JP2015178120A - Continuous casting method for round casting piece - Google Patents

Continuous casting method for round casting piece Download PDF

Info

Publication number
JP2015178120A
JP2015178120A JP2014056340A JP2014056340A JP2015178120A JP 2015178120 A JP2015178120 A JP 2015178120A JP 2014056340 A JP2014056340 A JP 2014056340A JP 2014056340 A JP2014056340 A JP 2014056340A JP 2015178120 A JP2015178120 A JP 2015178120A
Authority
JP
Japan
Prior art keywords
mold
molten steel
continuous casting
ray diffraction
casting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014056340A
Other languages
Japanese (ja)
Inventor
信幸 高平
Nobuyuki Takahira
信幸 高平
信宏 岡田
Nobuhiro Okada
信宏 岡田
池田 達彦
Tatsuhiko Ikeda
達彦 池田
花尾 方史
Masafumi Hanao
方史 花尾
塚口 友一
Yuichi Tsukaguchi
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014056340A priority Critical patent/JP2015178120A/en
Publication of JP2015178120A publication Critical patent/JP2015178120A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method capable of simply and easily producing a round casting piece having high cross-sectional circularity from the molten steel having high total content of Cr and Ni.SOLUTION: A continuous casting method includes using a mold flux satisfying 25≤I/I×100, and giving an agitation flow in which the maximum circumferential flow rate u (mm/s) on a molten steel surface satisfies 200≤u≤570 to the molten steel in a casting mold having a circular cross section. Here, I is the strength value of a highest one of the spectral peaks by a crystal phase obtained by the X-ray diffraction measurement of the powder which is obtained by crushing at room temperature, the specimen prepared by cooling an aggregate-removed mold flux from 1,450°C to 1,000°C at 2K/min. Iis the strength value of the peak by (111) plane obtained by the same X-ray diffraction measurement as that of I.

Description

本発明は、鋼の連続鋳造方法に関し、特に、横断面が円形である丸鋳片を連続鋳造する方法に関する。   The present invention relates to a continuous casting method for steel, and more particularly to a method for continuously casting a round cast piece having a circular cross section.

石油または天然ガスを採掘する油井管、それらを輸送するラインパイプ等の用途に用いられる継目無鋼管は、ユジーン・セジュルネ製管法、またはマンネスマン製管法等によって製造される。より詳細には、それらの製管法によって、横断面が円形の鋳片(以下、「丸鋳片」ともいう。)を中空の素管に加工し、その後、必要に応じて、その素管に、抽伸、熱処理等の処理を施して、継目無鋼管が製造される。   Seamless steel pipes used for applications such as oil well pipes for extracting oil or natural gas and line pipes for transporting them are manufactured by the Eugene Sejurne pipe manufacturing method, the Mannesmann pipe manufacturing method, or the like. More specifically, a cast slab having a circular cross section (hereinafter also referred to as “round cast slab”) is processed into a hollow shell by these pipe making methods, and then, if necessary, In addition, a seamless steel pipe is manufactured by performing processes such as drawing and heat treatment.

これらの製管法に使用可能な丸鋳片としては、内壁面の横断面が矩形の鋳型(以下、「矩形断面鋳型」という。)を用いて、横断面が矩形の連続鋳造鋳片を製造し、この矩形断面鋳片を分塊圧延して得られるもの、および内壁面の横断面が円形の鋳型(以下、「円形断面鋳型」という。)を用いて連続鋳造したままのものが挙げられる。   As a round slab that can be used in these pipe making methods, a continuous casting slab having a rectangular cross section is manufactured using a mold having a rectangular inner wall cross section (hereinafter referred to as a “rectangular cross section mold”). In addition, there can be mentioned those obtained by performing a piece rolling of this rectangular cross-section slab, and those obtained by continuous casting using a mold whose inner wall has a circular cross section (hereinafter referred to as “circular cross-section mold”). .

矩形断面鋳型を用いる場合は、得られた矩形断面鋳片を分塊圧延によって丸鋳片にする必要がある。この丸鋳片の両端には、非定常部が形成される。非定常部はクロップとして切断除去する必要があり、丸鋳片の製造コストが上昇する一因となっている。これに対して、円形断面鋳型を用いる場合は、分塊圧延を行わないので、矩形断面鋳型を用いた場合に比して、丸鋳片を安価に製造できる。そのため、この安価な丸鋳片を、連続鋳造したままの状態で用いて、不良を発生させることなく継目無鋼管を製造できれば、大幅に製造コストを低減することができる。   When using a rectangular cross-section mold, the obtained rectangular cross-section slab needs to be made into a round slab by partial rolling. Unsteady portions are formed at both ends of the round cast slab. It is necessary to cut and remove the unsteady portion as a crop, which is one factor that increases the manufacturing cost of the round cast slab. On the other hand, when a circular cross-section mold is used, since no ingot rolling is performed, a round slab can be manufactured at a lower cost than when a rectangular cross-section mold is used. Therefore, if this inexpensive round slab can be used in a continuously cast state and a seamless steel pipe can be produced without causing defects, the production cost can be greatly reduced.

しかし、円形断面鋳型を用いて連続鋳造された丸鋳片は、分塊圧延で得られた丸鋳片に比べて、横断面の真円度(以下、単に、「真円度」ともいう。)が低くなることが多い。これは、以下の理由による。   However, a round cast slab continuously cast using a circular cross-section mold is also referred to as a roundness (hereinafter simply referred to as “roundness”) of a cross section as compared with a round cast obtained by ingot rolling. ) Is often low. This is due to the following reason.

