JP6114055B2 - Radioactive substance immobilization material and radioactive contaminant treatment method - Google Patents

Radioactive substance immobilization material and radioactive contaminant treatment method Download PDF

Info

Publication number
JP6114055B2
JP6114055B2 JP2013033039A JP2013033039A JP6114055B2 JP 6114055 B2 JP6114055 B2 JP 6114055B2 JP 2013033039 A JP2013033039 A JP 2013033039A JP 2013033039 A JP2013033039 A JP 2013033039A JP 6114055 B2 JP6114055 B2 JP 6114055B2
Authority
JP
Japan
Prior art keywords
radioactive
siliceous shale
immobilization material
cement
immobilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013033039A
Other languages
Japanese (ja)
Other versions
JP2014163730A (en
Inventor
増田 賢太
賢太 増田
一坪 幸輝
幸輝 一坪
将和 鈴木
将和 鈴木
潔 野中
潔 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2013033039A priority Critical patent/JP6114055B2/en
Publication of JP2014163730A publication Critical patent/JP2014163730A/en
Application granted granted Critical
Publication of JP6114055B2 publication Critical patent/JP6114055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、放射性セシウム等の放射性物質を固定化できる材料と、該材料を用いて放射性汚染物、特に低レベルの放射性汚染物を処理する方法に関する。
ここで、低レベルの放射性汚染物とは、使用済み核燃料の再処理操作で分離された放射性廃液、およびそのガラス固化体等の高レベル放射性廃棄物を除いたものをいい、例えば、放射性物質を含む、土壌(以下「汚染土」という。)、灰(以下「汚染灰」という。)、およびダスト(以下「汚染ダスト」という。)などの放射性汚染物が挙げられる。
The present invention relates to a material capable of immobilizing a radioactive substance such as radioactive cesium and a method of treating radioactive contaminants, particularly low-level radioactive contaminants, using the material.
Here, the low-level radioactive contaminants are those excluding the radioactive waste liquid separated by the reprocessing operation of the spent nuclear fuel and high-level radioactive wastes such as vitrified materials thereof. And radioactive contaminants such as soil (hereinafter referred to as “contaminated ash”), ash (hereinafter referred to as “contaminated ash”), and dust (hereinafter referred to as “contaminated dust”).

福島第一原子力発電所の事故により、膨大な量の放射性物質が福島県を中心に広い範囲に拡散した。この放射性物質の中でも放射性セシウム(セシウム137)は、半減期が30年と長く残存量が多いため、長期にわたる環境汚染等が懸念されている。したがって、かかる状況に対応するため、迅速かつ広範囲にわたる除染作業が必要である。しかし、除染に伴い大量に集積する汚染土の保管場所や搬出先の確保、および汚染土を移送する際の飛散防止が難しく、除染等による汚染土の処理には多くの課題がある。   Due to the accident at the Fukushima Daiichi Nuclear Power Station, a huge amount of radioactive material spread over a wide area, mainly in Fukushima Prefecture. Among these radioactive substances, radioactive cesium (cesium 137) has a long half-life of 30 years and a large residual amount. Therefore, in order to cope with such a situation, quick and wide-ranging decontamination work is necessary. However, it is difficult to secure a storage place and a delivery destination for contaminated soil that accumulates in large quantities along with decontamination, and to prevent scattering when transporting the contaminated soil, and there are many problems in processing contaminated soil by decontamination.

また、前記発電所から遠く離れた首都圏内の焼却場でも、放射性物質を含む汚泥等の焼却により該物質が濃縮された汚染灰が、日々大量に発生している。しかし、放射線量が1kg当たり8千ベクレルを超える放射性汚染物は受け入れ先の確保が難しく、放射線量が1kg当たり8千ベクレル以下であっても、焼却飛灰からの可溶性セシウムは環境中で濃縮しホットスポットを生成する可能性があり、管理型処分場においても一定の配慮が必要となる。その結果、今でも焼却場に保管されたままの飛灰や焼却前の廃棄物が多くあるのが現状である。   In addition, even in incineration sites in the Tokyo metropolitan area far away from the power plant, a large amount of contaminated ash is generated every day due to the incineration of sludge and the like containing radioactive materials. However, radioactive contaminants with a radiation dose exceeding 8,000 Bq / kg are difficult to secure a recipient, and soluble cesium from incinerated fly ash is concentrated in the environment even if the radiation dose is 8,000 Bq / kg or less. There is a possibility of generating hot spots, and certain considerations are required even in managed disposal sites. As a result, there are still a lot of fly ash still stored in the incineration plant and waste before incineration.

