JP5125893B2 - Continuous casting method of ferritic stainless steel - Google Patents

Continuous casting method of ferritic stainless steel Download PDF

Info

Publication number
JP5125893B2
JP5125893B2 JP2008220933A JP2008220933A JP5125893B2 JP 5125893 B2 JP5125893 B2 JP 5125893B2 JP 2008220933 A JP2008220933 A JP 2008220933A JP 2008220933 A JP2008220933 A JP 2008220933A JP 5125893 B2 JP5125893 B2 JP 5125893B2
Authority
JP
Japan
Prior art keywords
ferritic stainless
stainless steel
continuous casting
steel
ridging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008220933A
Other languages
Japanese (ja)
Other versions
JP2010052022A (en
Inventor
正道 阿部
康一 堤
誓司 糸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008220933A priority Critical patent/JP5125893B2/en
Publication of JP2010052022A publication Critical patent/JP2010052022A/en
Application granted granted Critical
Publication of JP5125893B2 publication Critical patent/JP5125893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、フェライト系ステンレス鋼の連続鋳造方法、特に、電磁攪拌によりリジングの発生を防止するためのフェライト系ステンレス鋼の連続鋳造方法に関する。   The present invention relates to a continuous casting method of ferritic stainless steel, and more particularly to a continuous casting method of ferritic stainless steel for preventing generation of ridging by electromagnetic stirring.

フェライト系ステンレス鋼板は、耐食性に優れ、美しい光沢を長時間にわたり保持でき、しかも比較的安価であることから、厨房器具や家電製品等に広く使用されている。通常、このフェライト系ステンレス鋼板は、転炉や電気炉等を用いてCrを含有する鋼を溶製し、真空精錬を行った後、連続鋳造あるいは造塊鋳造等により鋼片とした後、薄板に圧延加工して製造されるが、その使用時にはプレス加工等の二次加工を受ける場合が多い。しかし、フェライト系ステンレス鋼板は二次加工を受けると、鋼板表面にリジングと呼ばれる微小な凹凸の表面欠陥(しわ)が発生し、表面の美観を損なうだけでなく、微小な割れの起点にもなるので、研磨等の手段により凹凸を除去する必要があり、製品の生産性の低下やコスト増を招く。   Ferritic stainless steel sheets are widely used in kitchen appliances and home appliances because they are excellent in corrosion resistance, can retain beautiful luster for a long time, and are relatively inexpensive. Usually, this ferritic stainless steel sheet is made of a steel plate after melting Cr-containing steel using a converter, electric furnace, etc., vacuum refining, making it a steel piece by continuous casting or ingot casting, etc. However, when used, it is often subjected to secondary processing such as press processing. However, when ferritic stainless steel sheet is subjected to secondary processing, surface irregularities (wrinkles) called ridging are generated on the steel sheet surface, which not only impairs the appearance of the surface but also causes the origin of minute cracks. Therefore, it is necessary to remove irregularities by means such as polishing, which leads to a decrease in product productivity and an increase in cost.

このリジングは、鋳造時に鋼片内部に発達した粗大なデンドライトの凝固組織に起因しており、その影響が鋼板となった後の結晶組織にも残り、鋼板の二次加工時に結晶粒ごとの変形挙動の差によって生じる現象であり、特に、鋳造後の製造過程において相変態が起こらず、結晶組織が粗大になりやすいフェライト系ステンレス鋼では発生しやすい。   This ridging is caused by the coarse dendrite solidification structure developed inside the steel slab at the time of casting, and the effect remains in the crystal structure after becoming a steel sheet. This is a phenomenon caused by a difference in behavior, and is particularly likely to occur in ferritic stainless steels in which the phase transformation does not occur in the manufacturing process after casting and the crystal structure tends to be coarse.

リジングを防止する対策としては、凝固組織を微細等軸晶化する方法、あるいは圧延-再結晶によって組織を微細化する方法が挙げられる。前者の方法としては、凝固時にTiNのような析出物を生成させたり、連続鋳造時に電磁攪拌を行う方法が、また、後者の方法としては、熱間圧延時に強圧下を行ったり、冷間圧延時の圧下回数を増やす方法が知られている。しかし、TiNのような析出物が過剰に生成したり、圧延時に強圧下したり圧下回数を増すと、表面疵が発生しやすくなり、表面品質を低下させる。   Measures for preventing ridging include a method of making the solidified structure fine equiaxed or a method of making the structure fine by rolling-recrystallization. As the former method, a precipitate such as TiN is generated at the time of solidification, or a method of performing electromagnetic stirring at the time of continuous casting, and as the latter method, a strong reduction is performed at the time of hot rolling, or a cold rolling is performed. A method for increasing the number of times of rolling down is known. However, if precipitates such as TiN are generated excessively, or if rolling is reduced during rolling or the number of times of rolling is increased, surface flaws tend to occur and surface quality is degraded.

一方、電磁攪拌によりリジングを防止する方法としては、例えば、特許文献1には、フェライト系ステンレス溶鋼を連続鋳造法によって鋳造するに際し、中間容器内溶鋼の過熱温度を15〜25℃となし、かつ鋳造中の鋳片湯面下1.5m〜3.0mの位置に電磁攪拌装置を設置し、鋳片未凝固相を攪拌推力60mmHd以上で攪拌する方法が提案されている。また、特許文献2には、フェライト系ステンレス鋼を連続鋳造するさいに、溶鋼の鋳造温度を(凝固点+25℃)以上とし、45mmHd以上130mmHd以下の攪拌推力のもとで鋳片内の未凝固部分を電磁攪拌し、かつその攪拌方向を10ないし30秒間隔で正逆方向に変化させる方法が提案されている。
特開昭52-47522号公報 特開昭54-125132号公報 岡野ら:「鉄と鋼」、61(1975)69
On the other hand, as a method for preventing ridging by electromagnetic stirring, for example, in Patent Document 1, when casting a ferritic stainless steel molten steel by a continuous casting method, the superheating temperature of the molten steel in the intermediate vessel is 15 to 25 ° C, and A method has been proposed in which an electromagnetic stirrer is installed at a position 1.5 m to 3.0 m below the slab hot water surface during casting, and the unsolidified phase of the slab is stirred at a stirring thrust of 60 mmHd or more. Patent Document 2 describes that when continuously casting ferritic stainless steel, the casting temperature of the molten steel is set to (solidification point + 25 ° C) or higher, and the solidification in the slab is performed under a stirring thrust of 45 mmHd to 130 mmHd. There has been proposed a method in which a part is electromagnetically stirred and the direction of stirring is changed in forward and reverse directions at intervals of 10 to 30 seconds.
JP-A-52-47522 JP 54-125132 A Okano et al .: "Iron and Steel", 61 (1975) 69

しかしながら、特許文献1に記載の方法では、中間容器内溶鋼の過熱温度を15〜25℃に制御することが困難であるとともに、過熱温度が低いため鋳型へ溶鋼を供給するノズル内で溶鋼が凝固するおそれがある。また、特許文献2に記載の方法では、攪拌方向を正逆方向に変化させることにより鋳型内の溶鋼流動が大きく乱れ、非金属介在物等を浮上除去できなくなって表面品質を低下させるおそれがある。   However, in the method described in Patent Document 1, it is difficult to control the superheated temperature of the molten steel in the intermediate container to 15 to 25 ° C, and the molten steel is solidified in the nozzle that supplies the molten steel to the mold because the superheated temperature is low. There is a risk. Further, in the method described in Patent Document 2, the flow of molten steel in the mold is greatly disturbed by changing the stirring direction in the forward and reverse directions, and non-metallic inclusions and the like cannot be levitated and removed, which may reduce the surface quality. .

本発明は、電磁攪拌により、溶鋼温度の制御が容易で、かつ表面品質を低下させずにリジングの発生を防止できるフェライト系ステンレス鋼の連続鋳造方法を提供することを目的とする。   An object of the present invention is to provide a ferritic stainless steel continuous casting method that can easily control the molten steel temperature by electromagnetic stirring and can prevent ridging without deteriorating the surface quality.

本発明者らは、電磁攪拌によりリジングを防止するフェライト系ステンレス鋼の連続鋳造方法について検討を行った結果、以下のことを見出した。
i) フェライト系ステンレス鋼の組成を適正化するとともに、電磁攪拌により鋳型内凝固界面における溶鋼流速を5〜60cm/secの範囲になるようにすれば、溶鋼温度の制御が容易で、かつ表面品質を低下させずにリジングの発生を防止できる。
As a result of studying a continuous casting method of ferritic stainless steel for preventing ridging by electromagnetic stirring, the present inventors have found the following.
i) If the composition of ferritic stainless steel is optimized and the molten steel flow velocity at the solidification interface in the mold is within the range of 5 to 60 cm / sec by electromagnetic stirring, the molten steel temperature can be easily controlled and the surface quality The generation of ridging can be prevented without lowering.

本発明は、このような知見に基づきなされたもので、質量%で、C:0.01%以下、Si:0.03〜0.3%、Mn:0.1〜0.5%、P:0.05%以下、S:0.01%以下、N:0.005〜0.015%、Cr:20〜25%、Ti:0.2〜0.5%を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼を、電磁攪拌により鋳型内凝固界面における溶鋼流速が5〜60cm/secの範囲になるようにして鋳造することを特徴とするフェライト系ステンレス鋼の連続鋳造方法を提供する。   The present invention has been made on the basis of such knowledge, in mass%, C: 0.01% or less, Si: 0.03-0.3%, Mn: 0.1-0.5%, P: 0.05% or less, S: 0.01% or less , N: 0.005 to 0.015%, Cr: 20 to 25%, Ti: 0.2 to 0.5%, and the steel flow rate at the solidification interface in the mold by electromagnetic stirring The present invention provides a continuous casting method of ferritic stainless steel, characterized in that casting is performed in a range of 5 to 60 cm / sec.

本発明のフェライト系ステンレス鋼の連続鋳造方法では、鋼に、さらに、質量%で、Cu:0.3〜0.8%およびNi:0.1〜0.8%を含有させることが好ましい。   In the continuous casting method of the ferritic stainless steel of the present invention, it is preferable that the steel further contains Cu: 0.3 to 0.8% and Ni: 0.1 to 0.8% by mass%.

本発明の方法により、電磁攪拌によって、溶鋼温度の制御が容易で、表面品質を低下させずにリジングの発生しないフェライト系ステンレス鋼板を製造できるようになった。また、本発明の方法により鋳造後の凝固組織は微細等軸晶化するので、その後の圧延工程において圧下率や圧下回数に対する負荷を軽減できることにもなる。   The method of the present invention makes it possible to produce a ferritic stainless steel sheet that is easy to control the molten steel temperature by electromagnetic stirring and that does not cause ridging without deteriorating the surface quality. In addition, since the solidified structure after casting becomes fine equiaxed crystal by the method of the present invention, it is possible to reduce the load on the reduction rate and the number of reductions in the subsequent rolling process.

以下に、本発明の詳細について説明する。   Details of the present invention will be described below.

1)組成(以下の「%」は「質量%」を表す。)
C:0.01%以下
C量を0.01%以下にすると、凝固温度を上昇させ、過冷却を起こりやすくして凝固組織の等軸晶化を促進したり、Cr炭化物の形成を妨げ、耐食性を良好にする固溶Cr量を増加させる効果が顕著に発現される。このため、C量は0.01%以下とする。
1) Composition (“%” below represents “% by mass”)
C: 0.01% or less
If the C content is 0.01% or less, the solidification temperature will increase, the solidification temperature will rise, and it will be easy to cause overcooling to promote equiaxed crystallization of the solidified structure, prevent the formation of Cr carbides, and improve the corrosion resistance. The effect of increasing the amount is remarkably expressed. Therefore, the C content is 0.01% or less.

Si:0.03〜0.3%
Siは精錬時に生成するCr酸化物の還元と脱酸に有用な元素であるため、その量を0.03%以上とする。一方、Si量が0.3%を超えると、鋼板の加工性が劣化する。このため、Si量は0.03〜0.3%とする。
Si: 0.03-0.3%
Since Si is an element useful for reduction and deoxidation of Cr oxide generated during refining, the amount is set to 0.03% or more. On the other hand, when the Si content exceeds 0.3%, the workability of the steel sheet deteriorates. Therefore, the Si content is 0.03 to 0.3%.

Mn:0.1〜0.5%
Mnは脱酸や高強度化に有用な元素であるため、その量を0.1%以上とする。一方、Mn量が0.5%を超えると、MnSが析出量が増加して耐孔食性が劣化したり、コスト増を招く。このため、Mn量は0.1〜0.5%とする。
Mn: 0.1-0.5%
Since Mn is an element useful for deoxidation and strengthening, its amount is set to 0.1% or more. On the other hand, if the amount of Mn exceeds 0.5%, the amount of precipitation of MnS increases, resulting in deterioration of pitting corrosion resistance or an increase in cost. For this reason, the amount of Mn is made 0.1 to 0.5%.

P:0.05%以下
P量が0.05%を超えると、靭性、熱間加工性および耐食性が著しく劣化する。このため、P量は0.05%以下とするが、少ないほど好ましい。
P: 0.05% or less
If the P content exceeds 0.05%, the toughness, hot workability and corrosion resistance are significantly deteriorated. For this reason, the amount of P is set to 0.05% or less, but the smaller the amount, the better.

S:0.01%以下
S量が0.01%を超えると、Pと同様、靭性、熱間加工性および耐食性が著しく劣化する。このため、S量は0.01%以下とするが、少ないほど好ましい。
S: 0.01% or less
When the amount of S exceeds 0.01%, as with P, toughness, hot workability and corrosion resistance deteriorate significantly. For this reason, the amount of S is set to 0.01% or less, but is preferably as small as possible.

N:0.005〜0.015%
Nは凝固時にTiNとして析出し、凝固組織を微細等軸晶化してリジングの発生を防止するのに有用な元素である。こうした効果を得るには、N量を0.005%以上にする必要がある。一方、その量が0.015%を超えると、析出物が過剰に生成して表面疵が発生し、表面品質を低下させるとともに、靭性の著しい低下を招く。このため、N量は0.005〜0.015%とする。
N: 0.005 to 0.015%
N precipitates as TiN at the time of solidification, and is an element useful for preventing the generation of ridging by finely equiaxing the solidified structure. In order to obtain such an effect, the N amount needs to be 0.005% or more. On the other hand, if the amount exceeds 0.015%, precipitates are excessively generated and surface defects are generated, resulting in a decrease in surface quality and a significant decrease in toughness. For this reason, the N amount is set to 0.005 to 0.015%.

Cr:20〜25%
Crはフェライト系ステンレス鋼の耐食性および耐酸化性を確保するために有用な元素である。こうした効果を得るには、Cr量を20%以上にする必要がある。一方、その量が25%を超えると、いわゆる475℃脆性が起こりやすくなり、靭性の著しい低下を招く。このため、Cr量は20〜25%とする。
Cr: 20-25%
Cr is an element useful for ensuring the corrosion resistance and oxidation resistance of ferritic stainless steel. In order to obtain such effects, the Cr content needs to be 20% or more. On the other hand, when the amount exceeds 25%, so-called brittleness at 475 ° C. is likely to occur, and the toughness is significantly reduced. For this reason, the Cr content is 20 to 25%.

Ti:0.2〜0.5%
Tiは凝固時にTiNとして析出し、凝固組織を微細等軸晶化してリジングの発生を防止するために有用な元素であり、また、Cと結合して炭化物を形成し、加工性、耐食性および靭性を向上させる作用も有する。こうした効果を得るには、Ti量を0.2%以上にする必要がある。一方、その量が0.5%を超えると、Tiの酸化物や窒化物が過剰に生成して表面疵が発生し、表面品質を低下させる。このため、Ti量は0.2〜0.5%とする。
Ti: 0.2-0.5%
Ti precipitates as TiN during solidification, and is a useful element for preventing ridging by fine equiaxed crystallization of the solidified structure. Also, it forms a carbide by combining with C, and it has workability, corrosion resistance and toughness. It also has an effect of improving. In order to obtain such effects, the Ti content needs to be 0.2% or more. On the other hand, when the amount exceeds 0.5%, Ti oxides and nitrides are excessively generated to generate surface defects, which deteriorates the surface quality. Therefore, the Ti amount is set to 0.2 to 0.5%.

残部はFeおよび不可避的不純物であるが、以下の理由により、さらにCu:0.3〜0.8%およびNi:0.1〜0.8%を含有させることが好ましい。   The balance is Fe and inevitable impurities, but it is preferable to further contain Cu: 0.3 to 0.8% and Ni: 0.1 to 0.8% for the following reason.

Cu:0.3〜0.8%
Cuはフェライト系ステンレス鋼の耐食性を向上させる元素である。こうした効果を得るには、Cu量を0.3%以上にする必要がある。一方、その量が0.8%を超えると、熱間圧延工程(加熱時または圧延時)で低融点のCu化合物が形成されて表面疵が発生し、表面品質を低下させる。このため、Cu量は0.3〜0.8%とする。
Cu: 0.3-0.8%
Cu is an element that improves the corrosion resistance of ferritic stainless steel. In order to obtain such effects, the Cu content needs to be 0.3% or more. On the other hand, if the amount exceeds 0.8%, a low melting point Cu compound is formed in the hot rolling process (at the time of heating or rolling), surface defects are generated, and the surface quality is deteriorated. For this reason, the amount of Cu is made 0.3 to 0.8%.

Ni:0.1〜0.8%
Niはフェライト系ステンレス鋼の耐食性を向上させる元素である。こうした効果を得るには、Ni量を0.1%以上にする必要がある。一方、その量が0.8%を超えると、C含有量によっては熱間圧延工程でオーステナイト相が生成し、フェライト+オーステナイトの2相組織となって耐食性が劣化する。このため、Ni量は0.1〜0.8%とする。
Ni: 0.1-0.8%
Ni is an element that improves the corrosion resistance of ferritic stainless steel. In order to obtain such effects, the Ni content needs to be 0.1% or more. On the other hand, if the amount exceeds 0.8%, depending on the C content, an austenite phase is generated in the hot rolling process, and a two-phase structure of ferrite + austenite is formed, and the corrosion resistance deteriorates. Therefore, the Ni content is 0.1 to 0.8%.

2)電磁攪拌による鋳型内凝固界面における溶鋼流速:5〜60cm/sec
特許文献1や2に開示されているように、電磁攪拌を利用して凝固組織を微細等軸晶化してリジングの発生を防止する技術は従来から検討されており、いわゆる攪拌推力の原動力となる磁場印加強度を増加するほど効果的であると考えられている。しかし、磁場印加強度を単に増大した場合には、溶鋼流動が激しくなり、非金属介在物やモールドパウダー等を巻き込み表面品質を低下させる場合があり、磁場印加強度を単純に増大するという制御ではリジングと表面品質を共に向上させることは困難である。そこで、本発明者らが検討したところ、磁場印加強度ではなく鋳型内凝固界面における溶鋼流速を5〜60cm/secに制御すれば、非金属介在物やモールドパウダー等を巻き込みを起こさず凝固組織を微細等軸晶化でき、リジングの発生を防止できることがわかった。これは、溶鋼流速が5cm/sec未満では、凝固界面を洗い流す効果が低下し、非金属介在物やモールドパウダー等が凝固界面に付着しやすくなり、また、溶鋼流速が60cm/sec を超えると、非金属介在物やモールドパウダー等を巻き込み、表面品質を低下させるためである。
2) Molten steel flow velocity at the solidification interface in the mold by electromagnetic stirring: 5-60cm / sec
As disclosed in Patent Documents 1 and 2, a technique for preventing the occurrence of ridging by finely equiaxing the solidified structure using electromagnetic stirring has been studied conventionally, and serves as a driving force for so-called stirring thrust. It is considered to be more effective as the applied magnetic field intensity is increased. However, if the magnetic field application intensity is simply increased, the flow of molten steel becomes intense and may involve non-metallic inclusions, mold powder, etc., reducing the surface quality. It is difficult to improve the surface quality together. Therefore, the present inventors have examined that if the molten steel flow velocity at the solidification interface in the mold is controlled to 5 to 60 cm / sec instead of the magnetic field applied strength, the solidified structure can be obtained without causing the inclusion of non-metallic inclusions or mold powder. It was found that fine equiaxed crystallization can be prevented and generation of ridging can be prevented. This is because when the molten steel flow rate is less than 5 cm / sec, the effect of washing the solidification interface is reduced, nonmetallic inclusions, mold powder, etc. are likely to adhere to the solidification interface, and when the molten steel flow rate exceeds 60 cm / sec, This is because non-metallic inclusions, mold powder, and the like are involved and the surface quality is lowered.

ここで、鋳型内凝固界面における溶鋼流速は、電磁攪拌の磁場印加強度、浸漬ノズル吐出流速、溶鋼スループット、鋳型幅などの鋳造条件を制御すれば制御可能である。なお、鋳型内凝固界面における溶鋼流速は、非特許文献1に記載された凝固組織のデンドライト樹枝状晶の傾き角度から算出する方法で求めることができる。また、その制御は、予め上記のような鋳造条件と溶鋼流速との関係を求めておけば可能となる。   Here, the flow rate of molten steel at the solidification interface in the mold can be controlled by controlling casting conditions such as the magnetic field application intensity of electromagnetic stirring, the immersion nozzle discharge flow rate, the molten steel throughput, and the mold width. The molten steel flow velocity at the solidification interface in the mold can be obtained by a method described in Non-Patent Document 1 that is calculated from the inclination angle of the dendritic dendrites of the solidified structure. Moreover, the control becomes possible if the relationship between the above casting conditions and the molten steel flow velocity is obtained in advance.

溶銑を転炉に挿入して脱炭精錬を行い、さらにVODを用いて仕上脱炭、脱ガス精錬を行った後、Alを添加して脱酸を行った。次いでTiを添加して、得られた溶鋼を取鍋に収容して連続鋳造設備へ運搬した。そこで、取鍋から連続鋳造鋳型へ溶鋼を鋳込んでスラブを製造した。得られたスラブの成分は表1に示すとおりである。また、連続鋳造時には、電磁攪拌により鋳型内凝固界面における溶鋼流速を表1に示すとおりに制御した。   Hot metal was inserted into the converter for decarburization and refining, and after finishing decarburization and degassing using VOD, Al was added to deoxidize. Next, Ti was added, and the resulting molten steel was placed in a ladle and transported to a continuous casting facility. Therefore, slabs were manufactured by casting molten steel from a ladle into a continuous casting mold. The components of the obtained slab are as shown in Table 1. During continuous casting, the molten steel flow velocity at the solidification interface in the mold was controlled as shown in Table 1 by electromagnetic stirring.

こうして製造した厚み220mmのスラブを35mmの厚みまでリバース圧延で粗圧延して粗バーとした後、タンデム仕上圧延機で厚み4.0mmまで熱間圧延し、熱延鋼板を製造した。この熱延鋼板を950℃で連続焼鈍した後、酸洗し、厚み1.0mmまで冷間圧延し、900℃で連続焼鈍して冷延鋼板を製造した。そして、得られた冷延鋼板に対して、リジング特性および表面品質を以下の方法で評価した。   The 220 mm thick slab thus produced was roughly rolled into a rough bar by reverse rolling to a thickness of 35 mm, and then hot rolled to a thickness of 4.0 mm with a tandem finish rolling mill to produce a hot rolled steel sheet. The hot-rolled steel sheet was continuously annealed at 950 ° C., then pickled, cold-rolled to a thickness of 1.0 mm, and continuously annealed at 900 ° C. to produce a cold-rolled steel sheet. And the ridging characteristic and surface quality were evaluated with the following method with respect to the obtained cold-rolled steel plate.

リジング特性:冷延鋼板からJIS Z 2201に規定されたJIS 13号B引張試験片を圧延方向に平行に2本採取し、試験片の片面を600番の研磨紙で研磨後、歪量20%の単軸引張歪を付与し、粗度計により試験片中央部の研磨面のうねり高さ(リジングの凹凸)を測定した。そして、2本の平均のうねり高さが5μm未満をリジングなし(○)、5〜15μmをリジング小(△)、15μm超えをリジング大(×)とし、○の場合を本発明とした。   Ridging characteristics: Two JIS 13B tensile test pieces specified in JIS Z 2201 are collected from cold-rolled steel sheets in parallel with the rolling direction, and one side of the test piece is polished with No. 600 abrasive paper, and the strain is 20%. The waviness height (ridging unevenness) of the polished surface at the center of the test piece was measured with a roughness meter. The average waviness height of the two was less than 5 μm without ridging (◯), 5 to 15 μm was ridging small (Δ), and more than 15 μm was ridging large (×).

表面品質:冷延鋼板の表面を目視で観察し、冷延鋼板1000mあたりに観察されるへげ状の表面疵が2個以下を良(○)、3〜5個を可(△)、6個以上を不良(×) とし、○の場合を本発明とした。なお、ここでは、析出物等に起因するへげ状の表面疵を評価しており、リジングに起因する表面欠陥は除外されている。   Surface quality: The surface of the cold-rolled steel sheet is visually observed, and 2 or less of the ridge-like surface defects observed per 1000 m of the cold-rolled steel sheet are good (○), 3-5 pieces are acceptable (△), 6 More than one piece was judged as defective (x), and the case of ○ was regarded as the present invention. Here, the ridge-like surface defects caused by precipitates and the like are evaluated, and surface defects caused by ridging are excluded.

結果を表1に示す。本発明の方法で製造された鋼No.1〜7の冷延鋼板は、優れたリジング特性と表面品質を具備していることがわかる。   The results are shown in Table 1. It can be seen that the cold-rolled steel sheets Nos. 1 to 7 produced by the method of the present invention have excellent ridging characteristics and surface quality.

Figure 0005125893
Figure 0005125893

Claims (2)

質量%で、C:0.01%以下、Si:0.03〜0.3%、Mn:0.1〜0.5%、P:0.05%以下、S:0.01%以下、N:0.005〜0.015%、Cr:20〜25%、Ti:0.2〜0.5%を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼を、電磁攪拌により鋳型内凝固界面における溶鋼流速が5〜60cm/secの範囲になるようにして鋳造することを特徴とするフェライト系ステンレス鋼の連続鋳造方法。   In mass%, C: 0.01% or less, Si: 0.03-0.3%, Mn: 0.1-0.5%, P: 0.05% or less, S: 0.01% or less, N: 0.005-0.015%, Cr: 20-25%, Casting steel with a composition containing Ti: 0.2-0.5% and the balance consisting of Fe and inevitable impurities so that the molten steel flow velocity at the solidification interface in the mold is in the range of 5-60 cm / sec by electromagnetic stirring. A method for continuous casting of ferritic stainless steel. 鋼に、さらに、質量%で、Cu:0.3〜0.8%およびNi:0.1〜0.8%を含有させることを特徴とする請求項1に記載のフェライト系ステンレス鋼の連続鋳造方法。   2. The method for continuous casting of ferritic stainless steel according to claim 1, wherein the steel further contains Cu: 0.3 to 0.8% and Ni: 0.1 to 0.8% by mass%.
JP2008220933A 2008-08-29 2008-08-29 Continuous casting method of ferritic stainless steel Active JP5125893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008220933A JP5125893B2 (en) 2008-08-29 2008-08-29 Continuous casting method of ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008220933A JP5125893B2 (en) 2008-08-29 2008-08-29 Continuous casting method of ferritic stainless steel

Publications (2)

Publication Number Publication Date
JP2010052022A JP2010052022A (en) 2010-03-11
JP5125893B2 true JP5125893B2 (en) 2013-01-23

Family

ID=42068500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220933A Active JP5125893B2 (en) 2008-08-29 2008-08-29 Continuous casting method of ferritic stainless steel

Country Status (1)

Country Link
JP (1) JP5125893B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102501B2 (en) * 2013-05-20 2017-03-29 新日鐵住金株式会社 High Cr steel continuous casting method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3588411B2 (en) * 1997-09-22 2004-11-10 新日本製鐵株式会社 Stainless steel continuous casting method
JPH11156503A (en) * 1997-12-01 1999-06-15 Nippon Steel Corp Production method of ferrite system stainless steel plate with no rolling surface defect and with excellent ridgingness, and wire for b adding
JP3257546B2 (en) * 1999-11-12 2002-02-18 住友金属工業株式会社 Steel continuous casting method
JP4727601B2 (en) * 2007-02-06 2011-07-20 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent crevice corrosion resistance
JP4905024B2 (en) * 2006-09-26 2012-03-28 Jfeスチール株式会社 Ferritic stainless steel sheet with high strength of spot welded joint and method for producing the same
KR100821059B1 (en) * 2006-12-28 2008-04-16 주식회사 포스코 Ferritic stainless steel with high corrosion resistance and stretchability and the method of manufacturing the same

Also Published As

Publication number Publication date
JP2010052022A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5687624B2 (en) Stainless steel, cold-rolled strip made from this steel, and method for producing steel plate products from this steel
KR100976889B1 (en) Hot rolled steel sheet for processing and method for manufacturing the same
WO2015147216A1 (en) High-strength hot-formed steel sheet member
JP6115691B1 (en) Steel plate and enamel products
JP2003293083A (en) Hot rolled steel sheet and method of producing hot rolled steel sheet and cold rolled steel sheet
MX2015002530A (en) Steel plate.
KR101850231B1 (en) Ferritic stainless steel and method for producing same
JP6306353B2 (en) Method for producing slab for ferritic stainless steel cold rolled steel sheet and method for producing ferritic stainless steel cold rolled steel sheet
JP5825343B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
KR20170029647A (en) Material for cold-rolled stainless steel sheets
JP3624804B2 (en) Method for producing ridging resistant ferritic stainless steel
JP6910523B1 (en) Manufacturing method of ultra-soft rolled steel that does not easily rust
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP6052503B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
CN102933732A (en) Structural stainless steel sheet having excellent corrosion resistance at weld and method for manufacturing same
JP2008274329A (en) Low-carbon ferritic stainless steel with excellent ridging characteristic, and its manufacturing method
JP5125893B2 (en) Continuous casting method of ferritic stainless steel
CN115896637A (en) Preparation method of super austenitic stainless steel hot-rolled coil
JP6816516B2 (en) Non-oriented electrical steel sheet
JP2010059474A (en) Hot dip galvanized steel sheet and method for producing the same
JP4998365B2 (en) Ultra-low carbon steel sheet and manufacturing method thereof
TWI575084B (en) Steel sheet with strain induced transformation type composite structure and the manufacturing method thereof
JP2011246814A (en) Ferritic stainless steel sheet and method of manufacturing the same
JP2008285717A (en) Inexpensive ferrite based stainless steel sheet having excellent ridging resistance and producible at high productivity, and method for producing the same
JP5087965B2 (en) Extremely low carbon ferritic stainless steel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250