JP6107213B2 - Light source unit and irradiation device - Google Patents
Light source unit and irradiation device Download PDFInfo
- Publication number
- JP6107213B2 JP6107213B2 JP2013031313A JP2013031313A JP6107213B2 JP 6107213 B2 JP6107213 B2 JP 6107213B2 JP 2013031313 A JP2013031313 A JP 2013031313A JP 2013031313 A JP2013031313 A JP 2013031313A JP 6107213 B2 JP6107213 B2 JP 6107213B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- focal point
- source unit
- reflecting
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Led Device Packages (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
本発明は、複数の発光素子を光源に備えた光源ユニット及び照射装置に関する。 The present invention relates to a light source unit including a plurality of light emitting elements in a light source and an irradiation apparatus.
従来、例えば、LEDなどの発光素子を複数並べた光源の光を拡散反射する拡散反射面を備えた照明装置が知られている(例えば、特許文献1参照)。この照明装置によれば、各々のLEDを離間配置し、各LEDに対応した位置で照度が高くなる場合でも、各々のLEDの光が拡散反射面で拡散されることから、照度ムラが抑制される。(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, for example, an illumination device including a diffuse reflection surface that diffuses and reflects light from a light source in which a plurality of light emitting elements such as LEDs are arranged (see, for example, Patent Document 1). According to this illuminating device, even when each LED is spaced apart and the illuminance is high at a position corresponding to each LED, the light of each LED is diffused by the diffuse reflection surface, so that the illuminance unevenness is suppressed. The (For example, refer to Patent Document 1).
しかしながら、離間配置した複数のLEDの各々の光を十分に拡散させ、照度ムラを抑制しようとした場合、この拡散の強度に応じて照射野の輪郭にボケが生じるという問題がある。
すなわち、複数のLEDを離間配置して、この離間配置の方向に延びる光を照射する場合には、光の延びる方向における照度ムラは解消されるものの、この延びる方向と直交する光の幅方向の輪郭にボケが生じる。
However, when it is attempted to sufficiently diffuse the light of each of the plurality of spaced LEDs to suppress uneven illuminance, there is a problem that the outline of the irradiation field is blurred depending on the intensity of the diffusion.
That is, when a plurality of LEDs are arranged apart and irradiated with light extending in the direction of the separation, illuminance unevenness in the direction in which the light extends is eliminated, but in the light width direction orthogonal to the extending direction. The outline is blurred.
この発明は上記の課題を解決するためになされたものであり、発光素子の配置方向に延びる光の照度ムラを抑えつつ、輪郭のボケも十分に抑制できる光源ユニット及び照射装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a light source unit and an irradiation apparatus that can sufficiently suppress blurring of an outline while suppressing unevenness in illuminance of light extending in the arrangement direction of light emitting elements. Objective.
上記目的を達成するために、本発明の光源ユニットは、環状に並べて取り付けられた複数の発光素子と、前記発光素子に底面部を対向させて設けられた反射体と、を備え、前記反射体は、一端開口を前記底面部に塞がれた筒状反射部と、前記筒状反射部に囲繞され当該筒状反射部の同軸に配置されて前記底面部と一体に形成された柱状反射部と、前記筒状反射部および前記柱状反射部とにより形成され出射開口を構成する環状の凹部と、を有し、前記底面部には、前記環状の凹部に前記発光素子の光を通す通過孔が設けられ、前記反射体は、互いに相対する、前記筒状反射部の内周面に前記発光素子の夫々に対応させて連続して設けられた内側反射面と、前記柱状反射部の外周面に前記発光素子の夫々に対応させて連続して設けられた外側反射面と、で構成され、複数の反射面が周方向に連続して配置され、前記反射面は、前記出射開口が第1焦点から第2焦点の間に設けられた楕円反射面であり、当該楕円反射面の長軸を互いに平行に、かつ、一部をオーバーラップさせながら並べて配置し、前記第1焦点のそれぞれに前記発光素子が配置され、前記楕円反射面の前記第1焦点の側の端部が放物反射面であることを特徴とする。 In order to achieve the above object, a light source unit of the present invention comprises a plurality of light emitting elements mounted in a ring shape, and a reflector provided with a bottom surface facing the light emitting element, the reflector Is a cylindrical reflection portion whose one end opening is closed by the bottom surface portion, and a columnar reflection portion which is surrounded by the cylindrical reflection portion and arranged coaxially with the cylindrical reflection portion and formed integrally with the bottom surface portion. And an annular recess formed by the cylindrical reflecting portion and the columnar reflecting portion to form an emission opening, and a passage hole through which light of the light emitting element passes through the annular recess in the bottom surface portion The reflectors are opposed to each other, the inner reflection surface continuously provided corresponding to each of the light emitting elements on the inner peripheral surface of the cylindrical reflection portion, and the outer peripheral surface of the columnar reflection portion The outer surface provided continuously corresponding to each of the light emitting elements. And the surface, in the configuration, are arranged a plurality of reflecting surfaces continuously in the circumferential direction, the reflective surface, the exit aperture is elliptical reflective surface provided between the first focal point of the second focal point, the The major axes of the elliptical reflecting surfaces are arranged in parallel with each other and partially overlapped, the light emitting elements are arranged at the respective first focal points, and the elliptical reflecting surfaces on the first focal side of the elliptical reflecting surfaces are arranged. The end portion is a parabolic reflecting surface .
また、本発明は、上記光源ユニットにおいて、前記放物反射面の焦点を、前記楕円反射面の長軸に沿って前記第1焦点から遠ざかる方向にずらしたことを特徴とする。 In the light source unit, the focal point of the parabolic reflecting surface may be shifted in a direction away from the first focal point along the long axis of the elliptical reflecting surface.
また、本発明は、上記光源ユニットにおいて、前記発光素子のそれぞれを同一の基板に実装し、当該基板の裏側に、冷媒が流れる冷却体を設けたことを特徴とする。 According to the present invention, in the light source unit, each of the light emitting elements is mounted on the same substrate, and a cooling body through which a coolant flows is provided on the back side of the substrate.
また、本発明は、上記のいずれかの光源ユニットを備えたことを特徴とする。 In addition, the present invention includes any one of the light source units described above.
