of the wavy mountain 20 fall within a predetermined value range according to the shape of the curved surface 131a of the convex head 131.
 具体的には、波形プレート21に対して、図19Aに示すように外力が作用していない状態から、図19Bに示すように引張力が作用する状態となると、波山20と湾曲面131aとが第二の方向D2から接触し、波山20の高さがこれ以上に低くならないように変形を抑制する。 Specifically, when the tensile force is applied to the corrugated plate 21 from the state in which no external force is applied as shown in FIG. 19A to the state in which a tensile force is applied as shown in FIG. It contacts from the 2nd direction D2, and a deformation | transformation is suppressed so that the height of the wave mountain 20 may not become lower than this.
 そして、波形プレート21に対して、図19Cに示すように、圧縮力が作用すると、波山20と湾曲面131aとが第一の方向D1から接触し、波山20がこれ以上に高くならないように変形を抑制する。 Then, as shown in FIG. 19C, when the compressive force is applied to the corrugated plate 21, the undulation 20 and the curved surface 131a come into contact with each other from the first direction D1, and the undulation 20 is deformed so as not to become higher. Suppress.
 このようにして、図18Bに示すような全体座屈を抑制でき、波山20が所定の形状を保ったまま、波形プレート21が伸縮変形可能となる。このため、圧縮変形時に全体座屈が発生することによる降伏耐力の一時的な低下を抑制することが可能となる。 In this way, the overall buckling as shown in FIG. 18B can be suppressed, and the corrugated plate 21 can be expanded and contracted while the wave mountain 20 maintains a predetermined shape. For this reason, it becomes possible to suppress the temporary fall of the yield strength by the whole buckling occurring at the time of compressive deformation.
 例えば、一部の波山20で板厚が極端に薄くなっている等、波形プレート21に製作誤差が生じている場合には、波形プレート21が伸縮変形する際に、この波山20には、他の波山20よりも大きな変形が生じてしまうことがある。そこで、このような製作誤差のある波山20の谷側に、波形状保持部材130を設けることで、このような一部の波山20が局所的に変形してしまうことを抑制できる。 For example, when a manufacturing error has occurred in the corrugated plate 21 such as when the corrugated plate 21 is extremely thin at some of the corrugated mountains 20, when the corrugated plate 21 expands and contracts, There may be a case where deformation larger than the wave mountain 20 occurs. Therefore, by providing the wave shape holding member 130 on the valley side of the wave mountain 20 having such a manufacturing error, it is possible to suppress such partial deformation of the wave mountain 20.
 本実施形態では波形状保持部材130は波形プレート21の第一の方向D1の中央位置の波山20に設けられている。このため、波形プレート21での一次モードの変形を抑制可能である。波形状保持部材130の設置箇所は本実施形態の場合に限定されず、波山20の数量に応じて決定すればよい。また、二次モード以上の振動モードの変形を抑制するように、波形状保持部材130の設置位置は適宜選択することも可能である。
 即ち、波形状保持部材130は、少なくとも隣接する二つの波山20の谷側に設けられていればよい。
In the present embodiment, the wave shape holding member 130 is provided on the wave mountain 20 at the center position of the corrugated plate 21 in the first direction D1. For this reason, deformation of the primary mode in the corrugated plate 21 can be suppressed. The installation location of the wave shape holding member 130 is not limited to the case of the present embodiment, and may be determined according to the number of wave mountains 20. In addition, the installation position of the waveform holding member 130 can be appropriately selected so as to suppress the deformation of the vibration mode higher than the secondary mode.
That is, the wave shape holding member 130 only needs to be provided on the valley side of at least two adjacent wave peaks 20.
 波形状保持部材130における凸頭部131では、波山20に対向する面が必ずしも湾曲面131aに形成されている必要はない。例えば、凸頭部131が上方から見て断面三角形状とされ、三角形の頂点が波山20の頂部に対応する谷側の位置に接触するようになっていてもよい。また土台部132の形状も様々に選択可能である。 In the convex head 131 in the wave shape holding member 130, the surface facing the wave mountain 20 does not necessarily have to be formed in the curved surface 131a. For example, the convex head 131 may have a triangular cross section when viewed from above, and the apex of the triangle may come into contact with the valley side position corresponding to the top of the wave mountain 20. Various shapes of the base portion 132 can be selected.
 図20に示すように、波形状保持部材130Aは、波形プレート21の上下方向全域にわたって上下に延びる形状となっていなくともよく、例えば上下に間隔をあけて複数(本図では、各々の波山20に対して三個ずつ)が設けられていてもよい。そしてこの場合、詳細は図示しないが、波形状保持部材130Aが上下方向に移動しないように、例えば拘束部材94の内表面に、波形状保持部材130Aを上下から挟み込んで支持するようなガイドを設ける。 As shown in FIG. 20, the wave shape holding member 130 </ b> A does not have to have a shape that extends vertically across the entire area of the corrugated plate 21. For example, a plurality of wave shape holding members 130 </ b> May be provided three by three). In this case, although not shown in detail, for example, a guide that sandwiches and supports the waveform holding member 130A from above and below is provided on the inner surface of the restraining member 94 so that the waveform holding member 130A does not move in the vertical direction. .
 本実施形態では、波形プレート21の波山20の数量が第三実施形態のものよりも多くなっているが、第三実施形態と同じ数量であってもよく、波山20の数量は限定されない。
 ベースプレート98と波形プレート21との間には隙間が設けられていないが、第三実施形態の制震装置81と同様に隙間が設けられていてもよい。
In the present embodiment, the number of wave peaks 20 of the corrugated plate 21 is larger than that of the third embodiment, but the same number as in the third embodiment may be used, and the number of wave peaks 20 is not limited.
Although no gap is provided between the base plate 98 and the corrugated plate 21, a gap may be provided as in the case of the vibration control device 81 of the third embodiment.
〔第五実施形態〕
 次に、本発明の第五実施形態に係る制震装置1Bについて説明する。
 第一実施形態から第四実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 図21に示すように、制震装置1Bは、第三実施形態の制震装置81の拘束部材94が窓部140をさらに有している。なお、本実施形態では、図16に示したものと同様に補強リブ89は設けられていない。
[Fifth embodiment]
Next, a vibration control device 1B according to a fifth embodiment of the present invention will be described.
Constituent elements common to the first to fourth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
As shown in FIG. 21, in the vibration control device 1 </ b> B, the restraining member 94 of the vibration control device 81 of the third embodiment further includes a window portion 140. In the present embodiment, the reinforcing rib 89 is not provided as in the case shown in FIG.
 窓部140は、拘束部材94が波形プレート21を挟持する位置に対応する側板部84に形成されて第二の方向D2に内外を連通する開口部84aに設けられている。窓部140は、例えば強化ガラス141と強化ガラス141が嵌め込まれた窓枠142とを有し、波形プレート21を外部から視認可能となっている。 The window portion 140 is formed in the side plate portion 84 corresponding to the position where the restraining member 94 sandwiches the corrugated plate 21, and is provided in the opening portion 84a that communicates the inside and the outside in the second direction D2. The window part 140 has, for example, a tempered glass 141 and a window frame 142 in which the tempered glass 141 is fitted, and the corrugated plate 21 can be visually recognized from the outside.
 本実施形態の制震装置1Bによると、窓部140によって、波形プレート21の変形状態や、亀裂等の発生状況を確認することができる。よって、波形プレート21が機能しているか否かの判断が容易となり、波形プレート21の交換時期を容易に把握することができる等で、使用性の向上につながる。 According to the vibration control device 1B of the present embodiment, the deformation state of the corrugated plate 21 and the occurrence of cracks and the like can be confirmed by the window 140. Therefore, it is easy to determine whether or not the corrugated plate 21 is functioning, and the replacement time of the corrugated plate 21 can be easily grasped, leading to improved usability.
 本実施形態では、制震装置1Bは、窓部140の上方に設けられた罫書き装置144をさらに備えている。
 罫書き装置144は、拘束部材94の側板部84に取りつけられた板状をなすスクラッチプレート145と、このスクラッチプレート145の表面に接触する罫書き用針146と、罫書き用針146を支持し、拘束部材94の屈曲部95を相対移動可能に貫通し、反力受けプレート83の当接部93に固定された支持部147とを有している。
 このような罫書き装置144によって、波形プレート21の伸縮変形に応じて罫書き用針146がスクラッチプレート145上を移動し、波形プレート21の変形の履歴を記録することができる。
In the present embodiment, the vibration control device 1B further includes a ruler 144 provided above the window 140.
The scoring device 144 supports a scratch plate 145 having a plate shape attached to the side plate portion 84 of the restraining member 94, a scoring needle 146 that contacts the surface of the scratch plate 145, and the scoring needle 146. The support member 147 penetrates the bent portion 95 of the restraining member 94 so as to be relatively movable, and is fixed to the contact portion 93 of the reaction force receiving plate 83.
With such a scoring device 144, the scoring needle 146 moves on the scratch plate 145 according to the expansion and contraction of the corrugated plate 21, and the deformation history of the corrugated plate 21 can be recorded.
〔第六実施形態〕
 次に、本発明の第六実施形態に係る制震装置1Cについて説明する。
 第一実施形態及び第五実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 本実施形態の制震装置1Cは、波形プレート151が第三実施形態の制震装置81と異なっている。
[Sixth embodiment]
Next, a vibration control device 1C according to a sixth embodiment of the present invention will be described.
Constituent elements common to the first embodiment and the fifth embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
In the vibration damping device 1C of the present embodiment, the corrugated plate 151 is different from the vibration damping device 81 of the third embodiment.
 図22A、図22Bに示すように、波山150が形成された波形プレート151は、第一のプレート151aと第二のプレート151bとが、第二の方向D2に積層された積層プレートとなっている。
 具体的には、第一のプレート151aには、第一の方向D1にエンドプレート86から反力受けプレート83に向かって、第二の波山150b、第一の波山150aが交互に形成されている。第二のプレート151bには、第一の方向D1にエンドプレート86から反力受けプレート83に向かって、第一の波山150a、第二の波山150bが交互に形成されている。
As shown in FIGS. 22A and 22B, the corrugated plate 151 on which the wave peaks 150 are formed is a laminated plate in which the first plate 151a and the second plate 151b are laminated in the second direction D2. .
Specifically, the second wave crest 150b and the first wave crest 150a are alternately formed on the first plate 151a from the end plate 86 toward the reaction force receiving plate 83 in the first direction D1. . On the second plate 151b, first wave peaks 150a and second wave peaks 150b are alternately formed in the first direction D1 from the end plate 86 toward the reaction force receiving plate 83.
 第一の波山150aの山側の曲率半径R1と、第二の波山150bの谷側の曲率半径R2とが一致するように、これら波山150の形状が決定されている。第一のプレート151aにおける第一の波山150aの山側が第二のプレート151bにおける第二の波山150bの谷側に入り込むように、第一のプレート151aと第二のプレート151bとを第二の方向D2に積層した際には、第一のプレート151aと第二のプレート151bとが隙間無く接触した状態で積層される。 The shape of the wave mountain 150 is determined so that the curvature radius R1 on the mountain side of the first wave mountain 150a coincides with the curvature radius R2 on the valley side of the second wave mountain 150b. The first plate 151a and the second plate 151b are moved in the second direction so that the peak side of the first wave peak 150a in the first plate 151a enters the valley side of the second wave peak 150b in the second plate 151b. When stacked on D2, the first plate 151a and the second plate 151b are stacked with no gap therebetween.
 本実施形態の制震装置1Cによると、波形プレート151は例えば板材をプレス成形で曲げ加工して製造される。
 波形プレート151が積層プレートとなっていることで、第一のプレート151a、第二のプレート151bの各々の板厚を薄くしても、降伏耐力の向上を図ることができる。
According to the vibration damping device 1C of the present embodiment, the corrugated plate 151 is manufactured, for example, by bending a plate material by press molding.
Since the corrugated plate 151 is a laminated plate, the yield strength can be improved even if the thickness of each of the first plate 151a and the second plate 151b is reduced.
 第一のプレート151a、第二のプレート151b各々をそれぞれ曲げ加工した後に積層することで、曲げ加工を容易に行うことが可能となる。よって、降伏耐力を維持しながら、波形プレート151の製作性向上によるコスト低減につながる。さらに、積層するプレート各々の厚さや、積層するプレートの枚数を適宜調整することで、波形プレート151の降伏耐力調整の自由度が増す。
 具体的には例えば、図23A、図23Bに示すように三枚のプレートを積層してもよく、即ち、第一のプレート151a及び第二のプレート151bに加えて、第三のプレート151cをさらに設ける。第三のプレート151cには、第一の方向D1にエンドプレート86から反力受けプレート83に向かって、第四の波山150d、第三の波山150cが交互に形成されている。第二の波山150bの山側の曲率半径R3と、第三の波山150cの谷側の曲率半径R5とが一致するように、また、第一の波山150aの谷側の曲率半径R4と、第四の波山150dの山側の曲率半径R6とが一致するようにこれら波山150の形状が決定されている。
By bending each of the first plate 151a and the second plate 151b after being bent, the bending can be easily performed. Therefore, it leads to cost reduction by improving the manufacturability of the corrugated plate 151 while maintaining the yield strength. Furthermore, the degree of freedom for adjusting the yield strength of the corrugated plate 151 is increased by appropriately adjusting the thickness of each of the stacked plates and the number of stacked plates.
Specifically, for example, three plates may be stacked as shown in FIGS. 23A and 23B, that is, in addition to the first plate 151a and the second plate 151b, a third plate 151c is further added. Provide. In the third plate 151c, the fourth wave peak 150d and the third wave peak 150c are alternately formed in the first direction D1 from the end plate 86 toward the reaction force receiving plate 83. The curvature radius R3 on the mountain side of the second wave peak 150b and the curvature radius R5 on the valley side of the third wave peak 150c coincide with each other, the curvature radius R4 on the valley side of the first wave peak 150a, The shape of the wave mountain 150 is determined so that the curvature radius R6 on the mountain side of the wave mountain 150d is equal.
 次に、第一実施形態に係る制震装置1(制震装置41、61、71、81、1A、1B1Cであってもよい)の設置方法について第一の設置例を用いて説明する。 Next, a method of installing the vibration control device 1 according to the first embodiment (which may be the vibration control devices 41, 61, 71, 81, 1A, and 1B1C) will be described using a first installation example.
 ここで、図24に示すように、本設置例においては、橋梁11は複数(本設置例では4つ)の主桁13と、隣接する主桁13同士を接続する複数の横桁14とを有している。橋梁11は、橋脚12上で直交方向の外側に位置する主桁13同士の間に設けられた押さえ梁15と、橋脚12上で直交方向中央の主桁13同士の間に設けられた中央押さえ梁105とを有している。中央押さえ梁105は、橋脚12から上方に離間した状態で配置されており、中央押さえ梁105の下面には、主桁13同士の間において下方へ突出する突出部材106が結合されている。この突出部材106はその表面を長手方向に向けて配された板状部107と、板状部107の直交方向の両側に設けられた一対のフランジ部108とを有している。即ち、この突出部材106は上方から見て断面H状をなしている。 Here, as shown in FIG. 24, in the present installation example, the bridge 11 includes a plurality of (four in this installation example) main girders 13 and a plurality of horizontal girders 14 that connect adjacent main girders 13 to each other. Have. The bridge 11 includes a pressing beam 15 provided between the main girders 13 positioned outside in the orthogonal direction on the pier 12 and a central pressing provided between the main girders 13 in the center in the orthogonal direction on the pier 12. And a beam 105. The central pressing beam 105 is disposed in a state of being spaced upward from the pier 12, and a projecting member 106 that protrudes downward between the main beams 13 is coupled to the lower surface of the central pressing beam 105. The protruding member 106 has a plate-like portion 107 whose surface is arranged in the longitudinal direction, and a pair of flange portions 108 provided on both sides of the plate-like portion 107 in the orthogonal direction. That is, the projecting member 106 has an H-shaped cross section when viewed from above.
 さらに、橋梁11は、主桁13と橋脚12との間に設けられた例えばゴム支承、滑り支承、摩擦支承、摩擦振り子型球面支承などの免震機能を有する可動支承109を有している。この可動支承109は免震機能を有していなくともよい。 Furthermore, the bridge 11 has a movable bearing 109 provided between the main girder 13 and the pier 12 and having a seismic isolation function such as a rubber bearing, a sliding bearing, a friction bearing, and a friction pendulum type spherical bearing. This movable bearing 109 may not have a seismic isolation function.
 制震装置1は、波形プレート21に取り付けられた反力受けプレート31が、各々の押さえ梁15に長手方向の一方側から対向するように、ベースプレート28、アンカーボルト30によって、各々の押さえ梁15に対して1つずつ橋脚12上に結合して設置する。 The vibration control device 1 includes a base plate 28 and anchor bolts 30 so that the reaction force receiving plate 31 attached to the corrugated plate 21 faces each pressing beam 15 from one side in the longitudinal direction. Are installed on the pier 12 one by one.
 中央押さえ梁105に対しては、波形プレート21に取り付けられた反力受けプレート31が、突出部材106の各々のフランジ部108に直交方向から対向するように1対の制震装置1を設置する。 For the central pressing beam 105, the pair of vibration control devices 1 are installed so that the reaction force receiving plate 31 attached to the corrugated plate 21 faces each flange portion 108 of the protruding member 106 from the orthogonal direction. .
 これら全ての制震装置1における反力受けプレート31は、上部構造となる押さえ梁15、中央押さえ梁105の突出部材106に結合する。 The reaction force receiving plate 31 in all of the vibration control devices 1 is coupled to the protruding members 106 of the pressing beam 15 and the central pressing beam 105 which are the upper structure.
 押さえ梁15に対しては、制震装置1は第一の方向D1が橋梁11の長手方向に平行となるように設置され、中央押さえ梁105に対しては、制震装置1は第一の方向D1が橋梁11の直交方向に平行となるように設置されている。 For the retaining beam 15, the vibration control device 1 is installed so that the first direction D1 is parallel to the longitudinal direction of the bridge 11, and for the central retaining beam 105, the vibration control device 1 is the first one. It is installed so that the direction D1 is parallel to the orthogonal direction of the bridge 11.
 このように制震装置1を設置することで、波形プレート21が上部構造となる押さえ梁15及び中央押さえ梁105に結合されているため、比較的小さな震動から大きな震動までの震動エネルギーを制震装置1のみで吸収して制震効果を向上できる。また、拘束部材52が波形プレート21の変形、破損を抑制するストッパ機能として作用し、安全性の確保も可能となる。 By installing the vibration control device 1 in this way, the corrugated plate 21 is coupled to the presser beam 15 and the central presser beam 105, which are superstructures, so that vibration energy from a relatively small vibration to a large vibration is controlled. It can be absorbed only by the device 1 to improve the vibration control effect. Further, the restraining member 52 acts as a stopper function that suppresses deformation and breakage of the corrugated plate 21, so that safety can be ensured.
 さらに、可動支承109を併設しているので、制震装置1との相乗効果によって、さらなる免震・制震効果の向上が可能となる。 Furthermore, since the movable support 109 is also provided, it is possible to further improve the seismic isolation / seismic effect by the synergistic effect with the seismic control device 1.
 また、長手方向及び直交方向の2方向からの震動エネルギーの吸収が可能となるため、制震効果の向上を期待できる。中央押さえ梁105に対しては、対をなして制震装置1を設けたことで、一方の制震装置1における波形プレート21に引張力が作用した際には、他方の制震装置1における波形プレート21には押し付け力が作用する。このため、波形プレート21の押し付け時のエネルギー吸収履歴と引っ張り時のエネルギー吸収履歴とが同時に作用し、微妙に相違するエネルギー吸収履歴を平均化することができる。従って、より安定した震動エネルギーの吸収を期待でき、制震効果のさらなる向上が可能となる。 Also, since vibration energy can be absorbed from two directions, the longitudinal direction and the orthogonal direction, an improvement in the vibration control effect can be expected. By providing the damping device 1 in a pair with respect to the central presser beam 105, when a tensile force acts on the corrugated plate 21 in one damping device 1, the other damping device 1 A pressing force acts on the corrugated plate 21. For this reason, the energy absorption history at the time of pressing of the corrugated plate 21 and the energy absorption history at the time of pulling act simultaneously, and the energy absorption history that is slightly different can be averaged. Therefore, more stable absorption of vibration energy can be expected, and the vibration control effect can be further improved.
 本設置例では可動支承109は必ずしも設置しなくともよい。 In this installation example, the movable support 109 is not necessarily installed.
 また、図25に示すように、中央押さえ梁105の突出部材106に対して制震装置1が一つだけ設置されていてもよい。 Further, as shown in FIG. 25, only one seismic control device 1 may be installed on the protruding member 106 of the central pressing beam 105.
 次に、制震装置1(制震装置41、61、71、81、1A、1B、1C)の設置方法について第二の設置例を用いて説明する。
 第一の設置例と同様に、各押さえ梁15に対して1つ、中央押さえ梁105に対して2つの制震装置1を設置する。
Next, an installation method of the vibration control device 1 (the vibration control devices 41, 61, 71, 81, 1A, 1B, and 1C) will be described using a second installation example.
Similar to the first installation example, one seismic control device 1 is installed for each pressing beam 15 and two for the central pressing beam 105.
 図26に示すように、本設置例では、制震装置1における反力受けプレート31は、上部構造となる押さえ梁15、中央押さえ梁105に結合せずに離間して設置する。 As shown in FIG. 26, in the present installation example, the reaction force receiving plate 31 in the vibration control device 1 is installed separately from the holding beam 15 and the central holding beam 105, which are the upper structure.
 このように制震装置1を設置することで、まず可動支承109によって免震を行う。そして、震動エネルギーが所定の値を超過して、押さえ梁15及び中央押さえ梁105と橋脚12との間の相対変位が、押さえ梁15及び中央押さえ梁105と反力受けプレート31との間の離間距離を上回ると、制震装置1が初めて機能することとなる。 By installing the vibration control device 1 in this way, the base is first isolated by the movable support 109. Then, when the vibration energy exceeds a predetermined value, the relative displacement between the pressing beam 15 and the central pressing beam 105 and the pier 12 is between the pressing beam 15 and the central pressing beam 105 and the reaction force receiving plate 31. If the separation distance is exceeded, the vibration control device 1 will function for the first time.
 従って、制震装置1をフェールセーフ機能として使用することが可能となり、確実に震動エネルギーの吸収を行い、また、さらなる安全性の確保も可能となる。 Therefore, it is possible to use the vibration control device 1 as a fail-safe function, to reliably absorb vibration energy, and to ensure further safety.
 以上、本発明の実施形態、及び制震装置1の設置例について詳細を説明したが、本発明の技術的思想を逸脱しない範囲内において、多少の設計変更も可能である。
 例えば波形プレート21(151)は、波山20(150)が完全な波形をなしていなくともよい。具体的には、円弧形状、サインカーブ状、台形状、凹凸形状などが例示される。そして、同じ形状の波山20が並んでいなくともよく、波山20のピッチも等間隔でなくともよい。
As described above, the embodiment of the present invention and the installation example of the vibration control device 1 have been described in detail, but some design changes can be made without departing from the technical idea of the present invention.
For example, in the corrugated plate 21 (151), the wave mountain 20 (150) may not have a complete waveform. Specifically, an arc shape, a sine curve shape, a trapezoid shape, an uneven shape, and the like are exemplified. And the wave mountain 20 of the same shape does not need to be located in a line, and the pitch of the wave mountain 20 may not be equal intervals.
 また、波形プレート21(151)は、上述したように鋼板をプレス成形したものであり、さらに冷間加工によって製造されるため、プレス成形後にSR(Stress Relieving)処理が施されることが好ましい。これによって、冷間加工で生じた鋼板の加工硬化によるひずみを除去し、設計値通りの降伏耐力を得ることができる。 Moreover, since the corrugated plate 21 (151) is formed by press-forming a steel plate as described above and is manufactured by cold working, it is preferable that SR (Stress Relieving) treatment be performed after the press forming. As a result, distortion due to work hardening of the steel sheet caused by cold working can be removed, and yield strength as designed can be obtained.
 また、図27に示すように、波形プレート21(151)の波山20(150)が、第二の方向D2にではなく、上下に突出して形成されるように、波形プレート21及び拘束部材22(52、82、94)が設けられていてもよい。この場合、下側の拘束部材22(52、82、94)とベースプレート28との間にはブロック状の支持台200が設けられて、拘束部材22(52、82、94)を下方から支持している。 Further, as shown in FIG. 27, the corrugated plate 21 and the restraining member 22 (such that the corrugated plate 20 (150) of the corrugated plate 21 (151) protrudes up and down, not in the second direction D2. 52, 82, 94) may be provided. In this case, a block-shaped support base 200 is provided between the lower restraining member 22 (52, 82, 94) and the base plate 28 to support the restraining member 22 (52, 82, 94) from below. ing.
 また、上述の実施形態では制震装置1、41、61、71、81を設置する構造物は橋梁11として説明を行なったが、橋梁11に限定されず、図28に示すように建築物120に設けてもよい。また図29に示すようにLNGタンク121などに適用することも可能である。 In the above embodiment, the structure in which the vibration control devices 1, 41, 61, 71, 81 are installed is described as the bridge 11. However, the structure is not limited to the bridge 11, and the building 120 as shown in FIG. 28. May be provided. Further, as shown in FIG. 29, the present invention can be applied to an LNG tank 121 or the like.
 上述した実施形態は適宜組み合わせてもよい。 The embodiments described above may be combined as appropriate.
〔実施例〕
 ここで、波形プレートを伸縮させ、制震効果を確認する実験、解析を行った。以下、図30~図36Dを参照して説明する。
〔Example〕
Here, the corrugated plate was expanded and contracted, and experiments and analyzes were conducted to confirm the seismic control effect. This will be described below with reference to FIGS. 30 to 36D.
 (実験準備)
 実験には、表1に示す波形プレートの供試体1~4を用いた。また、供試体5については同様の条件で解析を行った。
Figure JPOXMLDOC01-appb-T000001
(Preparation for experiment)
In the experiment, the corrugated plate specimens 1 to 4 shown in Table 1 were used. The specimen 5 was analyzed under the same conditions.
Figure JPOXMLDOC01-appb-T000001
 図30に示すように、表1において各々の記号が示すものは、下記の通りである。
・d:拘束部材における側板部同士の隙間量・d0:波山の頂部と拘束部材との間の隙間量・r:波山の曲率半径(内径)・t:波形プレートの板厚(9mm)・SR:SR処理あり・SPACE:波形状保持部材あり
As shown in FIG. 30, what each symbol indicates in Table 1 is as follows.
D: Amount of gap between side plate portions of restraining member d0: Amount of gap between top of wave mountain and restraining member r: Curvature radius (inner diameter) of wave mountain t: Thickness of corrugated plate (9 mm) SR : SR treatment available / SPACE: Wave shape holding member available
 (実験結果)
 供試体1の波形プレートでは、図31のB部に示すように、圧縮側の載荷時に履歴ループに乱れが生じていることがわかる。また、C部に示すように波形プレートが拘束部材に接触後、圧縮側の載荷時に荷重が急激に上昇していることがわかる。
(Experimental result)
In the corrugated plate of the specimen 1, it can be seen that the hysteresis loop is disturbed during loading on the compression side, as shown in part B of FIG. In addition, as shown in part C, it can be seen that the load increases rapidly after the corrugated plate contacts the restraining member when the compression side is loaded.
 供試体2の波形プレートでは、図32に示すように、図31の供試体1と比較すると、波形プレートにSR処理を施すことで、明確な設計初期降伏点を得られることがわかる。 In the corrugated plate of the specimen 2, as shown in FIG. 32, it can be seen that a clear initial design yield point can be obtained by performing SR treatment on the corrugated plate as compared with the specimen 1 of FIG.
 供試体3の波形プレートでは、図33のD部に示すように、圧縮側での履歴ループの乱れが、供試体1と比較すると、波形状保持部材によって改善していることがわかる。 In the corrugated plate of the specimen 3, as shown in part D of FIG. 33, it can be seen that the disturbance of the hysteresis loop on the compression side is improved by the corrugated holding member as compared with the specimen 1.
 供試体4の波形プレートでは、図34のE部に示すように、圧縮側での履歴ループに顕著な荷重の低下が現われず、かつ、SR処理による明確な設計初期降伏点が得られることがわかる。
 なお、この供試体4の実験結果は、十分な履歴載荷を得られることを示している。
In the corrugated plate of the specimen 4, as shown in part E of FIG. 34, a significant load drop does not appear in the hysteresis loop on the compression side, and a clear design initial yield point can be obtained by SR processing. Recognize.
In addition, the experimental result of this specimen 4 shows that a sufficient history loading can be obtained.
 供試体5の波形プレートでは、図35に示すように圧縮側での履歴ループに関し、水平荷重が極端に大きくなっていることがわかる。即ち、波形プレートと拘束部材との間に隙間がない場合には、制震効果を十分に得られていないことがわかる。具体的には、図36Aから図36Dに示すように、水平変位が大きくなると、波形プレートの全体が変形せずに、移動端部(反力受けプレート側に位置する波形プレートの他端側の端)のみが変形してしまう。 In the corrugated plate of the specimen 5, it can be seen that the horizontal load is extremely large with respect to the hysteresis loop on the compression side as shown in FIG. That is, it can be seen that when there is no gap between the corrugated plate and the restraining member, the vibration control effect is not sufficiently obtained. Specifically, as shown in FIGS. 36A to 36D, when the horizontal displacement increases, the entire corrugated plate is not deformed, and the moving end (the other end side of the corrugated plate located on the reaction force receiving plate side) is not deformed. Only the edge will be deformed.
 このように、実験では、波形プレートと拘束部材との間に隙間がない供試体5よりも、隙間のある供試体1~4の方が制震効果が高く、また、波形状保持部材が設けられた供試体3、4、及び、SR処理が施された供試体2、4がさらに制震効果が高いことが確認できた。 As described above, in the experiment, the specimens 1 to 4 having a gap have a higher vibration control effect than the specimen 5 having no gap between the corrugated plate and the restraining member, and a wave shape holding member is provided. It was confirmed that the specimens 3 and 4 obtained and the specimens 2 and 4 subjected to the SR treatment had a higher vibration control effect.
 上記した制震装置、制震装置の設置方法、及び波形プレートによれば、波形プレートと、これを覆う拘束部材とによって、震動レベルの大小に関わらず確実に震動エネルギーを吸収し、制震効果の向上が可能となる。 According to the above-described seismic control device, seismic control device installation method, and corrugated plate, the corrugated plate and the restraining member that covers the corrugated plate reliably absorbs seismic energy regardless of the magnitude of the seismic level, thereby suppressing the seismic effect. Can be improved.
 1  制震装置
 11  橋梁
 12  橋脚
 13  主桁
 14  横桁
 15  押さえ梁
 20  波山
 21  波形プレート
 22  拘束部材
 25  側板部
 26  上板部
 27  エンドプレート
 28  ベースプレート
 30  アンカーボルト
 31  反力受けプレート
 32  ボルト
 33  補強リブ
 34  リブ
 A1  弾性域
 A2  塑性域
 YP1  降伏点
 YP  降伏点
 A3  弾性域
 A4  塑性域
 YP2  降伏点
 41  制震装置
 52  拘束部材
 53  塞ぎ板
 55  粘性流体
 60  摩擦低減部(摩擦調整部)
 61  制震装置
 70  摩擦増大部(摩擦調整部)
 71  制震装置
 81  制震装置
 82  拘束部材
 83  反力受けプレート
 84  側板部
 85  屈曲部
 86  エンドプレート
 87  側部
 88  接触部
 89  補強リブ
 90  ボルト
 91  ナット
 92  側部
 93  当接部
 94  拘束部材
 95  屈曲部
 98  ベースプレート
 101  橋梁
 105  中央押さえ梁
 106  突出部材
 107  板状部
 108  フランジ部
 109  可動支承
 111  橋梁
 120  建築物
 121  LNGタンク
 D1  第一の方向
 D2  第二の方向
 1A  制震装置
 130  波形状保持部材
 131  凸頭部
 131a  湾曲面
 132  土台部
 130A  波形状保持部材
 1B  制震装置
 140  窓部
 141  強化ガラス
 142  窓枠
 144  罫書き装置
 145  スクラッチプレート
 146  罫書き用針
 147  支持部
 84a  開口部
 1C  制震装置
 150  波山
 150a  第一の波山
 150b  第二の波山
 151  波形プレート
 151a  第一のプレート
 151b  第二のプレート
 200  支持台
DESCRIPTION OF SYMBOLS 1 Damping device 11 Bridge 12 Bridge pier 13 Main girder 14 Horizontal girder 15 Holding beam 20 Wave mountain 21 Corrugated plate 22 Constraining member 25 Side plate part 26 Upper plate part 27 End plate 28 Base plate 30 Anchor bolt 31 Reaction force receiving plate 32 Bolt 33 Reinforcement rib 34 Rib A1 Elastic area A2 Plastic area YP1 Yield point YP Yield point A3 Elastic area A4 Plastic area YP2 Yield point 41 Seismic control device 52 Restraining member 53 Closing plate 55 Viscous fluid 60 Friction reduction part (friction adjustment part)
61 Vibration control device 70 Friction increasing part (friction adjusting part)
71 Damping device 81 Damping device 82 Restraining member 83 Reaction force receiving plate 84 Side plate portion 85 Bending portion 86 End plate 87 Side portion 88 Contact portion 89 Reinforcement rib 90 Bolt 91 Nut 92 Side portion 93 Contact portion 94 Constraining member 95 Bending Part 98 Base plate 101 Bridge 105 Center pressing beam 106 Projecting member 107 Plate-like part 108 Flange part 109 Movable support 111 Bridge 120 Building 121 LNG tank D1 First direction D2 Second direction 1A Damping device 130 Wave shape holding member 131 Convex head 131a Curved surface 132 Base portion 130A Wave shape holding member 1B Vibration control device 140 Window portion 141 Tempered glass 142 Window frame 144 Graduation device 145 Scratch plate 146 Graduation needle 147 Support portion 84a Opening portion 1C Isolation device 150 crests 150a second wave crests 151 wavy plate 151a first plate 151b second plate 200 supporting base first wave crests 150b

Claims (17)

  1.  第一の方向に向かって波山が交互に連続して形成された波形プレートと、
     前記波形プレートを両面から挟持するとともに、該波形プレートにおける前記第一の方向の一端側を支持する拘束部材とを備える制震装置。
    A corrugated plate in which wave peaks are alternately and continuously formed in the first direction;
    A vibration control device comprising a restraining member that sandwiches the corrugated plate from both sides and supports one end side of the corrugated plate in the first direction.
  2.  前記波形プレートよりも前記拘束部材の方が前記第一の方向へ作用する外力に対する降伏耐力が大きくなっている請求項1に記載の制震装置。 2. The vibration control device according to claim 1, wherein the yield strength for the external force acting in the first direction is greater in the restraining member than in the corrugated plate.
  3.  前記波形プレートと前記拘束部材との間に粘性流体が充填されている請求項1又は2に記載の制震装置。 The vibration control device according to claim 1 or 2, wherein a viscous fluid is filled between the corrugated plate and the restraining member.
  4.  前記粘性流体は粘弾性体である請求項3に記載の制震装置。 4. The vibration control device according to claim 3, wherein the viscous fluid is a viscoelastic body.
  5.  前記拘束部材の内表面に摩擦力を調整する摩擦調整部が設けられている請求項1又は2に記載の制震装置。 The vibration control device according to claim 1 or 2, wherein a friction adjusting portion for adjusting a friction force is provided on an inner surface of the restraining member.
  6.  前記拘束部材は、前記波形プレートを挟持する位置に対応する外表面に、前記第一の方向に延在する補強リブが設けられている請求項1から5のいずれか一項に記載の制震装置。 6. The vibration control device according to claim 1, wherein the restraining member is provided with a reinforcing rib extending in the first direction on an outer surface corresponding to a position where the corrugated plate is sandwiched. apparatus.
  7.  前記波形プレートの前記波山の頂部と前記拘束部材の内表面とは、該波形プレートに前記第一の方向に外力が作用しない状態で非接触となっている請求項1から6のいずれか一項に記載の制震装置。 The top of the corrugated plate of the corrugated plate and the inner surface of the restraining member are not in contact with each other when no external force acts on the corrugated plate in the first direction. The vibration control device described in 1.
  8.  前記波形プレートの前記波山の頂部と前記拘束部材の内表面とは、該波形プレートに対して前記第一の方向に外力が作用して、予め設定された最大設計変形量の圧縮変形が生じた際に接触する請求項7に記載の制震装置。 The crest of the corrugated plate and the inner surface of the restraining member are subjected to an external force acting on the corrugated plate in the first direction, resulting in compression deformation of a preset maximum design deformation amount. The vibration control device according to claim 7, which comes into contact with the shock absorber.
  9.  前記波形プレートの前記波山の谷側に配されて、該波形プレートが変形した際に該波形プレートに接触する凸頭部を有し、前記内表面に対して相対移動可能に設けられた波形状保持部材をさらに備える請求項7又は8に記載の制震装置。 A wave shape that is disposed on the corrugated valley side of the corrugated plate, has a convex head that contacts the corrugated plate when the corrugated plate is deformed, and is provided so as to be relatively movable with respect to the inner surface The vibration control device according to claim 7 or 8, further comprising a holding member.
  10.  前記拘束部材は、前記波形プレートを挟持する位置に対応する外表面に、該波形プレートを視認する窓部を有する請求項1から9のいずれか一項に記載の制震装置。 The vibration control device according to any one of claims 1 to 9, wherein the restraining member has a window portion for visually recognizing the corrugated plate on an outer surface corresponding to a position where the corrugated plate is sandwiched.
  11.  前記波形プレートは、複数のプレートが積層された積層プレートである請求項1から10のいずれか一項に記載の制震装置。 The vibration control device according to any one of claims 1 to 10, wherein the corrugated plate is a laminated plate in which a plurality of plates are laminated.
  12.  第一の方向に向かって波山が交互に連続して形成された波形プレートと、
     前記波形プレートを両面から挟持するとともに、該波形プレートにおける前記第一の方向の一端側を支持する拘束部材とを備える制震装置の設置方法であって、
     前記拘束部材を第一の構造部材に結合し、前記波形プレートにおける前記第一の方向の他端側を第二の構造部材に結合して設置する制震装置の設置方法。
    A corrugated plate in which wave peaks are alternately and continuously formed in the first direction;
    A method of installing a vibration control device comprising the corrugated plate sandwiched from both sides and a restraining member that supports one end of the corrugated plate in the first direction,
    The installation method of the vibration control apparatus which couple | bonds the said restraining member with a 1st structural member, couple | bonds the other end side of the said 1st direction in the said corrugated plate with a 2nd structural member, and installs it.
  13.  第一の方向に向かって波山が交互に連続して形成された波形プレートと、
     前記波形プレートを両面から挟持するとともに、該波形プレートにおける前記第一の方向の一端側を支持する拘束部材とを備える制震装置の設置方法であって、
     前記拘束部材を第一の構造部材に結合し、前記波形プレートにおける前記第一の方向の他端側を第二の構造部材と対向した状態で離間して設置する制震装置の設置方法。
    A corrugated plate in which wave peaks are alternately and continuously formed in the first direction;
    A method of installing a vibration control device comprising the corrugated plate sandwiched from both sides and a restraining member that supports one end of the corrugated plate in the first direction,
    A method of installing a vibration control device, wherein the restraining member is coupled to a first structural member, and the other end side of the corrugated plate in the first direction is spaced apart from the second structural member.
  14.  前記第一の構造部材と前記第二の構造部材との間に、可動支承をさらに設ける請求項12又は13に記載の制震装置の設置方法。 14. The method for installing a vibration control device according to claim 12 or 13, further comprising a movable bearing between the first structural member and the second structural member.
  15.  前記可動支承は、免震機能を有している請求項14に記載の制震装置の設置方法。 The method for installing a vibration control device according to claim 14, wherein the movable bearing has a seismic isolation function.
  16.  前記制震装置を、前記第二の構造部材を挟んで対をなして設置する請求項12から15のいずれか一項に記載の制震装置の設置方法。 The installation method of the vibration control device according to any one of claims 12 to 15, wherein the vibration control device is installed in a pair with the second structural member interposed therebetween.
  17.  請求項1から10のいずれか一項に記載の制震装置に用いられる波形プレートであって、
     複数のプレートが積層された積層プレートである波形プレート。
    A corrugated plate used in the vibration control device according to any one of claims 1 to 10,
    A corrugated plate that is a laminated plate in which a plurality of plates are laminated.
PCT/JP2013/084705 2013-05-02 2013-12-25 Vibration control device, vibration control device installation method, and waveform plate WO2014178158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013096872A JP5393914B1 (en) 2012-07-06 2013-05-02 Vibration control device, vibration control device installation method, and corrugated plate
JP2013-096872 2013-05-02

Publications (1)

Publication Number Publication Date
WO2014178158A1 true WO2014178158A1 (en) 2014-11-06

Family

ID=51844907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084705 WO2014178158A1 (en) 2013-05-02 2013-12-25 Vibration control device, vibration control device installation method, and waveform plate

Country Status (1)

Country Link
WO (1) WO2014178158A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106939654A (en) * 2017-05-11 2017-07-11 张军涛 Damper
CN110055879A (en) * 2019-05-31 2019-07-26 中铁二院工程集团有限责任公司 A kind of anti-fall girder apparatus unidirectionally to consume energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320531U (en) * 1986-07-25 1988-02-10
JPH04290631A (en) * 1991-03-18 1992-10-15 Nippon Telegr & Teleph Corp <Ntt> Vibration-proof device
JPH04134942U (en) * 1991-06-07 1992-12-15 太陽鉄工株式会社 shock absorber
JP2005256939A (en) * 2004-03-11 2005-09-22 Daiwa House Ind Co Ltd Vibration control panel
JP2005315275A (en) * 2004-04-27 2005-11-10 Shingiken:Kk Support device for junction between structure and support
JP2010007793A (en) * 2008-06-27 2010-01-14 Ohbayashi Corp Base isolation structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320531U (en) * 1986-07-25 1988-02-10
JPH04290631A (en) * 1991-03-18 1992-10-15 Nippon Telegr & Teleph Corp <Ntt> Vibration-proof device
JPH04134942U (en) * 1991-06-07 1992-12-15 太陽鉄工株式会社 shock absorber
JP2005256939A (en) * 2004-03-11 2005-09-22 Daiwa House Ind Co Ltd Vibration control panel
JP2005315275A (en) * 2004-04-27 2005-11-10 Shingiken:Kk Support device for junction between structure and support
JP2010007793A (en) * 2008-06-27 2010-01-14 Ohbayashi Corp Base isolation structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106939654A (en) * 2017-05-11 2017-07-11 张军涛 Damper
CN110055879A (en) * 2019-05-31 2019-07-26 中铁二院工程集团有限责任公司 A kind of anti-fall girder apparatus unidirectionally to consume energy
CN110055879B (en) * 2019-05-31 2024-01-30 中铁二院工程集团有限责任公司 Beam falling prevention device with unidirectional energy consumption

Similar Documents

Publication Publication Date Title
JP5589127B2 (en) Vibration control device, vibration control device installation method, and corrugated plate
US9097309B2 (en) Seismic isolation mechanism
JP3018291B2 (en) Sliding elastic bearing device for structures
JP5922010B2 (en) Elastic-plastic hysteretic damper
JP5336145B2 (en) Damping structure and building with damping structure
CN110055880B (en) Damping energy-consumption beam falling prevention device for railway bridge
KR20120093175A (en) Laminated rubber body joining members, as well as laminated rubber body and structure using such joining members
JP4192225B2 (en) Shear panel type vibration control stopper
WO2014178158A1 (en) Vibration control device, vibration control device installation method, and waveform plate
JP2010037905A (en) Connected seismic control structure and building
JP2009047193A (en) Damper device and structure
KR20110072410A (en) Seismic isolating apparatus
JP2020133722A (en) Friction damper
US20210095463A1 (en) Damper for energy dissipation
JP2020008153A (en) Vibration isolation structure
TWI490158B (en) Seismic isolation supporting device in traveling crane
JP5911743B2 (en) Damping damper and damping structure
JP5095492B2 (en) Corrugated steel shear wall
JP4049120B2 (en) Building seismic control structure
KR101037134B1 (en) Expansion joint for multi-road
JP2011127397A (en) Vibration control structure
JP5369626B2 (en) Composite vibration control frame
JP4411444B2 (en) Shear panel type damper mounting structure to structure
JP4466401B2 (en) Laminated rubber support
JP6116346B2 (en) Damping member and core material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883721

Country of ref document: EP

Kind code of ref document: A1