JP2009110828A - Led light source device - Google Patents

Led light source device Download PDF

Info

Publication number
JP2009110828A
JP2009110828A JP2007282711A JP2007282711A JP2009110828A JP 2009110828 A JP2009110828 A JP 2009110828A JP 2007282711 A JP2007282711 A JP 2007282711A JP 2007282711 A JP2007282711 A JP 2007282711A JP 2009110828 A JP2009110828 A JP 2009110828A
Authority
JP
Japan
Prior art keywords
led
light source
source device
light
leds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007282711A
Other languages
Japanese (ja)
Inventor
Miyuki Hatanaka
三幸 畠中
Hideaki Iwadate
秀明 岩館
Kazuo Yamamoto
一夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2007282711A priority Critical patent/JP2009110828A/en
Publication of JP2009110828A publication Critical patent/JP2009110828A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LED light source device capable of reducing luminance unevenness in arrangement direction of the LED. <P>SOLUTION: The LED light source device 1 in which a plurality of LEDs 6 are arranged in a row has a reflector 54 in which a reflecting surface 52 of paraboloid of revolution or ellipsoid of revolution is formed for every LED 6, and each of the reflecting surfaces 52 of the reflector 54 is formed so that a part in connection of the paraboloid of revolution or ellipsoid of revolution may be overlapped. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、LED(Light Emitting Diode)を列状に配列してなるLED光源装置に関する。   The present invention relates to an LED light source device in which LEDs (Light Emitting Diodes) are arranged in a line.

従来、例えば液晶パネルのガラス基板等の透明体に生じた傷等の欠陥の有無を検査する検査装置として、ラインセンサに対して線状光源装置を対向配置し、それらの間を、検査対象の透明体を搬送し、透明体を透過した線状の光をラインセンサで受光し、ラインセンサにおける受光量の分布に基づいて欠陥を検出する装置が知られている。
また、近年では、長尺状の基板に、列状に発光素子を搭載した線状光源装置が知られている(例えば、特許文献1参照)。
特開2007−194161号公報
Conventionally, as an inspection device for inspecting the presence or absence of defects such as scratches generated on a transparent body such as a glass substrate of a liquid crystal panel, a linear light source device is disposed opposite to a line sensor, and the space between them is an inspection target. An apparatus is known that transports a transparent body, receives linear light transmitted through the transparent body with a line sensor, and detects a defect based on the distribution of the amount of light received by the line sensor.
In recent years, a linear light source device in which light emitting elements are mounted in a row on a long substrate is known (see, for example, Patent Document 1).
JP 2007-194161 A

しかしながら、発光素子を列状に配列して光源を構成した場合、発光素子の配列方向に沿った輝度分布に大きな輝度むらが生じるといった問題がある。
本発明は、上述した事情に鑑みてなされたものであり、LEDの配列方向の輝度むらを軽減することのできるLED光源装置を提供することを目的とする。
However, when the light source is configured by arranging the light emitting elements in a row, there is a problem that large luminance unevenness occurs in the luminance distribution along the arrangement direction of the light emitting elements.
This invention is made | formed in view of the situation mentioned above, and aims at providing the LED light source device which can reduce the brightness nonuniformity of the sequence direction of LED.

上記目的を達成するために、本発明は、複数のLEDを列状に配列してなるLED光源装置において、回転方物面或いは回転楕円面の反射面が前記LEDごとに形成された反射体を備え、前記反射体の反射面のそれぞれは、前記回転方物面或いは前記回転楕円面の連接する一部がオーバーラップするように形成されていることを特徴とする。   In order to achieve the above object, according to the present invention, in an LED light source device in which a plurality of LEDs are arranged in a line, a reflecting body having a rotating surface of a rotating surface or a rotating ellipsoid is formed for each LED. And each of the reflecting surfaces of the reflector is formed so that a part of the rotating surface of the rotating object or the connecting surface of the ellipsoidal surface overlaps each other.

また本発明は、上記発明において、前記反射面から放射された光を拡散し所定の均斉度を得る拡散材を有する特徴とする。   Further, the present invention is characterized in that, in the above-mentioned invention, a diffusing material that diffuses light emitted from the reflecting surface and obtains a predetermined uniformity is obtained.

また本発明は、上記発明において、前記反射面から放射された光を円方向に拡散する円拡散材と、前記円拡散材と離間により拡散された光が入射され、前記LEDの配列方向に長軸を有する楕円方向に拡散する楕円拡散材とを備えることを特徴とする。   According to the present invention, in the above invention, a circular diffusing material that diffuses light emitted from the reflecting surface in a circular direction and light diffused by being separated from the circular diffusing material are incident, and the LED is long in the arrangement direction of the LEDs. And an elliptical diffusing material that diffuses in an elliptical direction having an axis.

また本発明は、上記発明において、前記円拡散材により拡散された光のうち前記楕円拡散材から逸れる成分の光を前記楕円拡散材に向けて反射するミラー設けたことを特徴とする。   Moreover, the present invention is characterized in that, in the above invention, a mirror is provided that reflects light of a component deviated from the elliptical diffuser out of the light diffused by the circular diffuser toward the elliptical diffuser.