また、放射性汚染物の処理方法として、放射性汚染物から放射性物質を分離して、問題のないレベルになった非汚染物を原位置に埋め戻すか、処分場に埋め立てることも考えられる。該分離手段として、例えば、放射性汚染物に対し、重金属の分離・回収に有用な塩化揮発法等の適用が考えられる。しかし、該手段では、放射性物質が高度に濃縮した汚染物(ダスト)のさらなる処理が最終的な課題として残る。   In addition, as a method for treating radioactive contaminants, it is conceivable that the radioactive contaminants are separated from the radioactive contaminants, and non-contaminated contaminants that have reached a level of no problem are refilled in the original position or reclaimed at a disposal site. As the separation means, for example, application of a chlorination volatilization method useful for separation and recovery of heavy metals can be considered for radioactive contaminants. However, with this measure, further processing of contaminants (dust) highly concentrated in radioactive material remains as a final challenge.

従来、天然粘土鉱物を含む膨張性ベントナイトや多孔質ゼオライトが、地中の放射性廃棄物の処理や水中の放射性物質の濾過や吸着等に用いられてきた。
ところで、最近、前記事故で生じた汚染土を調べたところ、放射性セシウムは、例えば風化した雲母など、汚染土中の特定の天然粘土鉱物により固定化され地表に留まっていることから、セシウムの深層への移動は遅いと予想されている。かかるセシウムの固定化メカニズムは、層状構造を有する粘土鉱物中の層間の陰イオンサイトに存在するカリウム等の陽イオンに対し、より結合力の強いセシウムイオンがイオン交換して固定化される部位を有すると考えられている。したがって、天然粘土鉱物を用いて放射性セシウムを固定化することも考えられる。
しかし、かかる天然粘土鉱物は希少資源であるため、大量に使用すると枯渇が懸念されるほか、比較的高価なため汚染土の処理材として大量に消費する用途には、経済的な理由からも適さない。
Conventionally, expansive bentonite and porous zeolite containing natural clay minerals have been used for the treatment of underground radioactive waste, filtration and adsorption of radioactive substances in water, and the like.
By the way, recently, when the contaminated soil caused by the accident was examined, radioactive cesium was fixed by specific natural clay minerals in the contaminated soil, such as weathered mica, so that the deep layer of cesium The move to is expected to be slow. Such a cesium immobilization mechanism is based on a site where a cesium ion having a stronger binding force is immobilized by ion exchange with a cation such as potassium existing in an anion site between layers in a clay mineral having a layered structure. It is thought to have. Therefore, it is conceivable to fix radioactive cesium using natural clay minerals.
However, since these natural clay minerals are scarce resources, there is concern over depletion when used in large quantities, and because they are relatively expensive, they are suitable for uses that consume large quantities as a treatment for contaminated soil for economic reasons. Absent.

そこで、特許文献1では、セメント質物質、フライアッシュやオパール質珪石等の超微粉、高性能減水剤、および水を主成分とする放射性廃棄物の固化剤が提案されている。しかし、これらの超微粉は、546頁の左下欄の3〜6行に記載のとおり、固化体の硬化収縮を改善するという面から有効であるに過ぎず、放射性物質の溶出抑制効果については不明である。
また、特許文献2では、放射性廃棄物のセメント固化方法が提案されている。そして、該方法の特徴は、カルシウム、ケイ素およびアルミニウムを主成分とするセメント中のカルシウム含有量が、該ケイ素およびアルミニウムの含有量をパラメーターとする特定の式を満たすセメントに限定して用いる点にある。そして、824頁の左上欄の下から7〜1行および右上欄の1〜2行に記載のとおり、該セメントは不溶性のゲルを生成して、固化体からの放射能浸出を高める空隙の発生を防止するとしている。しかし、該方法は、前記のとおり、カルシウムの含有量が限定された特殊なセメントを用いなければならず、コスト高になる。
Therefore, Patent Document 1 proposes a cementitious substance, ultrafine powder such as fly ash and opal silica, a high-performance water reducing agent, and a solidifying agent for radioactive waste mainly composed of water. However, as described in lines 3 to 6 in the lower left column on page 546, these ultrafine powders are only effective in terms of improving the curing shrinkage of the solidified body, and the elution suppression effect of radioactive substances is unknown. It is.
Moreover, in patent document 2, the cement solidification method of a radioactive waste is proposed. The feature of the method is that the calcium content in the cement mainly composed of calcium, silicon and aluminum is limited to a cement satisfying a specific formula having the silicon and aluminum contents as parameters. is there. Then, as described in the lower left column on pages 824 and lines 1 to 1 and the upper right column on lines 1 and 2, the cement generates an insoluble gel and generates voids that enhance radioactivity leaching from the solidified body. To prevent. However, as described above, this method requires the use of a special cement having a limited calcium content, which increases costs.