矩形断面鋳型で連続鋳造した場合には、鋳片に形成される凝固殻の横断面が矩形であることから、凝固殻の横断面が円形である場合に比べてバルジングが起こりやすい。そのため、矩形断面鋳型を用いた場合は、凝固収縮に伴って凝固殻が変形して鋳型と凝固殻とが乖離しても、溶鋼の静圧によって凝固殻がバルジングして、鋳型と凝固殻とはすぐに再び密着する。バルジングしやすいことにより、鋳片には冷却が遅れる部分は生じにくい。このような理由により、矩形断面鋳型を用いると、円形断面鋳型を用いる場合と比較して、真円度が高い鋳片が得られる。   In the case of continuous casting with a rectangular cross-section mold, since the cross section of the solidified shell formed on the slab is rectangular, bulging is more likely to occur than when the cross section of the solidified shell is circular. Therefore, when a rectangular cross-section mold is used, even if the solidified shell is deformed due to solidification shrinkage and the mold and the solidified shell are separated from each other, the solidified shell is bulged by the static pressure of the molten steel. Immediately reattaches Due to the ease of bulging, the slab is less likely to be delayed in cooling. For this reason, when a rectangular cross-section mold is used, a slab having a higher roundness can be obtained than when a circular cross-section mold is used.

すなわち、円形断面鋳型を用いると連続鋳造された丸鋳片の真円度が低くなるのは、鋳片に形成される凝固殻の横断面が円形であるため、バルジングが起こりにくいことに起因する。凝固殻がバルジングしないと、鋳型と凝固殻とが乖離しやすく、鋳片において鋳型から乖離した部分では冷却が遅れる。冷却が遅れた部分では、凝固殻の厚さが他よりも薄くなり、凝固に伴う収縮量が小さくなるため、周方向で凝固殻の厚さが不均一となり、鋳片の断面の真円度が低下する。   In other words, the roundness of continuously cast round slabs is reduced when a circular cross-section mold is used. This is because the cross-section of the solidified shell formed on the slab is circular and bulging is unlikely to occur. . If the solidified shell does not bulge, the mold and the solidified shell are likely to be separated from each other, and cooling is delayed at a portion of the slab that is separated from the mold. In the part where cooling is delayed, the thickness of the solidified shell becomes thinner than the others, and the amount of shrinkage due to solidification becomes small, so the thickness of the solidified shell becomes uneven in the circumferential direction, and the roundness of the cross section of the slab Decreases.

特に、Crの含有率が高い溶鋼から、円形断面鋳型を用いて連続鋳造すると、得られる鋳片の真円度が、より低くなりやすい。これは、鋼はCrの含有率が高いほど高温強度が高くなるため、凝固収縮により変形した凝固殻が、よりバルジングしにくくなるためである。   In particular, when continuous casting is performed from a molten steel having a high Cr content using a circular cross-sectional mold, the roundness of the resulting slab tends to be lower. This is because the higher the Cr content, the higher the high-temperature strength of the steel, so that the solidified shell deformed by solidification shrinkage becomes more difficult to bulge.

さらに、Ni含有率が高い溶鋼から、円形断面鋳型を用いて連続鋳造しても、得られる鋳片の真円度が、より低くなりやすい。これは、Ni含有率が高いほど、初晶として、または凝固過程において、オーステナイト相が晶出しやすいことに起因する。オーステナイト相は、フェライト相と比較して密度が高いため、オーステナイト相が晶出すると、フェライト相が晶出した場合と比較して、凝固収縮が大きくなり、鋳型と凝固殻とが乖離しやすくなる。   Furthermore, even if continuous casting is performed from molten steel having a high Ni content using a circular cross-sectional mold, the roundness of the resulting slab tends to be lower. This is due to the fact that the higher the Ni content, the easier the austenite phase to crystallize as primary crystals or during the solidification process. Since the austenite phase has a higher density than the ferrite phase, when the austenite phase is crystallized, the solidification shrinkage is larger than when the ferrite phase is crystallized, and the mold and the solidified shell are easily separated. .

一般に、CrおよびNiの含有率の合計が20質量%以上の溶鋼から、円形断面鋳型を用いて連続鋳造すると、真円度が高い鋳片は得られにくい。   Generally, when continuous casting is performed using a circular cross-section mold from molten steel having a total content of Cr and Ni of 20% by mass or more, a slab having high roundness is difficult to obtain.

真円度の低下は、凝固の初期段階において、凝固殻の収縮に伴って、鋳型と凝固殻とが乖離することにより発生する。そのため、これらの真円度の低下を抑制するには、凝固の初期段階における鋳型と凝固殻との乖離を抑制することが重要である。   The decrease in roundness is caused by the separation of the mold and the solidified shell as the solidified shell contracts in the initial stage of solidification. Therefore, in order to suppress the decrease in roundness, it is important to suppress the detachment between the mold and the solidified shell in the initial stage of solidification.

一般に、円形断面鋳型を用いた場合は、溶鋼が一旦凝固した後はバルジングしにくく、鋳型と凝固殻とを密着させることが困難である。しかし、メニスカス付近の凝固開始箇所において溶鋼を鋳型に押し付けながら凝固させると、凝固殻の凝固収縮に伴って鋳型と凝固殻とが乖離することを抑制し、鋳型と凝固殻とを密着させることが容易となる。   In general, when a circular cross-section mold is used, it is difficult to bulge the molten steel once solidified, and it is difficult to make the mold and the solidified shell adhere to each other. However, if the molten steel is solidified while being pressed against the mold at the solidification start point near the meniscus, it is possible to suppress the separation of the mold and the solidified shell due to the solidification shrinkage of the solidified shell and to bring the mold and the solidified shell into close contact with each other. It becomes easy.

鋳型と凝固殻とを密着させる方法として、特許文献1には、鋳型内の溶鋼中に設置したローラーによって凝固初期の凝固殻を鋳型に押し付ける方法が開示されている。しかし、この方法では、ローラーの支持棒が溶鋼中および溶鋼上部のモールドフラックス中を通過する際に、その支持棒の後部で発生する渦にモールドフラックスが巻き込まれて、鋳片の内部欠陥となること、および、支持棒によって溶鋼から抜熱されて溶鋼湯面に皮張りが生じ、操業が困難となること等の問題が生じるおそれがある。   As a method for bringing the mold and the solidified shell into close contact with each other, Patent Document 1 discloses a method of pressing the solidified shell at the initial stage of solidification against a mold with a roller installed in molten steel in the mold. However, in this method, when the support rod of the roller passes through the molten steel and the mold flux at the top of the molten steel, the mold flux is caught in the vortex generated at the rear portion of the support rod, resulting in an internal defect of the slab. In addition, there is a possibility that problems such as that heat is removed from the molten steel by the support rod and the molten steel surface is covered and the operation becomes difficult.