本発明の光源ユニットによれば、楕円反射面をオーバーラップさせながら並べて配置したので、楕円反射面の並びの方向に配置される発光素子のそれぞれの光も、オーバーラップして連なる。これにより、発光素子の配置方向に延びる光の照度ムラが抑えられる。さらに、楕円反射面の一端部を放物反射面としたので、発光素子の発光面の大きさに起因して発光面の近傍から出射開口の間で複数回の反射を生じる光の成分を抑制できるので、発光素子の光の延びる方向に直交する幅方向の輪郭のボケも十分に抑制できる。 According to the light source unit of the present invention, since the elliptical reflection surfaces are arranged side by side, the light of the light emitting elements arranged in the direction of the arrangement of the elliptical reflection surfaces overlaps and continues. Thereby, the illumination nonuniformity of the light extended in the arrangement direction of a light emitting element is suppressed. Furthermore, since one end of the elliptical reflecting surface is a parabolic reflecting surface, the light component that causes multiple reflections from the vicinity of the light emitting surface to the exit aperture due to the size of the light emitting surface of the light emitting element is suppressed. Therefore, the blur of the outline in the width direction orthogonal to the light extending direction of the light emitting element can be sufficiently suppressed.
以下、本発明の実施の形態について図面を参照して説明する。
図1は本発明の実施形態に係る光源ユニット3を有する照射装置1の構成を説明する図であり、図1の(A)は、正面図を示し、図1の(B)は底面図を示している。図2は照射装置1の上方から見た斜視図である。図3は照射装置1を底面側から見た斜視図である。図4は図1のIV−IV矢視断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram for explaining a configuration of an irradiation apparatus 1 having a light source unit 3 according to an embodiment of the present invention. FIG. 1 (A) shows a front view, and FIG. 1 (B) shows a bottom view. Show. FIG. 2 is a perspective view of the irradiation apparatus 1 as viewed from above. FIG. 3 is a perspective view of the irradiation device 1 viewed from the bottom side. 4 is a cross-sectional view taken along the line IV-IV in FIG.
本発明の照射装置1は、例えば、シリコンウェハに微細パターンを作成するために用いられる露光装置であり、下方に配置されたシリコンウェハ(図示せず)の露光面に紫外線(光)を照射する。
図1の(A)及び(B)において、照射装置1は、光源ユニット3を、ケース体5に収容した構成を有している。照射装置1は、底面に形成された装置側出射開口7から例えば、環状の紫外線を露光対象に向けて照射する構成を有している。
The irradiation apparatus 1 of the present invention is an exposure apparatus used to create a fine pattern on a silicon wafer, for example, and irradiates an exposure surface of a silicon wafer (not shown) arranged below with ultraviolet rays (light). .
1A and 1B, the irradiation device 1 has a configuration in which the light source unit 3 is accommodated in a case body 5. The irradiation apparatus 1 has a configuration in which, for example, an annular ultraviolet ray is irradiated toward an exposure target from an apparatus-side emission opening 7 formed on the bottom surface.
図1〜図3において、ケース体5は、有底円筒状に作製されている。
光源ユニット3は、複数のLED9(発光素子)と、LED基板12と、冷却体11と、反射体13と、カバーガラス15とを備えている。
冷却体11は、基板取付片17と給排水片19を同軸に重ねて構成した扁平な円柱形状を有し、給排水片19をケース体5の底面に向けケース体5の底部内壁面に取り付けられている。
また、図3に示すように、冷却体11の基板取付片17側の端面が、基板取付面17Aとされている。基板取付面17Aには、一枚基板として作製されたLED基板12の裏面が取り付けられている。LED基板12には、複数のLED9が環状に並ぶように取り付けられている。LED基板12の下方には、反射体13が設けられ、反射体13の下方には、カバーガラス15が設けられている。
1 to 3, the case body 5 is formed in a bottomed cylindrical shape.
The light source unit 3 includes a plurality of LEDs 9 (light emitting elements), an LED substrate 12, a cooling body 11, a reflector 13, and a cover glass 15.
The cooling body 11 has a flat cylindrical shape formed by coaxially stacking the substrate mounting piece 17 and the water supply / drainage piece 19, and the water supply / drainage piece 19 is attached to the bottom inner wall surface of the case body 5 with the water supply / drainage piece 19 facing the bottom surface of the case body 5. Yes.
Moreover, as shown in FIG. 3, the end surface of the cooling body 11 on the substrate mounting piece 17 side is a substrate mounting surface 17A. The back surface of the LED substrate 12 manufactured as a single substrate is attached to the substrate attachment surface 17A. A plurality of LEDs 9 are attached to the LED substrate 12 so as to be arranged in a ring shape. A reflector 13 is provided below the LED substrate 12, and a cover glass 15 is provided below the reflector 13.
また、図3、及び4において、反射体13は、一端開口を底面部24に塞がれた筒状反射部25と、円柱状の柱状反射部27とを備え、LED9毎に反射面30を有する。
柱状反射部27は、筒状反射部25に囲繞されるように筒状反射部25と同軸に配置され、底面部24と一体化されている。
これにより、反射体13には、環状の凹部29が形成される。凹部29の開口が光源ユニット3の出射開口31を構成している。
筒状反射部25の内周面には、内側反射面26が、LED9の数だけ周方向に連続して設けられている。柱状反射部27の外周面には、外側反射面28が、LED9の数だけ周方向に連続して設けられている。反射面30の各々が、互いに相対する内側反射面26と外側反射面28によって構成され、複数の反射面30が周方向に連続して配置される。
反射体13は、出射開口31をケース体5の開口と同じ方向に向けて、ケース体5に同軸に設けられている。このとき、出射開口31に、環状に並べられた複数のLED9の光軸が通過する位置に配置される。
反射体13の底面部24には、図2及び図4に示すように、LED9の光を凹部29に通す通過孔33が、各LED9と対面する位置に形成されている。後述するように、LED9の光は、反射面30に反射された後に出射開口31に向かう成分と、出射開口31に直接向かう成分を有する。
3 and 4, the reflector 13 includes a cylindrical reflection portion 25 whose one end opening is closed by a bottom surface portion 24, and a columnar columnar reflection portion 27. The reflection surface 30 is provided for each LED 9. Have.
The columnar reflecting portion 27 is disposed coaxially with the cylindrical reflecting portion 25 so as to be surrounded by the cylindrical reflecting portion 25, and is integrated with the bottom surface portion 24.
As a result, an annular recess 29 is formed in the reflector 13. The opening of the recess 29 constitutes the emission opening 31 of the light source unit 3.
The inner reflection surface 26 is continuously provided in the circumferential direction on the inner peripheral surface of the cylindrical reflection portion 25 by the number of LEDs 9. On the outer peripheral surface of the columnar reflecting portion 27, the outer reflecting surfaces 28 are continuously provided in the circumferential direction by the number of the LEDs 9. Each of the reflection surfaces 30 is constituted by an inner reflection surface 26 and an outer reflection surface 28 facing each other, and the plurality of reflection surfaces 30 are continuously arranged in the circumferential direction.
The reflector 13 is coaxially provided in the case body 5 with the emission opening 31 facing the same direction as the opening of the case body 5. At this time, it arrange | positions in the position where the optical axis of several LED9 arranged in cyclic | annular arrangement | sequence in the output opening 31 passes.
As shown in FIGS. 2 and 4, on the bottom surface portion 24 of the reflector 13, a passage hole 33 through which the light of the LED 9 passes through the recess 29 is formed at a position facing each LED 9. As will be described later, the light of the LED 9 has a component directed to the emission opening 31 after being reflected by the reflection surface 30 and a component directed directly to the emission opening 31.
また、保護カバー16が、カバーガラス15を介して柱状反射部27と相対するように、カバーガラス15の中央部に取り付けられている。
このカバーガラス15を支持した円筒状のキャップ34が、ケース体5の開口側に嵌められている。キャップ34は、一端側の開口縁部から内周側に延出されるフランジ34Aを有しており、フランジ34Aにカバーガラス15の周縁が支持されている。そして、キャップ34がケース体5に嵌められて、カバーガラス15が、出射開口31を覆っている。
Further, the protective cover 16 is attached to the central portion of the cover glass 15 so as to face the columnar reflecting portion 27 through the cover glass 15.
A cylindrical cap 34 that supports the cover glass 15 is fitted on the opening side of the case body 5. The cap 34 has a flange 34A extending from the opening edge on one end side to the inner peripheral side, and the periphery of the cover glass 15 is supported by the flange 34A. The cap 34 is fitted into the case body 5, and the cover glass 15 covers the emission opening 31.
ところで、LED基板12の裏面に配置される冷却体11の内部には、図2及び図4に示すように、冷却水等の冷媒を流すための流路41が形成されている。即ち、基板取付片17の裏側には、溝17Bが形成されており、この溝17Bを給排水片19で覆うことで、流路41が形成される。
また、給排水片19には、一対の出入口ポート43,45が突設され、ケース体5の底部を貫通している。出入口ポート43,45の一端が、流路41に開口しており、一方の出入口ポート43から流路41に流し込まれた冷却媒体は、流路41を流れて他方の出入口ポート45から排出されるようになっている。これにより、LED9が発する熱は、共通のLED基板12を介して冷却体11に伝導されるが、冷却体11に伝導された熱は、冷却水が奪って外部に持ち出すので、LED9が効果的に冷却される。
また、給排水片19には、LED9に電源を供給するための端子台23が取り付けられケース体5の底部から突出されている。端子台23は、各LED9と電気的に接続されており、外部からLED9の点灯を制御可能となっている。
By the way, as shown in FIG.2 and FIG.4, the flow path 41 for flowing refrigerant | coolants, such as cooling water, is formed in the inside of the cooling body 11 arrange | positioned at the back surface of the LED board 12. FIG. That is, a groove 17B is formed on the back side of the board mounting piece 17, and the flow path 41 is formed by covering the groove 17B with the water supply / drainage piece 19.
Further, the water supply / drainage piece 19 is provided with a pair of inlet / outlet ports 43, 45 that project through the bottom of the case body 5. One end of the inlet / outlet ports 43 and 45 is open to the flow path 41, and the cooling medium poured into the flow path 41 from one of the inlet / outlet ports 43 flows through the flow path 41 and is discharged from the other inlet / outlet port 45. It is like that. As a result, the heat generated by the LED 9 is conducted to the cooling body 11 via the common LED substrate 12, but the heat conducted to the cooling body 11 is taken away by the cooling water, and the LED 9 is effective. To be cooled.
A terminal block 23 for supplying power to the LED 9 is attached to the water supply / drainage piece 19 and protrudes from the bottom of the case body 5. The terminal block 23 is electrically connected to each LED 9 so that lighting of the LED 9 can be controlled from the outside.
次いで、反射面30の詳細について説明する。
図5は図1のV−V矢視要部断面図である。図6は図1の(A)の要部拡大図である。
図4及び図5において、筒状反射部25及び柱状反射部27のうち、出射開口31を含む主要な領域が楕円面反射鏡部30Aとされ、LED9側に配置される残りの領域が、放物面反射鏡部30Bとされている。
反射面30は、楕円面反射鏡部30Aの領域に位置する楕円反射面35と、楕円反射面35に連なり、放物面反射鏡部30Bの領域に位置する放物反射面37とを備えている。
複数の反射面30は、楕円反射面35の長軸を互いに平行に、かつ、図6の破線に示すように、隣接する反射面30の楕円反射面35の一部をオーバーラップさせて、環状に並べられている。オーバーラップした反射面30の部分は省略されており、上述したように反射面30が、内側反射面26と外側反射面28により構成される。
Next, details of the reflecting surface 30 will be described.
FIG. 5 is a sectional view taken along the line VV in FIG. FIG. 6 is an enlarged view of the main part of FIG.
4 and 5, the main area including the emission opening 31 is the elliptical reflecting mirror part 30A among the cylindrical reflecting part 25 and the columnar reflecting part 27, and the remaining area disposed on the LED 9 side is the free space. The object reflecting mirror unit 30B is used.
The reflecting surface 30 includes an ellipsoidal reflecting surface 35 located in the region of the ellipsoidal reflecting mirror portion 30A, and a parabolic reflecting surface 37 that is connected to the ellipsoidal reflecting surface 35 and located in the region of the parabolic reflecting mirror portion 30B. Yes.
The plurality of reflecting surfaces 30 have an elliptical reflecting surface 35 in parallel with each other, and as shown by a broken line in FIG. Are listed. The overlapping reflecting surface 30 is omitted, and the reflecting surface 30 is constituted by the inner reflecting surface 26 and the outer reflecting surface 28 as described above.
反射面30は、放物面反射鏡部30B側の端部も開口しており、この開口が、通過孔33の縁部に連なる入射開口32とされている。
楕円反射面35の長軸方向は、図5に示すように、LED9の光軸Kの方向に一致しており、楕円反射面35は、一対の焦点F1及び焦点F2のうち、一方の焦点F1から発せられる光を他方の焦点F2に集光する。また、楕円反射面35の端部に位置する出射開口31は、焦点F1から焦点F2の間の範囲内に位置している。この実施形態の楕円反射面35は完全な楕円形ではなく、焦点F1と焦点F2を囲む楕円反射面において、焦点F2側に位置する半分を省略した形状である。これにより、出射開口31が、焦点F1と焦点F2との間を二等分する中間部に形成されている。
従って、楕円反射面35は、放物反射面37との境界から出射開口31に向かって口開き状とされている。即ち、出射開口31の径D3が、放物反射面37と楕円反射面35との境界における放物反射面37の開口38の径D2より大きくなっている。
The reflecting surface 30 also has an opening at the end on the parabolic reflecting mirror portion 30 </ b> B side, and this opening is an incident opening 32 that continues to the edge of the passage hole 33.
