JP4472953B2 - Heavy metal scavenger - Google Patents

Heavy metal scavenger Download PDF

Info

Publication number
JP4472953B2
JP4472953B2 JP2003281688A JP2003281688A JP4472953B2 JP 4472953 B2 JP4472953 B2 JP 4472953B2 JP 2003281688 A JP2003281688 A JP 2003281688A JP 2003281688 A JP2003281688 A JP 2003281688A JP 4472953 B2 JP4472953 B2 JP 4472953B2
Authority
JP
Japan
Prior art keywords
heavy metal
acid
weight
metal scavenger
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003281688A
Other languages
Japanese (ja)
Other versions
JP2005048063A (en
Inventor
一彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP2003281688A priority Critical patent/JP4472953B2/en
Publication of JP2005048063A publication Critical patent/JP2005048063A/en
Application granted granted Critical
Publication of JP4472953B2 publication Critical patent/JP4472953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、重金属捕捉剤に関するものであり、より詳細には、粘土の酸処理工程で排出される酸性廃液から得ることができる重金属捕捉剤に関する。   The present invention relates to a heavy metal scavenger, and more particularly to a heavy metal scavenger obtainable from an acidic waste liquid discharged in a clay acid treatment step.

ゴミ焼却炉などで発生する飛灰中には、Cd、Cr、Zn、Cu、Ni、Hg、As、Mn、Pb等の有害な重金属を含有しており、現在では、このような飛灰は、セメントで固化して埋め立て等により廃棄されている。しかしながら、上記のような有害な重金属がセメントから溶出し、新たな環境汚染が問題となっている。   The fly ash generated in a garbage incinerator contains harmful heavy metals such as Cd, Cr, Zn, Cu, Ni, Hg, As, Mn, and Pb. It is solidified with cement and disposed of by landfill. However, harmful heavy metals as described above are eluted from the cement, and new environmental pollution is a problem.

このような問題を解決するため、Al(SO、ケイ酸アルミニウム、リン酸アルミニウム等の固体酸の粉末を重金属捕捉剤として使用することが提案されている(特許文献1)。 In order to solve such problems, it has been proposed to use a solid acid powder such as Al 2 (SO 4 ) 3 , aluminum silicate, and aluminum phosphate as a heavy metal scavenger (Patent Document 1).

特開平7−204605号公報(特許請求の範囲)JP-A-7-204605 (Claims)

上記特許文献1に開示されている重金属捕捉剤によれば、各種重金属が塩等の安定な化合物の形で捕捉され、溶出等による環境汚染を有効に回避できるというものであるが、その吸着及び捕捉効果が未だ満足し得るものではなく、重金属に対する捕捉作用がさらに向上した捕捉剤が求められている。   According to the heavy metal scavenger disclosed in Patent Document 1, various heavy metals are captured in the form of stable compounds such as salts, and environmental pollution due to elution can be effectively avoided. There is a need for a scavenger that has not yet been able to satisfy the scavenging effect and has further improved the scavenging action on heavy metals.

一方、粘土の酸処理工程で生成する酸性廃液には、粘土に含まれている塩基性成分(例えばアルミナ分、アルカリ土類金属成分、マグネシウム成分、鉄分等)が水溶性塩類の形で含有されていると共に、シリカ成分も酸性ゾルの形で含有されている。従って、このような酸性廃液は、各種金属の吸着、捕捉に寄与する成分を含有しており、何らかの処理をすることにより、重金属捕捉効果の高い剤を得ることができるのではないかと考えられる。しかしながら、このような酸性廃液は、多くの場合、中和処理してそのまま廃棄されており、僅かに土壌改良剤などの用途への再利用が提案されているに過ぎない。   On the other hand, the acidic waste liquid produced in the acid treatment process of clay contains basic components (eg, alumina, alkaline earth metal, magnesium, iron, etc.) contained in clay in the form of water-soluble salts. In addition, the silica component is contained in the form of an acidic sol. Therefore, such an acidic waste liquid contains components that contribute to the adsorption and capture of various metals, and it is considered that an agent having a high heavy metal capture effect can be obtained by performing some kind of treatment. However, in many cases, such an acidic waste liquid is neutralized and discarded as it is, and is only suggested to be reused for a purpose such as a soil conditioner.

従って本発明の目的は、Cd、Cr、Pbなどの重金属に対する吸着・捕捉効果が著しく向上した重金属捕捉剤を提供することにある。
本発明の他の目的は、粘土の酸処理工程で生成する酸性廃液から製造可能な重金属捕捉剤を提供することにある。
Accordingly, it is an object of the present invention to provide a heavy metal scavenger having a markedly improved adsorption / capture effect on heavy metals such as Cd, Cr and Pb.
Another object of the present invention is to provide a heavy metal scavenger that can be produced from an acidic waste liquid produced in an acid treatment step of clay.

本発明によれば、粘土の酸処理工程で排出される酸性廃液を中和処理して生成するスラリーを、更にpHが8乃至10.5の範囲となるようにアルカリ処理し、次いで熟成することにより得られた重金属捕捉剤であって、
該重金属捕捉剤は、Na、Mg、Al及びSiを、110℃乾燥基準且つ酸化物換算で、下記条件:
NaO:0.2乃至6重量%
MgO:10乃至20重量%
Al:20乃至45重量%
SiO:8乃至40重量%
を満足する量で含有し、灼熱減量(1050℃)が20乃至40重量%の範囲にあり、且つ前記元素の一部は、少なくとも下記式(1)乃至(3):
Mg2.85Al5.7Si10.332・14HO …(1)
Na〔AlSi16〕・6HO …(2)
(Na,Ca)Al(SO(OH) …(3)
のいずれかで表わされる化合物の形で存在することを特徴とする重金属捕捉剤が提供される。
According to the present invention, the slurry produced by neutralizing the acidic waste liquid discharged in the acid treatment step of clay is further alkali-treated so that the pH is in the range of 8 to 10.5, and then aged. A heavy metal scavenger obtained by
The heavy metal scavenger contains Na, Mg, Al, and Si in the following conditions:
Na 2 O: 0.2 to 6% by weight
MgO: 10 to 20% by weight
Al 2 O 3 : 20 to 45% by weight
SiO 2 : 8 to 40% by weight
The amount of loss on ignition (1050 ° C.) is in the range of 20 to 40% by weight, and at least some of the elements are represented by the following formulas (1) to (3):
Mg 2.85 Al 5.7 Si 10.3 O 32 · 14H 2 O (1)
Na [Al 2 Si 6 O 16 ] · 6H 2 O (2)
(Na, Ca) Al 3 (SO 4 ) 2 (OH) 6 (3)
A heavy metal scavenger is provided which is present in the form of a compound represented by:

本発明の重金属捕捉剤においては、FeIn the heavy metal scavenger of the present invention, Fe 2 O 3 含量が8重量%以下に抑制され、且つSOThe content is suppressed to 8% by weight or less, and SO 3 含量が15重量%以下に抑制されていることが好ましい。The content is preferably suppressed to 15% by weight or less.

