JP2009220026A - Method for manufacturing environmental purification agent - Google Patents

Method for manufacturing environmental purification agent Download PDF

Info

Publication number
JP2009220026A
JP2009220026A JP2008067487A JP2008067487A JP2009220026A JP 2009220026 A JP2009220026 A JP 2009220026A JP 2008067487 A JP2008067487 A JP 2008067487A JP 2008067487 A JP2008067487 A JP 2008067487A JP 2009220026 A JP2009220026 A JP 2009220026A
Authority
JP
Japan
Prior art keywords
purification agent
environmental purification
artificial zeolite
environmental
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008067487A
Other languages
Japanese (ja)
Other versions
JP5001202B2 (en
Inventor
Eiji Kobayashi
英司 小林
Ippei Fujita
一平 藤田
Makoto Yoda
眞 依田
Kenji Toratani
健司 虎谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Amron Corp
Original Assignee
Chubu Electric Power Co Inc
Amron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Amron Corp filed Critical Chubu Electric Power Co Inc
Priority to JP2008067487A priority Critical patent/JP5001202B2/en
Publication of JP2009220026A publication Critical patent/JP2009220026A/en
Application granted granted Critical
Publication of JP5001202B2 publication Critical patent/JP5001202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an environmental purification agent that can adsorb (absorb) cations and anions and remove them by ion-exchange, whose removal effect on various ions is high, and whose material costs and manufacturing costs can be more reduced considerably than those in a conventional method. <P>SOLUTION: Provided is the method for manufacturing an environmental purification agent preferable as a soil cleaning agent or a water-cleaning agent, wherein a mechanical distributed processing is performed on an artificial zeolite powder at a temperature of about 30 to 55°C (liquid temperature) for 20 to 60 minutes in an acid aqueous solution where pH is controlled within a scope of about 1.0 to 5.0, after the solution is solated (turned into slurry), the solution is subjected to still standing to obtain a product as a gel object (spongy solid matter: network structure object), and the gel object is usually used after it is crushed and classified. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、陽イオン・陰イオンの双方の吸着乃至イオン交換性能を備えた適応範囲の広く、土壌浄化や水質浄化に好適な新規な環境浄化剤の製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing a novel environmental purification agent suitable for soil purification and water purification, which has a wide range of application and is capable of adsorbing or exchanging both cations and anions.

ヒ素は、特に火山地帯の地殻に多く含有される元素であり、環境中に広範に存在している。   Arsenic is an element that is abundant in the crust of volcanic areas, and is widely present in the environment.

自然由来のヒ素汚染としては岩石の風化や火山活動等が挙げられ、北海道、中国地方、九州地方などに多く確認されている。また、人為的な汚染として鉱山、精錬所、ヒ素を使用する工場からの排出、また過去にはヒ素を含む農薬の使用等が挙げられる。   Naturally occurring arsenic pollution includes rock weathering and volcanic activity, and is often found in Hokkaido, Chugoku and Kyushu. In addition, human pollution includes emissions from mines, smelters, and plants that use arsenic, and in the past the use of pesticides containing arsenic.

このため、ヒ素汚染は多くの地域で進行している可能性がある。さらに、土壌から地下水への汚染の危険性も危惧されている。したがって、人体に対し非常に有害なヒ素を処理する必要性は高く、ヒ素吸着剤の需要は高まっている。   For this reason, arsenic contamination may be ongoing in many areas. In addition, there is concern about the risk of contamination from soil to groundwater. Therefore, it is highly necessary to treat arsenic that is very harmful to the human body, and the demand for an arsenic adsorbent is increasing.

また、土壌汚染、水質汚染等に関しては、汚染物質が単独であることは極めて稀である。   In addition, regarding soil contamination, water contamination, etc., it is extremely rare that the pollutant is alone.

通常、複合的な汚染が進行しており、その汚染物質が陽イオンと陰イオンが混在しているケースのほうが多い。   Usually, complex contamination is progressing, and there are more cases where the contaminant is a mixture of cations and anions.

現在では、人工ゼオライトによる重金属(通常陽イオン)の陽イオン交換による吸着除去法や、活性アルミナ、キレート樹脂、セリウム等による陰イオンの吸着による除去法等がある。   At present, there are adsorption removal methods by cation exchange of heavy metals (usually cations) with artificial zeolite, removal methods by adsorption of anions with activated alumina, chelate resin, cerium and the like.

しかし、それら単独では陰イオン、陽イオン単独しか除去することができず(一度に除去することができない。)、コスト面、効率性等からも多くの問題を抱えている。   However, they can remove only anions and cations alone (cannot be removed at a time), and have many problems in terms of cost and efficiency.

なお、両イオン吸着(収着)能を有する吸着剤乃至イオン交換剤として、特許文献1に、ゼオライトからなるコアとシェルの被覆構造を有する金属水酸化物/ゼオライト複合体及びその製造方法が記載されている(段落0001参照)。しかし、特許文献1において使用するゼオライトは合成ゼオライト(定形粒子構造:立方晶系)であり(段落0022〜0024)、かつ、製造条件も、金属水酸化物の生成に適したアルカリ(例えば、pH10:段落0036)に調整して、通常、高温で長時間、熟成・反応させるものである(100℃×24h:段落0032)。   As an adsorbent or ion exchanger having both ion adsorption (sorption) ability, Patent Literature 1 describes a metal hydroxide / zeolite composite having a core-shell coating structure made of zeolite and a method for producing the same. (See paragraph 0001). However, the zeolite used in Patent Document 1 is a synthetic zeolite (regular particle structure: cubic system) (paragraphs 0022 to 0024), and the production conditions are alkali (for example, pH 10) suitable for the production of metal hydroxide. : Paragraph 0036), usually aging and reaction at high temperature for a long time (100 ° C. × 24 h: Paragraph 0032).

これに対して、本発明の人工ゼオライトを基体とする環境浄化剤は、人工ゼオライトをpH約1.0〜5.0の酸性水溶液下で、通常、微温下で機械的な分散処理(例えば、40〜45℃×30min)後、1h程度静置して得るものである。   On the other hand, the environmental purification agent based on the artificial zeolite of the present invention is a mechanical dispersion treatment (for example, 40 to 45 ° C.) of the artificial zeolite under an acidic aqueous solution having a pH of about 1.0 to 5.0, usually at a low temperature. X30 min) and then left for about 1 h.