特開昭61−215999号公報JP 61-215999 A 特開平2−49197JP-A-2-49197

そこで、本発明は、放射性物質の溶出抑制効果が高い固定化材と、放射性汚染物を大量かつ安価に固化できる放射性汚染物の処理方法を提供することを目的とする。   Then, an object of this invention is to provide the fixing material with the high elution suppression effect of a radioactive substance, and the processing method of the radioactive contaminant which can solidify a radioactive contaminant in large quantities and cheaply.

本発明者は、前記目的にかなう固定化材を検討したところ、珪質頁岩とセメントを含む固定化材は、放射性物質の固定に優れた効果を奏することを見出し、本発明を完成させた。   The inventor has studied an immobilizing material that meets the above-mentioned object, and as a result, found that an immobilizing material containing siliceous shale and cement has an excellent effect on immobilizing radioactive substances, and has completed the present invention.

すなわち、本発明は、以下の構成を有する放射性物質の固定化材と処理方法である。
[1]珪質頁岩およびセメントを含む放射性物質の固定化材。
[2]前記放射性物質が放射性セシウムである、前記[1]に記載の放射性物質の固定化材。
[3]セメント100質量部に対し前記珪質頁岩を1〜50質量部含む、前記[1]または[2]に記載の放射性物質の固定化材。
[4]前記珪質頁岩は、Cu−Kα線による粉末X線回折において、(前記珪質頁岩中のクリストバライトおよびトリディマイトθ=21.5〜21.9degの最強回折強度)/(前記珪質頁岩中の石英の2θ=26.6degのピーク頂部の回折強度)の強度比が、0.2〜2.0の範囲にある、前記[1]〜[3]のいずれか1項に記載の放射性物質の固定化材。
ここで、前記「クリストバライトおよびトリディマイトθ=21.5〜21.9degの最強回折強度」とは、θ=21.5〜21.9degの範囲に存在するクリストバライトおよびトリディマイトの回折強度のうち、最強の強度をいう。
[5]前記珪質頁岩のBET比表面積が10〜1000m/gである、前記[1]〜[4]のいずれか1項に記載の放射性物質の固定化材。
[6]前記[1]〜[5]のいずれか1項に記載の放射性物質の固定化材および放射性汚染物の合計質量に対し、放射性物質の含有率が100ppm以下となるように前記固定化材と放射性汚染物を混合する、放射性汚染物の処理方法。
[7]前記[6]に記載の放射性汚染物が、汚染ダスト、汚染土、および汚染灰から選ばれる1種以上である、前記[6]に記載の放射性汚染物の処理方法。
That is, the present invention is a radioactive material immobilization material and a processing method having the following configuration.
[1] A radioactive material immobilization material containing siliceous shale and cement.
[2] The radioactive substance immobilization material according to [1], wherein the radioactive substance is radioactive cesium.
[3] The radioactive material immobilization material according to [1] or [2], including 1 to 50 parts by mass of the siliceous shale with respect to 100 parts by mass of cement.
[4] The siliceous shale is determined by powder X-ray diffraction using Cu—Kα rays (the strongest diffraction intensity of cristobalite and tridymite 2 θ = 21.5 to 21.9 deg in the siliceous shale) / (the siliceous The intensity ratio of 2θ = 26.6 deg peak peak of quartz in the shale is in the range of 0.2 to 2.0, according to any one of the above [1] to [3]. Radioactive material immobilization material.
Here, “the strongest diffraction intensity of cristobalite and tridymite 2 θ = 21.5 to 21.9 deg” refers to the diffraction intensity of cristobalite and tridymite existing in the range of 2 θ = 21.5 to 21.9 deg. The strongest strength.
[5] The radioactive material immobilization material according to any one of [1] to [4], wherein the siliceous shale has a BET specific surface area of 10 to 1000 m 2 / g.
[6] The immobilization of the radioactive substance according to any one of [1] to [5] , so that the content of the radioactive substance is 100 ppm or less with respect to the total mass of the radioactive substance immobilization material and radioactive contaminants. A method for treating radioactive contaminants by mixing materials and radioactive contaminants.
[7] The radioactive contaminants according to [6], contaminated dust, polluted soil, and is at least one selected from the contaminated ash treatment method of radioactive contaminants according to [6].

本発明の放射性物質の固定化材は、放射性物質の溶出抑制効果が高い。また、本発明の放射性汚染物の処理方法は、放射性汚染物を大量かつ安価に固定化して処理できる。   The radioactive substance immobilization material of the present invention is highly effective in suppressing elution of radioactive substances. Moreover, the processing method of the radioactive contaminant of this invention can fix and process a radioactive contaminant in large quantities and cheaply.

実施例において用いた珪質頁岩の粉末X線回折ピークを示す図である。It is a figure which shows the powder X-ray-diffraction peak of the siliceous shale used in the Example.

本発明は、前記のとおり、珪質頁岩とセメントを含む放射性物質の固定化材と、該固定化材を用いた放射性汚染物の処理方法である。以下、本発明について固定化材の構成成分と処理方法に分けて説明する。なお、以下、%は特に示さない限り質量%である。   As described above, the present invention is a radioactive material immobilization material containing siliceous shale and cement, and a method for treating radioactive contaminants using the immobilization material. Hereinafter, the present invention will be described separately for the components of the immobilizing material and the processing method. Hereinafter, “%” means “% by mass” unless otherwise specified.

1.放射性物質の固定化材
(1)珪質頁岩
本発明で用いる珪質頁岩は、珪質の殻を有する珪藻等のプランクトンの死骸が海底に堆積した堆積物が、温度や圧力の変動による続成作用を受けて変質し硬岩化した頁岩で、オパールCT、雲母、粘土鉱物、石英、クリストバライトおよびトリディマイト等の鉱物を含む。
前記珪質頁岩は、好ましくは、Cu−Kα線による粉末X線回折において、(前記珪質頁岩中のクリストバライトおよびトリディマイトの2θ=21.5〜21.9degの最強回折強度)/(前記珪質頁岩中の石英の2θ=26.6degのピーク頂部の回折強度)の強度比が、0.2〜2.0の範囲にある頁岩である。後掲の図1に、前記珪質頁岩の粉末X線回折ピークの1例を示す。なお、図中に記載のオパールCTとは、結晶度の低いクリストバライト、トリディマイト、またはこれらの混合物をいう。
また、前記珪質頁岩は、より好ましくは、Cu−Kα線による粉末X線回折において、(前記珪質頁岩中の雲母または粘土鉱物の2θ=19.6〜20.0degの回折強度)/(前記珪質頁岩中の石英の2θ=26.6degのピーク頂部の回折強度)の強度比が、0.1〜0.5の範囲にある頁岩である。
前記強度比の値が前記範囲にある珪質頁岩を含む固定化材は、放射性物質の溶出抑制効果がさらに高い。
1. Radioactive material immobilization material
(1) Siliceous shale The siliceous shale used in the present invention is altered by the diagenesis caused by temperature and pressure fluctuations caused by sedimentation of plankton dead bodies such as diatoms with siliceous shells on the seabed. Hardened shale, containing minerals such as opal CT, mica, clay minerals, quartz, cristobalite and tridymite.
The siliceous shale is preferably (in the X-ray powder diffraction by Cu-Kα rays) (the strongest diffraction intensity of cristobalite and tridymite in the siliceous shale is 2θ = 21.5 to 21.9 deg) / (the siliceous The shale has an intensity ratio of 2θ = 26.6 deg peak intensity of quartz in the shale in the range of 0.2 to 2.0. FIG. 1 shows an example of the powder X-ray diffraction peak of the siliceous shale. The opal CT described in the figure refers to cristobalite, tridymite, or a mixture thereof having a low crystallinity.
Further, the siliceous shale is more preferably in powder X-ray diffraction by Cu-Kα ray (diffraction intensity of 2θ = 19.6 to 20.0 deg of mica or clay mineral in the siliceous shale) / ( In the siliceous shale, the shale has an intensity ratio of 2θ = 26.6 deg peak intensity of quartz in the range of 0.1 to 0.5.
The immobilization material containing siliceous shale having the intensity ratio in the above range has a higher elution suppression effect of radioactive substances.

本発明で用いる珪質頁岩のBET比表面積は、好ましくは10〜1000m/g、より好ましくは30〜500m/g、さらに好ましくは50〜300m/gである。該値が10〜1000m/gであれば、放射性物質の溶出抑制効果が高く、粉砕コストは低くなる。珪質頁岩の粉砕には、ジョークラッシャー、トップグラインダーミル、クロスビーターミル、ボールミル等が用いられる。もっとも、BET比表面積は、珪質頁岩の内部構造に依存する面が強く、粉砕による粒子径変化を表す指標としては、ブレーン比表面積やレーザ回折・散乱による粒子径のほうが適している。前記珪質頁岩のブレーン比表面積は、好ましくは0.2〜5m/kg、より好ましくは0.25〜1m/kgである。また、レーザ回折・散乱を用いて測定した前記珪質頁岩の平均粒子径は、粒度分布にもよるが、好ましくは0.1〜100μm、より好ましくは1〜20μmである。
なお、被粉砕性や放射性物質の溶出抑制効果の点で、北海道北部で産出する稚内層珪質頁岩が好適である。
The BET specific surface area of the siliceous shale used in the present invention is preferably 10 to 1000 m 2 / g, more preferably 30 to 500 m 2 / g, and still more preferably 50 to 300 m 2 / g. When the value is 10 to 1000 m 2 / g, the radioactive substance elution suppression effect is high, and the pulverization cost is low. For crushing siliceous shale, a jaw crusher, a top grinder mill, a cross beater mill, a ball mill or the like is used. However, the BET specific surface area is strongly dependent on the internal structure of the siliceous shale, and the brane specific surface area and the particle diameter due to laser diffraction / scattering are more suitable as indicators for the change in particle diameter due to grinding. The brane specific surface area of the siliceous shale is preferably 0.2 to 5 m 2 / kg, more preferably 0.25 to 1 m 2 / kg. Moreover, although the average particle diameter of the siliceous shale measured using laser diffraction / scattering depends on the particle size distribution, it is preferably 0.1 to 100 μm, more preferably 1 to 20 μm.
In addition, the Wakkanai siliceous shale produced in northern Hokkaido is preferable in terms of the pulverization property and the elution suppression effect of radioactive substances.

(2)セメント
前記セメントは、任意のセメントを用いることができ、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメント、および普通エコセメント等から選ばれる1種以上が挙げられる。その他の各種鉱物を混合した混合セメント、たとえば石灰石フィラーセメントや、複数の混和材を混合した複合セメントであってもかまわない。さらに膨張材などの機能性混和材を混合することもできる。
また、本発明の固定化材は、前記セメント100質量部に対し前記珪質頁岩を1〜50質量部含有するものである。該値が1質量部未満では放射性物質の溶出抑制効果が低く、50質量部を超えると固定化材の強度発現性が低下するおそれがある。
(2) Cement Any cement can be used as the cement, for example, ordinary Portland cement, early-strength Portland cement, ultra-early strong Portland cement, moderately hot Portland cement, low heat Portland cement, sulfate-resistant Portland cement, blast furnace Examples thereof include one or more selected from cement, fly ash cement, silica cement, and ordinary eco cement. It may be a mixed cement in which various other minerals are mixed, for example, limestone filler cement, or a composite cement in which a plurality of admixtures are mixed. Further, a functional admixture such as an expansion material can be mixed.
Moreover, the fixing material of the present invention contains 1 to 50 parts by mass of the siliceous shale with respect to 100 parts by mass of the cement. When the value is less than 1 part by mass, the elution suppression effect of the radioactive substance is low, and when it exceeds 50 parts by mass, the strength expression of the immobilizing material may be reduced.

(3)その他の任意成分
本発明の放射性物質の固定化材は、任意成分として、高炉スラグ、炭酸マグネシウム、石膏、硫酸マグネシウム、硫酸第一鉄、塩化カルシウム、重焼リン、および熔リン等から選ばれる1種以上の固化促進剤や、セシウムを吸着する性質がある土壌や粘土、不溶性フェロシアン化物、モンモリロナイト含有物、ゼオライトおよびバイデライト含有物等から選ばれる1種以上のセシウム吸着材等を、固定化材の強度発現性に影響しない範囲で含んでもよい。
(3) Other optional components The radioactive material immobilization material of the present invention includes, as optional components, blast furnace slag, magnesium carbonate, gypsum, magnesium sulfate, ferrous sulfate, calcium chloride, heavy burned phosphorus, molten phosphorus, and the like. One or more selected solidification accelerators, one or more cesium adsorbents selected from soils and clays that have the property of adsorbing cesium, insoluble ferrocyanides, montmorillonite-containing materials, zeolites and beidellite-containing materials, etc. You may include in the range which does not affect the intensity | strength expression property of a fixing material.

2.放射性汚染物の処理方法
該処理方法は、前記固定化材および放射性汚染物の合計質量に対し、放射性物質の含有率が100ppm以下、好ましくは50ppm以下、より好ましくは10ppm以下、さらに好ましくは2ppm以下、特に好ましくは1ppm以下となるように、前記固定化材と放射性汚染物を混合する方法である。該含有率が100ppmを超えると、放射性物質の溶出抑制効果が十分でない場合がある。
また、本発明の固定化材は、放射性汚染物に対し粉体混合またはスラリー混合のいずれの方法でも用いることができる。また、スラリーの調製に用いる水は、特に限定されず、水道水、再生水、雨水等が挙げられる。
2. Treatment method of radioactive contaminants The treatment method comprises a radioactive material content of 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less, even more preferably 2 ppm or less with respect to the total mass of the immobilizing material and radioactive contaminants. In this method, the immobilizing material and radioactive contaminants are mixed so that the concentration is preferably 1 ppm or less. When this content rate exceeds 100 ppm, the elution suppression effect of a radioactive substance may not be enough.
Moreover, the immobilizing material of the present invention can be used by any method of powder mixing or slurry mixing for radioactive contaminants. Moreover, the water used for preparation of a slurry is not specifically limited, A tap water, reclaimed water, rain water, etc. are mentioned.