本発明によれば、反射体の反射面のそれぞれは、回転方物面或いは回転楕円面の一部がオーバーラップするように形成されているため、反射面によってLEDの放射光が平行光化されて各反射面において面光源が形成されると共に、上記オーバーラップによって各面光源が重なり合うことで、LEDの配列方向における輝度むらが軽減される。   According to the present invention, each of the reflecting surfaces of the reflector is formed such that a part of the rotating surface or the ellipsoidal surface overlaps, so that the emitted light of the LED is collimated by the reflecting surface. In addition, surface light sources are formed on the respective reflecting surfaces, and the surface light sources are overlapped by the overlap, so that unevenness in luminance in the LED arrangement direction is reduced.

以下、図面を参照して本発明の実施形態について説明する。
図1は、本実施形態に係るLED光源装置1の構成を示す図である。
LED光源装置1は、LED6を列状に配列してなるLEDモジュール8を有し、各LED6を点灯することで線状のライン光を照射する線状光源装置として構成されている。
より具体的には、LED光源装置1は、長尺状の取付フレーム4に、LEDモジュール8と、電装ボックス(図示せず)とを取り付けて構成され、さらにLEDモジュール8には、放熱フィン32Aが形成された放熱板32が取り付けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration of an LED light source device 1 according to the present embodiment.
The LED light source device 1 includes an LED module 8 in which LEDs 6 are arranged in a row, and is configured as a linear light source device that emits linear line light by lighting each LED 6.
More specifically, the LED light source device 1 is configured by attaching an LED module 8 and an electrical box (not shown) to a long mounting frame 4, and further, the LED module 8 includes a heat radiation fin 32 </ b> A. A heat radiating plate 32 formed with is attached.

図2はLEDモジュール8の構成を示す図であり、図2(A)は平面図、図2(B)は図2(A)のI−I矢視断面図、図2(C)は図2(A)のII−II矢視断面図である。
LEDモジュール8は、複数の発光素子たるLED6を列状に一定の間隔で配列したものであり、複数のLED6と、各LED6を一定の間隔で実装してなるLED実装基板50と、LED6ごとに反射面52が形成された反射体54とを備えている。
反射体54は、直方体形状の例えばアルミニウム材に、長手方向に沿ってLED6の配置間隔で回転楕円面或いは回転方物面の凹部を形成し、各凹部によって各LED6の上記反射面52を構成したものである。反射面52を構成する凹部のそれぞれは、反射体54の底面によって切頭されて反射面52ごとに略円形の開口部56が形成される。このような反射体54をLED実装基板50に重ねて配置することで、反射体54の開口部56からLED6が反射面52内に挿入され、反射面52を構成する回転楕円面或いは回転方物面の回転中心軸上にLED6が配置され、各LED6から放射された光が反射面52によって略平行光化されて放射されることになる。
2A and 2B are diagrams showing the configuration of the LED module 8. FIG. 2A is a plan view, FIG. 2B is a cross-sectional view taken along the line II in FIG. 2A, and FIG. It is II-II arrow sectional drawing of 2 (A).
The LED module 8 is configured by arranging a plurality of LEDs 6 as light emitting elements in a row at regular intervals, and a plurality of LEDs 6, an LED mounting board 50 in which each LED 6 is mounted at regular intervals, and each LED 6 And a reflector 54 on which a reflecting surface 52 is formed.
The reflector 54 is formed of, for example, a rectangular parallelepiped, for example, an aluminum material, and a concave portion of a rotating ellipsoidal surface or a rotating solid surface is formed at intervals of the LEDs 6 along the longitudinal direction. Is. Each of the recesses constituting the reflecting surface 52 is truncated by the bottom surface of the reflector 54, and a substantially circular opening 56 is formed for each reflecting surface 52. By arranging such a reflector 54 so as to overlap the LED mounting substrate 50, the LED 6 is inserted into the reflecting surface 52 from the opening 56 of the reflector 54, and a spheroid or rotating object constituting the reflecting surface 52 is formed. The LEDs 6 are disposed on the rotation center axis of the surface, and the light emitted from each LED 6 is converted into substantially parallel light by the reflecting surface 52 and emitted.

さらに詳述すると、LED6は、基本的に点光源の性質を有するため、光軸に対してcosθの配光特性で光を放出しており、このようなLED6を列状に離間して配置すると、LED6の間が暗く、配列に沿った方向においては大きな輝度むらが生じ、線状光源としては不適切である。
これに対して、本実施形態では、上述したように、回転楕円面或いは回転方物面の反射面52の回転中心軸上にLED6を配置し、図3(A)に示すように、LED6からの直接光k2と反射面52にて反射した反射光k1とを同一方向にしているため、図3(B)に示すように、反射面52内全体から平行光が取り出される。
これにより、反射面52ごとに面光源が形成されるため、LED6を単純に配列した場合に比べて、LED6の配列に沿った方向における輝度むらが軽減されることとなる。
More specifically, since the LED 6 basically has a point light source property, the LED 6 emits light with a light distribution characteristic of cos θ with respect to the optical axis. The area between the LEDs 6 is dark, and large luminance unevenness occurs in the direction along the array, which is inappropriate as a linear light source.
On the other hand, in the present embodiment, as described above, the LED 6 is disposed on the rotation center axis of the reflection surface 52 of the spheroid or rotating object surface, and as shown in FIG. Since the direct light k2 and the reflected light k1 reflected by the reflecting surface 52 are in the same direction, parallel light is extracted from the entire reflecting surface 52 as shown in FIG.
Thereby, since a surface light source is formed for each reflecting surface 52, the luminance unevenness in the direction along the array of the LEDs 6 is reduced as compared with the case where the LEDs 6 are simply arrayed.