ところで、従来から、電磁力によって鋳型中の溶鋼を攪拌する電磁攪拌が、連続鋳造に適用されている。電磁攪拌によって、特許文献2では、鋳片表皮下の欠陥等の形成が、特許文献3では、ホワイトバンド(ビレット表層部の負偏析帯)の形成が、特許文献4では、マクロ偏析および内部欠陥の形成が、それぞれ抑制できるとされている。しかし、電磁攪拌によって鋳型と凝固殻とを密着させることについては、これまでに検討されていない。   Conventionally, electromagnetic stirring that stirs molten steel in a mold by electromagnetic force has been applied to continuous casting. In Patent Document 2, formation of defects such as slab surface undercutting is performed by electromagnetic stirring, in Patent Document 3, formation of a white band (negative segregation band of billet surface layer) is performed, and in Patent Document 4, macrosegregation and internal defects are formed. It is said that the formation of each can be suppressed. However, it has not been studied so far to bring the mold and the solidified shell into close contact by electromagnetic stirring.

また、特許文献5〜8には、様々な結晶相を晶出するモールドフラックスが報告されているが、これらの文献のいずれにおいても、結晶相の有効な晶出量と凝固殻の成長との関係については、検討されていない。   Patent Documents 5 to 8 report mold fluxes that crystallize various crystal phases. In any of these documents, the effective crystallization amount of crystal phases and the growth of solidified shells are reported. The relationship has not been studied.

特開平3−8536号公報Japanese Patent Laid-Open No. 3-8536 特開平1−180762号公報JP-A-1-180762 特開2001−25848号公報Japanese Patent Laid-Open No. 2001-25848 特開昭60−44157号公報Japanese Patent Laid-Open No. 60-44157 特開2002−103008号公報JP 2002-103008 A 特開2003−326342号公報JP 2003-326342 A 特開2004−223599号公報JP 2004-223599 A 特開2005−40835号公報Japanese Patent Laid-Open No. 2005-40835

上述のように、CrおよびNiの含有率の合計が20質量%以上の溶鋼から、円形断面鋳型を用いて連続鋳造すると、真円度が高い鋳片は得られない。これは、凝固殻の高温強度が高く、凝固収縮量が大きいため、鋳型と凝固殻との乖離が生じやすいことによる。真円度が低い丸鋳片をそのまま用いて製管することができないので、真円度を高くするために丸鋳片の外削工程が必要となり、作業コストの増加に加えて、歩留まりの低下と言った問題を引き起こす。   As described above, when a continuous casting is performed from a molten steel having a total content of Cr and Ni of 20% by mass or more using a circular cross-sectional mold, a slab having a high roundness cannot be obtained. This is because the solidified shell has a high temperature strength and a large amount of solidification shrinkage, so that the mold and the solidified shell are easily separated. Since round slabs with low roundness cannot be used as they are, pipe cutting is necessary to increase roundness, which increases work costs and decreases yield. Cause problems.

本発明は、これらの問題に鑑みてなされたものであり、CrおよびNiの含有率の合計が高い溶鋼から鋼を連続鋳造する場合に、簡便に、断面の真円度が高い丸鋳片を製造することが可能な連続鋳造方法を提供することを目的とする。   The present invention has been made in view of these problems. When continuously casting steel from molten steel having a high total content of Cr and Ni, a round slab having a high roundness of a cross section is simply obtained. It aims at providing the continuous casting method which can be manufactured.

本発明は、下記(I)の連続鋳造方法を要旨とする。
(I)CrおよびNiの含有率の合計が20質量%以上で、凝固過程でオーステナイト相を晶出する溶鋼を、単孔下向きの浸漬ノズルを通じて、断面が円形の鋳型に注入し、前記鋳型内の前記溶鋼に前記鋳型の周方向に沿う速度成分を有する撹拌流を与えながら、断面が円形の丸鋳片を鋳造する連続鋳造方法であって、
結晶相のX線回折強度比I/I0が下記式(A)を満たすモールドフラックスを用い、前記鋳型内の前記溶鋼に、湯面における周方向最大流速u(mm/s)が下記式(B)を満たす撹拌流を与えながら連続鋳造することを特徴とする鋼の連続鋳造方法。
25≦I/I0×100 (A)
200≦u≦570 (B)
I:骨材を除去したモールドフラックスを、1450℃から1000℃まで2K/minで冷却して試料とし、この試料を常温で破砕して得た粉末について、X線回折測定で得られる、結晶相によるスペクトルピークのうち最も高いものの強度値(count per second)
0:多結晶Siについて、Iと同じX線回折測定で得られる(111)面によるスペクトルピークの強度値(count per second)
The gist of the present invention is the continuous casting method (I) below.
(I) Molten steel having a total content of Cr and Ni of 20% by mass or more and crystallizing an austenite phase in the solidification process is poured into a mold having a circular cross section through a single-hole downward dipping nozzle. A continuous casting method of casting a round cast piece having a circular cross section while giving a stirring flow having a velocity component along the circumferential direction of the mold to the molten steel,
Using a mold flux in which the X-ray diffraction intensity ratio I / I 0 of the crystal phase satisfies the following formula (A), the maximum circumferential flow velocity u (mm / s) on the molten metal surface is expressed by the following formula ( A continuous casting method of steel, characterized by performing continuous casting while applying a stirring flow that satisfies B).
25 ≦ I / I 0 × 100 (A)
200 ≦ u ≦ 570 (B)
I: The mold flux from which the aggregate has been removed is cooled from 1450 ° C. to 1000 ° C. at 2 K / min to obtain a sample, and the crystal phase obtained by X-ray diffraction measurement of the powder obtained by crushing this sample at room temperature Intensity value of the highest spectrum peak due to (count per second)
I 0 : For polycrystalline Si, the intensity value of spectrum peak (count per second) by (111) plane obtained by the same X-ray diffraction measurement as I

前記モールドフラックスの凝固点が1140℃以上であり、前記X線回折強度比I/I0が、前記式(A)に代えて下記式(C)を満たし、前記周方向最大流速uが、前記式(B)に代えて下記式(D)を満たすことが好ましい。
27≦I/I0×100 (C)
300≦u≦570 (D)
The solidification point of the mold flux is 1140 ° C. or higher, the X-ray diffraction intensity ratio I / I 0 satisfies the following formula (C) instead of the formula (A), and the circumferential maximum flow velocity u is the formula It is preferable to satisfy the following formula (D) instead of (B).
27 ≦ I / I 0 × 100 (C)
300 ≦ u ≦ 570 (D)

本発明の連続鋳造方法によれば、鋼のCrおよびNiの含有率の合計が高い場合に、簡便な方法により、真円度の高い丸鋳片、たとえば、横断面において最も長い厚みと最も短い厚みとの差が10mm以下である丸鋳片を製造することが可能である。ここで、厚みとは、2本の平行線で当該横断面を挟んだときのこれら2本の平行線の間隔をいうものとする。   According to the continuous casting method of the present invention, when the total content of Cr and Ni in the steel is high, a round cast slab having a high roundness, for example, the longest thickness and the shortest in the cross section is obtained by a simple method. It is possible to produce a round slab having a difference from the thickness of 10 mm or less. Here, the thickness means an interval between the two parallel lines when the cross section is sandwiched between the two parallel lines.

モールドフラックスのX線回折強度比、および溶鋼の周方向の最大流速と、鋳片の真円度との関係を示す図である。It is a figure which shows the relationship between the X-ray diffraction intensity ratio of mold flux, the maximum flow velocity of the circumferential direction of molten steel, and the roundness of a slab.

本発明者らは、鋳型と凝固殻とを密着させるための手段として、溶鋼を水平方向に回転流動させて生じる遠心力と、結晶化しやすいモールドフラックスとに着目し、検討を重ねた。モールドフラックスに関しては、鋳造時に結晶化しやすいものを用いることにより、緩冷却化作用が得られて、凝固殻が均一成長することが期待できる。そして、本発明者らは、CrおよびNiの含有率の合計が高い(20質量%以上)溶鋼から、円形断面鋳型を用いて、丸鋳片を連続鋳造する場合に、モールドフラックスの結晶化量と溶鋼の流速とについて、真円度が高い丸鋳片が得られる範囲が存在することを知見した。   As a means for bringing the mold and the solidified shell into close contact with each other, the inventors focused attention on the centrifugal force generated by rotating and flowing the molten steel in the horizontal direction and the mold flux that is easily crystallized, and repeated studies. With regard to the mold flux, it is expected that a slow cooling action can be obtained and a solidified shell can be uniformly grown by using one that is easily crystallized during casting. And when the present inventors continuously cast a round slab from a molten steel with a high total content of Cr and Ni (20% by mass or more) using a circular cross-sectional mold, the amount of crystallization of the mold flux It has been found that there is a range in which round cast slabs with high roundness can be obtained with respect to the flow rate of molten steel.

本発明は、この知見に基づくもので、上述のように、この連続鋳造方法では、CrおよびNiの含有率の合計が20質量%以上で、凝固過程でオーステナイト相を晶出する溶鋼を、単孔下向きの浸漬ノズルを通じて、断面が円形の鋳型に注入し、鋳型内の溶鋼に鋳型の周方向に沿う速度成分を有する撹拌流を与えながら、断面が円形の丸鋳片を鋳造する。   The present invention is based on this finding. As described above, in this continuous casting method, a molten steel having a total content of Cr and Ni of 20% by mass or more and crystallizing an austenite phase in the solidification process is obtained. A round slab having a circular cross section is cast while being poured into a mold having a circular cross section through a submerged nozzle facing the hole and giving a stirring flow having a velocity component along the circumferential direction of the mold to the molten steel in the mold.

連続鋳造を行う際は、結晶相のX線回折強度比I/I0が上記式(A)を満たすモールドフラックスを用い、鋳型内の溶鋼に、湯面における周方向最大流速u(mm/s)が上記式(B)を満たす撹拌力を与える。 When continuous casting is performed, a mold flux in which the X-ray diffraction intensity ratio I / I 0 of the crystal phase satisfies the above formula (A) is used, and the maximum circumferential flow velocity u (mm / s on the molten metal surface) is applied to the molten steel in the mold. ) Gives a stirring force satisfying the above formula (B).

鋳型内の溶鋼に、鋳型の周方向に沿う速度成分を有する撹拌流を与えることによって、溶鋼は遠心力を与えられて鋳型の内壁に押し付けられる。また、I/I0が上記式(A)を満たすことにより、このモールドフラックスからは、十分な量の結晶が晶出し、溶鋼、および凝固殻からの輻射熱の低減、すなわち、緩冷却化作用が十分に得られて、凝固殻が均一成長する。これらの作用により、鋳型と凝固殻とを密着させることができ、真円度が高い鋳片が得られる。 By applying a stirring flow having a velocity component along the circumferential direction of the mold to the molten steel in the mold, the molten steel is given a centrifugal force and is pressed against the inner wall of the mold. Further, when I / I 0 satisfies the above formula (A), a sufficient amount of crystals are crystallized from the mold flux, and the radiant heat from the molten steel and the solidified shell is reduced, that is, the effect of slow cooling is achieved. It is fully obtained and the solidified shell grows uniformly. By these actions, the mold and the solidified shell can be brought into close contact with each other, and a slab having high roundness can be obtained.

電磁撹拌装置等により、溶鋼に、鋳型の周方向に沿う速度成分を有する撹拌流を付与することは、広く行われており、また、上記式(A)(または式(B))を満たすモールドフラックスは、容易に入手できる。したがって、本発明の方法により、簡便に、真円度の高い丸鋳片を得ることができる。   Giving a stirring flow having a velocity component along the circumferential direction of the mold to the molten steel by an electromagnetic stirring device or the like is widely performed, and a mold satisfying the above formula (A) (or formula (B)) The flux is readily available. Therefore, a round cast slab having a high roundness can be easily obtained by the method of the present invention.

溶鋼に撹拌流を与えるための手段としては、たとえば、公知の電磁撹拌装置を用いることができる。溶鋼は、単孔下向きの浸漬ノズルにより鋳型に注入されるので、このノズルによっては、鋳型の周方向に沿う速度成分を有する撹拌流は、実質的に生じない。このため、溶鋼に撹拌流を与えるための手段によって、撹拌流について、鋳型の周方向に沿う速度成分を、正確に制御することができる。   As a means for giving a stirring flow to molten steel, for example, a known electromagnetic stirring device can be used. Since the molten steel is injected into the mold by a single-hole downward dipping nozzle, a stirring flow having a velocity component along the circumferential direction of the mold is not substantially generated by this nozzle. For this reason, the speed component along the circumferential direction of the mold can be accurately controlled for the stirring flow by means for giving the stirring flow to the molten steel.

0に関して、「Iと同じX線回折測定で」とは、Iを求めるためのX線回折測定に用いたものと同じX線回折測定装置を用い、Iを求めるためのX線回折測定と同じ条件での測定であることを意味する。 Regarding I 0 , “in the same X-ray diffraction measurement as I” means that the same X-ray diffraction measurement apparatus as that used for the X-ray diffraction measurement for obtaining I is used and the X-ray diffraction measurement for obtaining I is used. It means that the measurement is performed under the same conditions.

I/I0×100<25では、モールドフラックスからの結晶の晶出量が少なく、鋳造時に、この結晶によっては、溶鋼、および凝固殻からの輻射熱を十分には低減できず、鋳型と凝固殻との乖離が生じやすい。溶鋼、および凝固殻からの輻射熱の低減量を、より大きくするためには、27≦I/I0×100とする(上記式(C)を満たす)ことが好ましい。 When I / I 0 × 100 <25, the amount of crystals crystallized from the mold flux is small, and at the time of casting, the radiant heat from the molten steel and the solidified shell cannot be sufficiently reduced due to this crystal. Deviations from are likely to occur. In order to further increase the amount of reduction in radiant heat from the molten steel and the solidified shell, it is preferable that 27 ≦ I / I 0 × 100 (the above formula (C) is satisfied).

モールドフラックスの融液から晶出する結晶相の種類は、特に限定されないが、たとえば、akermanite(Ca2MgSi27)、または、akermaniteとgehlenite(Ca2Al2SiO7)との全率固溶体であるmeliliteとすることができる。X線回折測定で最も高いスペクトルピークは、これらの結晶相によるものであってもよい。akermanite、およびmeliliteは、通常、溶鋼、および凝固殻を緩冷却するのに適した晶出温度を有している。したがって、X線回折測定で最も高いスペクトルピークがakermanite、またはmeliliteによるものであれば、溶鋼、および凝固殻を緩冷却する効果を得やすい。 Type of crystal phase crystallizes from the melt in the mold flux is not particularly limited, for example, akermanite (Ca 2 MgSi 2 O 7), or, complete solid solution between akermanite and gehlenite (Ca 2 Al 2 SiO 7 ) It can be melite. The highest spectral peak in the X-ray diffraction measurement may be due to these crystalline phases. akermanite and melilite usually have crystallization temperatures suitable for slow cooling of molten steel and solidified shells. Therefore, if the highest spectral peak in the X-ray diffraction measurement is due to akermanite or melilite, it is easy to obtain the effect of slowly cooling the molten steel and the solidified shell.

また、X線回折測定で2番目に高いスペクトルピークは、たとえば、cuspidine(Ca4Si272)によるものとすることができる。cuspidineは、akermanite、およびmeliliteと同様に、溶鋼、および凝固殻を緩冷却するのに適した晶出温度を有している。一方、cuspidineは塩基度が高いため、cuspidineが多く晶出すると、akermanite、またはmeliliteの晶出を抑制させてしまう可能性がある。このため、X線回折測定で最も高いスペクトルピークは、cuspidineによるものではないことが好ましい。 Further, the second highest spectral peak in the X-ray diffraction measurement can be caused by, for example, cuspidine (Ca 4 Si 2 O 7 F 2 ). Cuspidine has a crystallization temperature suitable for slow cooling of molten steel and solidified shell, similar to akermanite and melilite. On the other hand, since cuspidine has a high basicity, if a large amount of cuspidine is crystallized, crystallization of akermanite or melilite may be suppressed. For this reason, it is preferable that the highest spectral peak in the X-ray diffraction measurement is not due to cuspidine.

u<200であると、溶鋼に十分な遠心力が生じない。そのため、鋳型内のメニスカス付近の凝固開始箇所において溶鋼を鋳型に押し付ける力が不十分となり、鋳型と凝固殻とを密着させることができず、鋳型と凝固殻との乖離が生じやすい。鋳型と凝固殻とを十分に密着させて、鋳型と凝固殻との乖離を、十分に抑制するためには、300≦uであることが好ましい。   If u <200, sufficient centrifugal force is not generated in the molten steel. Therefore, the force for pressing the molten steel against the mold at the solidification start position near the meniscus in the mold becomes insufficient, the mold and the solidified shell cannot be brought into close contact with each other, and the mold and the solidified shell are easily separated. In order to sufficiently bring the mold and the solidified shell into close contact with each other and sufficiently suppress the deviation between the mold and the solidified shell, 300 ≦ u is preferable.

一方、570<uであると、溶鋼に生じる遠心力が過剰となり、溶鋼湯面が、浸漬ノズル近傍では低く、鋳型内壁近傍では高くなり、両者の高さの差が著しくなる。これに伴って、溶鋼の湯面上のモールドフラックスの厚さが鋳型内壁に近いほど薄くなる。そのため、モールドフラックスが鋳型と凝固殻との間に流入し難くなり、鋳型と凝固殻との間において潤滑不良が起こりやすくなる。   On the other hand, if 570 <u, the centrifugal force generated in the molten steel becomes excessive, and the molten steel surface is low in the vicinity of the immersion nozzle and high in the vicinity of the inner wall of the mold, and the difference in height between the two becomes remarkable. Along with this, the thickness of the mold flux on the molten steel surface becomes thinner as it approaches the inner wall of the mold. Therefore, the mold flux hardly flows between the mold and the solidified shell, and poor lubrication is likely to occur between the mold and the solidified shell.

モールドフラックスの凝固点は、1100℃以上、かつ1250℃以下であることが好ましい。凝固点が1100℃より低いと、モールドフラックスが、鋳型内で、より低い温度の領域に到達するまで、結晶が晶出せず、溶鋼、および凝固殻からの輻射熱を抑制するのに十分な量の結晶が得られない。輻射熱を十分に抑制するために、モールドフラックスの凝固点は、1140℃以上であることが、より好ましい。また、凝固点が1250℃より高い場合には、モールドフラックスが鋳型と凝固殻との間に流入するとすぐに結晶が晶出するので、鋳型と凝固殻との間に、モールドフラックスが十分に流入しないおそれがある。   The freezing point of the mold flux is preferably 1100 ° C. or higher and 1250 ° C. or lower. When the freezing point is lower than 1100 ° C., the crystal does not crystallize until the mold flux reaches a lower temperature region in the mold, and a sufficient amount of crystals to suppress the radiant heat from the molten steel and the solidified shell. Cannot be obtained. In order to sufficiently suppress radiant heat, the freezing point of the mold flux is more preferably 1140 ° C. or higher. Further, when the freezing point is higher than 1250 ° C., the crystal is crystallized as soon as the mold flux flows between the mold and the solidified shell, so that the mold flux does not flow sufficiently between the mold and the solidified shell. There is a fear.

モールドフラックスの1300℃における粘度(以下、「高温粘度」という。)は、0.2Pa・s以上、かつ0.8Pa・sであることが好ましい。高温粘度が0.2Pa・s未満であると、モールドフラックスが鋳型と凝固殻との間に過剰に流入するおそれがある。モールドフラックスのこのような過剰な流入を十分に抑制するには、高温粘度は、0.3Pa・s以上であることが、より好ましい。一方、高温粘度が0.8Pa・sよりも高いと、モールドフラックスが鋳型と凝固殻との間に十分に流入することができないおそれがある。モールドフラックスを鋳型と凝固殻との間に十分に流入させるためには、高温粘度は、0.7Pa・s以下であることが、より好ましい。   The viscosity of the mold flux at 1300 ° C. (hereinafter referred to as “high temperature viscosity”) is preferably 0.2 Pa · s or more and 0.8 Pa · s. If the high-temperature viscosity is less than 0.2 Pa · s, the mold flux may flow excessively between the mold and the solidified shell. In order to sufficiently suppress such excessive inflow of mold flux, the high temperature viscosity is more preferably 0.3 Pa · s or more. On the other hand, when the high-temperature viscosity is higher than 0.8 Pa · s, there is a possibility that the mold flux cannot sufficiently flow between the mold and the solidified shell. In order to allow the mold flux to sufficiently flow between the mold and the solidified shell, the high temperature viscosity is more preferably 0.7 Pa · s or less.

鋳造速度は、0.3m/min以上、かつ2.0m/min以下であることが好ましい。鋳造速度が0.3m/min未満であると、凝固殻が全体に厚くなり過ぎるため、溶鋼に発生する遠心力により鋳型と凝固殻とを密着させる効果が得られない。一方、鋳造速度が2.0m/minよりも大きい場合には、凝固殻が薄くなり過ぎるため、凝固殻の不均一成長が助長される。   The casting speed is preferably 0.3 m / min or more and 2.0 m / min or less. If the casting speed is less than 0.3 m / min, the solidified shell becomes too thick as a whole, and the effect of bringing the mold and the solidified shell into close contact with each other due to the centrifugal force generated in the molten steel cannot be obtained. On the other hand, when the casting speed is higher than 2.0 m / min, the solidified shell becomes too thin, which promotes non-uniform growth of the solidified shell.

鋳型の直径は、160mm以上、かつ380mm以下であることが好ましい。鋳型の内径が小さくなるほど、鋳型内に注入される溶鋼により供給される熱に対して、鋳型を介して放散する熱の割合が大きくなり、鋳型の直径が160mm以下であると、鋳型内の溶鋼を十分高い温度に保持することが困難になる。一方、鋳型内壁に隣接する部分において溶鋼の周方向の速度成分が同じであれば、鋳型の直径が大きくなるほど、溶鋼に働く遠心力は小さくなり、鋳型の直径が380mmより大きいと、溶鋼に働く遠心力による上述の効果が十分得られなくなる。   The diameter of the mold is preferably 160 mm or more and 380 mm or less. The smaller the inner diameter of the mold, the greater the proportion of heat dissipated through the mold relative to the heat supplied by the molten steel injected into the mold, and if the mold diameter is 160 mm or less, the molten steel in the mold Is difficult to maintain at a sufficiently high temperature. On the other hand, if the velocity component in the circumferential direction of the molten steel is the same in the portion adjacent to the inner wall of the mold, the centrifugal force acting on the molten steel decreases as the mold diameter increases, and if the mold diameter is greater than 380 mm, it acts on the molten steel. The above-mentioned effect due to centrifugal force cannot be obtained sufficiently.

本発明の連続鋳造方法の効果を確認するため、以下の試験を行い、その結果を評価した。
1.試験方法
鋳造には、直径が180〜360mmの円形断面鋳型を用い、この鋳型に溶鋼を供給するために、単孔下向きの浸漬ノズルを用いた。
In order to confirm the effect of the continuous casting method of the present invention, the following tests were conducted and the results were evaluated.
1. Test Method For casting, a circular cross-section mold having a diameter of 180 to 360 mm was used, and a single-hole downward dipping nozzle was used to supply molten steel to the mold.

表1に、溶鋼に対応する鋼のC、Si、Mn、Cr、およびNiの含有率を示す。いずれの鋼種でも、CrおよびNiの含有率の合計は、20質量%以上である。   Table 1 shows the contents of C, Si, Mn, Cr, and Ni in steel corresponding to the molten steel. In any steel type, the total content of Cr and Ni is 20% by mass or more.

Figure 2015178120
Figure 2015178120

表2に、用いたモールドフラックスの化学組成、X線回折強度比I/I0、凝固点、および、X線回折測定で最大ピークを示す結晶相を示す。表2に示すように、上記式(A)を、モールドフラックスA〜Dは満たすが、モールドフラックスEは満たさない。 Table 2 shows the chemical composition of the mold flux used, the X-ray diffraction intensity ratio I / I 0 , the freezing point, and the crystal phase showing the maximum peak in the X-ray diffraction measurement. As shown in Table 2, the above formula (A) is satisfied by the mold fluxes A to D, but not by the mold flux E.

Figure 2015178120
Figure 2015178120

表2のモールドフラックスA〜Eのいずれかを用い、電磁攪拌装置により、鋳型内の溶鋼に撹拌力を付与して、鋳型の周方向に沿う速度成分を有する流れを生じさせながら、丸鋳片を連続鋳造した。表3に、試験条件、および評価結果を示す。試験条件として、溶鋼の周方向の最大流速は、実測が困難であるため、電磁力を考慮した鋳型内流動の数値解析シミュレーションにより算出した。   While using any of the mold fluxes A to E in Table 2, an electromagnetic stirrer applies a stirring force to the molten steel in the mold to produce a flow having a velocity component along the circumferential direction of the mold, Was continuously cast. Table 3 shows test conditions and evaluation results. As the test conditions, the maximum flow velocity in the circumferential direction of the molten steel was difficult to measure, and was calculated by numerical analysis simulation of the flow in the mold in consideration of electromagnetic force.

Figure 2015178120
Figure 2015178120

2.試験結果
得られた丸鋳片の評価は、真円度を測定することよって行った。図1に、実施例の試験結果として、X線回折強度比I/I0、および周方向の最大流速uと、真円度との関係を示す。表3、および図1において、記号の意味は以下のとおりである。
○:外削をしなくても、製管工程へ送ることができる高い真円度を有する。
△:径方向に関して10mm以内の外削を必要とする程度の真円度を有する。
×:径方向に関して10mmより多くの外削を必要とする程度の真円度を有する。
◇:真円度が低く、凝固不均一が大きく、連続鋳造の操業自体が困難である。
2. Test Results The obtained round cast slabs were evaluated by measuring the roundness. FIG. 1 shows the relationship between the X-ray diffraction intensity ratio I / I 0 , the circumferential maximum flow velocity u, and the roundness as a test result of the example. In Table 3 and FIG. 1, the meanings of the symbols are as follows.
○: It has high roundness that can be sent to the pipe making process without any external cutting.
(Triangle | delta): It has roundness of the grade which requires the external cutting within 10 mm regarding a radial direction.
X: It has roundness of the grade which requires an external cutting more than 10 mm regarding a radial direction.
◇: The roundness is low, the solidification unevenness is large, and the continuous casting operation itself is difficult.

評価結果を○または△としたものは、丸鋳片の横断面において最も長い直径と最も短い直径との差が10mm以下である。製造条件にもよるが、径方向に関して10mm以内の外削を実施することには、コストメリットがある一方、径方向に関して10mmより多くの外削を実施することには、コストメリットはない。   In the case where the evaluation result is ◯ or Δ, the difference between the longest diameter and the shortest diameter in the cross section of the round slab is 10 mm or less. Although depending on the manufacturing conditions, performing an external cut within 10 mm in the radial direction has a cost merit, while performing an external cut greater than 10 mm in the radial direction has no cost merit.

図1から、結晶相のX線回折強度比I/I0、および周方向の最大流速uが、本発明の要件(上記式(A)および(B))を満たす場合には、評価結果が○または△であり、高い真円度の鋳片が得られることがわかる。X線回折強度比I/I0、および周方向の最大流速uの少なくとも一方が本発明の要件を満たさない場合には、評価結果が×または◇であり、高い真円度の鋳片は得られていない。 From FIG. 1, when the X-ray diffraction intensity ratio I / I 0 of the crystal phase and the circumferential maximum flow velocity u satisfy the requirements of the present invention (the above formulas (A) and (B)), the evaluation result is It turns out that it is (circle) or (triangle | delta) and a slab with high roundness is obtained. When at least one of the X-ray diffraction intensity ratio I / I 0 and the circumferential maximum flow velocity u does not satisfy the requirements of the present invention, the evaluation result is x or ◇, and a high roundness slab is obtained. It is not done.

27≦I/I0、かつ300≦u≦570の範囲では、大部分の鋳片の評価結果は○となっており、より真円度が高い丸鋳片が得られている。 In the range of 27 ≦ I / I 0 and 300 ≦ u ≦ 570, the evaluation results of most slabs are “◯”, and round slabs with higher roundness are obtained.

鋼種I〜IIIのいずれの溶鋼から生じた凝固殻も、高温強度が高く、凝固収縮量が大きいと考えられる。本発明の方法によって、このような凝固殻と鋳型との乖離を抑制することができることがわかる。   Solidified shells produced from any molten steel of steel types I to III are considered to have high strength at high temperatures and a large amount of solidification shrinkage. It can be seen that such a deviation between the solidified shell and the mold can be suppressed by the method of the present invention.

本発明は、CrおよびNiの含有率の合計が20質量%以上の溶鋼から、真円度が高い丸鋳片を製造する場合に適用することができる。   The present invention can be applied to manufacturing a round slab having high roundness from molten steel having a total content of Cr and Ni of 20% by mass or more.

Claims (2)

CrおよびNiの含有率の合計が20質量%以上で、凝固過程でオーステナイト相を晶出する溶鋼を、単孔下向きの浸漬ノズルを通じて、断面が円形の鋳型に注入し、前記鋳型内の前記溶鋼に前記鋳型の周方向に沿う速度成分を有する撹拌流を与えながら、断面が円形の丸鋳片を鋳造する連続鋳造方法であって、
結晶相のX線回折強度比I/I0が下記式(A)を満たすモールドフラックスを用い、前記鋳型内の前記溶鋼に、湯面における周方向最大流速u(mm/s)が下記式(B)を満たす撹拌流を与えながら連続鋳造することを特徴とする鋼の連続鋳造方法。
25≦I/I0×100 (A)
200≦u≦570 (B)
I:骨材を除去したモールドフラックスを、1450℃から1000℃まで2K/minで冷却して試料とし、この試料を常温で破砕して得た粉末について、X線回折測定で得られる、結晶相によるスペクトルピークのうち最も高いものの強度値(count per second)
0:多結晶Siについて、Iと同じX線回折測定で得られる(111)面によるスペクトルピークの強度値(count per second)
A molten steel having a total content of Cr and Ni of 20% by mass or more and crystallizing an austenite phase during the solidification process is poured into a mold having a circular cross section through a single-hole downward dipping nozzle, and the molten steel in the mold is injected into the mold. A continuous casting method for casting a round cast piece having a circular cross section while giving a stirring flow having a velocity component along the circumferential direction of the mold,
Using a mold flux in which the X-ray diffraction intensity ratio I / I 0 of the crystal phase satisfies the following formula (A), the maximum circumferential flow velocity u (mm / s) on the molten metal surface is expressed by the following formula ( A continuous casting method of steel, characterized by performing continuous casting while applying a stirring flow that satisfies B).
25 ≦ I / I 0 × 100 (A)
200 ≦ u ≦ 570 (B)
I: The mold flux from which the aggregate has been removed is cooled from 1450 ° C. to 1000 ° C. at 2 K / min to obtain a sample, and the crystal phase obtained by X-ray diffraction measurement of the powder obtained by crushing this sample at room temperature Intensity value of the highest spectrum peak due to (count per second)
I 0 : For polycrystalline Si, the intensity value of spectrum peak (count per second) by (111) plane obtained by the same X-ray diffraction measurement as I
請求項1に記載の連続鋳造方法であって、
前記モールドフラックスの凝固点が、1140℃以上であり、
前記X線回折強度比I/I0が、前記式(A)に代えて下記式(C)を満たし、
前記周方向最大流速uが、前記式(B)に代えて下記式(D)を満たす、鋼の連続鋳造方法。
27≦I/I0×100 (C)
300≦u≦570 (D)
The continuous casting method according to claim 1,
The freezing point of the mold flux is 1140 ° C. or higher,
The X-ray diffraction intensity ratio I / I 0 satisfies the following formula (C) instead of the formula (A),
The steel continuous casting method in which the circumferential maximum flow velocity u satisfies the following formula (D) instead of the formula (B).
27 ≦ I / I 0 × 100 (C)
300 ≦ u ≦ 570 (D)
JP2014056340A 2014-03-19 2014-03-19 Continuous casting method for round casting piece Pending JP2015178120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056340A JP2015178120A (en) 2014-03-19 2014-03-19 Continuous casting method for round casting piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056340A JP2015178120A (en) 2014-03-19 2014-03-19 Continuous casting method for round casting piece

Publications (1)

Publication Number Publication Date
JP2015178120A true JP2015178120A (en) 2015-10-08

Family

ID=54262563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056340A Pending JP2015178120A (en) 2014-03-19 2014-03-19 Continuous casting method for round casting piece

Country Status (1)

Country Link
JP (1) JP2015178120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180164235A1 (en) * 2015-06-16 2018-06-14 Novacast Systems Ab Apparatus for analysis of metals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006367A (en) * 2007-06-28 2009-01-15 Sumitomo Metal Ind Ltd Method for continuously casting small cross-sectional cast billet
JP2010269348A (en) * 2009-05-22 2010-12-02 Sumitomo Metal Ind Ltd Continuous casting method for high-alloy steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006367A (en) * 2007-06-28 2009-01-15 Sumitomo Metal Ind Ltd Method for continuously casting small cross-sectional cast billet
JP2010269348A (en) * 2009-05-22 2010-12-02 Sumitomo Metal Ind Ltd Continuous casting method for high-alloy steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180164235A1 (en) * 2015-06-16 2018-06-14 Novacast Systems Ab Apparatus for analysis of metals
US11293887B2 (en) * 2015-06-16 2022-04-05 Novacast Systems Ab Apparatus for analysis of metals

Similar Documents

Publication Publication Date Title
JP5041029B2 (en) Method for producing high manganese steel
RU2433885C2 (en) Method of continuous casting of billet with small cross section
JP6358178B2 (en) Continuous casting method and mold cooling water control device
Hong et al. Geometrical effect of freckle formation on directionally solidified superalloy CM247 LC components
CN110709188B (en) Method for manufacturing austenitic stainless steel slab
JP5360086B2 (en) Manufacturing method using continuous casting of nonmagnetic steel
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
JP2015178120A (en) Continuous casting method for round casting piece
JP4301133B2 (en) Method for continuous casting of round slab, method for making round slab and seamless pipe
JP5942712B2 (en) Scum weir, thin slab manufacturing method, thin slab manufacturing equipment
JP6264524B1 (en) Steel continuous casting method
JP4527693B2 (en) Continuous casting method of high Al steel slab
JP2008260044A (en) Continuous casting method of steel slab for preventing breakout caused by solidification delay
JP5387497B2 (en) Manufacturing method of high alloy steel by continuous casting
JP2013071155A (en) Copper alloy ingot, copper alloy sheet, and method for manufacturing copper alloy ingot
JP2004330252A (en) Continuous casting method for round billet, and round billet
JP2006231400A (en) Mold powder for continuous casting of medium carbon steel, and continuous casting method
JP6384447B2 (en) Continuous casting method
JP2008290136A (en) Continuous casting method for low carbon high sulfur steel
JP6102501B2 (en) High Cr steel continuous casting method
JP2016043377A (en) Continuous casting method of Cu-Ga alloy
JP2006247672A (en) MOLD FLUX FOR CONTINUOUS CASTING TO Ni BASED MOLTEN METAL AND CONTINUOUS CASTING METHOD FOR Ni MATERIAL
JP2019038033A (en) Method for continuously casting round cast slab
JP6136782B2 (en) High Cr steel continuous casting method
JP5935737B2 (en) Continuous casting method for round billets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180313