本発明における処理対象物は、使用済み燃料の再処理操作で分離された放射性廃液やそのガラス固化体等の高レベル放射性廃棄物を除いた、低レベルの放射性汚染物であり、例えば、汚染ダスト、汚染土、および汚染灰等が挙げられる。   The object to be treated in the present invention is a low-level radioactive contaminant excluding a high-level radioactive waste such as a radioactive waste liquid or a vitrified product thereof separated by a reprocessing operation of spent fuel. , Contaminated soil, and contaminated ash.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.試験体の作製およびセシウムの浸出試験
下記(i)〜(vii)の手順に従いセシウムを含む固化体を作製した。
(i)北海道北部地域産の稚内層の珪質頁岩(化学組成;SiO:77%、Al:10%、Fe:3%、KO:2%)をボールミルで粉砕し、BET比表面積が110m/gの粉体(最大粒径:0.5mm)を得た。
(ii)普通ポルトランドセメント100質量部に対し前記粉体を11質量部混合して、固定化材(M)を調製した。
(iii)固定化材(M)に対し焼却灰を質量比1:1で混合して混合物を調製し、さらに該混合物に対し塩化セシウムを2ppm(質量比率)混合して粉体混合物を調製した。
(iv)該粉体混合物に対し、蒸留水を水/粉体比(質量比)0.76で添加して混練し混練物を調製した。
(v)前記混練物を成型して直径5cm、長さ10cmの硬化体を作製した後、該硬化体を室温で10日、さらに40℃で50日間養生して試験体を作製した。
(vi)さらに比較のため、普通ポルトランドセメント(C)、および普通ポルトランドセメント/ポゾラン質混和材の質量比が6/4の混合セメント(F)を用い、前記(iii)〜(v)と同様にして試験体(2種類)を作製し、比較例として試験に供した。
(vii)前記試験体(3種類)を用いて、セシウムの浸出試験を、プロペラで撹拌して、液固比10のタンクリーチング試験(JIS K 0058−1)、および環境庁告示第13号に準じて行った。
タンクリーチング試験の結果を表1に示す。また、表2に、本発明の固定化材(M)および前記比較例の固定化材(C、F)の溶出抑制効果の比較(固定化材比)を示す。
また、環境省告示第13号に準じた試験により求めた溶出率は、固定化材(M)で0.37、固定化材(C)で0.90、固定化材(F)で0.51であった。
なお、図1に前記(i)に記載の珪質頁岩の粉末X線回折ピークを示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
1. Preparation of test body and leaching test of cesium A solidified body containing cesium was prepared according to the following procedures (i) to (vii).
(I) Silica shale (chemical composition; SiO 2 : 77%, Al 2 O 3 : 10%, Fe 2 O 3 : 3%, K 2 O: 2%) from the Wakkanai Formation from the northern Hokkaido region with a ball mill By grinding, a powder having a BET specific surface area of 110 m 2 / g (maximum particle size: 0.5 mm) was obtained.
(Ii) 11 parts by mass of the powder was mixed with 100 parts by mass of ordinary Portland cement to prepare an immobilizing material (M).
(Iii) A mixture was prepared by mixing incineration ash with a mass ratio of 1: 1 to the immobilizing material (M), and further mixing 2 ppm (mass ratio) of cesium chloride with the mixture to prepare a powder mixture. .
(Iv) Distilled water was added to the powder mixture at a water / powder ratio (mass ratio) of 0.76 and kneaded to prepare a kneaded product.
(V) After molding the kneaded material to prepare a cured body having a diameter of 5 cm and a length of 10 cm, the cured body was cured at room temperature for 10 days and further at 40 ° C. for 50 days to prepare a test body.
(Vi) For the sake of comparison, ordinary Portland cement (C) and mixed cement (F) having a mass ratio of ordinary Portland cement / pozzolanic admixture of 6/4 are the same as the above (iii) to (v) A test body (two types) was prepared and used for the test as a comparative example.
(Vii) Using the test specimens (three types), the leaching test of cesium was stirred with a propeller, the tank leaching test with a liquid-solid ratio of 10 (JIS K 0058-1), and Environmental Agency Notification No. 13 According to the same procedure.
The results of the tank leaching test are shown in Table 1. Table 2 shows a comparison (an immobilization material ratio) of elution suppression effects of the immobilization material (M) of the present invention and the immobilization materials (C, F) of the comparative example.
Moreover, the elution rate calculated | required by the test according to Ministry of the Environment notification No. 13 is 0.37 for the immobilizing material (M), 0.90 for the immobilizing material (C), and 0.00 for the immobilizing material (F). 51.
FIG. 1 shows a powder X-ray diffraction peak of the siliceous shale described in (i) above.