本発明の重金属捕捉剤は、Cd、Cr、Pbなどの重金属を効率よく捕捉することが可能であり、環境保護の点で極めて有用であるばかりか、粘土の酸性廃液を利用して生産可能であり、資源の再利用という点でも極めて有用である。   The heavy metal scavenger of the present invention can efficiently capture heavy metals such as Cd, Cr and Pb, and is extremely useful in terms of environmental protection, and can be produced using an acidic waste liquid of clay. It is extremely useful in terms of resource reuse.

(重金属捕捉剤の製造)
本発明の重金属捕捉剤は、これに限定するものではないが、粘土の酸性廃液から得ることができる。即ち、粘土の酸処理で発生する廃液を利用できるというのが本発明の最大の利点である。
(Manufacture of heavy metal scavengers)
The heavy metal scavenger of the present invention is not limited to this, but can be obtained from an acidic waste liquid of clay. That is, the greatest advantage of the present invention is that the waste liquid generated by the acid treatment of clay can be used.

この原料の粘土としては、スメクタイト粘土、特に酸性白土やベントナイト等のモンモリロナイトが好適であるが、ハロイサイト等も使用することができる。スメクタイトは、火山灰や溶岩等が海水の影響下で変性することにより生成したものと考えられているが、この変性の過程で過剰のケイ酸分が水晶、クリストバライト、オパールCT等の形で析出し、これがスメクタイト粘土と共存していることが多い。このようなスメクタイト粘土を、必要により、石砂分離、浮力選鉱、磁力選鉱、水簸、風簸等の精製操作に付した後、酸処理が行われる。この酸処理は、油脂精製剤或いは触媒担体として有用な活性白土、感圧紙用顕色剤、非晶質シリカ等を得るために行われるものであり、この酸処理に際して、本発明において利用し得る酸性廃液が副生する。   As the raw clay, smectite clay, particularly montmorillonite such as acid clay and bentonite is suitable, but halloysite and the like can also be used. Smectite is thought to have been generated by the modification of volcanic ash, lava, etc. under the influence of seawater, but excessive silicic acid precipitates in the form of quartz, cristobalite, opal CT, etc. during this modification process. This often coexists with smectite clay. Such smectite clay is subjected to a refining operation such as stone sand separation, buoyant beneficiation, magnetic beneficiation, water tank, wind drought, etc., if necessary, followed by acid treatment. This acid treatment is carried out to obtain activated clay, pressure sensitive paper developer, amorphous silica, etc. useful as a fat refining agent or catalyst carrier, and can be used in the present invention for this acid treatment. Acid waste liquid is produced as a by-product.

酸としては、粘土鉱物中の金属と用いた酸の酸根との塩が水或いは酸水溶液中で可溶であるようなものであるが、通常、経済性や取り扱い性の点で硫酸が最も好適である。酸処理に用いる硫酸の濃度は、一般に5乃至50重量%、特に15乃至35重量%の範囲内であり、酸処理温度は、一般に、50乃至100℃、特に60乃至95℃の範囲に設定され、酸処理時間は、酸処理温度や目的物の種類、原料の粘土鉱物の種類等によっても異なるが、一般的には1乃至30時間、特に5乃至25時間の範囲である。原料粘土鉱物と酸との接触は、原料粘土鉱物を一定の粒状物に造粒し、この造粒物を塔に充填し、酸水溶液を塔内に循環させる方法や、酸水溶液中に原料粘土鉱物を分散させ、スラリー状で酸処理する方法等により行われる。   The acid is such that the salt of the metal in the clay mineral and the acid radical of the acid used is soluble in water or an aqueous acid solution, but sulfuric acid is usually most preferred in terms of economy and handleability. It is. The concentration of sulfuric acid used for the acid treatment is generally in the range of 5 to 50% by weight, particularly 15 to 35% by weight, and the acid treatment temperature is generally set in the range of 50 to 100 ° C., particularly 60 to 95 ° C. The acid treatment time varies depending on the acid treatment temperature, the kind of the target product, the kind of the raw clay mineral, etc., but is generally in the range of 1 to 30 hours, particularly 5 to 25 hours. The contact between the raw clay mineral and the acid can be achieved by granulating the raw clay mineral into a certain granular material, filling the granulated material into a tower, and circulating the aqueous acid solution in the tower, or the raw clay in the aqueous acid solution. It is performed by a method of dispersing minerals and performing acid treatment in a slurry state.

上記の酸処理により、原料粘土鉱物中に含まれる層間の陽イオンが塩として酸水溶液中に溶出し、且つ3層構造の八面体中のMg成分、Fe成分、Al成分や3層構造の四面体層中のAl等の金属成分が塩として酸水溶液中に溶出する。また、粘土中のシリカ成分の一部が酸性ゾルの形で溶出する。酸処理の終点において、これらの塩を含む酸水溶液を、粘土鉱物の酸処理物から分離する。   By the above acid treatment, cations between layers contained in the raw clay mineral are eluted as a salt into the acid aqueous solution, and the four sides of the Mg component, Fe component, Al component and three-layer structure in the octahedron of the three-layer structure Metal components such as Al in the body layer are eluted into the acid aqueous solution as a salt. A part of the silica component in the clay is eluted in the form of an acidic sol. At the end of the acid treatment, the acid aqueous solution containing these salts is separated from the acid-treated product of the clay mineral.

このようにして酸処理物から分離された酸性廃液或いは酸処理物の水洗液(これらの混合液でも良い)を、中和処理して、酸性廃液中に含まれるシリカ成分及び各種金属成分及び酸根(硫酸根)を沈殿として回収する。   The acidic waste liquid or acid-treated water washing liquid (which may be a mixture thereof) thus separated from the acid-treated product is neutralized, and the silica component, various metal components, and acid radicals contained in the acidic waste solution are treated. (Sulfate radical) is recovered as a precipitate.

中和処理には、通常、消石灰が使用されるが、例えばゼオライトの合成工程で排出されるアルカリ性廃液を使用することもできる。この中和反応は、液のpHが6乃至9、特に7乃至8となるように行い温度は、0乃至60℃の範囲が適当である。ゼオライトの合成工程で排出されるアルカリ性廃液及び消石灰は、それぞれ単独で中和に用いても良いし、組合せで中和に用いても良い。例えば、中和の初期段階で、アルカリ性廃液を使用し、中和の終期の段階で消石灰を使用しても良い。   In the neutralization treatment, slaked lime is usually used. For example, alkaline waste liquid discharged in the zeolite synthesis process can also be used. This neutralization reaction is performed so that the pH of the solution is 6 to 9, particularly 7 to 8, and the temperature is suitably in the range of 0 to 60 ° C. The alkaline waste liquid and slaked lime discharged in the zeolite synthesis step may be used alone for neutralization or in combination for neutralization. For example, alkaline waste liquid may be used in the initial stage of neutralization, and slaked lime may be used in the final stage of neutralization.

沈殿の沈降分離は、シックナーにより行われ、上澄液は放流され、沈降したスラリーは、固液分離され、本発明の重金属捕捉剤の製造に用いる。   The sedimentation of the precipitate is performed by a thickener, the supernatant is discharged, and the settled slurry is separated into a solid and a liquid and used for producing the heavy metal scavenger of the present invention.

上記のスラリーは、Na、Mg、Al及びSiの元素成分を含み、さらに硫酸根やFe、Ca、Znなどの成分をも含んでいる。例えば、非晶質シリカ、非晶質アルミナ、非晶質乃至結晶質のシリカアルミナ或いはアルミノケイ酸塩(ゼオライトをも含む)、鉄水酸化物乃至酸化物、石膏等が複合された状態で沈殿として析出し、これらの成分の大部分は、吸着性に優れ、水に不溶性或いは難溶性の成分として存在している。固液分離されたこの沈殿スラリーの代表的な化学組成は、以下の通りである。   The slurry includes elemental components of Na, Mg, Al, and Si, and further includes components such as sulfate radicals, Fe, Ca, and Zn. For example, as a precipitate in a composite state of amorphous silica, amorphous alumina, amorphous or crystalline silica alumina or aluminosilicate (including zeolite), iron hydroxide or oxide, gypsum, etc. Most of these components are precipitated and are excellent in adsorptivity and are present as water-insoluble or hardly soluble components. The typical chemical composition of this precipitation slurry separated into solid and liquid is as follows.

(化学組成)
NaO:1〜6(重量%)
MgO:2〜6
Al:15〜35
SiO:15〜35
Fe:2〜6
CaO:1〜6
O:0.1〜2
SO:13〜25
(Chemical composition)
Na 2 O: 1 to 6 (% by weight)
MgO: 2-6
Al 2 O 3: 15~35
SiO 2: 15~35
Fe 2 O 3: 2~6
CaO: 1-6
K 2 O: 0.1~2
SO 3: 13~25

上記のスラリーを、スラリーpHが8乃至10.5の範囲となるようにアルカリ処理を行い、次いで熟成する。このアルカリ処理及び熟成によって、硫酸根(SO)が適度に除去され、重金属の捕捉に有効な結晶成分が生成するものと思われる。例えば、後述する実施例に示すように、アルカリ処理のpHが上記範囲よりも低いと(即ち、中性サイドであると)、重金属の捕捉に有効な結晶成分の生成が不十分となり、重金属捕捉効果が低下する。また、アルカリ処理のpHが上記範囲よりも高いと、有効成分が取り出されてしまい、やはり、重金属捕捉効果が低下してしまう。 The slurry is subjected to alkali treatment so that the slurry pH is in the range of 8 to 10.5, and then aged. By this alkali treatment and aging, the sulfate group (SO 3 ) is appropriately removed, and it is considered that a crystal component effective for capturing heavy metals is generated. For example, as shown in the examples described later, when the pH of the alkali treatment is lower than the above range (that is, the neutral side), the generation of crystalline components effective for capturing heavy metals becomes insufficient, and heavy metal capturing The effect is reduced. On the other hand, when the pH of the alkali treatment is higher than the above range, the active ingredient is taken out, and the heavy metal capturing effect is lowered.

上記のアルカリ処理に用いるpH調整剤としては、例えば、水酸化マグネシウム、水酸化カルシウム、水酸化亜鉛、水酸化バリウム等が好適に使用されるが、必要に応じて苛性ソーダ、苛性カリ、アルミン酸ソーダ、ケイ酸ソーダ等を用いても良い。   As the pH adjuster used for the alkali treatment, for example, magnesium hydroxide, calcium hydroxide, zinc hydroxide, barium hydroxide and the like are preferably used, but if necessary, caustic soda, caustic potash, sodium aluminate, Sodium silicate or the like may be used.

熟成後、濾過、水洗し、次いで乾燥し、粉砕することにより、本発明の重金属捕捉剤を得ることができる。   The heavy metal scavenger of the present invention can be obtained by aging, filtering, washing with water, then drying and pulverizing.

このように、本発明の重金属捕捉剤は、粘土の酸性廃液を中和処理したスラリーから得られるものであるため、Na、Mg、Al及びSiの元素成分を、110℃乾燥基準且つ酸化物換算で、下記条件:
NaO:0.2乃至6重量%、特に0.2乃至4重量%、
MgO:10乃至20重量%、特に10乃至18重量%、
Al:20乃至45重量%、特に20乃至30重量%、
SiO:8乃至40重量%、特に10乃至30重量%、
を満足する量で含有し、灼熱減量(1050℃)が20乃至40重量%の範囲にあり、さらに、好ましくは、上述したアルカリ処理によって、Fe含量が8 重量%以下、且つSO含量が15重量%以下に低減されている。しかも、重要なことは、前記元素の一部は、少なくとも下記式(1)乃至(3):
Mg2.85Al5.7Si10.332・14HO …(1)
Na〔AlSi16〕・6HO …(2)
(Na,Ca)Al(SO(OH)・・・(3)
のいずれかで表わされる化合物を形成しているのであり、このような化合物の存在により、重金属捕捉能の著しい向上がもたらされるのである。
As described above, since the heavy metal scavenger of the present invention is obtained from a slurry obtained by neutralizing an acidic waste liquid of clay, the elemental components of Na, Mg, Al, and Si are converted to 110 ° C. on a dry basis and converted to oxides. In the following conditions:
Na 2 O: 0.2 to 6% by weight, in particular 0.2 to 4% by weight,
MgO: 10 to 20% by weight, especially 10 to 18% by weight,
Al 2 O 3 : 20 to 45% by weight, in particular 20 to 30% by weight,
SiO 2 : 8 to 40% by weight, in particular 10 to 30% by weight,
And the loss on ignition (1050 ° C.) is in the range of 20 to 40% by weight, and more preferably, the Fe 2 O 3 content is 8% by weight or less and the SO 3 The content is reduced to 15% by weight or less. Moreover, it is important that some of the elements are at least the following formulas (1) to (3):
Mg 2.85 Al 5.7 Si 10.3 O 32 · 14H 2 O (1)
Na [Al 2 Si 6 O 16 ] · 6H 2 O (2)
(Na, Ca) Al 3 (SO 4 ) 2 (OH) 6 (3)
Thus, the presence of such a compound provides a significant improvement in the ability to capture heavy metals.

例えば、添付図面の図1は、本発明の重金属捕捉剤(実施例1〜2)と実施例1の重金属捕捉剤の製造に用いた酸性廃液の中和処理物(比較例1)のX線回折像を示すものであるが、比較例1の中和処理物では、上記式(1)乃至(3)の化合物の結晶は生成していないが、実施例1〜2では、結晶成分として、上記式(1)乃至(3)いずれかの化合物の存在が確認される。   For example, FIG. 1 of the accompanying drawings shows the X-rays of the neutralized product of the acidic waste liquid used in the production of the heavy metal scavenger of the present invention (Examples 1 and 2) and the heavy metal scavenger of Example 1 (Comparative Example 1). Although it shows a diffraction image, the neutralized product of Comparative Example 1 does not produce crystals of the compounds of the above formulas (1) to (3), but in Examples 1-2, as a crystal component, The presence of any compound of the above formulas (1) to (3) is confirmed.

式(1)の化合物は、ASTM 16−0604で規定される化合物である。式(2)の化合物は、ASTM 12−0687で規定される化合物であり、重土十字沸石(Harmotome)と呼ばれる。式(3)の化合物はASTM 34−0143で規定される化合物であり、南石(Minamiite)と呼ばれる明礬石グループの鉱物である。何れの化合物もイオン交換能を有しており、このイオン交換能によって、各種の有害重金属(例えば、Cd、Cr、Zn、Cu、Ni、Hg、As、Mn、Pb等)が安定な塩の形で捕捉される。一方、このような化合物が存在していない比較例1では、実施例1の重金属(Pb)捕捉率が29.4wt%であるのに対し、比較例1のPb捕捉率は10.8wt%であり、重金属捕捉能は著しく低いものとなっている。
尚、式(3)の化合物が存在する場合、MgはCaのところに置換された状態で存在していると考えられるが、この推測は本発明を拘束するものではない。
The compound of Formula (1) is a compound prescribed | regulated by ASTM16-0604. The compound of Formula (2) is a compound prescribed | regulated by ASTM12-0687, and is called a heavy earth zeolitic (Harmotome). The compound of the formula (3) is a compound defined by ASTM 34-0143, and is a mineral of the alumite group called Minamiite. Each compound has an ion exchange ability, and by this ion exchange ability, various harmful heavy metals (for example, Cd, Cr, Zn, Cu, Ni, Hg, As, Mn, Pb, etc.) are stable salts. Captured in the form. On the other hand, in Comparative Example 1 where such a compound does not exist, the heavy metal (Pb) capture rate of Example 1 is 29.4 wt%, whereas the Pb capture rate of Comparative Example 1 is 10.8 wt%. In addition, the ability to capture heavy metals is extremely low.
In the case where the compound of the formula (3) is present, Mg is considered to be present in a substituted state at Ca, but this assumption does not restrict the present invention.

本発明の重金属捕捉剤は、飛灰の有害重金属を除去できるだけでなく、水中の重金属を捕捉することもできる。水と本発明の重金属捕捉剤の接触は、従来から公知である固定床流通法、粉末分散法等が適用できる。固定床流通法は、例えば、粒子径0.1〜10mmに成形した重金属捕捉剤を固定床に充填し、空間速度1.5〜10h−1で水を通水し重金属捕捉剤と接触させることにより、水中の重金属を重金属捕捉剤に吸着固定して、除去する方法である。粉末分散法は、例えば、攪拌槽に水を入れた後、重金属捕捉剤を添加し攪拌することにより、水と重金属捕捉剤を接触させて水中の重金属を重金属捕捉剤に吸着させた後、濾過又は沈降分離により重金属捕捉剤を分離して、除去する方法である。 The heavy metal scavenger of the present invention can not only remove harmful heavy metals from fly ash, but can also capture heavy metals in water. For contacting the water with the heavy metal scavenger of the present invention, conventionally known methods such as a fixed bed flow method and a powder dispersion method can be applied. In the fixed bed flow method, for example, a fixed bed is filled with a heavy metal scavenger molded to a particle size of 0.1 to 10 mm, and water is passed through at a space velocity of 1.5 to 10 h −1 to contact the heavy metal scavenger. In this method, heavy metals in water are adsorbed and fixed on a heavy metal scavenger and removed. In the powder dispersion method, for example, after adding water to a stirring vessel, a heavy metal scavenger is added and stirred to bring the heavy metal scavenger into contact with water and adsorb the heavy metal in the water, followed by filtration. Alternatively, the heavy metal scavenger is separated and removed by sedimentation separation.

また、水中の重金属の除去方法の実施に際しては、凝集沈澱法、膜濾過法等の従来公知の吸着法を組み合わせて行うことも勿論可能である。
尚、本発明の重金属捕捉剤は、酸性の地下水、河川水、温泉水であっても、重金属捕捉剤を接触させる処理工程においてpHが4超であれば、水中の重金属の除去が可能である。
In addition, when carrying out the method for removing heavy metals in water, it is of course possible to perform a combination of conventionally known adsorption methods such as a coagulation precipitation method and a membrane filtration method.
Even if the heavy metal scavenger of the present invention is acidic ground water, river water, or hot spring water, it is possible to remove heavy metals in the water if the pH is higher than 4 in the treatment step of contacting the heavy metal scavenger. .

本発明の重金属捕捉剤は、それ単独で、飛灰等の有害重金属含有成分と混合されるが、本発明の重金属捕捉剤の特性を損なわない範囲で、例えば各種固体酸や有機酸と併用することもできる。   The heavy metal scavenger of the present invention alone is mixed with a harmful heavy metal-containing component such as fly ash, but is used in combination with, for example, various solid acids and organic acids as long as the characteristics of the heavy metal scavenger of the present invention are not impaired. You can also.

このような固体酸としては、酸性白土、ベントナイト、カオリン、モンモリロナイト等の粘土鉱物、硫酸、リン酸等の無機酸を担持したシリカゲル、アルミナ、ケイ酸アルミニウム、ゼオライトなどの多孔性無機化合物、陽イオン交換樹脂、各種無機酸化物、硫酸アルミニウム等の硫酸塩、硝酸塩、リン酸塩、塩化物を例示することができる。   Examples of such solid acids include clay minerals such as acid clay, bentonite, kaolin, and montmorillonite, silica gel supporting inorganic acids such as sulfuric acid and phosphoric acid, porous inorganic compounds such as alumina, aluminum silicate, and zeolite, cations Examples thereof include exchange resins, various inorganic oxides, sulfates such as aluminum sulfate, nitrates, phosphates, and chlorides.

また、有機酸としては、スルホン酸、モノカルボン酸、ジカルボン酸、トリカルボン酸等を挙げることができる。アミノスルホン酸の例としてはスルファニル酸が挙げられ、モノカルボン酸の例としては、ギ酸、酢酸、安息香酸等が代表的に挙げられる。ジカルボン酸としては、脂肪族不飽和ジカルボン酸、脂肪族飽和ジカルボン酸、芳香族ジカルボン酸、脂環式ジカルボン酸が挙げられる。該脂肪族不飽和ジカルボン酸は、好ましくは炭素数4〜6のものである。具体的にはフマル酸、マレイン酸、イタコン酸、シトラコン酸等が挙げられる。該脂肪族飽和ジカルボン酸は、好ましくは炭素数2〜6のものである。具体的には、コハク酸、マロン酸、酒石酸、リンゴ酸、グルタル酸、アジピン酸等が挙げられる。芳香族ジカルボン酸は、ベンゼン環を有することが好ましく、具体的にはフタル酸、イソフタル酸、テレフタル酸が挙げられる。該脂環式ジカルボン酸は、シクロヘキシル環を有する酸が好ましい。具体的にはシクロヘキサンジカルボン酸等が挙げられる。トリカルボン酸としてはクエン酸が代表的に挙げられる。用いる有機酸は、実質上無臭で且つ常温において固体であるものが好適であり、酒石酸、リンゴ酸、クエン酸、フマル酸が好適である。   Examples of the organic acid include sulfonic acid, monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid. Examples of aminosulfonic acid include sulfanilic acid, and examples of monocarboxylic acid typically include formic acid, acetic acid, benzoic acid and the like. Examples of the dicarboxylic acid include aliphatic unsaturated dicarboxylic acid, aliphatic saturated dicarboxylic acid, aromatic dicarboxylic acid, and alicyclic dicarboxylic acid. The aliphatic unsaturated dicarboxylic acid is preferably one having 4 to 6 carbon atoms. Specific examples include fumaric acid, maleic acid, itaconic acid, citraconic acid and the like. The aliphatic saturated dicarboxylic acid is preferably one having 2 to 6 carbon atoms. Specific examples include succinic acid, malonic acid, tartaric acid, malic acid, glutaric acid, and adipic acid. The aromatic dicarboxylic acid preferably has a benzene ring, and specifically includes phthalic acid, isophthalic acid, and terephthalic acid. The alicyclic dicarboxylic acid is preferably an acid having a cyclohexyl ring. Specific examples include cyclohexanedicarboxylic acid. A typical example of the tricarboxylic acid is citric acid. The organic acid to be used is preferably substantially odorless and solid at room temperature, and tartaric acid, malic acid, citric acid, and fumaric acid are preferable.

一般に、本発明の重金属捕捉剤と上記の固体酸或いは有機酸とは、99:1乃至50:50の重量比、特に99:1乃至80:20の重量比で組み合わせて使用するのがよい。   In general, the heavy metal scavenger of the present invention and the above-mentioned solid acid or organic acid are preferably used in combination at a weight ratio of 99: 1 to 50:50, particularly 99: 1 to 80:20.

尚、有機酸は、通常、その少なくとも一部を本発明の重金属捕捉剤の表面或いは細孔内に添着させて使用するのがよい。このような添着手段としては、含浸法や共粉砕法等が用いられる。中でも、メカノケミカル処理による添着が特に好ましい。   In general, it is preferable that at least a part of the organic acid is attached to the surface or pores of the heavy metal scavenger of the present invention. As such an attaching means, an impregnation method, a co-grinding method, or the like is used. Of these, attachment by mechanochemical treatment is particularly preferred.

含浸法では、有機酸を水或いは有機極性溶媒、例えば、メタノール、エタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、メチルエーテル、テトラヒドロフラン等のエーテル類、セロソルブ系溶媒、ジエチレングリコールエーテル系溶媒等に溶解した溶液を、本発明の重金属捕捉剤に含浸させ、これを乾燥して製品とする。有機酸の溶液としては、一般に有機酸の濃度が5乃至20重量%の溶液を用いるのが好ましい。   In the impregnation method, the organic acid is added to water or an organic polar solvent, for example, alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, ethers such as methyl ether and tetrahydrofuran, cellosolve solvent, diethylene glycol ether solvent and the like. The dissolved solution is impregnated with the heavy metal scavenger of the present invention and dried to obtain a product. As the organic acid solution, it is generally preferable to use a solution having an organic acid concentration of 5 to 20% by weight.

一方、共粉砕法では、固体の有機酸と本発明の重金属捕捉剤とを、粉砕機中で共粉砕する。粉砕機としては、ボールミル、ジェットミル、振動ミル、コロイドミル等が使用されるが、特にジェットミルが好適に使用される。この粉砕に対して、少量の水分、一般に組成物当たり5乃至25重量%の水分を加えると、細孔内への有機酸の取り込みが有効に行われる。   On the other hand, in the co-grinding method, the solid organic acid and the heavy metal scavenger of the present invention are co-ground in a pulverizer. As the pulverizer, a ball mill, a jet mill, a vibration mill, a colloid mill or the like is used, and a jet mill is particularly preferably used. When a small amount of water, generally 5 to 25% by weight of water per composition, is added to the pulverization, the organic acid is effectively taken into the pores.

また、有害重金属成分以外の成分に対する吸着捕捉性能を高めるために、無機吸着剤を併用することもできる。このような無機吸着剤としては、例えば、結晶性ケイ酸亜鉛化合物、含アルミニウムフィロケイ酸亜鉛乃至そのケイ酸質複合体、フィロケイ酸マグネシウム、含アルミニウムフィロケイ酸マグネシウム、メソポーラスシリカ、セピオライト、パリゴルスカイト、活性炭、竹炭、木炭、天然ゼオライト、合成ゼオライト、抗菌ゼオライト、活性炭素繊維、シリカゲル、活性白土、リモナイト、アルミナ、バーミキュライト、ケイソウ土などが挙げられ、更にパルプ、繊維、布、高分子多孔体など併用することができる。これらの無機吸着剤は、前記の有機酸と組み合わせて用いることももちろんできる。無機吸着剤と有機酸は、99:1乃至50:50の重量比、特に95:5乃至60:40の重量比で組み合わせて使用するのがよい。   In addition, an inorganic adsorbent can be used in combination in order to enhance the adsorption and trapping performance for components other than harmful heavy metal components. Examples of such inorganic adsorbents include crystalline zinc silicate compounds, aluminum-containing zinc phyllosilicates or silicate composites thereof, magnesium phyllosilicates, aluminum-containing magnesium phyllosilicates, mesoporous silica, sepiolite, palygorskite, Activated carbon, bamboo charcoal, charcoal, natural zeolite, synthetic zeolite, antibacterial zeolite, activated carbon fiber, silica gel, activated clay, limonite, alumina, vermiculite, diatomaceous earth, etc., and pulp, fiber, cloth, polymer porous material etc. can do. Of course, these inorganic adsorbents can also be used in combination with the above organic acids. The inorganic adsorbent and the organic acid may be used in combination at a weight ratio of 99: 1 to 50:50, particularly 95: 5 to 60:40.

本発明の重金属捕捉剤、或いはこの重金属捕捉剤に上述した各種固体酸、有機酸、無機吸着剤等を組み合わせたものは、粉末、顆粒状或いは棒状、ペレット状、球状、樽状、板状、ハニカム状、円筒状、繊維状等に押し出し成形し用途に応じた適宜の形状に容易に成形することができる。   The heavy metal scavenger of the present invention, or a combination of the above-mentioned various solid acids, organic acids, inorganic adsorbents, etc. with this heavy metal scavenger, is in the form of powder, granules or rods, pellets, spheres, barrels, plates, It can be easily formed into an appropriate shape according to the application by extruding into a honeycomb shape, a cylindrical shape, a fiber shape, or the like.

本発明の重金属捕捉剤は、前述した固体酸量をコントロールできることにより、有害ガス例えば、NOx、SOx等の分解を促進させることができる。従って、各種廃棄ガスの処理に用いることにより、有害重金属成分の捕捉とともに、有害ガスの分解を促進させることができ、環境汚染を有効に防止することができる。   The heavy metal scavenger of the present invention can promote decomposition of harmful gases such as NOx and SOx by controlling the amount of solid acid described above. Therefore, by using it for the treatment of various waste gases, it is possible to promote the decomposition of the harmful gas and capture the harmful heavy metal component, and to effectively prevent the environmental pollution.

本発明を次の例で説明するが、本発明は以下の例に限定されるものではない。尚、各試験方法は下記の方法に従って行った。   The present invention will be described with reference to the following examples, but the present invention is not limited to the following examples. Each test method was performed according to the following method.

(1)X線回折測定試験
理学電機(株)製のRAD−IBシステムを用いて、Cu−Kαにて測定した。
ターゲット: Cu
フィルター: 湾曲結晶グラファイトモノクロメーター
検出器: SC
電圧: 40KVP
電流: 20mA
カウントフルスケール: 8000c/s
スムージングポイント: 25
走査速度: 1°/min
ステップサンプリング: 0.02°
スリット: DS1° RS0.15mm SS1°
照角: 6°
(1) X-ray diffraction measurement test Using a RAD-IB system manufactured by Rigaku Corporation, measurement was performed with Cu-Kα.
Target: Cu
Filter: Curved crystal graphite monochromator
Detector: SC
Voltage: 40KVP
Current: 20mA
Count full scale: 8000 c / s
Smoothing points: 25
Scanning speed: 1 ° / min
Step sampling: 0.02 °
Slit: DS1 ° RS0.15mm SS1 °
Viewing angle: 6 °

(2)化学分析
灼熱減量(Ig−loss )、二酸化ケイ素(SiO)、酸化アルミニウム(Al) 、酸化ナトリウム(NaO)の分析は、JIS M 8855に準拠して測定した。また、Fe、CaO、MgO、KOは原子吸光法を用いた。なお、測定試料は110℃乾燥物を基準とする。
(2) Chemical analysis Analysis of loss on ignition (Ig-loss), silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and sodium oxide (Na 2 O) was measured according to JIS M 8855. Moreover, atomic absorption method was used for Fe 2 O 3 , CaO, MgO, and K 2 O. The measurement sample is based on a dried product at 110 ° C.

(3)BET比表面積、
細孔容積カルロエルバ社製Sorptomatic Series 1900を使用し、BET法により測定した。
(3) BET specific surface area,
The pore volume was measured by BET method using Sorptomatic Series 1900 manufactured by Carlo Elba.

(4)pH測定
JIS K
5101−26(3)3.1に依った。
(4) pH measurement JIS K
5101-26 (3) 3.1.

(5)重金属捕捉試験1
純水3LにCd、Cr、Znがそれぞれ500ppmになるように硝酸カドミウム4水和物(和光純薬製試薬PuA99.9%)、硝酸クロム(III)9水和物(和光純薬製試薬PuA99.9%)、硝酸亜鉛6水和物(和光純薬製試薬PuA99.9%)を各々溶解し吸着試験用原液を調製した。
次いで300mlの共栓付き三角フラスコに上記原液を200g採取した後試料を0.33g〜1g加えヤマト製Shaking bath BW200に固定して165rpmで24時間振とう後上澄液を採取した。なお、試料の添加量を変えるのは重金属の残存濃度が0ppmでは除去率が求められないため、重金属が適量残存するようにするためである。
採取した上澄液を原子吸光法により分析し、下記式により重金属捕捉率を求めた。
重金属捕捉率(wt%)={(200(g))×(500―残存濃度(ppm)
×(10−6)/(試料(g))}×100
(5) Heavy metal capture test 1
Cadmium nitrate tetrahydrate (PuA 99.9% manufactured by Wako Pure Chemical Industries), chromium nitrate (III) 9 hydrate (Reagent PuA99 manufactured by Wako Pure Chemical Industries, Ltd.) so that Cd, Cr and Zn are 500 ppm each in 3 L of pure water. 0.9%) and zinc nitrate hexahydrate (PuA 99.9%, manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved to prepare a stock solution for adsorption test.
Next, 200 g of the above stock solution was collected in a 300 ml Erlenmeyer flask with a stopper, 0.33 g to 1 g of the sample was added, fixed to Shaking bath BW200 manufactured by Yamato, shaken at 165 rpm for 24 hours, and the supernatant was collected. The addition amount of the sample is changed because the removal rate cannot be obtained when the residual concentration of heavy metal is 0 ppm, so that an appropriate amount of heavy metal remains.
The collected supernatant was analyzed by atomic absorption, and the heavy metal capture rate was determined by the following formula.
Heavy metal capture rate (wt%) = {(200 (g)) × (500−residual concentration (ppm)
× (10 −6 ) / (sample (g))} × 100

(6)重金属捕捉試験2
環境庁告示13号法に準拠し、原子吸光法で重金属の溶出量を測定した。
(6) Heavy metal capture test 2
In accordance with the Environmental Agency Notification No. 13, the amount of elution of heavy metals was measured by the atomic absorption method.

(実施例1)
活性白土製造時の洗浄液(pH2.3)とゼオライト合成時の洗浄液(pH14)をpHが7.0±0.5(循環式流通管の中にガラス電極を据付、検出、制御)になるようにオーバーフロー式反応槽で流量約140m/Hで連続的に中和する。ついでこの中和液をシックナーに輸送後固液分離し、下部沈殿スラリーを採取した。この沈殿スラリー(原料スラリー)の主な組成を表1(No.1−0)に示した。
次に30Lのステンレス製容器にNo.1−0スラリーを20kg秤取り、攪拌下(室温)アルミン酸ソーダ溶液(Al 12%、NaO 17%)412gを3時間かけて注加しpHが9.2で安定したことを確認し、一夜静置した。一夜放置後pHが9.0であることを確認し吸引濾過、水洗浄し、110℃のオーブンで乾燥後、サンプルミルで粉砕し粉末試料(S−1とする)を得た。
この粉末試料の性状を表1、X線回折図を図1に示した。
Example 1
The pH of the cleaning solution (pH 2.3) for the production of activated clay and the cleaning solution (pH 14) for the synthesis of zeolite so that the pH is 7.0 ± 0.5 (a glass electrode is installed, detected and controlled in a circulation flow pipe) In the overflow type reaction tank, neutralization is continuously carried out at a flow rate of about 140 m 3 / H. Subsequently, this neutralized liquid was transported to a thickener and then separated into solid and liquid, and a lower precipitation slurry was collected. The main composition of this precipitation slurry (raw material slurry) is shown in Table 1 (No. 1-0).
Next, a 30 L stainless steel container 20 kg of 1-0 slurry was weighed, and 412 g of sodium aluminate solution (12% Al 2 O 3 , 17% Na 2 O) was added over 3 hours with stirring (room temperature), and the pH was stabilized at 9.2. And left to stand overnight. After standing overnight, the pH was confirmed to be 9.0, suction filtered, washed with water, dried in an oven at 110 ° C., and pulverized with a sample mill to obtain a powder sample (referred to as S-1).
The properties of this powder sample are shown in Table 1, and the X-ray diffraction diagram is shown in FIG.

(実施例2)
実施例1−0をサンプリングした日から1ヶ月後同様に沈殿物スラリーをサンプリングした。
この原料スラリーの主な組成を表1(No.2−0)に示した。
以後実施例1と同様に調製したが、濾過前の最終pHは9.3であった(試料S−2とする)。
この粉末性状を表1、X線回折図を図1に示した。
(Example 2)
The precipitate slurry was sampled in the same manner one month after the day when Example 1-0 was sampled.
The main composition of this raw material slurry is shown in Table 1 (No. 2-0).
Thereafter, it was prepared in the same manner as in Example 1, but the final pH before filtration was 9.3 (referred to as sample S-2).
The powder properties are shown in Table 1, and the X-ray diffraction pattern is shown in FIG.

(実施例3)
実施例2でアルミン酸ソーダの代わりに35%水酸化マグネシウムスラリーを注加してpH9.2に調製し、以後実施例2と同様に試料粉末(S−3とする)を調製した。
この粉末性状を表1に示した。なお、X線回折は、実施例2と同じピークを示した。
(Example 3)
In Example 2, instead of sodium aluminate, 35% magnesium hydroxide slurry was added to adjust the pH to 9.2. Thereafter, a sample powder (referred to as S-3) was prepared in the same manner as in Example 2.
The powder properties are shown in Table 1. X-ray diffraction showed the same peak as in Example 2.

(実施例4)
実施例1−0をサンプリングした日から2ヶ月後に、実施例1と同様に沈殿物(原料)スラリー(No.3−0)をサンプリングし、実施例1と同様に試料粉末(S−4とする)を調製した。
この粉末性状を表1に示した。なお、X線回折は、実施例2と同じピークを示した。
Example 4
Two months after the date when Example 1-0 was sampled, the precipitate (raw material) slurry (No. 3-0) was sampled in the same manner as in Example 1, and the sample powder (S-4 and Prepared).
The powder properties are shown in Table 1. X-ray diffraction showed the same peak as in Example 2.

(比較例1)
実施例1でアルカリ処理をせずに濾過・乾燥した粉末の性状を表1、X線回折図を図1に示した。
(Comparative Example 1)
Table 1 shows the properties of the powder filtered and dried without alkali treatment in Example 1, and the X-ray diffraction diagram is shown in FIG.

(比較例2)
実施例1の原料スラリー(No.1−0)に鉄系凝集剤(ポリ鉄)をFe2O3として固形分の10%になるように添加して実施例1と同様に粉末まで調製した。
この粉末性状、重金属捕捉能を表1に示した。
(Comparative Example 2)
An iron-based flocculant (polyiron) was added to the raw material slurry (No. 1-0) of Example 1 as Fe2O3 so as to have a solid content of 10%, and a powder was prepared in the same manner as in Example 1.
The powder properties and heavy metal scavenging ability are shown in Table 1.

(比較例3〜4)
天然ゼオライト(クリノプチロライト)、合成シリカの重金属捕捉試験をそれぞれ行った。その結果を表1に示した。
(Comparative Examples 3-4)
Heavy metal capture tests were performed on natural zeolite (clinoptilolite) and synthetic silica. The results are shown in Table 1.

(実施例5〜7、比較例5〜6)
ゴミ焼却場から排出される、飛灰50gに対して水30gを混練し、表3に示した量の粉末捕捉剤を添加し、7日間養生固化させた。
次いで環境庁13号法に従い原子吸光法により鉛の溶出量を測定した(重金属捕捉試験2)。
捕捉剤を添加しないで水のみで同様に固化させた時(比較例5)、市販アルミノシリケート(比較例6)の鉛の溶出量を測定した。結果を表2に示した。
(Examples 5-7, Comparative Examples 5-6)
30 g of water was kneaded with 50 g of fly ash discharged from the garbage incinerator, and the amount of the powder scavenger shown in Table 3 was added and cured for 7 days.
Next, the amount of lead elution was measured by the atomic absorption method according to the Environmental Agency No. 13 method (heavy metal capture test 2).
When solidifying with water alone without adding a scavenger (Comparative Example 5), the elution amount of lead of a commercially available aluminosilicate (Comparative Example 6) was measured. The results are shown in Table 2.

(実施例8〜10、比較例7)
実施例5で使用した飛灰50gに対して普通ポルトランドセメント70重量部に表3に示した試料30重量部を混合粉末化した捕捉剤試料10g、水30gを混練りし、7日間養生固化させた。
次いで環境庁13号法に従い原子吸光法により鉛の溶出量を測定した(重金属捕捉試験2)。
ブランクとして捕捉剤を添加せずポルトランドセメントのみの鉛の溶出量(比較例7)も測定した。結果を表3に示した。
(Examples 8 to 10, Comparative Example 7)
50 g of fly ash used in Example 5 is kneaded with 70 g of normal Portland cement and 30 g of the trapping agent sample obtained by mixing 30 parts by weight of the sample shown in Table 3 and 30 g of water, and cured for 7 days. It was.
Next, the amount of lead elution was measured by the atomic absorption method according to the Environmental Agency No. 13 method (heavy metal capture test 2).
The amount of lead elution (Comparative Example 7) of only Portland cement was also measured without adding a scavenger as a blank. The results are shown in Table 3.

(試料成型)
実施例1及び実施例2と表4に示した吸着剤等を粉末換算で所定割合に混合しファインディスクペレッターで径1mmの柱状に成型後110℃または350℃で乾燥して表4に示す成型品を得た。
(Sample molding)
Example 1 and Example 2 and the adsorbents shown in Table 4 are mixed at a predetermined ratio in terms of powder, formed into a column shape having a diameter of 1 mm with a fine disc pelleter, and dried at 110 ° C. or 350 ° C. and shown in Table 4. A molded product was obtained.

(実施例11)
内径15mmのガラス製カラムに実施例11の成型品を10ml(5.6g)充填し、あらかじめ50mg/Lに調製したPb液、Cd液をSV60(600ml/h)で下部より定量ポンプで流入し、充填剤を通過後の液を随時サンプリングして濃度を原子吸光法で測定しブレークする(1mg/L)までの時間から重金属捕捉能を求めた。
その結果ブレークまでのPb液流通量は52時間(31.2L)、Pb捕捉率27.9%、Cd液流通量は15時間(9L)、Cd捕捉率8.0%であった。
(Example 11)
A glass column having an inner diameter of 15 mm was filled with 10 ml (5.6 g) of the molded product of Example 11, and Pb liquid and Cd liquid prepared in advance to 50 mg / L were flowed from the bottom with a metering pump at SV60 (600 ml / h). The liquid after passing through the filler was sampled as needed, the concentration was measured by atomic absorption method, and the heavy metal capturing ability was determined from the time until break (1 mg / L).
As a result, the Pb liquid flow rate until the break was 52 hours (31.2 L), the Pb capture rate was 27.9%, the Cd liquid flow rate was 15 hours (9 L), and the Cd capture rate was 8.0%.

(実施例12〜15)
50mg/LのPb液を使用して、実施例12〜15についても実施例11と同様にPb捕捉能を測定した。結果を表4に示した。
(Examples 12 to 15)
The Pb capturing ability was measured in the same manner as in Example 11 for Examples 12 to 15 using 50 mg / L of Pb solution. The results are shown in Table 4.

Figure 0004472953
Figure 0004472953

Figure 0004472953
Figure 0004472953

Figure 0004472953
Figure 0004472953

Figure 0004472953
Figure 0004472953

本発明の重金属捕捉剤(実施例1〜2)及び比較例1の重金属捕捉剤のX線回折像である。It is a X-ray-diffraction image of the heavy metal capture agent (Examples 1-2) of this invention, and the heavy metal capture agent of the comparative example 1.

Claims (2)

粘土の酸処理工程で排出される酸性廃液を中和処理して生成するスラリーを、更にpHが8乃至10.5の範囲となるようにアルカリ処理し、次いで熟成することにより得られた重金属捕捉剤であって、
該重金属捕捉剤は、Na、Mg、Al及びSiを、110℃乾燥基準且つ酸化物換算で、下記条件:
NaO:0.2乃至6重量%
MgO:10乃至20重量%
Al:20乃至45重量%
SiO:8乃至40重量%
を満足する量で含有し、灼熱減量(1050℃)が20乃至40重量%の範囲にあり、且つ前記元素の一部は、少なくとも下記式(1)乃至(3):
Mg2.85Al5.7Si10.332・14HO …(1)
Na〔AlSi16〕・6HO …(2)
(Na,Ca)Al(SO(OH) …(3)
のいずれかで表わされる化合物の形で存在することを特徴とする重金属捕捉剤。
A heavy metal trap obtained by subjecting the slurry produced by neutralizing the acidic waste liquid discharged in the acid treatment step of clay to an alkali treatment so that the pH is in the range of 8 to 10.5 and then aging. An agent,
The heavy metal scavenger contains Na, Mg, Al, and Si in the following conditions:
Na 2 O: 0.2 to 6% by weight
MgO: 10 to 20% by weight
Al 2 O 3 : 20 to 45% by weight
SiO 2 : 8 to 40% by weight
The amount of loss on ignition (1050 ° C.) is in the range of 20 to 40% by weight, and at least some of the elements are represented by the following formulas (1) to (3):
Mg 2.85 Al 5.7 Si 10.3 O 32 · 14H 2 O (1)
Na [Al 2 Si 6 O 16 ] · 6H 2 O (2)
(Na, Ca) Al 3 (SO 4 ) 2 (OH) 6 (3)
A heavy metal scavenger which is present in the form of a compound represented by any one of the following:
Fe含量が8重量%以下に抑制され、且つSO含量が15重量%以下に抑制されている請求項1に記載の重金属捕捉剤。 The heavy metal scavenger according to claim 1, wherein the Fe 2 O 3 content is suppressed to 8% by weight or less and the SO 3 content is suppressed to 15% by weight or less.
JP2003281688A 2003-07-29 2003-07-29 Heavy metal scavenger Expired - Lifetime JP4472953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281688A JP4472953B2 (en) 2003-07-29 2003-07-29 Heavy metal scavenger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281688A JP4472953B2 (en) 2003-07-29 2003-07-29 Heavy metal scavenger

Publications (2)

Publication Number Publication Date
JP2005048063A JP2005048063A (en) 2005-02-24
JP4472953B2 true JP4472953B2 (en) 2010-06-02

Family

ID=34267119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281688A Expired - Lifetime JP4472953B2 (en) 2003-07-29 2003-07-29 Heavy metal scavenger

Country Status (1)

Country Link
JP (1) JP4472953B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4795773B2 (en) * 2005-10-24 2011-10-19 大成建設株式会社 Ion scavenger
JP2009112970A (en) * 2007-11-08 2009-05-28 Nippon Sheet Glass Co Ltd Mixture for preventing diffusion of contaminating component and method of preventing diffusion of contaminating component
JP5058037B2 (en) * 2008-03-17 2012-10-24 Jfeスチール株式会社 Method for producing carbon monoxide adsorbent
JP6114055B2 (en) * 2013-02-22 2017-04-12 太平洋セメント株式会社 Radioactive substance immobilization material and radioactive contaminant treatment method
JP6213710B2 (en) * 2013-03-18 2017-10-18 戸田工業株式会社 Purification of soil and wastewater contaminated with hazardous substances
CN105016452A (en) * 2015-07-24 2015-11-04 刘雷 Sewage treating agent and method for treating sewage by using same
CN105000603A (en) * 2015-07-24 2015-10-28 刘雷 Multi-effect sewage treatment agent and method for treating sewage by using same
JP6858055B2 (en) * 2017-03-30 2021-04-14 水澤化学工業株式会社 Lead adsorbent
KR101980478B1 (en) * 2018-01-19 2019-05-21 신태욱 Manufacturing method of inorganic coagulants used acid waste water for treatment an activated clay
CN115301713B (en) * 2022-08-09 2023-07-25 北京建工环境修复股份有限公司 Harmless treatment method for barium slag and compound thereof

Also Published As

Publication number Publication date
JP2005048063A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
AU2019201715B2 (en) Organic-inorganic composite material for removal of anionic pollutants from water and process for the preparation thereof
Kong et al. Highly-effective phosphate removal from aqueous solutions by calcined nano-porous palygorskite matrix with embedded lanthanum hydroxide
Al-Jubouri et al. Hierarchically porous zeolite X composites for manganese ion-exchange and solidification: Equilibrium isotherms, kinetic and thermodynamic studies
Manohar et al. Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase
Visa Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment
Sarkar et al. Removal of Ni2+ ion from waste water by Geopolymeric Adsorbent derived from LD Slag
Pigatto et al. An eco-friendly and low-cost strategy for groundwater defluorination: adsorption of fluoride onto calcinated sludge
Lee et al. Experimental and model study for fluoride removal by thermally activated sepiolite
JP5482979B2 (en) Adsorbent
CN111417460A (en) Hydroxyapatite composite for removing contaminants from effluents and method of preparation
JP6380999B2 (en) Ion adsorbent
Zhang et al. Removal of arsenic from water by Friedel's salt (FS: 3CaO· Al2O3· CaCl2· 10H2O)
JP4472953B2 (en) Heavy metal scavenger
JP2007296463A (en) Hydroxyapatite silica composite porous adsorbent and its manufacturing method
Samaraweera et al. Lignite, thermally-modified and Ca/Mg-modified lignite for phosphate remediation
Al-Jubouri et al. Utilizing Faujasite-type zeolites prepared from waste aluminum foil for competitive ion-exchange to remove heavy metals from simulated wastewater
Wang et al. Efficient removal of phosphate and ammonium from water by mesoporous tobermorite prepared from fly ash
JP3977151B2 (en) Deodorants
JP2009220026A (en) Method for manufacturing environmental purification agent
Stojanović et al. Removal of uranium (VI) from aqueous solution by acid modified zeolites
JP2003210937A (en) Desulfurization method
JP2013166142A (en) Adsorbent of aromatic chlorine compound
JP4795773B2 (en) Ion scavenger
Gorimbo Effect of the Homoionic Form of Clinoptilolite on Ni2 Adsorption Isotherms: A Thermodynamic Study
Santos et al. Metakaolin‐based geopolymer for mercury removal from model wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4472953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160312

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term