さらに、本実施形態では、反射面52の各々を分離して離間配置するのではなく、例えば図2(A)に示すように、隣接する反射面52の間で、回転楕円面或いは回転方物面の一部が重複(オーバーラップ)するように各反射面52を形成することとし、これにより、反射面52のそれぞれの間には、図2(B)に示すように、オーバーラップによって切り落とされた切欠部58が形成される。
そして、図2(C)に示すように、LED6から放射された光の一部k3が反射面52の切欠部58を通じてLED6の配列方向に進むため、LED6の間の輝度むらがより軽減されることとなる。
このとき、回転楕円面或いは回転方物面をオーバーラップさせながら各反射面52を形成しているため、図4に示すように、LED6の配列方向における最小幅の箇所52Aに、オーバーラップに応じた長さの幅Xが生じ、ある程度の幅Xを有するライン状の光が形成されることとなる。
Further, in the present embodiment, each of the reflecting surfaces 52 is not separated and arranged separately, but, for example, as shown in FIG. Each reflection surface 52 is formed so that a part of the surface overlaps (overlap), and as a result, between each of the reflection surfaces 52, as shown in FIG. A cutout 58 is formed.
Then, as shown in FIG. 2C, a part k3 of the light emitted from the LED 6 proceeds in the arrangement direction of the LEDs 6 through the cutout portion 58 of the reflecting surface 52, so that the luminance unevenness between the LEDs 6 is further reduced. It will be.
At this time, since each reflecting surface 52 is formed while overlapping the spheroid surface or rotating object surface, as shown in FIG. 4, the portion 52A having the minimum width in the arrangement direction of the LEDs 6 corresponds to the overlap. As a result, a line-shaped light having a certain width X is formed.

ここで、反射面52同士をオーバーラップさせながら配列することでLED6間の輝度むらが軽減されることは上述の通りであるが、本実施形態のように、反射面52の底部に開口部56を形成してLED6を挿入配置した場合には、例えば図4に示すように、LED6と反射面52との間に隙間が生じて輝度むらが発生する。また、LED6が有する電極等の未発光部分によっても輝度むらが生じる。
そこで、本実施形態では、LED6の配列方向に沿った輝度むらを更に低減するために、レンズ機能を有する拡散板(以下、「拡散レンズ」と言う)を設けることとしている。
Here, it is as described above that the luminance unevenness between the LEDs 6 is reduced by arranging the reflecting surfaces 52 so as to overlap each other. However, as in the present embodiment, the opening 56 is formed at the bottom of the reflecting surface 52. When the LED 6 is inserted and arranged, for example, as shown in FIG. 4, a gap is generated between the LED 6 and the reflecting surface 52, and uneven brightness occurs. Further, unevenness in luminance also occurs due to non-light emitting portions such as electrodes of the LED 6.
Therefore, in this embodiment, in order to further reduce the luminance unevenness along the arrangement direction of the LEDs 6, a diffusion plate having a lens function (hereinafter referred to as “diffuse lens”) is provided.

図5は、LED光源装置1の断面をみた図である。
LED光源装置1は、上記放熱板32が取り付けられるベースフレーム30と、上記取付フレーム4との間に、略L字状のLED支持フレーム36によって上記LEDモジュール8を配置し、また、LEDモジュール8の下方にLEDを駆動するドライバ回路86(図8参照)を実装した回路基板34を配置して構成されている。
そして、同図に示すように、LED光源装置1は、LEDモジュール8の光の放射方向に沿って互いに離間配置された円拡散レンズ60及び楕円拡散レンズ62を有している。
詳述すると、円拡散レンズ60は、LEDモジュール8の上面に載置され、当該LEDモジュール8が放射する光を円に拡散する拡散板である。これにより、LEDモジュール8の各LED6から放射される光が反射面52によって平行光化され、さらに、円拡散レンズ60によって円方向に広げられながら拡散された後、楕円拡散レンズ62に入射する。
楕円拡散レンズ62は、取付フレーム4の一端から他端にかけて設けられ、円拡散レンズ60によって拡散された拡散光を楕円に拡散する拡散板であり、楕円拡散の長軸方向がLEDモジュール8の長手方向と同一になされている。これにより、LEDモジュール8の各LED6から放射された光がLEDモジュール8の長手方向に広げられながら拡散され、LED6間の輝度むらが抑制される。
FIG. 5 is a cross-sectional view of the LED light source device 1.
In the LED light source device 1, the LED module 8 is disposed by a substantially L-shaped LED support frame 36 between the base frame 30 to which the heat radiating plate 32 is attached and the attachment frame 4. A circuit board 34 on which a driver circuit 86 (see FIG. 8) for driving LEDs is mounted is disposed below the circuit board 34.
As shown in the figure, the LED light source device 1 includes a circular diffusion lens 60 and an elliptical diffusion lens 62 that are spaced apart from each other along the light emission direction of the LED module 8.
More specifically, the circular diffusion lens 60 is a diffusion plate that is placed on the upper surface of the LED module 8 and diffuses the light emitted by the LED module 8 into a circle. As a result, the light emitted from each LED 6 of the LED module 8 is collimated by the reflecting surface 52, further diffused while being spread in the circular direction by the circular diffusion lens 60, and then enters the elliptical diffusion lens 62.
The elliptical diffusion lens 62 is a diffusion plate that is provided from one end to the other end of the mounting frame 4 and diffuses the diffused light diffused by the circular diffusion lens 60 into an ellipse. The major axis direction of the elliptical diffusion is the longitudinal direction of the LED module 8. The direction is the same. Thereby, the light emitted from each LED 6 of the LED module 8 is diffused while being spread in the longitudinal direction of the LED module 8, and uneven brightness between the LEDs 6 is suppressed.

図6は、5個のLED6を20mmピッチで列状に配列した場合のLED配列方向における相対輝度の測定値を示すものであり、図6(A)は単にLED6を配列した場合、図6(B)はLED6に上記反射体54を設けた場合、図6(C)はLED6に上記反射体54及び円拡散レンズ60を設けた場合、図6(D)はLED6に上記反射体54、円拡散レンズ60及び楕円拡散レンズ62を設けた場合をそれぞれ示す。
これらの図に示すように、LED6に上記反射体54を設けることで、LED6同士の間にも輝度が確保されていることが示され、さらに、互いに離間配置された円拡散レンズ60及び楕円拡散レンズ62を併用することで、図8(D)に示すように、LED6の配列方向において略均一な輝度分布が得られる。
なお、上記拡散レンズの枚数は、LED光源装置1として要求されている輝度又は照度の均斉度[=(最大値−最小値)/最大値]が実現される枚数(1〜複数枚)とすれば良い。
FIG. 6 shows measured values of relative luminance in the LED arrangement direction when five LEDs 6 are arranged in a row at a pitch of 20 mm. FIG. 6A shows a case where LEDs 6 are simply arranged, FIG. 6B shows the case where the reflector 54 is provided on the LED 6, FIG. 6C shows the case where the reflector 54 and the circular diffusion lens 60 are provided on the LED 6, and FIG. A case where a diffusion lens 60 and an elliptical diffusion lens 62 are provided is shown.
As shown in these drawings, it is shown that the luminance is secured between the LEDs 6 by providing the reflectors 54 on the LEDs 6, and further, the circular diffusion lens 60 and the elliptical diffusion that are spaced apart from each other are shown. By using the lens 62 in combination, a substantially uniform luminance distribution can be obtained in the arrangement direction of the LEDs 6 as shown in FIG.
Note that the number of the diffusion lenses is the number (1 to a plurality) of the luminance or illuminance uniformity required for the LED light source device 1 [= (maximum value−minimum value) / maximum value]. It ’s fine.

ここで、前掲図5に示すように、円拡散レンズ60及び楕円拡散レンズ62の間を離間させているため、円拡散レンズ60による拡散光に、楕円拡散レンズ62から逸れてベースフレーム30及びLED支持フレーム36のそれぞれの面に入射して損失となる成分が生じる。そこで、円拡散レンズ60及び楕円拡散レンズ62の間であって、ベースフレーム30及びLED支持フレーム36のそれぞれの対向面内にミラー64を貼り付け、これら対向面に入射してきた光をミラー64にて反射して楕円拡散レンズ62に入射させることで、光量の損失を抑制することとしている。   Here, since the circular diffusion lens 60 and the elliptical diffusion lens 62 are spaced apart from each other as shown in FIG. 5, the base frame 30 and the LEDs are deviated from the elliptical diffusion lens 62 by the diffused light from the circular diffusion lens 60. A component that is incident on each surface of the support frame 36 and becomes a loss occurs. Therefore, a mirror 64 is affixed between the circular diffusion lens 60 and the elliptical diffusion lens 62 on the opposing surfaces of the base frame 30 and the LED support frame 36, and the light incident on these opposing surfaces is applied to the mirror 64. Then, the light is reflected and incident on the elliptical diffusion lens 62 to suppress the loss of the light amount.

次いでLED光源装置1の光量制御について説明する。
一般に、LED6を点灯駆動する際には、定電圧Eに対して、電流制限抵抗RとLED6を直列に接続し、Vfを順電圧としたときの順電流If(=(E−Vf)/R)を制御するか、或いは、常に一定の定電流でLED6を点灯駆動しており、いずれにおいても、光束に比例する順電流を制御することで、点灯駆動を行っている。
Next, the light amount control of the LED light source device 1 will be described.
In general, when the LED 6 is driven to be lit, a forward current If (= (E−Vf) / R) when the current limiting resistor R and the LED 6 are connected in series with the constant voltage E and Vf is a forward voltage. ) Or the LED 6 is always driven to be lit with a constant current, and in any case, the lit drive is performed by controlling the forward current proportional to the luminous flux.

しかしながら、光束と順電流との比例関係は温度が略一定の場合に成立し、LED6の発熱、或いは、周囲の温度により、光束と順電流との比例関係は崩れ、順電流が一定である場合には温度が高くなるほど光束が低下する。
例えば、LED6とLED実装基板50との結合点(以下、「ジャンクション」と称する)の温度が25℃のときに、LED6を3W(ワット)で駆動したときの光束を100%とし、そして、この状態でLED6を駆動し続けると、空気中からジャンクションまでの熱抵抗が15℃/W、周囲温度が25℃である場合には、上記ジャンクションの温度は約75℃に達し光束が約15%低下する。
すなわち、従来の点灯駆動制御においては、LED6を点灯及び消灯を繰り返して使用する場合、安定した光束を得ることができない、という問題がある。
そこで、本実施形態では、各LED6の光量を監視し、この光量の変動を打ち消すように駆動電流(上記順電流)を増減するフィードバック制御を行うことで、光束の安定化を図る構成としている。
However, the proportional relationship between the luminous flux and the forward current is established when the temperature is substantially constant, and the proportional relationship between the luminous flux and the forward current is destroyed by the heat generation of the LED 6 or the ambient temperature, and the forward current is constant. As the temperature increases, the luminous flux decreases.
For example, when the temperature of the coupling point (hereinafter referred to as “junction”) between the LED 6 and the LED mounting substrate 50 is 25 ° C., the luminous flux when the LED 6 is driven at 3 W (watts) is set to 100%. If the LED 6 is continuously driven in the state, when the thermal resistance from the air to the junction is 15 ° C / W and the ambient temperature is 25 ° C, the temperature of the junction reaches about 75 ° C and the luminous flux is reduced by about 15%. To do.
That is, in the conventional lighting drive control, there is a problem that when the LED 6 is repeatedly turned on and off, a stable luminous flux cannot be obtained.
Therefore, in the present embodiment, the light quantity of each LED 6 is monitored, and feedback control is performed to increase or decrease the drive current (the forward current) so as to cancel the fluctuation of the light quantity, thereby stabilizing the light flux.

詳述すると、LEDモジュール8には、図7示すように、所定個数のLED6の光量を検出する光受光素子70が設けられている。この光受光素子70は、上記ベースフレーム30に取り付けられている。
具体的には、光受光素子70は、図7(A)に示すように、LEDモジュール8の長手方向に沿って、所定数(図示例では5個)のLED6ごとに、LED6の配列方向の略中央であって、LED6(円拡散レンズ60)から所定の高さHの位置に配置されており、また図7(B)に示すように、断面方向においては、LED6の放射光を遮蔽することがないようにLED6の光軸fから外れた位置であってLED6の漏れ光k4が入射する位置に配置されている。
上記高さHは、所定数のLED6の両端のLED6から放射され、円拡散レンズ60によって拡散された拡散光が到達し得る高さであり、このような高さHに光受光素子70を配設することで、所定数の各LED6の光量の変化を1つの光受光素子70の受光量に影響させることができる。
More specifically, the LED module 8 is provided with a light receiving element 70 for detecting the light quantity of a predetermined number of LEDs 6 as shown in FIG. The light receiving element 70 is attached to the base frame 30.
Specifically, as shown in FIG. 7A, the light receiving element 70 is arranged in the arrangement direction of the LEDs 6 for each predetermined number (five in the illustrated example) of LEDs 6 along the longitudinal direction of the LED module 8. The LED 6 (circular diffusion lens 60) is disposed at a predetermined height H from the center, and as shown in FIG. 7B, the emitted light from the LED 6 is shielded in the cross-sectional direction. In order to prevent this, the LED 6 is disposed at a position deviating from the optical axis f of the LED 6 and where the leaked light k4 of the LED 6 is incident.
The height H is a height at which diffused light radiated from the LEDs 6 at both ends of the predetermined number of LEDs 6 and diffused by the circular diffusion lens 60 can reach. The light receiving element 70 is arranged at such height H. By providing, a change in the amount of light of each predetermined number of LEDs 6 can be influenced by the amount of light received by one light receiving element 70.

図8は、フィードバック制御のためにLEDユニット2が備える機能的構成を示すブロック図である。
LED光源装置1は、LED6、反射面52を有する反射体54、円拡散レンズ60及び光受光素子70の他に、この光受光素子70の検出光量に応じた電圧信号を出力する増幅器80と、LED6の発光により所望の光束が得られるときの電圧信号を基準電圧として出力する基準電圧回路82と、増幅器80からの電圧信号及び基準電圧の差分に応じた差分信号を出力する比較器84と、上記差分信号に基づいて、所望の光束が得られるように駆動電流を補正してLED6に出力するドライバ回路86とを備え、これらの構成により、LED6の駆動電流がフィードバック制御される。
FIG. 8 is a block diagram showing a functional configuration of the LED unit 2 for feedback control.
The LED light source device 1 includes an LED 80, a reflector 54 having a reflecting surface 52, a circular diffusion lens 60, and a light receiving element 70, an amplifier 80 that outputs a voltage signal corresponding to the amount of light detected by the light receiving element 70, and A reference voltage circuit 82 that outputs, as a reference voltage, a voltage signal when a desired luminous flux is obtained by light emission of the LED 6, a comparator 84 that outputs a difference signal corresponding to the difference between the voltage signal from the amplifier 80 and the reference voltage, A driver circuit 86 that corrects the drive current so as to obtain a desired light flux based on the difference signal and outputs the corrected light to the LED 6 is provided. With these configurations, the drive current of the LED 6 is feedback-controlled.

すなわち、発熱や周囲温度の上昇によりLED6の光量が減少した場合には、電圧信号が基準電圧を下回るため、ドライバ回路86により、電流値を増加させる補正が駆動電流に加えられ、LED6の発光が強められることになる。
したがって、LED6の発熱、或いは、周囲の温度により、光束と駆動電流との比例関係が崩れ、所望の光束が得られなくなり得る場合でも、所望の光束が得られるように駆動電流がフィードバック制御されるため、安定した光束を得ることができる。
That is, when the light amount of the LED 6 decreases due to heat generation or an increase in ambient temperature, the voltage signal falls below the reference voltage, so that the driver circuit 86 adds a correction for increasing the current value to the drive current, and the LED 6 emits light. It will be strengthened.
Therefore, even if the proportional relationship between the luminous flux and the driving current is lost due to the heat generation of the LED 6 or the ambient temperature, and the desired luminous flux cannot be obtained, the driving current is feedback-controlled so that the desired luminous flux is obtained. Therefore, a stable light beam can be obtained.

このとき、光束の低下に応じて駆動電力を無制限に増大させると、LED6が破壊される危険性がある。そこで、LED光源装置1には、過電流保護回路88が設けられており、この過電流保護回路88によって駆動電流が所定のしきい値以下に抑えられ、これにより、過電流がLED6に加えられて破壊される事が防止されている。なお、上記所定のしきい値は、LED6の破壊を引き起こす過電流値に対して所定のマージンを考慮して決定された値である。   At this time, there is a risk that the LED 6 will be destroyed if the driving power is increased indefinitely in accordance with the decrease in the luminous flux. Therefore, the LED light source device 1 is provided with an overcurrent protection circuit 88, and the overcurrent protection circuit 88 suppresses the drive current to a predetermined threshold value or less, whereby an overcurrent is applied to the LED 6. It is prevented from being destroyed. The predetermined threshold is a value determined in consideration of a predetermined margin with respect to an overcurrent value that causes destruction of the LED 6.

図9は上記のフィードバック制御によって得られる特性を示す図であり、図9(A)は立ち上がり特性を示し、図9(B)及び図9(C)は温度特性を示す図である。これらの図においては、周囲温度が25℃のときの測定値を100%とした相対値により測定値を表記している。
図9(A)に示すように、上記のフィードバック制御により、各LED6が点灯を開始してから光束(光量)が安定するまでの時間が約1msec以内に抑えられるようになり、立ち上がりが非常に速くなっていることが示されている。
また、LED6は温度が上昇すると光束が低下する特性を有することから、図9(B)に示すように、周囲温度が0℃〜40℃の間で変化した場合、高温時には周囲温度の上昇に合わせて順電流が増加することが示される。これにより、図9(C)に示すように、周囲温度が0℃〜40℃の間で変化した場合でも、相対輝度の変動が約5%程度の範囲内に抑えられ、約0.125%/℃の安定度が得られることとなる。
FIG. 9 is a diagram showing the characteristics obtained by the feedback control, FIG. 9A shows the rise characteristics, and FIGS. 9B and 9C show the temperature characteristics. In these figures, the measured value is expressed by a relative value with the measured value when the ambient temperature is 25 ° C. being 100%.
As shown in FIG. 9A, the above feedback control makes it possible to suppress the time from the start of lighting of each LED 6 until the luminous flux (light quantity) is stabilized within about 1 msec, and the rise is very high. It is shown that it is getting faster.
Further, since the LED 6 has a characteristic that the luminous flux decreases as the temperature rises, as shown in FIG. 9B, when the ambient temperature changes between 0 ° C. and 40 ° C., the ambient temperature increases at a high temperature. Together, the forward current is shown to increase. As a result, as shown in FIG. 9C, even when the ambient temperature changes between 0 ° C. and 40 ° C., the relative luminance fluctuation is suppressed within a range of about 5%, and about 0.125%. A stability of / ° C will be obtained.

このように、本実施形態によれば、反射体54の反射面52のそれぞれが、回転方物面或いは回転楕円面の連接する一部をオーバーラップさせて形成されているため、反射面52によってLED6の放射光が平行光化されて各反射面において面光源が形成されると共に、さらに、上記オーバーラップによって各面光源が重なり合うことで、LED6の配列方向における輝度むらが軽減される。   As described above, according to the present embodiment, each of the reflection surfaces 52 of the reflector 54 is formed by overlapping a part of the rotating surface of the rotating object or the ellipsoid of rotation. The radiated light of the LEDs 6 is collimated to form a surface light source on each reflecting surface, and furthermore, the surface light sources are overlapped by the overlap, thereby reducing uneven brightness in the arrangement direction of the LEDs 6.

また本実施形態によれば、反射面52から放射された光を拡散し所定の均斉度を得る拡散としての円拡散レンズ60及び楕円拡散レンズ62を備える構成としたため、LED6の配列方向の輝度むらを抑え、所定の均斉度を得ることができる。   Further, according to the present embodiment, since the circular diffusion lens 60 and the elliptical diffusion lens 62 are used as the diffusion that diffuses the light emitted from the reflection surface 52 and obtains a predetermined degree of uniformity, the luminance unevenness in the arrangement direction of the LEDs 6 is determined. And a predetermined uniformity can be obtained.

また本実施形態によれば、円拡散レンズ60により拡散された拡散光のうち楕円拡散レンズ62から逸れる成分の光を楕円拡散レンズ62に入射するように反射するミラー64設けたため、光量の損失を抑えることができる。   Further, according to the present embodiment, since the mirror 64 that reflects the component of the diffused light diffused by the circular diffuser lens 60 so as to be incident on the elliptical diffuser lens 62 is provided, the loss of light amount is reduced. Can be suppressed.

なお、上述した実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形および応用が可能である。
例えば、上述した実施形態では、直線状にLED6を配列してLEDモジュール8を構成したが、これに限らず、線状にLED6が配列された構成であれば、曲線に沿ってLED6を配列しても良い。
In addition, embodiment mentioned above shows the one aspect | mode of this invention to the last, A deformation | transformation and application are arbitrarily possible within the scope of the present invention.
For example, in the above-described embodiment, the LED modules 8 are configured by arranging the LEDs 6 in a straight line. However, the present invention is not limited to this, and the LEDs 6 may be arranged along a curve as long as the LEDs 6 are arranged in a linear form. May be.

LED光源装置の構成を示す図。The figure which shows the structure of a LED light source device. LEDモジュールの構成を示す図であり、(A)は平面図、(B)は(A)のI−I矢視断面図、(C)は(A)のII−II矢視断面図である。It is a figure which shows the structure of an LED module, (A) is a top view, (B) is the II-II arrow sectional drawing of (A), (C) is the II-II arrow sectional drawing of (A). . LEDモジュールの平行光について説明するための図。The figure for demonstrating the parallel light of an LED module. LEDモジュールの反射面のオーバーラップを示す図。The figure which shows the overlap of the reflective surface of an LED module. LED光源装置の断面をみた図である。It is the figure which looked at the cross section of the LED light source device. 5個のLEDを20mmピッチで列状に配列した場合のLED配列方向における相対輝度の測定値を示す図。The figure which shows the measured value of the relative brightness | luminance in the LED arrangement direction at the time of arranging 5 LED in a line at 20 mm pitch. 光受光素子の配設箇所を説明するための図。The figure for demonstrating the arrangement | positioning location of a light receiving element. LED光源装置の機能的構成を示すブロック図。The block diagram which shows the functional structure of a LED light source device. フィードバック制御によって得られるLED光源装置の特性を示す図であり、(A)は立ち上がり特性、(B)及び(C)は温度特性を示す。It is a figure which shows the characteristic of the LED light source device obtained by feedback control, (A) shows a rise characteristic, (B) and (C) show a temperature characteristic.

符号の説明Explanation of symbols

1 LED光源装置
4 取付フレーム
6 LED
8 LEDモジュール
36 LED支持フレーム
52 反射面
54 反射体
58 切欠部
60 円拡散レンズ
62 楕円拡散レンズ
64 ミラー
70 光受光素子
80 増幅器
82 基準電圧回路
84 比較器
86 ドライバ回路
88 過電流保護回路
1 LED light source device 4 Mounting frame 6 LED
8 LED Module 36 LED Support Frame 52 Reflecting Surface 54 Reflector 58 Notch 60 Circular Diffusing Lens 62 Elliptical Diffusing Lens 64 Mirror 70 Light Receiving Element 80 Amplifier 82 Reference Voltage Circuit 84 Comparator 86 Driver Circuit 88 Overcurrent Protection Circuit

Claims (4)

複数のLEDを列状に配列してなるLED光源装置において、
回転方物面或いは回転楕円面の反射面が前記LEDごとに形成された反射体を備え、
前記反射体の反射面のそれぞれは、前記回転方物面或いは前記回転楕円面の連接する一部がオーバーラップするように形成されていることを特徴とするLED光源装置。
In the LED light source device formed by arranging a plurality of LEDs in a row,
A reflector having a rotating surface or a rotating ellipsoidal reflecting surface is formed for each LED.
Each of the reflective surfaces of the reflector is formed so that the rotating surface of the rotating object or a part of the rotating ellipsoid connected to each other overlaps.
請求項1に記載のLED光源装置において、
前記反射面から放射された光を拡散し所定の均斉度を得る拡散材を有する特徴とするLED光源装置。
The LED light source device according to claim 1,
An LED light source device comprising a diffusing material that diffuses light emitted from the reflecting surface to obtain a predetermined degree of uniformity.
請求項2に記載のLED光源装置において、
前記反射面から放射された光を円方向に拡散する円拡散材と、
前記円拡散材と離間により拡散された光が入射され、前記LEDの配列方向に長軸を有する楕円方向に拡散する楕円拡散材と
を備えることを特徴とするLED光源装置。
The LED light source device according to claim 2,
A circular diffusing material that diffuses light emitted from the reflecting surface in a circular direction;
An LED light source device comprising: an elliptical diffusing material that receives light diffused by being separated from the circular diffusing material and diffuses in an elliptical direction having a major axis in the arrangement direction of the LEDs.
請求項3に記載のLED光源装置において、
前記円拡散材により拡散された光のうち前記楕円拡散材から逸れる成分の光を前記楕円拡散材に向けて反射するミラー設けた
ことを特徴とするLED光源装置。
The LED light source device according to claim 3.
The LED light source device characterized by providing the mirror of the light diffused by the circular diffusing material to reflect the light deviating from the elliptic diffusing material toward the elliptic diffusing material.
JP2007282711A 2007-10-31 2007-10-31 Led light source device Pending JP2009110828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282711A JP2009110828A (en) 2007-10-31 2007-10-31 Led light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282711A JP2009110828A (en) 2007-10-31 2007-10-31 Led light source device

Publications (1)

Publication Number Publication Date
JP2009110828A true JP2009110828A (en) 2009-05-21

Family

ID=40779091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282711A Pending JP2009110828A (en) 2007-10-31 2007-10-31 Led light source device

Country Status (1)

Country Link
JP (1) JP2009110828A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020830A1 (en) * 2010-08-11 2012-02-16 岩崎電気株式会社 Lamp and optical component
JP2013024966A (en) * 2011-07-19 2013-02-04 Iwasaki Electric Co Ltd Optical component and lamp
TWI427312B (en) * 2011-07-11 2014-02-21 Capella Microsystems Taiwan Ltd Reflection sensing system
JP5558619B1 (en) * 2013-11-27 2014-07-23 アイリスオーヤマ株式会社 Lighting device
JP2014160777A (en) * 2013-02-20 2014-09-04 Iwasaki Electric Co Ltd Light source unit and irradiation apparatus
JP2015134311A (en) * 2014-01-16 2015-07-27 岩崎電気株式会社 irradiator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63901A (en) * 1986-06-18 1988-01-05 株式会社小糸製作所 Lighting apparatus
JP2007073443A (en) * 2005-09-08 2007-03-22 Nissei Electric Co Ltd Illumination device
JP2007157448A (en) * 2005-12-02 2007-06-21 Inax Corp Lighting device for mirror cabinet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63901A (en) * 1986-06-18 1988-01-05 株式会社小糸製作所 Lighting apparatus
JP2007073443A (en) * 2005-09-08 2007-03-22 Nissei Electric Co Ltd Illumination device
JP2007157448A (en) * 2005-12-02 2007-06-21 Inax Corp Lighting device for mirror cabinet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020830A1 (en) * 2010-08-11 2012-02-16 岩崎電気株式会社 Lamp and optical component
AU2011290165B2 (en) * 2010-08-11 2014-07-10 Iwasaki Electric Co., Ltd. Lamp and optical component
AU2014233650B2 (en) * 2010-08-11 2015-07-30 Iwasaki Electric Co., Ltd. Lamp and optical component
TWI427312B (en) * 2011-07-11 2014-02-21 Capella Microsystems Taiwan Ltd Reflection sensing system
JP2013024966A (en) * 2011-07-19 2013-02-04 Iwasaki Electric Co Ltd Optical component and lamp
JP2014160777A (en) * 2013-02-20 2014-09-04 Iwasaki Electric Co Ltd Light source unit and irradiation apparatus
JP5558619B1 (en) * 2013-11-27 2014-07-23 アイリスオーヤマ株式会社 Lighting device
JP2015134311A (en) * 2014-01-16 2015-07-27 岩崎電気株式会社 irradiator

Similar Documents

Publication Publication Date Title
US7482567B2 (en) Optical feedback system with improved accuracy
US7918567B2 (en) Light emitting device, manufacturing method for light emitting device, illumination device using light emitting device, and projector
JP5601556B2 (en) Lighting device and lighting fixture
US20080088770A1 (en) Lens and backlight unit, liquid crystal display having the same and method thereof
JP2009110828A (en) Led light source device
TW200916703A (en) Hollow planar illuminating apparatus
JP6404369B2 (en) Lighting device
JP2013191479A (en) Abnormality detection mechanism and vehicle front lighting device equipped with it
JP5251075B2 (en) LED light source device
JP2008147847A (en) Linear light source unit and image reading apparatus
JP5667427B2 (en) Light emitting device and lighting device
KR101529166B1 (en) Lamp for vehicle
JP4093476B2 (en) Surface light source device, backlight for liquid crystal display device, and liquid crystal display device
JP5598669B2 (en) Lighting device
KR20140055605A (en) Lightning device and exposure apparatus having thereof
JP6094618B2 (en) lamp
JP4572890B2 (en) Reflective light-emitting diode illuminator
JP2015111497A (en) Lamp
JP2007311731A (en) Light emitting device employing led
JP4125756B2 (en) Flat panel display backlight module
JP2007080520A (en) Backlight device
JP2013073847A (en) Lens and lighting system
KR100898818B1 (en) Light emitting diode bulb having light intensity distribution control
KR19980022603U (en) Surface light source device for liquid crystal display device
JP6045626B2 (en) Lighting lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710