従って、特許文献1と本発明における人工ゼオライトを基体とする環境浄化剤は、製造方法は勿論、構造も異質なものと推定される。   Therefore, it is presumed that the environmental purification agent based on the artificial zeolite in Patent Document 1 and the present invention has a different structure as well as the production method.

なお、ヒ素を含む汚染土壌や汚染水の浄化に関連する公知文献としては特許文献2〜5等を挙げることができるが、いずれも、シュベルトマナイトを使用するものであり、本発明の特許性に影響を与えるものではない。   In addition, patent documents 2-5 etc. can be mentioned as publicly known literature related to the purification of contaminated soil and contaminated water containing arsenic, both of which use Schwertmannite and are patentable in the present invention. It does not affect.

特許文献2:低結晶性鉄化合物であるシュベルトマナイト等の汚染物の吸着材(吸着剤)を有効利用した汚染水の浄化システム。     Patent Document 2: A system for purifying contaminated water that effectively uses an adsorbent (adsorbent) for contaminants such as Schwbertmannite, which is a low crystalline iron compound.

特許文献3:ヒ素又は重金属を含む汚染土壌に、シュベルトマナイト等の鉄化合物を添加して、汚染土壌中のヒ素又は重金属を鉄化合物に収着させ、不動態化させることにより、汚染土壌を浄化する方法。     Patent Document 3: By adding an iron compound such as Schwertmannite to contaminated soil containing arsenic or heavy metal, arsenic or heavy metal in the contaminated soil is adsorbed on the iron compound, and the contaminated soil is passivated. How to purify.

特許文献4:ヒ素又は重金属を含む汚染土壌に、鉄酸化細菌の培養液を添加し、シュベルトマナイト等の鉄化合物を生成させるととともに、汚染土壌中のヒ素又は重金属を鉄化合物に収着させ、不動態化させることにより、汚染土壌を浄化する方法。     Patent Document 4: A culture solution of iron-oxidizing bacteria is added to contaminated soil containing arsenic or heavy metals to produce iron compounds such as schwertmannite, and arsenic or heavy metals in contaminated soils are sorbed to iron compounds A method of purifying contaminated soil by passivating.

特許文献5:シュベルトマナイトを安定化させて得られる新規化合物を汚染水若しくは汚染土に添加し、汚染水若しくは汚染土に含まれるヒ素、リン酸、セレン若しくはクロムを新規化合物で吸着する汚染水若しくは汚染土の浄化方法。
特開2005−272170号公報 特開2005−161231号公報(要約等) 特開2003−112162号公報(特許請求の範囲) 特開2003−112163号公報(特許請求の範囲) 特許第3828887号公報(請求項5)
Patent Document 5: Contaminated water in which a new compound obtained by stabilizing Schwertmannite is added to contaminated water or contaminated soil, and arsenic, phosphoric acid, selenium or chromium contained in the contaminated water or contaminated soil is adsorbed with the new compound Or the purification method of contaminated soil.
JP 2005-272170 A JP 2005-161231 A (summary etc.) JP 2003-112162 (Claims) JP 2003-112163 A (Claims) Japanese Patent No. 3828887 (Claim 5)

本発明は、陽イオンとともに陰イオンに対しても吸着(収着)乃至イオン交換除去可能であり、様々なイオンに対して除去効果が高く、更に、原料コスト及び製造コストも、既存法に比して格段に低減できる環境浄化剤の製造方法を提供し、さらには、該環境浄化剤により土壌浄化や水質浄化を低コストで施工可能とすることを課題とする。   The present invention can adsorb (sorb) or remove ions by anion as well as cations, and has a high removal effect on various ions. It is another object of the present invention to provide a method for producing an environmental purification agent that can be remarkably reduced, and to make it possible to implement soil purification and water quality purification at low cost using the environmental purification agent.

本発明者らは、上記課題を解決するために、鋭意開発する過程で、下記方法により製造すれば、環境浄化剤を短時間で簡単に製造でき、しかも、少量の土壌等への添加により、人工ゼオライトの本来的機能である陽イオン(鉛、カドミニウム等)とともに、陰イオン(特に、ヒ素酸アニオン等)を効率よく除去できることを知見して、下記構成の環境浄化剤の製造方法に想到した。   In order to solve the above problems, the inventors of the present invention are able to easily produce an environmental purification agent in a short time if it is produced by the following method in the course of intensive development, and by adding to a small amount of soil, etc. Knowing that anions (especially arsenate anions, etc.) can be efficiently removed together with cations (lead, cadmium, etc.), which are the primary functions of artificial zeolite, we have come up with a method for producing an environmental purification agent having the following constitution. .

人工ゼオライトの粉体を、調整pH:約1.0〜5.0(望ましくは2.0未満)の範囲内に維持した酸性水溶液中で、約30〜55℃(液温)×20〜60min(望ましくは約40〜50℃(液温)×25〜50min)の条件の機械的な分散処理を経た後、静置させてゲル体(海綿状固形物)として得ることを特徴とする。   About 30-55 ° C. (liquid temperature) × 20-60 min (preferably about 30 to 55 ° C. (liquid temperature)) in an acidic aqueous solution in which the artificial zeolite powder is maintained within the range of adjusted pH: about 1.0 to 5.0 (preferably less than 2.0). After passing through mechanical dispersion treatment under conditions of 40 to 50 ° C. (liquid temperature) × 25 to 50 min), it is allowed to stand to obtain a gel body (spongy solid).

上記範囲外では、ヒ素酸アニオン等の陰イオンの収着(吸着)能を得難く、また、生産性が低下する。   Outside the above range, it is difficult to obtain the sorption (adsorption) ability of anions such as arsenate anions, and the productivity is lowered.

すなわち、酸性水溶液中で人工ゼオライトを投入して機械的な分散処理を行うことにより、人工ゼオライトの微粒子化(コロイド化)に伴うゾル(スラリー)化が進行するとともに、人工ゼオライトの表面電荷の一部が、下記の如く、プラスに変換されて陰イオン吸着が可能となる。   In other words, by adding artificial zeolite in an acidic aqueous solution and carrying out mechanical dispersion treatment, sol (slurry) accompanying the micronization (colloidization) of artificial zeolite proceeds and one of the surface charges of artificial zeolite is increased. The part is converted to plus as described below, and anion adsorption becomes possible.

人工ゼオライトの主成分であるがアルミナ(酸化アルミニウム)が表面ではAlO3 3-等のマイナスイオンとして存在することが多い。そして、本発明の如く、人工ゼオライトを、アルミナの等電点(pH9)より大きく酸性側に位置するpHの酸性水溶液中で機械分散(攪拌)することにより、人工ゼオライトの表面のマイナスイオンであるAlO3 3-の一部がAl3+に変換されて、陰イオン吸着が可能となると同時に、人工ゼオライトの表面非晶化によりイオン吸着能も増大する。更に、pHを2未満とした場合は、同様にシリカ(二酸化ケイ素)も表面ではSiO4 4-等のマイナスイオンとして存在することが多い。このため、上記酸性水溶液のpHをシリカの等電点(pH2)より酸性側に維持調整することにより、人工ゼオライトの表面電荷が更にプラス変換され易くなるとともに人工ゼオライトの表面が非晶化され易く、陰イオン吸着能の更なる増大が期待できる。 Alumina (aluminum oxide), which is the main component of artificial zeolite, often exists as negative ions such as AlO 3 3− on the surface. And, as in the present invention, artificial zeolite is negatively ionized on the surface of the artificial zeolite by mechanical dispersion (stirring) in an acidic aqueous solution having a pH which is larger than the isoelectric point (pH 9) of alumina and located on the acidic side. A part of AlO 3 3− is converted to Al 3+ to enable anion adsorption, and at the same time, the ion adsorption capacity is also increased by surface amorphousization of the artificial zeolite. Further, when the pH is less than 2, silica (silicon dioxide) is also often present as negative ions such as SiO 4 4- on the surface. For this reason, by maintaining and adjusting the pH of the acidic aqueous solution to be more acidic than the isoelectric point (pH 2) of silica, the surface charge of the artificial zeolite is more easily converted to a positive value and the surface of the artificial zeolite is easily amorphized. Further increase in anion adsorption capacity can be expected.

そして、該ゾルは、機械的な分散処理を停止して温度が低下するとゲル体(海綿状固形物)となる。   The sol becomes a gel (spongy solid) when the mechanical dispersion treatment is stopped and the temperature is lowered.

pHが高すぎると、上記人工ゼオライトの表面電荷の一部をプラス側への移行及び非晶化を発生させ難い。pHが低すぎると、人工ゼオライトが強酸に起因して構造崩壊や溶解するおそれがある。土壌に添加した場合、土壌を酸性化させるおそれがあり、人工ゼオライトの本来有する圃場等の土壌改良の効果を減殺するおそれがある。   If the pH is too high, it is difficult to cause a part of the surface charge of the artificial zeolite to shift to the positive side and to become amorphous. If the pH is too low, the artificial zeolite may collapse or dissolve due to strong acid. When added to soil, there is a risk of acidifying the soil, and there is a risk of diminishing the effects of soil improvement, such as fields originally possessed by artificial zeolite.

前記ゲル体(海綿状固形物)は、そのまま乾燥しても、海綿状であるため、水質浄化槽等に投入してそのまま使用できる。   Even if the gel body (sponge-like solid) is dried as it is, it is spongy and can be used as it is after being put into a water purification tank or the like.

しかし、通常、上記海綿状固形物を、乾燥粉砕して粉粒状とし、適宜、篩分けして、環境浄化剤とする。   However, usually, the spongy solid is dried and pulverized into a granular form and appropriately sieved to obtain an environmental purification agent.

粉粒状とした場合は、取り扱い性(保管、運搬、土壌散布、土壌混合等に際して)に優れ、土壌浄化剤として好適に使用できるとともに、水質浄化槽の充てん材等としても使用可能となる。   When it is in the form of powder, it is excellent in handleability (for storage, transportation, soil application, soil mixing, etc.) and can be suitably used as a soil purification agent, and can also be used as a filler for a water purification tank.

上記各構成において、人工ゼオライトとして、アルカリイオンの全部又は一部が鉄イオン(Fe2+及び/又はFe3+;以下同じ。)で陽イオン交換されたものとしたり、第4周期遷移金属イオン(特に、鉄イオン)を含む酸性水溶液としたりすることが望ましい。これらの構成は、二者択一ではなく、双方を含んでいてもよい。 In each of the above structures, as the artificial zeolite, all or part of the alkali ions may be cation exchanged with iron ions (Fe 2+ and / or Fe 3+ ; the same shall apply hereinafter), or the fourth period transition metal ions It is desirable to use an acidic aqueous solution containing (in particular, iron ions). These configurations are not alternatives and may include both.

当該構成とした場合は、理由は不明であるが、酸性水溶液中での人工ゼオライトのゾル化後の、ゲル(海綿状固形物)化が促進されて、生産性が向上するとともにヒ素吸着能も増大する。   In this configuration, the reason is unknown, but the gelation (sponge-like solids) after the artificial zeolite is solated in an acidic aqueous solution is promoted to improve productivity and arsenic adsorption capacity. Increase.

鉄イオンを含む、遷移金属イオンの多くが触媒的作用ないし錯体形成能を有するためと推定される。   It is presumed that most of transition metal ions including iron ions have catalytic action or complex forming ability.

上記各構成の製造方法で製造した環境浄化剤を、適宜スラリー状として土壌に添加混合して汚染された土壌の浄化に使用できる。   The environmental purification agent produced by the production method of each of the above constitutions can be used for purification of contaminated soil by adding and mixing it with the soil as appropriate slurry.

上記各方法で得た環境浄化剤は、鉛、カドミウム及びクロムの群から選択される陽イオン群、ヒ酸又はセレン酸、フッ素の陰イオン群の双方を吸着乃至イオン交換可能なものである。   The environmental purification agent obtained by each of the above methods is capable of adsorbing or exchanging both a cation group selected from the group of lead, cadmium and chromium, and an anion group of arsenic acid, selenic acid and fluorine.

人工ゼオライトは陽イオンにのみ吸着効果を示し、適応可能な吸着質の種類が限られている。   Artificial zeolite has an adsorption effect only on cations, and the types of adsorbate that can be applied are limited.

また、汚染対象物に陰イオンが含有されていた場合、別途の設備、施工、資材が必要となり、コスト、敷地、時間等が別途必要となっていた。   In addition, when an anion is contained in the object to be contaminated, additional equipment, construction, and materials are required, and cost, site, time, and the like are separately required.

本発明の方法で酸性処理して得た環境浄化剤は、陽イオンとともに陰イオンに対しても吸着効果を示すことが可能となり適応可能な吸着イオン種類を増やすことが可能となる。環境や人体に悪影響のある鉛(Pb2+)、カドミウム(Cd2+)等の陽イオンだけでなく、ヒ酸(AsO4 3-)やセレン酸(SeO4 2-)等の陰イオンを1種類で対応できることとなり、環境浄化が複雑な工程を経ずに可能となる。 The environmental purification agent obtained by the acid treatment by the method of the present invention can exhibit an adsorption effect on both anions and anions, and can increase the number of adsorbable ions that can be applied. In addition to cations such as lead (Pb 2+ ) and cadmium (Cd 2+ ) that have adverse effects on the environment and the human body, anions such as arsenate (AsO 4 3− ) and selenate (SeO 4 2− ) One type can be handled, and environmental purification can be achieved without going through complicated processes.

すなわち、粉状の人工ゼオライトを特定の調整pHに維持した酸性水溶液中で特定条件の分散処理を施すことにより、人工ゼオライトが従来もつ陽イオン吸着サイトに加えて陰イオン吸着サイトを独立して生成させることが可能となる。したがって、こうして調製した人工ゼオライトベースの環境浄化剤は、様々な被吸着質(鉛、カドミウム、セレン酸、砒酸など)が複数存在している状態でも、それらの被吸着質に対し同時に吸着活性を示すものとなる。   In other words, by performing dispersion treatment under specific conditions in an acidic aqueous solution in which powdered artificial zeolite is maintained at a specific adjusted pH, an anion adsorption site is independently generated in addition to the conventional cation adsorption site of artificial zeolite. It becomes possible to make it. Therefore, the artificial zeolite-based environmental purification agent prepared in this way can simultaneously adsorb the adsorbate even when multiple adsorbates (lead, cadmium, selenate, arsenate, etc.) exist. It will be shown.

その理由は、酸性水溶液中で処理することにより、前述の如く、人工ゼオライト表面のマイナス電荷の一部がプラス電荷に変換すると同時にアモルファス化(非晶化)するためと推定される。   The reason is presumed that, as described above, by treating in an acidic aqueous solution, a part of the negative charge on the surface of the artificial zeolite is converted into a positive charge and at the same time becomes amorphous (amorphized).

本発明者らは、X線回折測定により、攪拌処理前後の人工ゼオライトの表面部の結晶度が変化していることを確認している。   The present inventors have confirmed by X-ray diffraction measurement that the crystallinity of the surface portion of the artificial zeolite before and after the stirring treatment has changed.

そして、本発明の環境浄化剤は、土壌汚染の浄化処理は勿論、汚染された土壌からの二次汚染(地下水への浸透など)に対する浄化処理、更には、汚染された水質の浄化処理にも適用できるものである。さらには、大気の浄化処理(特に有害ガス発生部位)への適用も期待できるものである。   The environmental purification agent of the present invention is not only used for the purification of soil contamination but also for the purification of secondary contamination from contaminated soil (such as penetration into groundwater), and also for the purification of contaminated water. Applicable. Furthermore, it can be expected to be applied to the purification process of the atmosphere (particularly the site where harmful gases are generated).

以下、本発明の望ましい形態について説明する。   Hereinafter, desirable modes of the present invention will be described.

本発明では、環境浄化剤の資材(原料)として、人工ゼオライトを使用することを第一の特徴的要件とする。   In the present invention, the first characteristic requirement is to use artificial zeolite as a material (raw material) of the environmental purification agent.

一般的にゼオライトは、シリカとアルミナから構成される結晶性アルミノシリケートに属し、そのアルミノシリケートは基本的にSiO4とAlO4の四面体が酸素原子を共有して交差結合している3次元骨格構造からなっている。ゼオライトには、天然、合成及び人工ゼオライトがある。 In general, zeolite belongs to a crystalline aluminosilicate composed of silica and alumina, and the aluminosilicate is basically a three-dimensional skeleton in which tetrahedrons of SiO 4 and AlO 4 share cross-linking with oxygen atoms. It consists of a structure. Zeolites include natural, synthetic and artificial zeolites.

ここで、天然ゼオライトは価格的には安価であるが、産地により品質がばらつき、一般的には本発明のような成形材料には使用できない。また、合成ゼオライトは品質的には安定しているが、価格的に高価であり、得られる成形材料も割高になり、好ましくない。   Here, natural zeolite is inexpensive in price, but the quality varies depending on the production area, and generally cannot be used for the molding material of the present invention. Synthetic zeolite is stable in quality, but is expensive in price, and the resulting molding material is expensive, which is not preferable.

人工ゼオライトは、石炭灰、製紙スラッジ、アルミドロス残灰、スラグ、真珠岩、パーライト鉱石、鋳物廃砂、火山灰、シラス等の火山灰堆積物及びRDF焼却灰等の廃棄物又は工業製品の副生物等を主原料として、アルカリ水熱合成処理することによって得られるケイ酸・アルミン酸の金属塩であり、吸水性および陽イオン交換特性を有しており、品質的にも安定している。   Artificial zeolites include coal ash, paper sludge, aluminum dross residual ash, slag, pearlite, pearlite ore, casting waste sand, volcanic ash deposits such as volcanic ash and shirasu, and waste products such as RDF incinerated ash, or by-products of industrial products, etc. Is a metal salt of silicic acid / aluminic acid obtained by alkaline hydrothermal synthesis treatment, and has water absorption and cation exchange characteristics and is stable in quality.

このため、本発明においては、吸着剤原料として人工ゼオライトを採用する。   For this reason, in the present invention, artificial zeolite is adopted as the adsorbent material.

人工ゼオライトとは、石炭火力発電所で発生するフライアッシュ及びボトムアッシュ等の石炭灰(非晶質)と水酸化アルカリ金属(例えば苛性ソーダ)とを混合し、水熱合成して、石炭灰の表面にゼオライト結晶を生成させたアルカリ金属型および該アルカリ金属イオンの一部または全部を他のイオンで交換してなるものをいう。   Artificial zeolite is a mixture of fly ash and bottom ash coal ash (amorphous) and alkali metal hydroxide (for example, caustic soda) generated in coal-fired power plants, hydrothermally synthesized, and the surface of coal ash And an alkali metal type in which zeolite crystals are produced and a product obtained by exchanging part or all of the alkali metal ions with other ions.

例えば、「シーキュラス」登録商標名(登録4846846)で上市されているものを好適に使用できる。それらの内で、特に、鉄族イオンやアルカリ土類金属イオンで交換したものを好適に使用できる。砒素酸(オキソ酸アニオン)等の陰イオン吸着能に優れたものを得やすい。   For example, a product marketed under the registered trade name of “Cyculus” (Registration 4846846) can be suitably used. Of these, those exchanged with iron group ions or alkaline earth metal ions can be preferably used. It is easy to obtain a material excellent in anion adsorption ability such as arsenic acid (oxo acid anion).

例えば、アルカリイオンの全部又は一部が鉄イオンで陽イオン交換された人工ゼオライトを5倍水で溶出させた場合、通常、pH6〜9を示すようになっている。   For example, when an artificial zeolite in which all or part of alkali ions are cation-exchanged with iron ions is eluted with 5 times water, pH 6-9 is usually indicated.

ここで、アルカリ金属とは、周期表1(IA)族で示されるリチウム、ナトリウム、カリウム、ルビジウムなどであり、好ましくはナトリウム、カリウムである。また、アルカリ土類金属とは、周期表2(IIA)族で示されるベリリウム、マグネシウム、カルシウム、ストロンチウムなどであり、好ましくはマグネシウム、カルシウムである。鉄族金属とは、周期表4周期8〜10(VIII)族で代表されるもので、好ましくは鉄(II、III)である。   Here, the alkali metal is lithium, sodium, potassium, rubidium or the like shown in the periodic table group 1 (IA), preferably sodium or potassium. The alkaline earth metal is beryllium, magnesium, calcium, strontium or the like shown in the periodic table 2 (IIA) group, preferably magnesium or calcium. The iron group metal is represented by groups 8 to 10 (VIII) of Period 4 of the periodic table, and preferably iron (II, III).

なお、人工ゼオライトの粒径は、特に限定されない。上市されている粒径範囲(0.01〜500μm)の範囲から適宜選定できる。酸性水溶液中での分散処理のし易さ、及び/又は、環境浄化剤に要求される取り扱い性の見地からは、1〜100μmのものを通常使用する。   The particle size of the artificial zeolite is not particularly limited. It can be appropriately selected from a commercially available particle size range (0.01 to 500 μm). From the viewpoint of ease of dispersion treatment in an acidic aqueous solution and / or handling properties required for an environmental cleaner, those having a size of 1 to 100 μm are usually used.

人工ゼオライトを、酸性水溶液に投入して微温下で攪拌処理することにより、ゼオライト表面電荷の一部がプラス側に変換されると同時に、ゼオライト結晶の一部が非晶(アモルファス)化して、ヒ素酸等のオキソ酸アニオン(陰イオン)の吸着サイトが形成される。   By adding artificial zeolite to an acidic aqueous solution and stirring it at a low temperature, part of the surface charge of the zeolite is converted to the positive side, and at the same time, part of the zeolite crystal is made amorphous, resulting in arsenic. An adsorption site of an oxo acid anion (anion) such as an acid is formed.

そして、攪拌処理前の人工ゼオライトは、高い比表面積を有する(例えば、平均粒子径10〜50μmの場合、30〜100m2-1:BET法)ため、表面部の一部の非晶化であっても、陰イオン吸着サイトが多数形成される。 The artificial zeolite before the stirring treatment has a high specific surface area (for example, 30 to 100 m 2 g −1 : BET method in the case of an average particle diameter of 10 to 50 μm). Even if it exists, many anion adsorption sites are formed.

ここで、使用する酸性水溶液としては、通常、塩酸、硫酸、硝酸等の無機酸を使用できるが、適宜、水溶性の第4周期遷移金属塩を含むもので調製してもよい。   Here, as the acidic aqueous solution to be used, an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid or the like can be usually used, but it may be appropriately prepared containing a water-soluble fourth-period transition metal salt.

そして、これらの酸性水溶液は、人工ゼオライト投入前では、調整pHが1.0未満になることが多い。このため、pH調製剤(例えば、アルカリ金属類乃至アルカリ土類金属類の水酸化物乃至酸化物)を用いて、pH約1.0〜5.0(望ましくは2.0未満)に調整する。   These acidic aqueous solutions often have an adjusted pH of less than 1.0 before the artificial zeolite is charged. Therefore, the pH is adjusted to about 1.0 to 5.0 (desirably less than 2.0) using a pH adjuster (for example, hydroxide or oxide of alkali metal or alkaline earth metal).

ここで、機械的な分散処理(反応)条件は、前述の通常、30〜55℃×20〜60min、望ましくは40〜50℃×25〜50minとする。機械的な分散処理の態様は、回転ドラム、振とう等の容器運動式でもよいが、通常、攪拌(スターラー、プロペラ形)、スクリュー混練等の容器固定式とする。攪拌装置を使用する場合の回転数は、通常、120〜1300min-1の範囲で適宜選定する。 Here, the mechanical dispersion treatment (reaction) conditions are usually 30 to 55 ° C. × 20 to 60 min, preferably 40 to 50 ° C. × 25 to 50 min. The mechanical dispersion treatment may be performed by a container motion type such as a rotating drum or shaking, but is usually a container fixed type such as stirring (stirrer, propeller type) or screw kneading. The number of rotations when using a stirrer is usually appropriately selected within the range of 120 to 1300 min −1 .

そして、分散処理に先立つ、酸性水溶液への人工ゼオライトの投入は、通常、低速(回転速度400〜600min-1)で攪拌しながら、連続的又は間欠的に少量ずつに分けて行う。分散処理を円滑に行うためである。また、分散処理の温度までの加温も、急激に行うのではなく、緩やかに昇温させる。例えば、3〜10℃min-1の範囲で行う。急激に昇温させると、温度制御が困難となるとともに、酸性水溶液中の第四周期遷移金属イオンの電荷を増大させるおそれがある。 Prior to the dispersion treatment, the artificial zeolite is usually charged into the acidic aqueous solution in small portions continuously or intermittently while stirring at a low speed (rotation speed: 400 to 600 min −1 ). This is to perform the distributed processing smoothly. Further, the heating to the temperature of the dispersion treatment is not performed rapidly but is gradually increased. For example, it is performed in the range of 3 to 10 ° C. min −1 . When the temperature is rapidly increased, temperature control becomes difficult and the charge of the fourth-period transition metal ions in the acidic aqueous solution may increase.

そして、酸性水溶液中で、微温下(30〜55℃)で分散処理をしてゾル化させた人工ゼオライトは、攪拌(機械的分散)を止め静置させて常温に戻すと、ゲル化して海綿状固形物が生成する。その生成時間は、酸性水溶液のpH及び/又は原料人工ゼオライトの種類、更には、雰囲気温度により異なるが、通常、0.5〜2hとする。   And the artificial zeolite, which has been dispersed in an acidic aqueous solution at a slight temperature (30 to 55 ° C) and made into a sol, gelled and spongy when stirring (mechanical dispersion) was stopped and allowed to stand to return to room temperature. A solid product is formed. The production time varies depending on the pH of the acidic aqueous solution and / or the type of raw material artificial zeolite, and the ambient temperature, but is usually 0.5 to 2 hours.

そして、海綿状固形物は、分散槽から取り出し又は分散槽に保持させた状態で、常温ないし微温(50℃以下)で静置乾燥させた後、粉砕して、所要粒径の粉粒状(通常、0.1〜1000μm、望ましくは1〜100μm)とする。   The spongy solid is taken out from the dispersion tank or held in the dispersion tank, and is allowed to stand and dry at room temperature to a slight temperature (50 ° C. or less), and then pulverized to obtain a powder having the required particle size (usually 0.1 to 1000 μm, preferably 1 to 100 μm).

ここで、粉砕手段は、特に限定されないが、通常、微粉砕機を使用する。微粉砕機としては、ボールミル、チューブミル、ロッドミル、振動ボールミル、ハイスイングボールミル、リングローラミル、ボールローラーミル、アトリクションミル等を挙げることができる。そして、適宜、振動篩等で所定粒径(例えば、100μmアンダー)に揃える。   Here, the pulverizing means is not particularly limited, but usually a fine pulverizer is used. Examples of the fine pulverizer include a ball mill, a tube mill, a rod mill, a vibrating ball mill, a high swing ball mill, a ring roller mill, a ball roller mill, and an attrition mill. Then, it is appropriately adjusted to a predetermined particle size (for example, under 100 μm) with a vibrating sieve or the like.

こうして製造した粉粒状の環境浄化剤は、土壌に散布して適宜打ち込み、更には、水でスラリー状として、土壌に散布して使用する。   The particulate environmental purification agent thus produced is sprayed on the soil and driven in as appropriate, and further used as a slurry with water and sprayed on the soil.

このときの散布量は、土壌の汚染度にもよるが、0.1〜5wt%とする。すなわち、土壌1tに対して1〜50kg添加する。   The amount of application at this time is 0.1 to 5 wt% although it depends on the degree of soil contamination. That is, 1 to 50 kg is added to 1 t of soil.

以下、本発明を実施例に基づいて、更に、詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

<環境浄化剤の調製>
1)粉状環境浄化剤の調製:
硫酸ベースでpH約1.5に調整した酸性水溶液500mLを、1Lビーカーに準備をする。
<Preparation of environmental cleaner>
1) Preparation of powdered environmental cleaner:
Prepare 500 mL of acidic aqueous solution adjusted to pH about 1.5 with sulfuric acid base in 1 L beaker.

該1Lビーカーに人工ゼオライト(「Fe型シーキュラス」平均粒径:40μm)300gを、液温を20℃に保持して、スターラーを回転(回転速度:1000min-1)させながら約15分で連続投入する(投入速度:約20g/min)。 300 g of artificial zeolite (“Fe-type Cyculus” average particle size: 40 μm) is continuously added to the 1 L beaker in about 15 minutes while maintaining the liquid temperature at 20 ° C. and rotating the stirrer (rotation speed: 1000 min −1 ). (Input speed: about 20 g / min).

人工ゼオライト投入完了後、攪拌装置の回転を継続しながら、液温を45℃まで約5分で昇温させる(昇温速度5℃min-1)。更に、液温を45℃に保持しながら30min、スターラーの回転を継続する(回転速度:約1000min-1)。 After completion of the artificial zeolite charging, the liquid temperature is raised to 45 ° C. in about 5 minutes while continuing to rotate the stirring device (heating rate 5 ° C. min −1 ). Furthermore, the rotation of the stirrer is continued for 30 min while maintaining the liquid temperature at 45 ° C. (rotation speed: about 1000 min −1 ).

攪拌終了後、常温(20〜30℃)で1h程度静置した。すると、スポンジ(海綿)状固形物が生成した。ここまでの合計時間は、1時間50分である。   After stirring, the mixture was allowed to stand at room temperature (20-30 ° C.) for about 1 h. Then, a sponge (sponge) -like solid was produced. The total time so far is 1 hour 50 minutes.

そして、1Lビーカーから該海綿状固形物を取り出した後、恒温槽を用いて35℃×22hの条件で乾燥処理をする。   And after taking out this sponge-like solid substance from a 1L beaker, it dry-processes on conditions of 35 degreeC * 22h using a thermostat.

該乾燥処理物を、乳鉢で粉砕して、振動篩い機を用いて、100μm超のものを除去して、実験用の環境浄化剤を調製した。   The dried product was pulverized in a mortar, and the product with a size exceeding 100 μm was removed using a vibration sieve to prepare an experimental environmental cleaner.

<模擬汚染土壌を用いた吸着効果の確認>
1)模擬汚染土壌の調製
所定量のヒ酸水素二ナトリウム七水和物(Na2HAsO4・7H2O)を純水に溶解させAs(V)溶液(ヒ素酸溶液)を調製し、山砂に添加混合したものを模擬汚染土壌とした。
<Confirmation of adsorption effect using simulated contaminated soil>
1) Preparation of simulated contaminated soil Dissolve a prescribed amount of disodium hydrogen arsenate heptahydrate (Na 2 HAsO 4 .7H 2 O) in pure water to prepare an As (V) solution (arsenic acid solution). A mixture added to sand was used as a simulated contaminated soil.

2)ヒ素吸着試験
模擬汚染土壌に環境浄化剤を重量比で1wt%添加し均一に混合した後、24h静置させたものを実施例試料とし、環境浄化剤無添加のものを対照例試料とした。
2) Arsenic adsorption test 1 wt% of environmental cleanser was added to the simulated contaminated soil and mixed uniformly, and then left for 24 hours as an example sample, and no environmental cleanser added as a control sample. did.

そして、各試料について、環境省告示第46号溶出試験に記載の下記方法でヒ素溶出濃度を測定した。   And about each sample, the arsenic elution density | concentration was measured by the following method as described in Ministry of the Environment notification 46th elution test.

「1)試料液の調製
試料(単位g)と溶媒(純水に塩酸を加え、水素イオン濃度指数が5.8以上6.3以下となるようにしたもの)(単位mL)とを重量体積比10%の割合で混合し、かつ、その混合液500mL以上となるようにする。
“1) Preparation of sample solution Sample (unit g) and solvent (hydrochloric acid added to pure water so that the hydrogen ion concentration index is 5.8 to 6.3) (unit mL) Mix at a ratio and make the mixture 500 mL or more.

2)溶出
調製した試料液を常温(おおむね20℃)常圧(おおむね1気圧:101.325kPa)で振とう機(あらかじめ振とう回数を毎分約200回に、振とう幅を4cm以上5cm以下に調整したもの)を用いて、6時間連続浸透する。
2) Elution The prepared sample solution is shaken at room temperature (generally 20 ° C) and normal pressure (generally 1 atm: 101.325 kPa) (previously shaken approximately 200 times per minute, and the shaking width is 4 cm or more and 5 cm or less. Infiltrate continuously for 6 hours.

3)検液の作成
上記2)で得られた試料液を10分から30分程度静置後、毎分約3000回転で20分間遠心分離した後の上澄液を孔径0.45μmのメンブランフィルター(ろ過膜)でろ過してろ液を取り、定量に必要な量を正確に計りとって、これを検液とする。」
3)測定結果及び考察
ヒ素溶出濃度において、対照例試料(環境浄化剤無添加):5.04mg/Lであったのに対し、実施例試料(本発明の環境浄化剤添加)で0.00954mg/Lとなった。すなわち、土壌に対して1wt%の添加で、上記環境省告示第46号のヒ素環境基準:0.01mg/Lを満足することが確認できた。
3) Preparation of test solution After leaving the sample solution obtained in 2) above for about 10 to 30 minutes and then centrifuging at about 3000 rpm for 20 minutes, the supernatant is filtered through a membrane filter (filtered) with a pore size of 0.45 μm. The filtrate is filtered through a membrane), the amount required for quantification is accurately measured, and this is used as a test solution. "
3) Measurement results and discussion In the arsenic elution concentration, the control sample (without the addition of the environmental cleaner): 5.04 mg / L, whereas the example sample (with the environmental cleaner of the present invention added) was 0.00954 mg / L. It became. That is, it was confirmed that the addition of 1 wt% to the soil satisfied the arsenic environmental standard of the above Ministry of the Environment Notification No. 46: 0.01 mg / L.

Claims (8)

人工ゼオライトの粉体を、調整pH:約1.0〜5.0の範囲内に維持した酸性水溶液中で、約30〜55℃(液温)×20〜60minの条件の機械的な分散処理を経てゾル(スラリー)化後、静置させてゲル体(海綿状固形物:網目構造体)として得ることを特徴とする環境浄化剤の製造方法。   The artificial zeolite powder is subjected to mechanical dispersion treatment in an acidic aqueous solution maintained within a range of adjusted pH: about 1.0 to 5.0 through a mechanical dispersion treatment under the condition of about 30 to 55 ° C. (liquid temperature) × 20 to 60 min. A method for producing an environmental purification agent, characterized by obtaining a gel body (spongy solid: network structure) by allowing to stand after formation of a slurry. 前記海綿状固形物を、乾燥粉砕して粉粒状とし、適宜、篩分けすることを特徴とする請求項1記載の環境浄化剤の製造方法。   2. The method for producing an environmental purification agent according to claim 1, wherein the sponge-like solid is dried and pulverized into a powder form and appropriately sieved. 前記人工ゼオライトが、アルカリイオンの全部又は一部が鉄イオン(Fe2+及び/又はFe3+) で陽イオン交換されたものであることを特徴とする請求項1記載の環境浄化剤の製造方法。 2. The production of an environmental purification agent according to claim 1, wherein the artificial zeolite is obtained by cation exchange of all or part of alkali ions with iron ions (Fe 2+ and / or Fe 3+ ). Method. 前記酸性水溶液が、第4周期遷移金属イオンを含むものであることを特徴とする請求項1記載の環境浄化剤の製造方法。   The method for producing an environmental purification agent according to claim 1, wherein the acidic aqueous solution contains a fourth-period transition metal ion. 前記第4周期遷移金属イオンが、鉄イオン(Fe2+及び/又はFe3+) であることを特徴とする請求項4記載の環境浄化剤の製造方法。 The method for producing an environmental purification agent according to claim 4, wherein the fourth period transition metal ion is an iron ion (Fe 2+ and / or Fe 3+ ). 前記酸性水溶液の調整pH:2.0未満であり、前記分散処理の条件が、約40〜50℃(液温)×25〜50minであることを特徴とする請求項1記載の環境浄化剤の製造方法。   2. The method for producing an environmental purification agent according to claim 1, wherein the pH of the acidic aqueous solution is less than 2.0, and the condition of the dispersion treatment is about 40 to 50 ° C. (liquid temperature) × 25 to 50 min. . 請求項2記載の製造方法で得た粉粒状の環境浄化剤を、適宜スラリー状として土壌に添加混合して汚染された土壌の浄化をすることを特徴とする土壌の浄化方法。   A method for purifying soil, wherein the polluted soil is purified by adding and mixing the particulate environmental cleaner obtained by the production method according to claim 2 as appropriate slurry into the soil. 請求項1〜6のいずれか一記載の請求項の製造方法で製造した環境浄化剤であって、該環境浄化剤が、鉛、カドミウム及びクロムの群から選択される陽イオン群、ヒ酸又はセレン酸、フッ素の陰イオン群の双方を吸着乃至イオン交換可能なものであることを特徴とする環境浄化剤。
An environmental purification agent produced by the production method according to any one of claims 1 to 6, wherein the environmental purification agent is a cation group selected from the group consisting of lead, cadmium and chromium, arsenic acid or An environmental purification agent characterized by being capable of adsorbing or exchanging both anions of selenic acid and fluorine.
JP2008067487A 2008-03-17 2008-03-17 Manufacturing method of environmental cleaner Active JP5001202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067487A JP5001202B2 (en) 2008-03-17 2008-03-17 Manufacturing method of environmental cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067487A JP5001202B2 (en) 2008-03-17 2008-03-17 Manufacturing method of environmental cleaner

Publications (2)

Publication Number Publication Date
JP2009220026A true JP2009220026A (en) 2009-10-01
JP5001202B2 JP5001202B2 (en) 2012-08-15

Family

ID=41237405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067487A Active JP5001202B2 (en) 2008-03-17 2008-03-17 Manufacturing method of environmental cleaner

Country Status (1)

Country Link
JP (1) JP5001202B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068459A (en) * 2011-09-21 2013-04-18 San-Ei Regulator Co Ltd Method for improving and purifying radioactive substance contaminated soil
JP2014171996A (en) * 2013-03-11 2014-09-22 Daiwabo Holdings Co Ltd Arsenic adsorptive regenerated cellulose compact, production method therefor, arsonic adsorbing material, and water treating material
JP2015167900A (en) * 2014-03-06 2015-09-28 富士シリシア化学株式会社 Arsenic removing agent, and arsenic removing method
JP2018519261A (en) * 2015-05-04 2018-07-19 コーネル ユニバーシティ Ultra-small nanoparticles and method for producing and using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173827A (en) * 1995-10-16 1997-07-08 Corning Inc Manufacture of hydrocarbon adsorption element having improved adsorption characteristics
JP2002160915A (en) * 2000-11-20 2002-06-04 Tosoh Corp Novel bea type metalloaluminosilicate and method for manufacturing the same
JP2002160916A (en) * 2000-11-20 2002-06-04 Tosoh Corp Novel mor type metallo alumino silicate and method of producing the same
JP2002160917A (en) * 2000-11-20 2002-06-04 Tosoh Corp Novel fau type metallo alumino silica the and method of producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173827A (en) * 1995-10-16 1997-07-08 Corning Inc Manufacture of hydrocarbon adsorption element having improved adsorption characteristics
JP2002160915A (en) * 2000-11-20 2002-06-04 Tosoh Corp Novel bea type metalloaluminosilicate and method for manufacturing the same
JP2002160916A (en) * 2000-11-20 2002-06-04 Tosoh Corp Novel mor type metallo alumino silicate and method of producing the same
JP2002160917A (en) * 2000-11-20 2002-06-04 Tosoh Corp Novel fau type metallo alumino silica the and method of producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068459A (en) * 2011-09-21 2013-04-18 San-Ei Regulator Co Ltd Method for improving and purifying radioactive substance contaminated soil
JP2014171996A (en) * 2013-03-11 2014-09-22 Daiwabo Holdings Co Ltd Arsenic adsorptive regenerated cellulose compact, production method therefor, arsonic adsorbing material, and water treating material
JP2015167900A (en) * 2014-03-06 2015-09-28 富士シリシア化学株式会社 Arsenic removing agent, and arsenic removing method
JP2018519261A (en) * 2015-05-04 2018-07-19 コーネル ユニバーシティ Ultra-small nanoparticles and method for producing and using the same
JP2021152070A (en) * 2015-05-04 2021-09-30 コーネル ユニバーシティ Ultrasmall nanoparticles and methods of making and using the same
US11291737B2 (en) 2015-05-04 2022-04-05 Cornell University Ultrasmall nanoparticles and methods of making and using same
JP7458671B2 (en) 2015-05-04 2024-04-01 コーネル ユニバーシティ Ultra-small nanoparticles and methods of making and using same - Patents.com

Also Published As

Publication number Publication date
JP5001202B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
He et al. Diverse zeolites derived from a circulating fluidized bed fly ash based geopolymer for the adsorption of lead ions from wastewater
Nascimento et al. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method
Huang et al. Preparation of magnetic clinoptilolite/CoFe2O4 composites for removal of Sr2+ from aqueous solutions: kinetic, equilibrium, and thermodynamic studies
JP6618803B2 (en) A method for selective removal of strontium radionuclides from water streams.
Yao et al. Simultaneous oxidation and removal of Sb (III) from water by using synthesized CTAB/MnFe2O4/MnO2 composite
Li et al. A composite adsorbent of ZnS nanoclusters grown in zeolite NaA synthesized from fly ash with a high mercury ion removal efficiency in solution
JP2016117050A (en) Inorganic polymer-made adsorbent and method for production thereof
JP5671437B2 (en) Adsorbent manufacturing method
Salam et al. Synthesis of zeolite/geopolymer composite for enhanced sequestration of phosphate (PO43−) and ammonium (NH4+) ions; equilibrium properties and realistic study
US11577215B2 (en) Method for producing absorbent
JP5981863B2 (en) Granular environmental water treatment agent and method for treating water contaminated with harmful substances using the same
JP5001202B2 (en) Manufacturing method of environmental cleaner
Xu et al. Adsorption of acid fuchsin onto LTA-type zeolite derived from fly ash
Onutai et al. Removal of Pb2+, Cu2+, Ni2+, Cd2+ from wastewater using fly ash based geopolymer as an adsorbent
Li et al. Investigation of the adsorption characteristics of Cr (VI) onto fly ash, pine nut shells, and modified bentonite
US4912070A (en) Continuously porous absorbent material possessing far infrared electromagnetic field
Ibrahim et al. Facile preparation of dual functions zeolite‐carbon composite for zinc ion removal from aqueous solutions
Saod et al. Magnesium oxide loaded mesoporous silica: Synthesis, characterisation and use in removing lead and cadmium from water supplies
Kaewmee et al. Adsorptive reduction of water hardness by a highly porous and regenerative geopolymer fabricated from coal fly ash waste with low-temperature calcination
Ghadiri et al. Potential of granulated modified nanozeolites Y for MTBE removal from aqueous solutions: Kinetic and isotherm studies
Li et al. Synthesis of zeolite A and zeolite X from electrolytic manganese residue, its characterization and performance for the removal of Cd2+ from wastewater
JP5037950B2 (en) Water purification agent and method for producing the same
WO2018066634A1 (en) Method for treating radioactive liquid waste containing radioactive cesium
Jeon et al. First successful synthesis of an Al-rich mesoporous aluminosilicate for fast radioactive strontium capture
JP4822369B2 (en) Water quality improving treatment agent and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Ref document number: 5001202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250