Figure 0006114055
Figure 0006114055

Figure 0006114055
Figure 0006114055

2.セシウムの溶出抑制効果について
表1、2に示すように、本発明の固定化材(M)は普通ポルトランドセメント(C)に比べ、セシウムの浸出速度を29〜40%に抑制している。
また、前記特許文献1に記載の固定化材に相当する混合セメント(F)と比べてもなお、本発明の固定化材はセシウムの浸出速度を40〜57%に抑制している。
溶出速度であれば、水/セメント比を下げるなどして緻密なセメント硬化体にすれば低減可能である。しかし、粉砕した細粒物の溶出を評価する環境庁告示13号に準ずる試験において、Mが顕著に低い溶出率を示したことは、珪質頁岩が溶出速度を低下させるのみならず、セシウムを収着し、液相への溶出そのものを抑制していることを示している。
したがって、本発明の放射性物質の固定化材は、放射性物質の溶出抑制効果が高いことが分かる。
2. About the cesium elution inhibitory effect As shown in Tables 1 and 2, the immobilization material (M) of the present invention suppresses the cesium leaching rate to 29 to 40% as compared with ordinary Portland cement (C).
Further, even when compared with the mixed cement (F) corresponding to the fixing material described in Patent Document 1, the fixing material of the present invention suppresses the cesium leaching rate to 40 to 57%.
The dissolution rate can be reduced by reducing the water / cement ratio to make a dense cement hardened body. However, in the test according to the Environmental Agency Notification No. 13 which evaluates the dissolution of pulverized fine particles, the fact that M showed a remarkably low dissolution rate was not only that siliceous shale decreased the dissolution rate, but also cesium. It shows that sorption and suppression to the liquid phase itself are suppressed.
Therefore, it is understood that the radioactive substance immobilization material of the present invention has a high elution suppression effect of the radioactive substance.

Claims (7)

珪質頁岩およびセメントを含む放射性物質の固定化材。   Immobilization material for radioactive materials including siliceous shale and cement. 前記放射性物質が放射性セシウムである、請求項1に記載の放射性物質の固定化材。   The radioactive substance immobilization material according to claim 1, wherein the radioactive substance is radioactive cesium. セメント100質量部に対し前記珪質頁岩を1〜50質量部含む、請求項1または2に記載の放射性物質の固定化材。   The radioactive material immobilization material according to claim 1 or 2, comprising 1 to 50 parts by mass of the siliceous shale with respect to 100 parts by mass of cement. 前記珪質頁岩は、Cu−Kα線による粉末X線回折において、(前記珪質頁岩中のクリストバライトおよびトリディマイトの2θ=21.5〜21.9degの最強回折強度)/(前記珪質頁岩中の石英の2θ=26.6degのピーク頂部の回折強度)の強度比が、0.2〜2.0の範囲にある、請求項1〜3のいずれか1項に記載の放射性物質の固定化材。   The siliceous shale is, in powder X-ray diffraction by Cu-Kα ray, (the strongest diffraction intensity of 2θ = 21.5 to 21.9 deg of cristobalite and tridymite in the siliceous shale) / (in the siliceous shale) The radioactive material immobilization material according to any one of claims 1 to 3, wherein the intensity ratio of quartz (2θ = 26.6 deg peak top) of quartz is in the range of 0.2 to 2.0. . 前記珪質頁岩のBET比表面積が10〜1000m/gである、請求項1〜4のいずれか1項に記載の放射性物質の固定化材。 The radioactive material immobilization material according to any one of claims 1 to 4, wherein the siliceous shale has a BET specific surface area of 10 to 1000 m 2 / g. 請求項1〜5のいずれか1項に記載の放射性物質の固定化材および放射性汚染物の合計質量に対し、放射性物質の含有率が100ppm以下となるように前記固定化材と放射性汚染物を混合する、放射性汚染物の処理方法。 The immobilization material and the radioactive contaminant are added so that the content of the radioactive material is 100 ppm or less with respect to the total mass of the radioactive material immobilization material and the radioactive contamination according to any one of claims 1 to 5. A method for treating radioactive contaminants to be mixed. 請求項6に記載の放射性汚染物が、汚染ダスト、汚染土、および汚染灰から選ばれる1種以上である、請求項6に記載の放射性汚染物の処理方法。
The method for treating radioactive contaminants according to claim 6, wherein the radioactive contaminant according to claim 6 is at least one selected from contaminated dust, contaminated soil, and contaminated ash.
JP2013033039A 2013-02-22 2013-02-22 Radioactive substance immobilization material and radioactive contaminant treatment method Expired - Fee Related JP6114055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013033039A JP6114055B2 (en) 2013-02-22 2013-02-22 Radioactive substance immobilization material and radioactive contaminant treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033039A JP6114055B2 (en) 2013-02-22 2013-02-22 Radioactive substance immobilization material and radioactive contaminant treatment method

Publications (2)

Publication Number Publication Date
JP2014163730A JP2014163730A (en) 2014-09-08
JP6114055B2 true JP6114055B2 (en) 2017-04-12

Family

ID=51614481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013033039A Expired - Fee Related JP6114055B2 (en) 2013-02-22 2013-02-22 Radioactive substance immobilization material and radioactive contaminant treatment method

Country Status (1)

Country Link
JP (1) JP6114055B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6568431B2 (en) * 2015-08-31 2019-08-28 太平洋セメント株式会社 Soil improvement material and soil improvement method
CN110310753B (en) * 2019-07-18 2020-10-30 西南科技大学 Method for solidifying radionuclide fission product cesium by using perovskite structure oxide
CN114088749B (en) * 2020-08-05 2024-04-19 中国石油化工股份有限公司 Method and device for rapidly identifying broken quartz and biogenic quartz in shale

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798147B2 (en) * 1986-12-10 1995-10-25 日東石膏ボ−ド株式会社 Excreta treatment agent
JP4270699B2 (en) * 2000-01-18 2009-06-03 太平洋セメント株式会社 Waste processing material, waste processing container, waste processing body, and waste processing method
JP4472953B2 (en) * 2003-07-29 2010-06-02 水澤化学工業株式会社 Heavy metal scavenger
JP2008239362A (en) * 2007-03-26 2008-10-09 Taiheiyo Cement Corp Low activation cement and method for manufacturing the same, and low activation concrete
JP2009173498A (en) * 2008-01-25 2009-08-06 Taiheiyo Cement Corp Hydraulic composition and hardened body
JP5269628B2 (en) * 2009-01-16 2013-08-21 太平洋セメント株式会社 Cement composition
JP2013113721A (en) * 2011-11-29 2013-06-10 Kurokawa Kensuke Method for decontaminating radioactive contaminant

Also Published As

Publication number Publication date
JP2014163730A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
Mallampati et al. Dynamic immobilization of simulated radionuclide 133Cs in soil by thermal treatment/vitrification with nanometallic Ca/CaO composites
JP5839459B2 (en) Radioactive material-containing incineration ash and radioactive material-containing soil compression molding and compression molding method thereof
JP2016117050A (en) Inorganic polymer-made adsorbent and method for production thereof
Gijbels et al. Radiological and leaching assessment of an ettringite-based mortar from ladle slag and phosphogypsum
JP2005146275A (en) Agent for improving, solidifying, and stabilizing soil and its quality
JP6114055B2 (en) Radioactive substance immobilization material and radioactive contaminant treatment method
JP2013104824A (en) Removal method of radioactive cesium and manufacturing method of burned product
CN102989741A (en) Preparation method of heavy metal solid waste curing agent
JP2013076690A (en) Method for removing radioactive cesium and method for manufacturing burned product
JP6779069B2 (en) Method for solidifying modified materials such as soft soil and residual soil
Sharifikolouei et al. Adsorption of Pb and Cd in rice husk and their immobilization in porous glass‐ceramic structures
KR101235251B1 (en) Cement using waterworks sludge and mathod for manufacturing the same
JP5047400B1 (en) Method for producing radioactive waste incineration ash cement solidified body and solidified body thereof
JP2009102518A (en) Treatment material for reducing heavy metals, treatment method for reducing heavy metals, method for manufacturing material for granulation treatment, and ground material
Movahedrad et al. Effect of basic oxygen furnace slag incorporation into calcium-based materials on solidification/stabilization of a zinc-contaminated kaolin clay
Zou et al. Properties and mechanisms of steel slag strengthening microbial cementation of cyanide tailings
Chen et al. Utilization of high-volume phosphogypsum in artificial aggregate by compaction granulation: effects of muck on physical properties, strength and leaching stability
JP2009294017A (en) Processing method of radioactive processed product and land-shielding technique
RU2737954C1 (en) Method of processing liquid radioactive wastes containing, among other things, tritium isotopes
JP2019143030A (en) Modifier of soft weak soil or the like, and solidification treatment method of remaining soil
JP2008013426A (en) Low activation cement and its manufacturing process
JP6151084B2 (en) Solidification method for radioactive waste
JP2013190257A (en) Immobilizing material for radioactive substance and processing method of radioactive contaminant
JP4209224B2 (en) Method for producing calcium sulfide heavy metal fixing agent
JP6347766B2 (en) Method for producing radioactive cesium-removing concrete product and method for removing radioactive cesium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170316

R150 Certificate of patent or registration of utility model

Ref document number: 6114055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees