JP6102501B2 - High Cr steel continuous casting method - Google Patents

High Cr steel continuous casting method Download PDF

Info

Publication number
JP6102501B2
JP6102501B2 JP2013106247A JP2013106247A JP6102501B2 JP 6102501 B2 JP6102501 B2 JP 6102501B2 JP 2013106247 A JP2013106247 A JP 2013106247A JP 2013106247 A JP2013106247 A JP 2013106247A JP 6102501 B2 JP6102501 B2 JP 6102501B2
Authority
JP
Japan
Prior art keywords
molten steel
mold
steel
content
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013106247A
Other languages
Japanese (ja)
Other versions
JP2014226675A (en
Inventor
信幸 高平
信幸 高平
信宏 岡田
信宏 岡田
池田 達彦
達彦 池田
花尾 方史
方史 花尾
塚口 友一
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013106247A priority Critical patent/JP6102501B2/en
Publication of JP2014226675A publication Critical patent/JP2014226675A/en
Application granted granted Critical
Publication of JP6102501B2 publication Critical patent/JP6102501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高Cr鋼の連続鋳造方法に関し、特に、表面性状が良好な横断面が円形の鋳片を連続鋳造することを可能とする連続鋳造方法に関する。   The present invention relates to a continuous casting method of high Cr steel, and more particularly to a continuous casting method that enables continuous casting of a slab having a circular cross section with good surface properties.

油井管や、石油または天然ガスを輸送するラインパイプ等の用途に用いられる継目無鋼管(以下、単に「鋼管」という。)は、ユジーン製管法やマンネスマン製管法等によって製造される。具体的には、それらの製管法によって、横断面が円形の鋳片(以下「丸鋳片」ともいう。)を中空の素管に加工し、その後、その素管を抽伸し、熱処理したりして製造される。   Seamless steel pipes (hereinafter simply referred to as “steel pipes”) used for oil well pipes and line pipes for transporting oil or natural gas are manufactured by the Eugene pipe manufacturing method, the Mannesmann pipe manufacturing method, or the like. Specifically, by these pipe making methods, a slab having a circular cross section (hereinafter also referred to as “round slab”) is processed into a hollow raw tube, and then the raw tube is drawn and heat-treated. Or manufactured.

これらの製管法に使用可能な丸鋳片としては、横断面が矩形の連続鋳造鋳片(以下「矩形鋳片」という。)を分塊圧延して得られたものや、内壁面の横断面が円形の鋳型(以下「円形断面鋳型」という。)を用いて連続鋳造したままのものが挙げられる。   Round slabs that can be used in these pipe making methods include those obtained by split-rolling continuous cast slabs with a rectangular cross section (hereinafter referred to as “rectangular slabs”), or crossing the inner wall surface. Examples thereof include those that are continuously cast using a mold having a circular surface (hereinafter referred to as “circular cross-section mold”).

矩形鋳片を用いる場合、分塊圧延が必要であるため、得られた丸鋳片の両端には非定常部が形成される。非定常部はクロップとして切断する必要があり、丸鋳片の製造コスト悪化の一因となっている。   In the case of using a rectangular slab, partial rolling is necessary, and thus unsteady portions are formed at both ends of the obtained round slab. The unsteady part needs to be cut as a crop, which contributes to the deterioration of the manufacturing cost of the round cast slab.

これに対して、円形断面鋳型を用いて連続鋳造された丸鋳片は、分塊圧延で得られた丸鋳片に比べて安価に製造できる。そのため、この安価な丸鋳片を連続鋳造したままの状態で用い、不良箇所の発生なく鋼管を製造できることが望ましい。   In contrast, a round slab continuously cast using a circular cross-section mold can be manufactured at a lower cost than a round slab obtained by split rolling. Therefore, it is desirable that this inexpensive round slab can be used as it is continuously cast and a steel pipe can be produced without the occurrence of defective parts.

しかし、円形断面鋳型を用いて連続鋳造された丸鋳片は、分塊圧延で得られた丸鋳片に比べて表面性状が不良となりやすい。   However, round slabs continuously cast using a circular cross-section mold tend to have poor surface properties as compared to round slabs obtained by split rolling.

内面の横断面が矩形の鋳型(以下「矩形断面鋳型」という。)で連続鋳造した場合には、鋳片に形成される凝固殻は横断面が矩形であることから、凝固殻の横断面が円形である場合に比べてバルジングが起こりやすい。そのため、凝固収縮に伴って凝固殻が変形して鋳型と凝固殻とが乖離しても、溶鋼静圧によって鋳片がバルジングして、鋳型と凝固殻とはすぐに再び密着する。バルジングしやすいことにより、鋳片には冷却が遅れる部分は生じず、円形断面鋳型を用いた場合と比較して、表面性状が良好な鋳片が得られる。   When the inner surface has a rectangular cross section (hereinafter referred to as a “rectangular cross section mold”), the solidified shell formed on the slab has a rectangular cross section. Bulging is more likely to occur than when it is circular. Therefore, even if the solidified shell is deformed due to solidification shrinkage and the mold and the solidified shell are separated, the slab is bulged by the molten steel static pressure, and the mold and the solidified shell are immediately brought into close contact with each other. Due to the ease of bulging, there is no part of the slab where cooling is delayed, and a slab having a good surface property can be obtained as compared with the case of using a circular cross-section mold.

円形断面鋳型を用いて連続鋳造された丸鋳片の表面性状が不良となりやすいのは、鋳片に形成される凝固殻の横断面が円形であるため、バルジングが起こりにくいことに起因する。鋳片がバルジングしないと、鋳型と凝固殻とが乖離しやすく、鋳片の鋳型から乖離した部分では冷却が遅れる。冷却が遅れた部分では縦割れやディプレッション、かぶれ疵が発生しやすく、表面性状が不良となりやすい。   The reason why the surface properties of round cast pieces continuously cast using a circular cross-section mold are likely to be poor is that the solid cross-section of the solidified shell formed on the cast pieces is circular, and bulging is unlikely to occur. If the slab does not bulge, the mold and the solidified shell are likely to be separated from each other, and cooling is delayed at a portion where the slab is separated from the mold. In parts where cooling is delayed, vertical cracks, depletion, and rashes tend to occur, and surface properties tend to be poor.

また、溶鋼のCr含有率が高い高Cr鋼の場合、円形断面鋳型を用いると、より表面性状が不良となりやすい。これは、鋼はCr含有率が高いほど高温強度が高くなるため、凝固収縮により変形した凝固殻がよりバルジングしにくくなるためである。   Further, in the case of high Cr steel having a high Cr content in molten steel, the use of a circular cross-section mold tends to cause poorer surface properties. This is because the higher the Cr content of steel, the higher the high-temperature strength, and thus the solidified shell deformed by solidification shrinkage becomes more difficult to bulge.

さらに、溶鋼中のNi含有率が高い高Cr鋼の場合、より表面性状が不良となりやすい。これは、Ni含有率が高いほど、初晶としてまたは凝固過程においてオーステナイト相が晶出しやすいことに起因する。オーステナイト相はフェライト相と比較して密度が高いため、オーステナイト相が晶出すると、フェライト相が晶出した場合と比較して凝固収縮が大きく、鋳型と凝固殻とが乖離しやすい。   Furthermore, in the case of high Cr steel having a high Ni content in the molten steel, the surface properties are more likely to be poor. This is due to the fact that the higher the Ni content, the easier the austenite phase to crystallize as primary crystals or during the solidification process. Since the austenite phase has a higher density than the ferrite phase, when the austenite phase is crystallized, the solidification shrinkage is larger than when the ferrite phase is crystallized, and the mold and the solidified shell are easily separated.

縦割れやディプレッション、かぶれ疵は、凝固の初期段階における凝固殻の収縮に伴う鋳型と凝固殻との乖離部分を起点として発生する。そのため、これらの表面欠陥の発生の抑制には、凝固の初期段階における鋳型と凝固殻との乖離を抑制することが重要である。   Longitudinal cracks, depletions, and rashes are generated starting from the detachment between the mold and the solidified shell accompanying the shrinkage of the solidified shell in the initial stage of solidification. Therefore, in order to suppress the occurrence of these surface defects, it is important to suppress the separation between the mold and the solidified shell in the initial stage of solidification.

一般に、円形断面鋳型を用いた場合、溶鋼が一旦凝固した後はバルジングしにくく、鋳型と凝固殻とを密着させることが困難である。しかし、メニスカス付近の凝固開始箇所において溶鋼を鋳型に押し付けながら凝固させると、凝固殻の凝固収縮に伴う鋳型と凝固殻との乖離を抑制し、鋳型と凝固殻とを密着させることが容易となる。   In general, when a circular cross-section mold is used, it is difficult to bulge the molten steel once solidified, and it is difficult to bring the mold and the solidified shell into close contact with each other. However, when the molten steel is solidified while being pressed against the mold at the solidification start point near the meniscus, the separation between the mold and the solidified shell due to the solidification shrinkage of the solidified shell is suppressed, and the mold and the solidified shell are easily brought into close contact with each other. .

鋳型と凝固殻とを密着させる方法として、特許文献1には、鋳型内の溶鋼中に設置したローラーによって凝固初期の凝固殻を鋳型に押し付ける方法が開示されている。しかし、この方法では、ローラーの支持棒が溶鋼中および溶鋼上部のモールドフラックス中を通過する際に、その支持棒の後部で発生する渦にモールドフラックスが巻き込まれて鋳片の内部欠陥となることや、支持棒によって溶鋼から抜熱されて溶鋼湯面に皮張りが生じ、操業が困難となること等の問題が生じるおそれがある。   As a method for bringing the mold and the solidified shell into close contact with each other, Patent Document 1 discloses a method of pressing the solidified shell at the initial stage of solidification against a mold with a roller installed in molten steel in the mold. However, in this method, when the roller support rod passes through the molten steel and the mold flux at the top of the molten steel, the mold flux is caught in the vortex generated at the rear of the support rod, resulting in an internal defect of the slab. In addition, there is a possibility that problems such as difficulty in operation due to heat removal from the molten steel by the support rod and skinning of the molten steel surface.

ところで、従来から、電磁力によって鋳型中の溶鋼を攪拌する電磁攪拌が、連続鋳造に適用されている。特許文献2には鋳片表皮下の欠陥等の形成、特許文献3にはホワイトバンド(ビレット表層部の負偏析帯)の形成、特許文献4にはマクロ偏析および内部欠陥の形成を、それぞれ電磁攪拌によって抑制することが開示されている。しかし、電磁攪拌によって鋳型と凝固殻とを密着させることについてはこれまでに検討されていない。   Conventionally, electromagnetic stirring that stirs molten steel in a mold by electromagnetic force has been applied to continuous casting. Patent Document 2 describes the formation of defects in the slab surface, Patent Document 3 forms a white band (negative segregation band on the billet surface layer), Patent Document 4 describes formation of macro-segregation and internal defects, respectively. It is disclosed to suppress by stirring. However, it has not been studied so far to bring the mold and the solidified shell into close contact by electromagnetic stirring.

特開平3−8536号公報Japanese Patent Laid-Open No. 3-8536 特開平1−180762号公報JP-A-1-180762 特開2001−25848号公報Japanese Patent Laid-Open No. 2001-25848 特開昭60−44157号公報Japanese Patent Laid-Open No. 60-44157

上述のように、鋼のCr含有率が高い場合、高い高温強度のため凝固収縮に伴って鋳型と凝固殻との乖離が生じやすく、表面性状が不良となりやすいという問題がある。特許文献1で開示された方法では、鋳型と凝固殻とを密着させることができるものの、得られた鋳片の内部品質が低く、また連続鋳造操業が困難となるおそれがあるという問題がある。   As described above, when the Cr content of steel is high, there is a problem that due to high strength at high temperatures, the mold and the solidified shell are likely to be separated due to solidification shrinkage, and the surface properties are likely to be poor. In the method disclosed in Patent Document 1, although the mold and the solidified shell can be brought into close contact with each other, there is a problem that the internal quality of the obtained slab is low and continuous casting operation may be difficult.

本発明はこれらの問題に鑑みてなされたものであり、鋼のCr含有率が高い場合であっても、簡便に、内部品質および表面性状が良好な丸鋳片を製造することが可能な連続鋳造方法を提供することを目的とする。   The present invention has been made in view of these problems. Even if the Cr content of steel is high, it is possible to easily produce a round slab having good internal quality and good surface properties. An object is to provide a casting method.

本発明者らは、鋳型と凝固殻とを密着させる方法として、溶鋼を水平方向に回転流動させて生じる遠心力に着目し、検討を重ねた。溶鋼に遠心力を生じさせることにより、鋳型内の溶鋼中にローラー等の部材を設けることなく、メニスカス付近の凝固開始箇所において溶鋼を鋳型に押し付けながら凝固させることができるからである。   As a method for bringing the mold and the solidified shell into close contact with each other, the present inventors focused attention on the centrifugal force generated by rotating and flowing molten steel in the horizontal direction, and repeated studies. This is because by generating a centrifugal force in the molten steel, the molten steel can be solidified while being pressed against the mold at a solidification start location near the meniscus without providing a member such as a roller in the molten steel in the mold.

そして、Cr含有率が高い(Cr含有率:8質量%以上、30質量%以下)溶鋼から丸鋳片を連続鋳造する場合に、表面性状が良好な丸鋳片が得られる溶鋼の流速の範囲が存在することを知見した。   And the range of the flow rate of the molten steel from which a round slab with favorable surface property is obtained when continuously casting a round slab from molten steel with a high Cr content (Cr content: 8 mass% or more and 30 mass% or less) It was found that there exists.

本発明は、この知見に基づいてなされたものであり、その要旨は、下記の高Cr鋼の連続鋳造方法にある。   This invention is made | formed based on this knowledge, The summary exists in the following continuous casting method of high Cr steel.

内壁面の横断面が円形の鋳型を用い、Cr含有率が8質量%以上、30質量%以下の溶鋼を丸鋳片に連続鋳造する、高Cr鋼の連続鋳造方法であって、前記溶鋼を前記鋳型内で水平方向に回転流動させ、その際に、前記鋳型内の湯面における前記溶鋼の鋳型内壁面周方向の最大流速u(mm/s)を、溶鋼中のCr含有率X(質量%)に応じて、下記(1−1)式および(1−2)式で表される範囲内とすることを特徴とする高Cr鋼の連続鋳造方法。
8≦X<20 : 50≦u≦570 …(1−1)
20≦X≦30 : 20X−350≦u≦570 …(1−2)
A continuous casting method of high Cr steel using a mold having a circular inner wall cross section and continuously casting a molten steel having a Cr content of 8% by mass or more and 30% by mass or less into a round cast slab, The maximum flow velocity u (mm / s) in the mold inner wall circumferential direction of the molten steel on the molten metal surface in the mold is set to the Cr content ratio X (mass) in the molten steel. %) In a range represented by the following formulas (1-1) and (1-2).
8 ≦ X <20: 50 ≦ u ≦ 570 (1-1)
20 ≦ X ≦ 30: 20X−350 ≦ u ≦ 570 (1-2)

本発明の高Cr鋼の連続鋳造方法では、前記溶鋼の回転流動は電磁攪拌装置を用いて行い、その際に、前記電磁攪拌装置に印加する交流電流の周波数(Hz)と、起磁力(AT、アンペアターン)との積を18900HzAT以上、252000HzAT以下とすることが望ましい。起磁力とは、交流電流の実効値(A)と電磁攪拌装置のコイルの巻き数の積である。   In the continuous casting method of high Cr steel of the present invention, the molten steel is rotationally flowed using an electromagnetic stirrer. At this time, the frequency (Hz) of the alternating current applied to the electromagnetic stirrer and the magnetomotive force (AT , Ampere-turn) is preferably 18900 Hz AT or more and 252000 Hz AT or less. The magnetomotive force is the product of the effective value (A) of the alternating current and the number of turns of the coil of the electromagnetic stirrer.

また、本発明の高Cr鋼の連続鋳造方法では、高Cr鋼の溶鋼がNiを含有し、溶鋼のCr含有率(質量%)のNi含有率(質量%)に対する比の値(Cr/Ni)が2.5以下である場合に、溶鋼の流速を上記(1−1)式および(1−2)式で規定する範囲内とすることによる鋳片の表面性状の改善幅が大きい。   Moreover, in the continuous casting method of the high Cr steel of the present invention, the molten steel of the high Cr steel contains Ni, and the ratio value (Cr / Ni) of the Cr content (mass%) of the molten steel to the Ni content (mass%). ) Is 2.5 or less, the improvement in the surface property of the slab is large by setting the flow rate of the molten steel within the range defined by the above formulas (1-1) and (1-2).

以下の説明では、鋼の成分組成についての「質量%」を、単に「%」とも表記する。   In the following description, “mass%” for the component composition of steel is also simply expressed as “%”.

本発明の高Cr鋼の連続鋳造方法によれば、鋼のCr含有率が高い場合であっても表面性状が良好な丸鋳片を製造することが可能である。また、鋳型内の溶鋼中にローラー等の部材を設ける必要がないことから、簡便に連続鋳造操業を行うことができる。   According to the continuous casting method of high Cr steel of the present invention, it is possible to produce a round slab having a good surface property even when the Cr content of the steel is high. Moreover, since it is not necessary to provide members, such as a roller, in the molten steel in a casting_mold | template, a continuous casting operation can be performed simply.

本発明の高Cr鋼の連続鋳造方法に適用できるリニア誘導電動機型の電磁攪拌装置の構成図であり、同図(a)は鋳型とともに示した正面図、同図(b)は同図(a)のb−b線による断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the linear induction motor type electromagnetic stirring apparatus applicable to the continuous casting method of the high Cr steel of this invention, The figure (a) is the front view shown with the casting_mold | template, The figure (b) is the figure (a) It is sectional drawing by the bb line | wire of (). 実施例の試験結果として、溶鋼のCr含有率および溶鋼の周方向の最大流速と、表面性状との関係を示す図である。It is a figure which shows the relationship between the Cr content rate of molten steel, the maximum flow velocity of the circumferential direction of molten steel, and the surface property as a test result of an Example. 交流電流の周波数と起磁力との積と溶鋼の周方向の最大流速との関係を示す図である。It is a figure which shows the relationship between the product of the frequency of an alternating current, and a magnetomotive force, and the maximum flow velocity of the circumferential direction of molten steel.

1.本発明の高Cr鋼の連続鋳造方法
本発明の高Cr鋼の連続鋳造方法では、内壁面の横断面が円形の鋳型を用い、鋳造に使用する溶鋼のCr含有率を8%以上、30%以下とする。
1. Continuous casting method of high Cr steel of the present invention In the continuous casting method of high Cr steel of the present invention, a mold having a circular inner wall cross section is used, and the Cr content of molten steel used for casting is 8% or more and 30%. The following.

また、鋳型内の溶鋼を水平方向に回転流動させ、その際に、鋳型内の湯面における溶鋼の鋳型内壁面周方向の最大流速u(mm/s)を、溶鋼のCr含有率X(質量%)に応じて、下記(1−1)式および(1−2)式で表される範囲内とする。これにより、溶鋼に発生する遠心力によって鋳型と凝固殻とを密着させることができ、表面性状が良好な鋳片が得られる。
8≦X<20 : 50≦u≦570 …(1−1)
20≦X≦30 : 20X−350≦u≦570 …(1−2)
In addition, the molten steel in the mold is rotated and flowed in the horizontal direction. At that time, the maximum flow velocity u (mm / s) in the circumferential direction of the inner wall surface of the molten steel on the molten metal surface in the mold is set to the Cr content X (mass) %) In the range represented by the following formulas (1-1) and (1-2). Thereby, a casting_mold | template and a solidified shell can be closely_contact | adhered with the centrifugal force which generate | occur | produces in molten steel, and a slab with favorable surface property is obtained.
8 ≦ X <20: 50 ≦ u ≦ 570 (1-1)
20 ≦ X ≦ 30: 20X−350 ≦ u ≦ 570 (1-2)

溶鋼の周方向の最大流速が、上記(1−1)式および(1−2)式で表される範囲の下限よりも小さい場合、溶鋼に遠心力が十分に発生しない。そのため、鋳型内のメニスカス付近の凝固開始箇所において溶鋼を鋳型に押し付ける力が不十分となり、鋳型と凝固殻とを密着させることができず、鋳型と凝固殻との乖離が生じやすい。   When the maximum flow velocity in the circumferential direction of the molten steel is smaller than the lower limit of the range expressed by the above formulas (1-1) and (1-2), the centrifugal force is not sufficiently generated in the molten steel. Therefore, the force for pressing the molten steel against the mold at the solidification start position near the meniscus in the mold becomes insufficient, the mold and the solidified shell cannot be brought into close contact with each other, and the mold and the solidified shell are easily separated.

一方、上記(1−1)式および(1−2)式で表される範囲の上限よりも溶鋼の周方向の最大流速が大きい場合、溶鋼に発生する遠心力が過剰となる。鋳型内で溶鋼に過剰な遠心力が発生すると、溶鋼湯面は浸漬ノズル近傍では低く、鋳型内壁近傍では高くなり、両者の高さの差が著しくなる。これに伴って、溶鋼の湯面上のモールドフラックスの厚さが鋳型内壁に近いほど薄くなる。そのため、モールドフラックスが鋳型と凝固殻との間に流入し難くなり、鋳型と凝固殻との間において潤滑不良が起こりがちになる。   On the other hand, when the maximum flow velocity in the circumferential direction of the molten steel is larger than the upper limit of the range represented by the above formulas (1-1) and (1-2), the centrifugal force generated in the molten steel becomes excessive. When excessive centrifugal force is generated in the molten steel in the mold, the molten steel surface is low in the vicinity of the immersion nozzle and high in the vicinity of the inner wall of the mold, and the difference in height between the two becomes significant. Along with this, the thickness of the mold flux on the molten steel surface becomes thinner as it approaches the inner wall of the mold. Therefore, it is difficult for the mold flux to flow between the mold and the solidified shell, and poor lubrication tends to occur between the mold and the solidified shell.

鋳型内の湯面における溶鋼の鋳型内壁面周方向の最大流速u(mm/s)と、溶鋼のCr含有率X(質量%)は、下記(2−1)式または(2−2)式の関係を満たすようにすることが望ましい。
8≦X<20 : 90≦u≦570 …(2−1)
20≦X≦30 : 22X−350≦u≦570 …(2−2)
The maximum flow velocity u (mm / s) in the circumferential direction of the inner wall surface of the molten steel on the molten metal surface in the mold and the Cr content X (mass%) of the molten steel are the following formula (2-1) or formula (2-2): It is desirable to satisfy this relationship.
8 ≦ X <20: 90 ≦ u ≦ 570 (2-1)
20 ≦ X ≦ 30: 22X−350 ≦ u ≦ 570 (2-2)

鋳造速度は、0.3m/min以上、2.0m/min以下とする。鋳造速度が0.3m/min未満では、凝固殻が全体に厚くなり過ぎるため、溶鋼に発生する遠心力により鋳型と凝固殻とを密着させる効果が得られない。一方、鋳造速度が2.0m/minよりも大きい場合には、凝固殻が薄くなり過ぎるため、凝固殻の不均一成長が助長される。   The casting speed is 0.3 m / min or more and 2.0 m / min or less. If the casting speed is less than 0.3 m / min, the solidified shell becomes too thick as a whole, and the effect of bringing the mold and the solidified shell into close contact with each other due to the centrifugal force generated in the molten steel cannot be obtained. On the other hand, when the casting speed is higher than 2.0 m / min, the solidified shell becomes too thin, which promotes non-uniform growth of the solidified shell.

鋳型内に配置される浸漬ノズルは、ノズルの底面に吐出孔が1個だけ配置された、いわゆる単孔ストレートノズルであっても、ノズルの側面に吐出孔が2個以上配置されたものであってもよい。いずれにしても、溶鋼の周方向の流動を阻害しないように溶鋼を吐出する形状が望ましい。   The immersion nozzle disposed in the mold is a so-called single-hole straight nozzle in which only one ejection hole is disposed on the bottom surface of the nozzle, but two or more ejection holes are disposed on the side surface of the nozzle. May be. Anyway, the shape which discharges molten steel is desirable so that the flow of the circumferential direction of molten steel may not be inhibited.

上述のCr含有率が8%以上、30%以下の溶鋼に、Niを含有させてもよい。Niを含有させた溶鋼において、Cr含有率(質量%)のNi含有率(質量%)に対する比の値(Cr/Ni)が2.5以下である場合に、溶鋼の流速を上記(1−1)式および(1−2)式で規定する範囲内とすることによる鋳片の表面性状の改善幅が大きい。   Ni may be contained in the molten steel having the Cr content of 8% or more and 30% or less. In the molten steel containing Ni, when the ratio value (Cr / Ni) of the Cr content (mass%) to the Ni content (mass%) is 2.5 or less, the flow rate of the molten steel (1- The range of improvement in the surface properties of the slab by being within the range defined by the formulas (1) and (1-2) is large.

Cr/Niが2.5以下である場合には、初晶としてまたは凝固過程においてオーステナイト相が主に晶出するため、Cr/Niが2.5より大きい場合と比較して鋳型と凝固殻とが乖離しやすい。これは、オーステナイト相はフェライト相と比較して密度が高いため、フェライト相に対するオーステナイト相の割合が高いほど、凝固収縮が大きいことに起因する。   When Cr / Ni is 2.5 or less, the austenite phase is mainly crystallized as primary crystals or in the solidification process. Tends to deviate. This is because the austenite phase has a higher density than the ferrite phase, so that the higher the ratio of the austenite phase to the ferrite phase, the greater the solidification shrinkage.

しかし、本発明によれば、Cr/Niが2.5以下である場合にも、2.5より大きい場合と同様に、溶鋼に発生する遠心力によって鋳型と凝固殻とを密着させることができ、表面性状が良好な鋳片が得られる。そのため、Cr/Niが2.5以下である場合には、溶鋼の流速を本発明の規定範囲内とすることによる鋳片の表面性状の改善幅が大きい。この改善幅は、Cr/Niが1.5以下の場合により大きくなる。   However, according to the present invention, even when Cr / Ni is 2.5 or less, the mold and the solidified shell can be brought into close contact with the centrifugal force generated in the molten steel, as in the case where it is larger than 2.5. As a result, a slab having good surface properties can be obtained. Therefore, when Cr / Ni is 2.5 or less, there is a large improvement in the surface property of the slab by setting the flow rate of the molten steel within the specified range of the present invention. This improvement width becomes larger when Cr / Ni is 1.5 or less.

鋳型内の溶鋼の湯面上に配置するモールドフラックスは、凝固点が1100℃以上、1280℃以下のものであることが望ましい。凝固点が1100℃未満である場合には、鋳型と凝固殻との間に流入したモールドフラックスの結晶化が遅れるため、凝固殻の不均一成長が助長されるおそれがある。一方、凝固点が1280℃よりも高い場合には、鋳型と凝固殻との間に流入したモールドフラックスの結晶化が速くなり、モールドフラックスが十分に流入しないおそれがある。モールドフラックスの凝固点は、1120℃以上、1250℃以下であるのがより望ましい。   The mold flux disposed on the molten steel surface in the mold preferably has a freezing point of 1100 ° C. or higher and 1280 ° C. or lower. When the freezing point is lower than 1100 ° C., the crystallization of the mold flux flowing between the mold and the solidified shell is delayed, which may promote the nonuniform growth of the solidified shell. On the other hand, when the freezing point is higher than 1280 ° C., the crystallization of the mold flux flowing between the mold and the solidified shell becomes faster and the mold flux may not flow sufficiently. The freezing point of the mold flux is more preferably 1120 ° C. or higher and 1250 ° C. or lower.

また、モールドフラックスは、1300℃における粘度が2poise以上、8poise以下であることが望ましい。この粘度が2poise未満である場合には、モールドフラックスが過剰に流入するおそれがあり、8poiseよりも高い場合には、十分に流入することができないおそれがある。モールドフラックスの1300℃における粘度は、3poise以上、7poise以下であるのがより望ましい。   Moreover, as for mold flux, it is desirable for the viscosity in 1300 degreeC to be 2 poise or more and 8 poise or less. If this viscosity is less than 2 poise, mold flux may flow excessively, and if it is higher than 8 poise, it may not be able to flow sufficiently. The viscosity of the mold flux at 1300 ° C. is more preferably 3 poise or more and 7 poise or less.

2.溶鋼を回転流動させる方法
鋳型内の溶鋼を水平方向に回転流動させる方法としては、鋳型内面の周方向に旋回流を形成するように吐出孔を設けた浸漬ノズルを用いる方法、鋳型自体を回転させる方法、溶鋼に電磁力を印加する方法等がある。これらの方法のうちで、現在広く用いられている、溶鋼に電磁力を印加して攪拌する電磁攪拌法が好適である。もっとも、鋳型内の溶鋼を上記規定の流速で回転流動させ、遠心力を発生させることができればどのような方法でもよい。
2. Method of rotating and flowing molten steel As a method of rotating and flowing molten steel in a mold in a horizontal direction, a method using an immersion nozzle provided with discharge holes so as to form a swirling flow in the circumferential direction of the inner surface of the mold, or the mold itself is rotated. And a method of applying electromagnetic force to molten steel. Among these methods, the electromagnetic stirring method that is widely used at present and stirs by applying electromagnetic force to molten steel is suitable. However, any method may be used as long as the molten steel in the mold can be rotationally flowed at the prescribed flow rate to generate centrifugal force.

電磁攪拌法によって鋳型内の溶鋼を水平方向に回転流動させる方法について、特許文献4に開示されている技術を例に挙げて説明する。   A method of rotating and flowing the molten steel in the mold in the horizontal direction by an electromagnetic stirring method will be described by taking the technique disclosed in Patent Document 4 as an example.

図1は、本発明の高Cr鋼の連続鋳造方法に適用できるリニア誘導電動機型の電磁攪拌装置の構成図であり、同図(a)は鋳型とともに示した正面図、同図(b)は同図(a)のb−b線による断面図である。電磁攪拌装置11は、鋳型3の長辺面に沿って配置されている。同図に示す鋳型3は、矩形断面鋳型であるが、電磁攪拌装置11は、円形断面鋳型についても適用可能である。   FIG. 1 is a configuration diagram of a linear induction motor type electromagnetic stirrer that can be applied to the continuous casting method of high Cr steel of the present invention. FIG. 1 (a) is a front view together with a mold, and FIG. It is sectional drawing by the bb line of the same figure (a). The electromagnetic stirring device 11 is arranged along the long side surface of the mold 3. The mold 3 shown in the figure is a rectangular cross-section mold, but the electromagnetic stirrer 11 can also be applied to a circular cross-section mold.

電磁攪拌装置11は、リニア誘導電動機型であり、鉄芯21と、U相コイル46、V相コイル47およびW相コイル48を備える。鉄芯21は、長手方向の中央部と両端部にスロット37、38および39を備え、スロット37とスロット38の間に磁極50、スロット37とスロット39の間に磁極51が形成されている。   The electromagnetic stirring device 11 is a linear induction motor type, and includes an iron core 21, a U-phase coil 46, a V-phase coil 47, and a W-phase coil 48. The iron core 21 includes slots 37, 38 and 39 at the center and both ends in the longitudinal direction. A magnetic pole 50 is formed between the slot 37 and the slot 38, and a magnetic pole 51 is formed between the slot 37 and the slot 39.

スロット37およびスロット38には、磁極50を囲繞するようにU相コイル46が収容され、スロット37およびスロット39には、磁極51を囲繞するようにV相コイル47が収容されている。さらに、スロット38およびスロット39には、U相コイル46およびV相コイル47を囲繞するようにW相コイル48が収容されている。   The slot 37 and the slot 38 accommodate the U-phase coil 46 so as to surround the magnetic pole 50, and the slot 37 and the slot 39 accommodate the V-phase coil 47 so as to surround the magnetic pole 51. Further, W-phase coil 48 is accommodated in slots 38 and 39 so as to surround U-phase coil 46 and V-phase coil 47.

このように構成された電磁攪拌装置11において、U相コイル46、V相コイル47およびW相コイル48にそれぞれ独立して交流電流を通電する。U相コイル46とV相コイル47には、鉄芯21の長手方向の中心に対して電流位相が非対称となるように通電する。また、W相コイル48には、スロット38で隣接するU相コイル46およびスロット39で隣接するV相コイル47と、いずれに対しても逆位相となるように2/3πずつ位相をずらして通電する。   In the electromagnetic stirrer 11 configured as described above, an alternating current is supplied to the U-phase coil 46, the V-phase coil 47, and the W-phase coil 48 independently. The U-phase coil 46 and the V-phase coil 47 are energized so that the current phase is asymmetric with respect to the longitudinal center of the iron core 21. The W-phase coil 48 is energized with a phase shift of 2 / 3π so that the U-phase coil 46 adjacent to the slot 38 and the V-phase coil 47 adjacent to the slot 39 are opposite in phase. To do.

このように通電することにより、鋳型3内の溶鋼Aを矢印B方向、すなわち鋳型3の内壁面の周方向に回転流動させることができる。   By energizing in this way, the molten steel A in the mold 3 can be rotated and flowed in the direction of the arrow B, that is, in the circumferential direction of the inner wall surface of the mold 3.

電磁攪拌装置を用いて鋳型内の溶鋼を回転流動させる場合、電磁攪拌装置に印加する交流電流の周波数(Hz)と起磁力(AT、アンペアターン)との積を18900HzAT以上、252000HzAT以下とすることが望ましい。これにより、表面性状が良好な鋳片を得ることができる。起磁力とは、交流電流の実効値(A)と電磁攪拌装置のコイルの巻き数の積であり、一般的に電磁攪拌装置の電流値の評価に用いられる値である。   When rotating molten steel in a mold using an electromagnetic stirrer, the product of the frequency (Hz) of the alternating current applied to the electromagnetic stirrer and the magnetomotive force (AT, ampere turn) shall be 18900 Hz AT or more and 252000 Hz AT or less Is desirable. Thereby, the slab with favorable surface property can be obtained. The magnetomotive force is the product of the effective value (A) of the alternating current and the number of turns of the coil of the electromagnetic stirrer, and is generally a value used for evaluating the current value of the electromagnetic stirrer.

本発明者らは、Cr含有率が8%以上、30%以下の高Cr鋼の連続鋳造試験を行ったところ、鋳型内の湯面における溶鋼の鋳型内壁面周方向の最大流速が250mm/s以上、570mm/s以下である場合に、表面性状がより良好な鋳片が得られることを知見した。さらに、溶鋼の流速と電磁攪拌装置の設定条件との関係について検討した結果、交流電流の周波数と起磁力との積が18900HzAT以上、252000HzAT以下である場合に、溶鋼の周方向の最大流速が250mm/s以上、570mm/s以下となることを知見した。   When the present inventors conducted a continuous casting test of high Cr steel having a Cr content of 8% or more and 30% or less, the maximum flow velocity in the circumferential direction of the inner wall surface of the molten steel on the molten metal surface in the mold was 250 mm / s. As described above, it has been found that a slab having a better surface property can be obtained when it is 570 mm / s or less. Furthermore, as a result of examining the relationship between the flow rate of the molten steel and the setting conditions of the electromagnetic stirrer, when the product of the frequency of the alternating current and the magnetomotive force is 18900 Hz AT or more and 252000 Hz AT or less, the maximum flow velocity in the circumferential direction of the molten steel is 250 mm. It was found that it was not less than / s and not more than 570 mm / s.

本発明の高Cr鋼の連続鋳造方法の効果を確認するため、以下の試験を行い、その結果を評価した。   In order to confirm the effect of the continuous casting method of the high Cr steel of the present invention, the following tests were conducted and the results were evaluated.

1.試験方法
前記図1に示す電磁攪拌装置を用いて、円形断面鋳型内の溶鋼を水平方向に回転流動させながら、丸鋳片を連続鋳造した。電磁攪拌装置の各コイルの巻き数は84ターンとした。用いた鋼種は、表1に示す化学組成のものとした。いずれの鋼種とも、Cr含有率が本発明の規定する範囲を満たしている。
1. Test Method Using the electromagnetic stirrer shown in FIG. 1, round cast pieces were continuously cast while the molten steel in the circular cross-section mold was rotated and flowed in the horizontal direction. The number of turns of each coil of the electromagnetic stirring device was 84 turns. The steel types used were those having the chemical composition shown in Table 1. In any steel type, the Cr content satisfies the range defined by the present invention.

Figure 0006102501
Figure 0006102501

表2には、試験条件として、鋼種、溶鋼のCr含有率(質量%)のNi含有率(質量%)に対する比の値(Cr/Ni)、電磁攪拌装置に印加した交流電流の周波数および実効電流値、鋳型の内壁面の直径ならびに鋳造速度を示した。併せて、数値解析シミュレーションによって評価した、鋳型内の溶鋼の湯面(自由表面位置)における溶鋼の鋳型内壁面周方向の最大流速を示した。溶鋼の流速は実測が困難であるため、数値解析シミュレーションを使用して算出した。   Table 2 shows the test conditions including the steel type, the ratio of Cr content (% by mass) to the Ni content (% by mass) of molten steel (Cr / Ni), the frequency of the alternating current applied to the electromagnetic stirrer and the effective The current value, the diameter of the inner wall of the mold and the casting speed were shown. In addition, the maximum flow velocity in the circumferential direction of the inner wall surface of the molten steel on the molten steel surface (free surface position) in the molten steel evaluated by numerical analysis simulation is shown. Since the flow rate of the molten steel is difficult to measure, it was calculated using a numerical analysis simulation.

Figure 0006102501
Figure 0006102501

試験番号1〜3では鋼種A、試験番号4〜9では鋼種B、試験番号10では鋼種C、試験番号11〜14では鋼種D、試験番号15〜23では鋼種E、試験番号24〜28では鋼種Fの溶鋼を用いた。   Test number 1-3 is steel type A, test number 4-9 is steel type B, test number 10 is steel type C, test number 11-14 is steel type D, test number 15-23 is steel type E, test number 24-28 is steel type F molten steel was used.

試験番号1、4、11、15および24は、溶鋼を流動させなかった比較例である。試験番号16および25は、溶鋼の周方向の最大流速u(mm/s)が、溶鋼のCr含有率X(質量%)に応じて下記(1−1)式および(1−2)式で規定する範囲よりも小さかった比較例である。試験番号9および23は、溶鋼の周方向の最大流速が下記(1−1)式および(1−2)式で規定する範囲よりも大きかった比較例である。
8≦X<20 : 50≦u≦570 …(1−1)
20≦X≦30 : 20X−350≦u≦570 …(1−2)
Test numbers 1, 4, 11, 15, and 24 are comparative examples in which the molten steel was not flowed. In test numbers 16 and 25, the maximum flow velocity u (mm / s) in the circumferential direction of the molten steel is expressed by the following formulas (1-1) and (1-2) according to the Cr content X (mass%) of the molten steel. This is a comparative example that was smaller than the prescribed range. Test numbers 9 and 23 are comparative examples in which the maximum flow velocity in the circumferential direction of the molten steel was larger than the range defined by the following formulas (1-1) and (1-2).
8 ≦ X <20: 50 ≦ u ≦ 570 (1-1)
20 ≦ X ≦ 30: 20X−350 ≦ u ≦ 570 (1-2)

これら以外の試験番号は、本発明の規定条件を満たす本発明例である。   Test numbers other than these are examples of the present invention that satisfy the specified conditions of the present invention.

2.試験結果
表2には、試験結果として、得られた鋳片の品質評価結果を示した。品質評価は、表面性状の評価、すなわち縦割れ、ディプレッションおよびかぶれ疵の発生状況の評価によって行った。同表において評価は優、良、不可および不能の4段階評価とし、それぞれの意味は以下のとおりである。
優:縦割れ、ディプレッションおよびかぶれ疵がいずれも発生しないか、ディプレッションがグラインダーによる手入れを必要としない程度にわずかに発生した
良:縦割れ、ディプレッションおよびかぶれ疵が発生したものの、軽度であり、コストメリットがある範囲でのグラインダーによる手入れによって除去可能な程度であった
不可:重度の縦割れ、ディプレッションおよびかぶれ疵が発生し、グラインダーによる手入れによって除去しても、コストメリットがない程度であった
不能:重度の縦割れ、ディプレッションおよびかぶれ疵が発生し、連続鋳造の操業自体が困難であった
2. Test results Table 2 shows the quality evaluation results of the obtained slabs as test results. Quality evaluation was performed by evaluation of surface properties, that is, evaluation of occurrence of vertical cracks, depletion and rashes. In the table, the evaluation is a four-level evaluation of excellent, good, impossible and impossible, and the meaning of each is as follows.
Excellent: No vertical cracks, depletions and rashes occurred, or the depletion occurred slightly to the extent that no grinder maintenance was required. Good: Mild and costly, although vertical cracks, depletions and rashes occurred. The merit was such that it could be removed by maintenance with a grinder within a certain range. Impossible: Severe vertical cracking, depletion and rash occurred, and even if removed by care with a grinder, there was no cost merit. : Severe vertical cracks, depletion and rashes occurred, making continuous casting operation difficult.

図2は、実施例の試験結果として、溶鋼のCr含有率および溶鋼の周方向の最大流速と、表面性状との関係を示す図である。同図では、表2に示した鋳片の品質の4段階評価を記号(◎、○、×および■)で示した。◎は優、○は良、×は不可、■は不能を意味する。また、同図には、上記(1−1)式および(1−2)式、ならびに下記(2−1)式および(2−2)式で表される、本発明で規定する溶鋼の周方向の最大流速の範囲の境界も示した。
8≦X<20 : 90≦u≦570 …(2−1)
20≦X≦30 : 22X−350≦u≦570 …(2−2)
FIG. 2 is a graph showing the relationship between the Cr content of molten steel, the maximum flow velocity in the circumferential direction of the molten steel, and the surface properties as test results of the examples. In the figure, the four-stage evaluation of the quality of the slab shown in Table 2 is indicated by symbols (◎, ○, × and ■). ◎ means excellent, ○ means good, × means impossible, ■ means impossible. Further, in the same figure, the circumference of the molten steel defined by the present invention represented by the above formulas (1-1) and (1-2) and the following formulas (2-1) and (2-2) The boundaries of the range of maximum flow velocity in the direction are also shown.
8 ≦ X <20: 90 ≦ u ≦ 570 (2-1)
20 ≦ X ≦ 30: 22X−350 ≦ u ≦ 570 (2-2)

図2から、溶鋼のCr含有率と溶鋼の周方向の最大流速が本発明の規定を満たす場合に評価が良または優と、良好な表面性状の鋳片が得られることがわかる。すなわち、本発明の高Cr鋼の連続鋳造方法によれば、大きい高温強度のため凝固収縮に伴って生じやすい鋳型と凝固殻との乖離を抑制することができることがわかる。   It can be seen from FIG. 2 that when the Cr content of the molten steel and the maximum flow velocity in the circumferential direction of the molten steel satisfy the provisions of the present invention, a slab having a good surface property can be obtained with good or excellent evaluation. That is, according to the continuous casting method of the high Cr steel of the present invention, it is understood that the detachment between the mold and the solidified shell, which is likely to occur along with the solidification shrinkage due to the large high temperature strength, can be suppressed.

3.考察1
図3は、交流電流の周波数と起磁力との積と溶鋼の周方向の最大流速との関係を示す図である。同図には、表2に示す条件を含めた15条件について交流電流の周波数と起磁力との積と溶鋼の周方向の最大流速との関係を示した。表2に示す品質評価結果において評価が優であったのは、溶鋼の鋳型周方向の最大流速が310mm/s以上、560mm/s以下の場合であった。同図から、交流電流の周波数と起磁力との積が18900HzAT以上、252000HzAT以下であれば、溶鋼の鋳型周方向の最大流速がこの範囲となり、良好な表面性状の鋳片が得られることがわかる。
3. Consideration 1
FIG. 3 is a diagram showing the relationship between the product of the frequency of the alternating current and the magnetomotive force and the maximum flow velocity in the circumferential direction of the molten steel. The figure shows the relationship between the product of the frequency of the alternating current and the magnetomotive force and the maximum flow velocity in the circumferential direction of the molten steel for 15 conditions including the conditions shown in Table 2. In the quality evaluation results shown in Table 2, the evaluation was excellent when the maximum flow velocity in the mold circumferential direction of the molten steel was 310 mm / s or more and 560 mm / s or less. From this figure, it is understood that when the product of the frequency of the alternating current and the magnetomotive force is 18900 Hz AT or more and 252000 Hz AT or less, the maximum flow velocity in the mold circumferential direction of the molten steel is within this range, and a slab having good surface properties can be obtained. .

4.考察2
試験番号1、4、11、15および24は、溶鋼を流動させなかった比較例である。これらのうち、試験番号1および4は評価が不可であったのに対して、試験番号11、15および24は評価が不能とさらに低かった。試験番号1および2と、試験番号11、15および24との最大の違いは、使用した鋼種のCr含有率(質量%)に対するNi含有率(質量%)の比の値(Cr/Ni)にある。
4). Consideration 2
Test numbers 1, 4, 11, 15, and 24 are comparative examples in which the molten steel was not flowed. Of these, test numbers 1 and 4 could not be evaluated, while test numbers 11, 15 and 24 were even lower when evaluation was impossible. The biggest difference between test numbers 1 and 2 and test numbers 11, 15 and 24 is the ratio value (Cr / Ni) of the Ni content (mass%) to the Cr content (mass%) of the steel type used. is there.

試験番号1で使用した鋼種Aは、Cr/Niが27.3、試験番号4で使用した鋼種Bは2.8と、いずれも2.5よりも大きかった。これに対して、試験番号11で使用した鋼種Dでは2.2、試験番号15で使用した鋼種Eおよび試験番号24使用した鋼種Fではいずれも0.8と2.5以下であった。   Steel type A used in Test No. 1 had Cr / Ni of 27.3, and Steel Type B used in Test No. 4 was 2.8, both of which were larger than 2.5. In contrast, the steel type D used in test number 11 was 2.2, the steel type E used in test number 15 and the steel type F used in test number 24 were 0.8 and 2.5 or less, respectively.

表2に示すように、Cr/Niが2.5よりも大きい鋼種では、得られた鋳片の表面性状が、比較例の不可から本発明例の良または優に改善されたに過ぎないのに対して、Cr/Niが2.5以下の鋼種では、比較例の不能または不可から本発明例の良または優に大幅に改善された。   As shown in Table 2, in the steel type with Cr / Ni larger than 2.5, the surface property of the obtained slab was only improved or not excellent in the present invention example from the impossibility of the comparative example. On the other hand, in the steel type with Cr / Ni of 2.5 or less, the quality of the example of the present invention was significantly improved from the impossible or impossible of the comparative example.

すなわち、Cr/Niが2.5以下の鋼種において、本発明の効果が大きいといえる。   That is, it can be said that the effect of the present invention is great in a steel type having Cr / Ni of 2.5 or less.

本発明の高Cr鋼の連続鋳造方法によれば、鋼のCr含有率が高い場合であっても表面性状が良好な丸鋳片を製造することが可能である。また、鋳型内の溶鋼中にローラー等の部材を設ける必要がないことから、溶鋼およびモールドフラックスの渦の発生がないため、製造された丸鋳片は内部品質が良好であり、溶鋼湯面における皮張りの発生がないため、安定した連続鋳造操業が可能である。   According to the continuous casting method of high Cr steel of the present invention, it is possible to produce a round slab having a good surface property even when the Cr content of the steel is high. In addition, since there is no need to provide a roller or other member in the molten steel in the mold, there is no vortex generation of the molten steel and mold flux, and thus the manufactured round cast slab has good internal quality, and on the molten steel surface. Since there is no skinning, stable continuous casting operation is possible.

3:鋳型、 11:電磁攪拌装置、 21:鉄芯、 37、38、39:スロット、
46:U相コイル、 47:V相コイル、 48:W相コイル、 50、51:磁極、
A:溶鋼、 B:溶鋼の流動方向
3: Mold, 11: Electromagnetic stirrer, 21: Iron core, 37, 38, 39: Slot,
46: U-phase coil, 47: V-phase coil, 48: W-phase coil, 50, 51: magnetic pole,
A: Molten steel, B: Flow direction of molten steel

Claims (3)

内壁面の横断面が円形の鋳型を用い、Cr含有率が8質量%以上、30質量%以下の溶鋼を丸鋳片に連続鋳造する、高Cr鋼の連続鋳造方法であって、
前記溶鋼を前記鋳型内で水平方向に回転流動させ、その際に、前記鋳型内の湯面における前記溶鋼の鋳型内壁面周方向の最大流速u(mm/s)を、溶鋼中のCr含有率X(質量%)に応じて、下記(1−1)式および(1−2)式で表される範囲内とすることを特徴とする高Cr鋼の連続鋳造方法。
8≦X<20 : 50≦u≦570 …(1−1)
20≦X≦30 : 20X−350≦u≦570 …(1−2)
A continuous casting method of high Cr steel, using a casting mold whose inner wall has a circular cross section and continuously casting a molten steel having a Cr content of 8% by mass or more and 30% by mass or less to a round cast slab,
The molten steel is caused to rotate and flow in the horizontal direction in the mold, and at that time, the maximum flow velocity u (mm / s) in the circumferential direction of the inner wall surface of the molten steel on the molten metal surface in the mold is determined as the Cr content in the molten steel. According to X (mass%), it is set as the range represented by the following (1-1) type | formula and (1-2) type | formula, The continuous casting method of the high Cr steel characterized by the above-mentioned.
8 ≦ X <20: 50 ≦ u ≦ 570 (1-1)
20 ≦ X ≦ 30: 20X−350 ≦ u ≦ 570 (1-2)
前記溶鋼の回転流動は電磁攪拌装置を用いて行い、その際に、前記電磁攪拌装置に印加する交流電流の周波数(Hz)と、前記交流電流の実効値(A)と、前記電磁攪拌装置のコイルの巻き数との積を18900HzAT以上、252000HzAT以下とすることを特徴とする請求項1に記載の高Cr鋼の連続鋳造方法。   The rotational flow of the molten steel is performed using an electromagnetic stirrer. At that time, the frequency (Hz) of the alternating current applied to the electromagnetic stirrer, the effective value (A) of the alternating current, and the electromagnetic stirrer 2. The continuous casting method for high Cr steel according to claim 1, wherein the product of the number of turns of the coil is 18900 Hz AT or more and 252000 Hz AT or less. 前記溶鋼がNiを含有し、前記溶鋼のCr含有率(質量%)のNi含有率(質量%)に対する比の値(Cr/Ni)が2.5以下であることを特徴とする請求項1または2に記載の高Cr鋼の連続鋳造方法。   The molten steel contains Ni, and a value (Cr / Ni) of a Cr content (% by mass) to a Ni content (% by mass) of the molten steel is 2.5 or less. Or the continuous casting method of the high Cr steel of 2.
JP2013106247A 2013-05-20 2013-05-20 High Cr steel continuous casting method Active JP6102501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013106247A JP6102501B2 (en) 2013-05-20 2013-05-20 High Cr steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013106247A JP6102501B2 (en) 2013-05-20 2013-05-20 High Cr steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2014226675A JP2014226675A (en) 2014-12-08
JP6102501B2 true JP6102501B2 (en) 2017-03-29

Family

ID=52127000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013106247A Active JP6102501B2 (en) 2013-05-20 2013-05-20 High Cr steel continuous casting method

Country Status (1)

Country Link
JP (1) JP6102501B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50112221A (en) * 1974-02-13 1975-09-03
JP3237518B2 (en) * 1996-05-16 2001-12-10 日本鋼管株式会社 Manufacturing method of chrome alloy steel round billet slab
JP3317258B2 (en) * 1998-01-09 2002-08-26 住友金属工業株式会社 Mold powder for continuous casting of high Mn round section slabs
JP5145791B2 (en) * 2007-06-28 2013-02-20 新日鐵住金株式会社 Continuous casting method for small section billet
JP5125893B2 (en) * 2008-08-29 2013-01-23 Jfeスチール株式会社 Continuous casting method of ferritic stainless steel

Also Published As

Publication number Publication date
JP2014226675A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP6129435B1 (en) Continuous casting method
JP6439762B2 (en) Steel continuous casting method
WO2018173888A1 (en) Method for producing austenite stainless steel slab
JP6947737B2 (en) Continuous steel casting method
JP5962733B2 (en) Steel continuous casting method
JP6102501B2 (en) High Cr steel continuous casting method
JP4301133B2 (en) Method for continuous casting of round slab, method for making round slab and seamless pipe
JP6787359B2 (en) Continuous steel casting method
JP2010029936A (en) Casting mold for continuous casting, and continuous casting method for steel
JP5942712B2 (en) Scum weir, thin slab manufacturing method, thin slab manufacturing equipment
JP6036125B2 (en) Steel continuous casting method
JP6428721B2 (en) Continuous casting mold and steel continuous casting method
JP6402750B2 (en) Steel continuous casting method
JP2008260044A (en) Continuous casting method of steel slab for preventing breakout caused by solidification delay
JP5172432B2 (en) Continuous casting method of ultra low carbon steel or low carbon steel using grooved immersion nozzle
JP5772767B2 (en) Steel continuous casting method
JP2008290136A (en) Continuous casting method for low carbon high sulfur steel
JP5387497B2 (en) Manufacturing method of high alloy steel by continuous casting
JP2009142876A (en) Method for continuously casting steel
JP6136782B2 (en) High Cr steel continuous casting method
JP2015178120A (en) Continuous casting method for round casting piece
JP2007331003A (en) Continuous casting method for low carbon steel, using immersion nozzle with weir-type reservoir
JP4896599B2 (en) Continuous casting method of low carbon steel using dipping nozzle with dimple
JP2010264483A (en) Continuous casting method for bloom capable of obtaining bubble inclusion cleaning effect in mold and over the lower part thereof
JP2019126840A (en) CONTINUOUS CASTING METHOD FOR Cu-Zn-Si SYSTEM ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R151 Written notification of patent or utility model registration

Ref document number: 6102501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350