As shown in FIG. 5, the major axis direction of the ellipsoidal reflecting surface 35 coincides with the direction of the optical axis K of the LED 9, and the ellipsoidal reflecting surface 35 has one focal point F1 out of the pair of focal points F1 and F2. Is emitted to the other focal point F2. Further, the exit opening 31 located at the end of the elliptical reflecting surface 35 is located within the range between the focal point F1 and the focal point F2. The ellipsoidal reflecting surface 35 of this embodiment is not a perfect ellipse, but is a shape in which half of the ellipsoidal reflecting surface surrounding the focal point F1 and the focal point F2 is located on the focal point F2 side. Thereby, the exit opening 31 is formed in an intermediate portion that bisects the focal point F1 and the focal point F2.
Therefore, the elliptical reflecting surface 35 has an opening shape from the boundary with the parabolic reflecting surface 37 toward the emission opening 31. That is, the diameter D3 of the emission opening 31 is larger than the diameter D2 of the opening 38 of the parabolic reflection surface 37 at the boundary between the parabolic reflection surface 37 and the elliptical reflection surface 35.
ところで、楕円反射面35は、便宜上、LED9を点光源とみなし、点光源からの光を集光させるように設計されている。即ち、LED9の発光点が、照射面の中心にあるとみなし、楕円反射面35の焦点F1に、LED9の照射面の中心を一致させてLED9を配置している。
しかしながら、各LED9は、実際には、発光面9Aが点ではなく、径D1を有する。
図7は反射面30の全領域を楕円反射面35で構成した場合の光路の一部を示す図である。
図7に示すように、反射面30の全てが楕円反射面35により構成されている場合、LED9の発光面9Aのうち、焦点F1から離れた位置から出射された光L2,L3は、複数回、楕円反射面35に反射した後、出射開口31から出射される場合がある。例えば、初めて反射面30に反射された光L2,L3は、焦点F2には向かわずに、反射した位置より、さらに出射開口31側に位置する反射面30の部位でもう一度反射されて、出射開口31から出射される。LED9の光L2,L3が、このような光路を通って出射開口31から出射されると、光軸Kに対して、大きな角度αをもって出射開口31から出射される光の成分が発生することがある。この場合、出射される光の輪郭がボケ、さらに、複数回の反射による損失により、出射する光の光量が低下する。焦点F1からずれたLED9の発光面9Aから出射する光L1,L2は、特に、LED9の近傍で、楕円反射面35により反射されると、複数回反射されやすい。
By the way, the ellipsoidal reflecting surface 35 is designed so that the LED 9 is regarded as a point light source and the light from the point light source is condensed for convenience. That is, the light emitting point of the LED 9 is considered to be at the center of the irradiation surface, and the LED 9 is arranged so that the center of the irradiation surface of the LED 9 coincides with the focal point F1 of the elliptical reflection surface 35.
However, each LED 9 actually has a diameter D1 instead of a light emitting surface 9A.
FIG. 7 is a diagram showing a part of the optical path when the entire area of the reflecting surface 30 is constituted by the elliptical reflecting surface 35.
As shown in FIG. 7, when all of the reflection surface 30 is configured by the elliptical reflection surface 35, the light L <b> 2 and L <b> 3 emitted from the position away from the focal point F <b> 1 on the light emission surface 9 </ b> A of the LED 9 is emitted a plurality of times. After being reflected on the elliptical reflecting surface 35, the light may be emitted from the emission opening 31. For example, the lights L2 and L3 reflected on the reflecting surface 30 for the first time do not go to the focal point F2, but are reflected again at the portion of the reflecting surface 30 located further on the exit opening 31 side than the reflected position, and thus the exit opening. 31 is emitted. When the light L2 and L3 of the LED 9 is emitted from the emission opening 31 through such an optical path, a component of light emitted from the emission opening 31 with a large angle α with respect to the optical axis K may be generated. is there. In this case, the outline of the emitted light is blurred, and the light quantity of the emitted light is reduced due to loss due to multiple reflections. Lights L1 and L2 emitted from the light emitting surface 9A of the LED 9 shifted from the focal point F1 are likely to be reflected a plurality of times, particularly when reflected by the elliptical reflecting surface 35 in the vicinity of the LED 9.
そこで、本実施形態の光源ユニット3では、楕円反射面35の一端側を、放物反射面37に代えた構成としている。
このように反射面30を構成した光源ユニット3において各LED9から出射される光の光路について説明する。
図8は光源ユニット3の各LED9から出射された光の光路を説明する要部断面図であり、LED9の並びの方向に直交する断面を示している。
図8において、各LED9の光は、放物反射面37に反射されて出射開口31から出射される光O1の成分、及び楕円反射面35に反射されて出射開口31から出射される光O2の成分、及び出射開口31から直接出射される光O3の成分を有する。
放物反射面37は、反射した光を光軸Kと平行な方向に向かわせる平行光にする。出射開口31の径D3が、放物反射面37と楕円反射面35との境界における放物反射面37の開口38の径D2より大きいので、放物反射面37に反射された光O1は、楕円反射面35に反射されることなく、出射開口31から出射される。
光O3は、出射開口31の径D3により決まる広がり角を有するが、LED9から出射開口31までの距離が長いため、拡がり角は小さい。なお、ここでいう広がり角は、LED9の並び方向に直交する径方向についてのものである。
Therefore, in the light source unit 3 of the present embodiment, one end side of the elliptical reflection surface 35 is replaced with a parabolic reflection surface 37.
An optical path of light emitted from each LED 9 in the light source unit 3 having the reflection surface 30 as described above will be described.
FIG. 8 is a principal cross-sectional view for explaining the optical path of light emitted from each LED 9 of the light source unit 3, and shows a cross section orthogonal to the direction in which the LEDs 9 are arranged.
In FIG. 8, the light of each LED 9 is reflected by the parabolic reflection surface 37 and emitted from the emission opening 31, and the light O2 reflected by the elliptical reflection surface 35 and emitted from the emission opening 31. And a component of light O3 emitted directly from the emission opening 31.
The parabolic reflection surface 37 turns the reflected light into parallel light that is directed in a direction parallel to the optical axis K. Since the diameter D3 of the emission opening 31 is larger than the diameter D2 of the opening 38 of the parabolic reflection surface 37 at the boundary between the parabolic reflection surface 37 and the elliptical reflection surface 35, the light O1 reflected by the parabolic reflection surface 37 is The light is emitted from the emission opening 31 without being reflected by the elliptical reflecting surface 35.
The light O3 has a divergence angle determined by the diameter D3 of the emission opening 31, but the divergence angle is small because the distance from the LED 9 to the emission opening 31 is long. In addition, the divergence angle here is about the radial direction orthogonal to the arrangement direction of LED9.
また、光O2は、楕円反射面35に反射された後、光軸Kに対して緩やかな角度をもって、焦点F2に向かう。また、反射面30の並びの方向については、楕円反射面35及び放物反射面37が省略されているので、各LED9から、反射面30の並びの方向に向けられる光は、広がりながら進む。
ここで、照射装置1は、光源ユニット3の光を、例えば、出射開口31の前方に、出射開口31から所定の距離Gの位置に置かれた露光対象Sに対して露光(照射)する。
各LED9の光(O1、O2、O3)は、反射面30の並びの方向に直交する光の幅方向には、大きく広がることなく露光対象Sに到達するので、光の幅方向の両側の輪郭がボケることが抑制される。また、楕円反射面35のLED9側の端部を放物反射面37としたことで、LED9の発光面9Aが、径D1の大きさを有することに起因して、発光面9Aの近傍から出射開口31の間で、複数回の反射を生じる光の成分を単一の楕円反射面35に比べて抑えられる。このため、光の反射による損失を避け、露光対象Sに対して、大きな光量の光が照射される。
Further, the light O2 is reflected by the elliptical reflecting surface 35 and then travels toward the focal point F2 with a gentle angle with respect to the optical axis K. Moreover, since the elliptical reflecting surface 35 and the parabolic reflecting surface 37 are omitted with respect to the direction in which the reflecting surfaces 30 are arranged, the light directed from each LED 9 in the direction in which the reflecting surfaces 30 are arranged travels while spreading.
Here, the irradiation apparatus 1 exposes (irradiates) the light from the light source unit 3 to the exposure target S placed at a predetermined distance G from the emission opening 31 in front of the emission opening 31, for example.
The light (O1, O2, O3) of each LED 9 reaches the exposure target S without spreading greatly in the width direction of the light orthogonal to the direction in which the reflecting surfaces 30 are arranged. Is prevented from blurring. Further, the end portion on the LED 9 side of the ellipsoidal reflecting surface 35 is a parabolic reflecting surface 37, so that the light emitting surface 9A of the LED 9 is emitted from the vicinity of the light emitting surface 9A due to the size of the diameter D1. Compared with the single ellipsoidal reflecting surface 35, the light component that causes a plurality of reflections can be suppressed between the openings 31. Therefore, loss due to light reflection is avoided, and a large amount of light is irradiated onto the exposure target S.
ところで、この実施の形態では、放物反射面37の焦点F3は、楕円反射面35の焦点F1と異なる位置に設定されている。
図9は楕円反射面35の焦点F1と放物反射面37の焦点F3について説明する図であり、楕円反射面35及び放物反射面37が、それぞれの焦点F1,F3を囲む位置まで延ばされた状態を仮想的に図示している。
図9において、放物反射面の焦点F3は、出射開口31に向けられるLED9の発光面9Aの裏側の中心に設定されている。即ち、放物反射面37の焦点F3を、楕円反射面35の長軸に沿って焦点F1から遠ざかる方向にずらした点に設定して設計されている。
By the way, in this embodiment, the focal point F3 of the parabolic reflecting surface 37 is set at a position different from the focal point F1 of the elliptical reflecting surface 35.
FIG. 9 is a diagram for explaining the focal point F1 of the elliptical reflecting surface 35 and the focal point F3 of the parabolic reflecting surface 37, and the elliptical reflecting surface 35 and the parabolic reflecting surface 37 extend to positions surrounding the respective focal points F1 and F3. This state is virtually illustrated.
In FIG. 9, the focal point F <b> 3 of the parabolic reflection surface is set at the center on the back side of the light emitting surface 9 </ b> A of the LED 9 that is directed to the emission opening 31. That is, the focal point F3 of the parabolic reflecting surface 37 is designed to be set at a point shifted in the direction away from the focal point F1 along the long axis of the elliptical reflecting surface 35.
ここで、楕円反射面35の焦点F1と放物反射面37の焦点F3とを異なる位置に設定した理由は以下の通りである。
LED9の光を有効に使うためには、通過孔33の開口は、LED9の発光面9Aと略同じ面積を確保する必要がある。
通過孔33は、反射体13の底面部24側に位置する放物反射面37の端部と連続する。このため、通過孔33の開口の大きさは、底面部24側の放物反射面37の端部の内径と同じ大きさとなる。
放物反射面37の焦点F3を、楕円反射面35の焦点F1と同じに設定すると、底面部24における放物反射面37の内径が小さく、通過孔33の開口を、LED9の発光面9Aに相当する面積にまで大きくできない。そこで、放物反射面37の焦点F3を、LED9の発光面9Aの中心に設定された焦点F1に対して、出射開口31から逆側に離れる方向にずらしている。これにより、底面部24における放物反射面37の内径を大きくとることができる。即ち、通過孔33の開口を、LED9の発光面9Aの面積に相当する大きさまで広げることが可能になる。
Here, the reason why the focal point F1 of the elliptical reflecting surface 35 and the focal point F3 of the parabolic reflecting surface 37 are set at different positions is as follows.
In order to use the light of the LED 9 effectively, the opening of the passage hole 33 needs to secure substantially the same area as the light emitting surface 9 </ b> A of the LED 9.
The passage hole 33 is continuous with the end portion of the parabolic reflection surface 37 located on the bottom surface portion 24 side of the reflector 13. For this reason, the size of the opening of the passage hole 33 is the same as the inner diameter of the end portion of the parabolic reflection surface 37 on the bottom surface portion 24 side.
When the focal point F3 of the parabolic reflecting surface 37 is set to be the same as the focal point F1 of the elliptical reflecting surface 35, the inner diameter of the parabolic reflecting surface 37 in the bottom surface 24 is small, and the opening of the passage hole 33 is formed on the light emitting surface 9A of the LED 9. It cannot be enlarged to the corresponding area. Therefore, the focal point F3 of the parabolic reflecting surface 37 is shifted in the direction away from the emission opening 31 with respect to the focal point F1 set at the center of the light emitting surface 9A of the LED 9. Thereby, the internal diameter of the parabolic reflection surface 37 in the bottom face part 24 can be taken large. That is, the opening of the passage hole 33 can be expanded to a size corresponding to the area of the light emitting surface 9A of the LED 9.
次いで、光源ユニット3が出射する光の照度分布について説明する。
図10は光源ユニット3において、1つのLED9を点灯させた場合の照度分布を示す図である。図10は、例えば、図6に示すように、黒塗り表示されたLED9が点灯され、他のLED9は消灯されている場合の照度分布を示している。
図11は光源ユニット3が出射する光の照度分布について説明する図であり、図11の(A)は図6のXI−XI矢視断面図に相当している。図11の(B)は露光対象Sの照射面におけるLED9の並びの方向に沿った照度分布を、LED9との位置関係とともに示している。図11では、説明の便宜上、周方向に並ぶ反射面30のうちの一つを、隣接する反射面30とのオーバーラップする部分も含めて実線で仮想的に図示し、この反射面30に隣接する反射面30を破線にて仮想的に図示している。また、図11の(A)には、反射面30の両端、隣接する反射面30のオーバーラップが開始される部位X、及び楕円面反射鏡部30Aと放物面反射鏡部30Bの境界Yでの反射面30の断面の開口形状を併せて示している。
図12は光源ユニット3が出射する光の照度分布図である。
Next, the illuminance distribution of the light emitted from the light source unit 3 will be described.
FIG. 10 is a diagram showing an illuminance distribution when one LED 9 is turned on in the light source unit 3. FIG. 10 shows the illuminance distribution when the black LED 9 is turned on and the other LEDs 9 are turned off as shown in FIG. 6, for example.
FIG. 11 is a diagram for explaining the illuminance distribution of light emitted from the light source unit 3, and FIG. 11A corresponds to a cross-sectional view taken along the line XI-XI in FIG. FIG. 11B shows the illuminance distribution along the alignment direction of the LEDs 9 on the irradiation surface of the exposure target S together with the positional relationship with the LEDs 9. In FIG. 11, for convenience of explanation, one of the reflective surfaces 30 arranged in the circumferential direction is virtually illustrated by a solid line including an overlapping portion with the adjacent reflective surface 30, and is adjacent to the reflective surface 30. The reflecting surface 30 is virtually illustrated by a broken line. In FIG. 11A, both ends of the reflecting surface 30, the part X where the overlapping of the adjacent reflecting surfaces 30 is started, and the boundary Y between the ellipsoidal reflecting mirror portion 30A and the parabolic reflecting mirror portion 30B are shown. The opening shape of the cross section of the reflective surface 30 is also shown.
FIG. 12 is an illuminance distribution diagram of light emitted from the light source unit 3.
図10において、一つのLED9を点灯した場合、出射開口31から出射される光は、LED9の並びの方向、言い換えれば周方向に延びる所定の範囲の照射領域EAを照射する。この場合、照射領域EAの中央の照射領域EBでの照度が最も高くなる。この照射領域EBは、出射開口31の前方に位置し、点灯したLED9の光軸Kを中心とする領域となる。また、照度は照射領域EAの周方向の両端に向かうにつれて低下している。
ここで、図11の(A)に示すように、隣接する反射面30のオーバーラップが開始される部位Xでの反射面30の開口38(径D4)と入射開口32と間は、隣接する反射面30との間が分離されている。一方で、隣接する反射面30がオーバーラップする残りの主要領域では、前述したように、オーバーラップする反射面30の領域は省略され、反射面30を構成する内側反射面26と外側反射面28が環状に連ねられる。
これにより、LED9の光は、点灯したLED9の前方に位置する出射開口31だけでなく、前方に位置する出射開口31の両側からも出射される成分を有する。従って、一つのLED9が点灯した場合の照射領域は、図10に示すように周方向に延び、また、照度分布T1は、図11の(B)に示すように、光軸Kから周方向の両側に離れるにつれて照度が小さくなる。
In FIG. 10, when one LED 9 is turned on, the light emitted from the emission opening 31 irradiates the irradiation area EA in a predetermined range extending in the direction in which the LEDs 9 are arranged, in other words, in the circumferential direction. In this case, the illuminance is highest in the irradiation area EB at the center of the irradiation area EA. This irradiation area EB is located in front of the emission opening 31 and is an area centered on the optical axis K of the lit LED 9. Further, the illuminance decreases as it goes to both ends in the circumferential direction of the irradiation area EA.
Here, as shown in FIG. 11A, the opening 38 (diameter D4) of the reflecting surface 30 and the incident opening 32 are adjacent to each other at the portion X where the overlapping of the adjacent reflecting surfaces 30 is started. The reflective surface 30 is separated. On the other hand, in the remaining main region where the adjacent reflecting surfaces 30 overlap, as described above, the overlapping reflecting surface 30 region is omitted, and the inner reflecting surface 26 and the outer reflecting surface 28 constituting the reflecting surface 30 are omitted. Are linked in a ring.
Thereby, the light of LED9 has the component radiate | emitted not only from the radiation | emission opening 31 located ahead of the lighted LED9 but from both sides of the radiation | emission opening 31 located ahead. Therefore, the irradiation area when one LED 9 is lit extends in the circumferential direction as shown in FIG. 10, and the illuminance distribution T1 is the circumferential direction from the optical axis K as shown in FIG. The illuminance decreases with increasing distance to both sides.
次いで、全てのLED9を点灯した場合の照度分布について説明する。
全てのLED9を点灯した場合、図11の(B)に示すように、照射領域EBに対応する高い照度が、LED9の並びの方向にLED9の配列間隔と同じ間隔で現れる。また、隣接するLED9の光は、各LED9の照射領域EBの両側をオーバーラップさせて出射開口31から出射されている。
これらをトータルした環状の光の照度分布T2における均斉度(=最小照度/最大照度)は、照度の高い照射領域EBの間に位置する照射領域の照度が補われるので、周方向の全域に亘って大きな値に維持できる。この上、前述したように、各LED9の光は、環状に延びる光の延び方向に直交する幅方向W(径方向)に広がることを反射面30によって抑制される。このため、図12に示すように、光源ユニット3が作る環状の照射領域ECでは、光の幅方向Wの両側での輪郭のボケが抑制される。
Next, the illuminance distribution when all the LEDs 9 are turned on will be described.
When all the LEDs 9 are turned on, as shown in FIG. 11B, high illuminance corresponding to the irradiation region EB appears in the direction in which the LEDs 9 are arranged at the same interval as the arrangement interval of the LEDs 9. Moreover, the light of adjacent LED9 is radiate | emitted from the radiation | emission opening 31 by making the both sides of the irradiation area | region EB of each LED9 overlap.
The uniformity (= minimum illuminance / maximum illuminance) in the illuminance distribution T2 of the annular light totaling these is compensated for the illuminance of the irradiation area located between the irradiation areas EB with high illuminance, and therefore the entire area in the circumferential direction. Can be maintained at a large value. In addition, as described above, the light from each LED 9 is suppressed by the reflecting surface 30 from spreading in the width direction W (radial direction) orthogonal to the extending direction of the light extending in a ring shape. For this reason, as shown in FIG. 12, in the annular irradiation area EC formed by the light source unit 3, the blurring of the contours on both sides in the light width direction W is suppressed.
この実施形態に係る光源ユニット3によれば、楕円反射面35をオーバーラップさせながら並べて配置したので、楕円反射面35の並びの方向に配置される発光素子のそれぞれの光も、オーバーラップして連なる。これにより、LED9の配置方向に延びる光の照度ムラが抑えられる。さらに、楕円反射面35の一端部を放物反射面37としたので、LED9の発光面9Aの大きさに起因して発光面9Aの近傍から出射開口31の間で複数回の反射を生じる光の成分を抑制できる。このため、LED9の光の延びる方向に直交する幅方向の輪郭のボケも十分に抑制できる。
さらに、複数回反射した後に出射する光の成分を抑制できるので、複数回の反射による損失が抑えられ、出射する光の光量が低下することも抑制できる。
According to the light source unit 3 according to this embodiment, the elliptical reflecting surfaces 35 are arranged side by side so as to overlap each other, so that each light of the light emitting elements arranged in the direction in which the elliptical reflecting surfaces 35 are arranged also overlaps. It is a series. Thereby, the illumination nonuniformity of the light extended in the arrangement direction of LED9 is suppressed. Furthermore, since one end portion of the elliptical reflecting surface 35 is a parabolic reflecting surface 37, light that causes a plurality of reflections from the vicinity of the light emitting surface 9A to the exit opening 31 due to the size of the light emitting surface 9A of the LED 9 Can be suppressed. For this reason, the blur of the outline of the width direction orthogonal to the light extending direction of the LED 9 can be sufficiently suppressed.
Furthermore, since the component of the light emitted after being reflected a plurality of times can be suppressed, loss due to the reflection a plurality of times can be suppressed, and the light amount of the emitted light can also be suppressed from decreasing.
また、放物反射面37の焦点F3を、楕円反射面35の長軸に沿って焦点F1から遠ざかる方向にずらしたので、LED9からの光を入射するための放物反射面37の開口径の大きさを、LED9の発光面9Aの径D1の大きさ程度に広げることができる。このため、LED9の光を有効に利用できる。 Further, since the focal point F3 of the parabolic reflecting surface 37 is shifted in the direction away from the focal point F1 along the long axis of the elliptical reflecting surface 35, the opening diameter of the parabolic reflecting surface 37 for entering the light from the LED 9 is changed. The size can be expanded to about the size of the diameter D1 of the light emitting surface 9A of the LED 9. For this reason, the light of LED9 can be utilized effectively.
また、複数のLED9を実装したLED基板12の裏側に、冷媒が流れる冷却体11を設けたので、複数のLED9を容易に、かつ、効果的に冷却できる。 Moreover, since the cooling body 11 through which the refrigerant flows is provided on the back side of the LED substrate 12 on which the plurality of LEDs 9 are mounted, the plurality of LEDs 9 can be cooled easily and effectively.
なお、上述した実施形態は、あくまでも本発明の一態様を例示したものであって、本発明の趣旨を逸脱しない範囲で任意に変形、及び応用が可能である。
例えば上述した実施態様では、LED9を環状に並べて、環状の光を作るものとして説明したが、所定の幅で直線状に延びる光や、所定の幅で曲線状に延びる光を作るものであってもよい。
また、発光素子の一例としてLED4を例示したが、これに限らず、有機EL等の他の発光素子でも良い。
また、LED4、紫外線を出射する紫外線LEDであるものとして説明したが、紫外線を出射するものによらず、光源ユニット3の用途に応じて異なる種類の光を出射するものを用いてもよい。
また、カバーガラス15を出射開口31を覆うように設けるものとして説明したが、LED9の並びの方向に入射された光を拡散させる光学部材を配置してもよい。例えば、LED9の並びの方向に短軸方向を向け、出射開口31から出射する光の延びる方向に並んで配置した複数の楕円レンズを有する光成形フィルタを出射開口31を覆うように設けてもよい。光成形フィルタへの入射光は、LED9の並びの方向に拡散されて出射されるので、光の輪郭のボケの発生を抑制しつつ、光の照度ムラを一層低減できる。
The above-described embodiment is merely an example of one aspect of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.
For example, in the embodiment described above, the LEDs 9 are arranged in a ring shape to create a ring-shaped light, but light that extends in a straight line with a predetermined width or light that extends in a curved line with a predetermined width is created. Also good.
Moreover, although LED4 was illustrated as an example of a light emitting element, it is not restricted to this, Other light emitting elements, such as organic EL, may be sufficient.
Moreover, although demonstrated as what is LED4 and ultraviolet LED which radiate | emits an ultraviolet-ray, you may use what radiate | emits a different kind of light according to the use of the light source unit 3 irrespective of what emits an ultraviolet-ray.
Further, the cover glass 15 is described as being provided so as to cover the emission opening 31, but an optical member that diffuses the light incident in the direction in which the LEDs 9 are arranged may be disposed. For example, a light shaping filter having a plurality of elliptical lenses that are arranged in the direction in which the light emitted from the emission openings 31 extends in the short axis direction in the direction in which the LEDs 9 are arranged may be provided so as to cover the emission openings 31. . Since the incident light to the light shaping filter is diffused and emitted in the direction in which the LEDs 9 are arranged, it is possible to further reduce the illuminance unevenness of the light while suppressing the blurring of the light outline.
1 照射装置
3 光源ユニット
9 LED(発光素子)
11 冷却体
12 LED基板(基板)
35 楕円反射面
37 放物反射面
31 出射開口
F1 第1焦点
F2 第2焦点
F3 第3焦点
DESCRIPTION OF SYMBOLS 1 Irradiation device 3 Light source unit 9 LED (light emitting element)
11 Cooling body 12 LED substrate (substrate)
35 Ellipsoidal reflective surface 37 Parabolic reflective surface 31 Outgoing aperture F1 First focal point F2 Second focal point F3 Third focal point
Claims (4)
前記反射体は、一端開口を前記底面部に塞がれた筒状反射部と、前記筒状反射部に囲繞され当該筒状反射部の同軸に配置されて前記底面部と一体に形成された柱状反射部と、前記筒状反射部および前記柱状反射部とにより形成され出射開口を構成する環状の凹部と、を有し、前記底面部には、前記環状の凹部に前記発光素子の光を通す通過孔が設けられ、
前記反射体は、互いに相対する、前記筒状反射部の内周面に前記発光素子の夫々に対応させて連続して設けられた内側反射面と、前記柱状反射部の外周面に前記発光素子の夫々に対応させて連続して設けられた外側反射面と、で構成され、複数の反射面が周方向に連続して配置され、
前記反射面は、前記出射開口が第1焦点から第2焦点の間に設けられた楕円反射面であり、当該楕円反射面の長軸を互いに平行に、かつ、一部をオーバーラップさせながら並べて配置し、前記第1焦点のそれぞれに前記発光素子が配置され、前記楕円反射面の前記第1焦点の側の端部が放物反射面である
ことを特徴とする光源ユニット。 A plurality of light-emitting elements attached in a ring and a reflector provided with a bottom surface facing the light-emitting element,
The reflector is formed integrally with the bottom surface portion, with a cylindrical reflection portion whose one end opening is closed by the bottom surface portion, and surrounded by the cylindrical reflection portion and arranged coaxially with the cylindrical reflection portion. A columnar reflecting portion, and an annular recess that is formed by the cylindrical reflecting portion and the columnar reflecting portion and constitutes an emission opening, and the bottom surface portion receives light from the light emitting element in the annular recess. A passage hole is provided,
The reflector includes an inner reflection surface that is continuously provided on the inner circumferential surface of the cylindrical reflection portion, corresponding to each other of the light emitting device, and the light emitting device on the outer circumferential surface of the columnar reflection portion. Each of the outer reflective surfaces provided continuously corresponding to each of the plurality of reflective surfaces are arranged continuously in the circumferential direction,
The reflective surface is an elliptical reflective surface in which the exit aperture is provided between the first focal point and the second focal point , and the major axes of the elliptical reflective surface are arranged parallel to each other and partially overlapping. A light source unit, wherein the light emitting element is disposed at each of the first focal points, and an end of the elliptical reflecting surface on the first focal point side is a parabolic reflecting surface .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013031313A JP6107213B2 (en) | 2013-02-20 | 2013-02-20 | Light source unit and irradiation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013031313A JP6107213B2 (en) | 2013-02-20 | 2013-02-20 | Light source unit and irradiation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014160777A JP2014160777A (en) | 2014-09-04 |
JP6107213B2 true JP6107213B2 (en) | 2017-04-05 |
Family
ID=51612266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013031313A Expired - Fee Related JP6107213B2 (en) | 2013-02-20 | 2013-02-20 | Light source unit and irradiation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6107213B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6524866B2 (en) * | 2015-08-31 | 2019-06-05 | 岩崎電気株式会社 | Irradiator |
JP2018160438A (en) * | 2017-03-24 | 2018-10-11 | ウシオライティング株式会社 | Luminaire |
CN110462423A (en) | 2017-04-21 | 2019-11-15 | 松下知识产权经营株式会社 | Apart from measuring device and moving body |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6163714U (en) * | 1984-09-29 | 1986-04-30 | ||
JPH07105917A (en) * | 1993-10-08 | 1995-04-21 | Iwasaki Electric Co Ltd | Halogen lamp |
JP3816568B2 (en) * | 1996-01-31 | 2006-08-30 | 東芝ライテック株式会社 | Parabolic ellipsoidal composite reflector, horizontlite using the reflector, and optimized arrangement structure of the horizontlite |
JPH11102608A (en) * | 1997-09-29 | 1999-04-13 | Toshiba Lighting & Technology Corp | Electrodeless discharge lamp device |
JP4286272B2 (en) * | 2002-10-21 | 2009-06-24 | オリンパス株式会社 | Illumination device and image projection device |
JP2004186106A (en) * | 2002-12-06 | 2004-07-02 | Yamada Shomei Kk | Lighting unit and lighting equipment |
JP2005085810A (en) * | 2003-09-04 | 2005-03-31 | Seiko Epson Corp | Optical source unit and projector |
JP4488873B2 (en) * | 2004-03-02 | 2010-06-23 | シーシーエス株式会社 | Light irradiation device |
JP3694310B1 (en) * | 2004-11-30 | 2005-09-14 | 株式会社未来 | LIGHTING UNIT AND LIGHTING DEVICE HAVING THE SAME |
JP2008016341A (en) * | 2006-07-06 | 2008-01-24 | Ri Bunsu | Led lighting device having high uniformity |
JP2009110828A (en) * | 2007-10-31 | 2009-05-21 | Iwasaki Electric Co Ltd | Led light source device |
JP5691726B2 (en) * | 2011-03-28 | 2015-04-01 | 岩崎電気株式会社 | Reflector for lighting device and lighting device |
-
2013
- 2013-02-20 JP JP2013031313A patent/JP6107213B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014160777A (en) | 2014-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI607179B (en) | Lens array, vehicle lamp lenses using lens array, and vehicle lamp using vehicle lamp lenses | |
JP4745272B2 (en) | Vehicle lighting | |
EP3173688B1 (en) | Lighting fixture unit and headlamp for vehicle | |
JP6951076B2 (en) | Optical unit | |
JP2004158292A (en) | Vehicle head-light device | |
JP5815995B2 (en) | Optical unit for vehicular lamp | |
JP2004158294A (en) | Vehicle head-light device | |
JP2008171773A (en) | Vehicle lighting apparatus | |
JP2010003451A (en) | Vehicular lighting fixture | |
JP2011062517A (en) | Operating light | |
JP6539665B2 (en) | Sports lighting equipment | |
JP2016219282A (en) | Vehicular lighting fixture | |
US9841165B1 (en) | LED lamp | |
CN109958962B (en) | Lamp unit | |
JP6107213B2 (en) | Light source unit and irradiation device | |
US10006590B2 (en) | LED device and lighting fixture | |
JP2012238477A (en) | Lamp unit | |
JP2007324003A (en) | Vehicular lighting fixture | |
JP7275481B2 (en) | vehicle lamp | |
JP2019195000A (en) | Lighting device | |
KR101352908B1 (en) | Lighting Device for exposure and Exposure Apparatus having thereof | |
JP6459252B2 (en) | Vehicle lighting | |
JP2007059220A (en) | Lighting system | |
JP6094253B2 (en) | Light source unit and irradiation device | |
JP6849942B2 (en) | Lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6107213 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |