JP6100536B2 - Electrode manufacturing method - Google Patents

Electrode manufacturing method Download PDF

Info

Publication number
JP6100536B2
JP6100536B2 JP2013007432A JP2013007432A JP6100536B2 JP 6100536 B2 JP6100536 B2 JP 6100536B2 JP 2013007432 A JP2013007432 A JP 2013007432A JP 2013007432 A JP2013007432 A JP 2013007432A JP 6100536 B2 JP6100536 B2 JP 6100536B2
Authority
JP
Japan
Prior art keywords
active material
binder
powder
electrode
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013007432A
Other languages
Japanese (ja)
Other versions
JP2014137965A (en
Inventor
和美 花田
和美 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Engineering Co Ltd filed Critical Nippon Steel and Sumikin Engineering Co Ltd
Priority to JP2013007432A priority Critical patent/JP6100536B2/en
Publication of JP2014137965A publication Critical patent/JP2014137965A/en
Application granted granted Critical
Publication of JP6100536B2 publication Critical patent/JP6100536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は電極の製造方法に関し、リチウムイオン電池などに用いられる電極の製造に関する。   The present invention relates to an electrode manufacturing method, and more particularly to manufacturing an electrode used in a lithium ion battery or the like.

従来、リチウムイオン電池などの電池は、セパレータを介してシート状の正極および負極を積層し、この積層体を円筒状などに巻いて形成される。
正極および負極として用いられるシート状の電極は、アルミニウムあるいは銅を圧延した箔(ベース)の表面に、正極あるいは負極としての活物質の層を形成したものである。
Conventionally, a battery such as a lithium ion battery is formed by laminating a sheet-like positive electrode and a negative electrode via a separator and winding the laminate into a cylindrical shape or the like.
A sheet-like electrode used as a positive electrode and a negative electrode is obtained by forming an active material layer as a positive electrode or a negative electrode on the surface of a foil (base) obtained by rolling aluminum or copper.

活物質層は、活物質や導電助材などの粉体材料を有機溶剤に結着材(バインダー)や増粘剤を溶かした溶液に分散させてスラリー状とし、これをコータ等でベースの表面に塗布することにより形成されていた(湿式塗布法)。
このような湿式塗布法では、溶剤を蒸発させる工程が必須のため局所排気を必要とし、設備が大がかりになるだけでなく、湿式のため調合の際の粘度調整が活物質などの粉体材料の湿度の影響などを受けるため塗膜の安定性も十分でなかったことから、活物質、導電助材および結着材をベース上に粉体塗装する乾式塗布法が開発されている(特許文献1参照)。
The active material layer is made by dispersing a powder material such as an active material or a conductive aid in a solution in which a binder (binder) or a thickener is dissolved in an organic solvent, and making this into a slurry. It was formed by applying to (wet coating method).
In such a wet coating method, the process of evaporating the solvent is indispensable, so local exhaust is required, and not only the equipment becomes large, but also because of the wet process, the viscosity adjustment at the time of blending of the powder material such as the active material Since the coating film was not sufficiently stable due to the influence of humidity and the like, a dry coating method in which an active material, a conductive additive and a binder are powder-coated on a base has been developed (Patent Document 1). reference).

特許文献1では、活物質の平均粒径1〜50μm(好ましくは20〜30μm)、導電助剤(導電化材粉末)の平均粒径0.01〜5μm(好ましくは0.03〜2μm)、結着材の平均粒径0.1〜50μm(好ましくは1〜10μm)とされている。
これらの活物質、導電助剤および結着材の粉末は、静電塗装にあたって加振器で加振されるとともに、電解印加用電極によりベースに対して正負逆に帯電され、静電気力によりベースに吸着される。そして、乾燥炉で過熱されることで、結着材が溶融されて活物質および導電助剤がベース上に固定される。
なお、特許文献1には、予め活物質に結着材を溶融付着させて複合粉末としておき、これをベース上に粉体塗装することも記載されている。
In Patent Document 1, the average particle diameter of the active material is 1 to 50 μm (preferably 20 to 30 μm), the average particle diameter of the conductive assistant (conductive material powder) is 0.01 to 5 μm (preferably 0.03 to 2 μm), The average particle size of the binder is 0.1 to 50 μm (preferably 1 to 10 μm).
These active materials, conductive additives and binder powders are vibrated with a vibrator during electrostatic coating, and are charged positively and negatively with respect to the base by the electrode for electrolysis, and are then brought to the base by electrostatic force. Adsorbed. And by heating in a drying furnace, a binder is fuse | melted and an active material and a conductive support agent are fixed on a base.
Patent Document 1 also describes that a binder is melt-adhered to an active material in advance to form a composite powder, and this is powder-coated on a base.

特開2001−351616号公報JP 2001-351616 A

しかし、特許文献1の乾式塗布法では、ベースに対する活物質層の密着強度が不足し、電極形成不良が生じることがあった。
一方、特許文献1に記載された複合粉末による粉体塗装では複合粉末による粉体塗装を行うためには、スプレードライ法などによる複合粉末を製造するための前工程として、溶剤に溶かしたPVDF(ポリフッ化ビニリデン)を活物質にスプレーした後に乾燥して溶剤を蒸発させる必要があり、既存の湿式塗布法と同様の問題があり採用が難しい。
このようなことから、特許文献1に記載されたような乾式塗布法は実用化が困難とされ、前述した従来の湿式塗布法に依存しているのが現状であった。
However, in the dry coating method of Patent Document 1, the adhesion strength of the active material layer to the base is insufficient, and electrode formation defects may occur.
On the other hand, in the powder coating with the composite powder described in Patent Document 1, in order to perform powder coating with the composite powder, as a pre-process for producing the composite powder by a spray drying method or the like, PVDF dissolved in a solvent ( Polyvinylidene fluoride) must be sprayed on the active material and then dried to evaporate the solvent, which is difficult to adopt due to the same problems as existing wet coating methods.
For these reasons, the dry coating method described in Patent Document 1 is difficult to put into practical use, and the current situation is that it depends on the above-described conventional wet coating method.

本発明の目的は、製造工程が簡単でベースに対する活物質層の密着強度が確保できる電極の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the electrode which can ensure the adhesive strength of the active material layer with respect to a base with a simple manufacturing process.

本発明は、前述した特許文献1におけるベースに対する活物質層の密着強度の問題ないし電極形成不良の問題が、活物質、導電助剤および結着材の粉末の挙動に依存し、この挙動が各々の粒径比率と活物質および導電助剤と結着材との静電塗布前の相互の結合に基づく、との本発明の発明者の独自の知見に基づいてなされたものである。
すなわち、図7に示すように、ベース71に静電塗装を行って活物質層72を形成する場合、その主成分である活物質73の平均粒径に対し、結着材74の平均粒径が大きい(平均粒径比が大きい、例えば0.7超)であると、静電塗布後の加熱工程で結着材74の粒子が溶け流れて活物質73の粒子間に入り込み、所定の密着強度を得る為には後述する混合粉末の結着材74が15重量%以上となるように配合する必要がでてくる。
In the present invention, the problem of the adhesion strength of the active material layer to the base or the problem of poor electrode formation in Patent Document 1 described above depends on the behavior of the powder of the active material, the conductive additive, and the binder, This is based on the original knowledge of the inventors of the present invention based on the particle size ratio and the active material, and the mutual binding of the conductive additive and the binder before electrostatic coating.
That is, as shown in FIG. 7, when the active material layer 72 is formed by performing electrostatic coating on the base 71, the average particle size of the binder 74 with respect to the average particle size of the active material 73 that is the main component thereof. Is large (average particle size ratio is large, for example, greater than 0.7), the particles of the binder 74 melt and flow into the particles of the active material 73 in the heating step after electrostatic coating, and the predetermined adhesion In order to obtain the strength, it is necessary to blend so that the binder 74 of the mixed powder described later becomes 15% by weight or more.

また、活物質73は体積固有抵抗が低いため、塗装ブース内で電源装置により印加された電荷が逃げやすく、活物質73単体で付着させることは困難である。一方、結着材74に使用されるPVDFなどの熱可塑性樹脂は、静電塗布に適した体積固有抵抗値であるため、印荷された電荷は逃げることなく、ベース71に付着しやすい。そのため、活物質73と結着材74とを同時に静電塗装した際には、結着材74が先にベースに付着してしまい、活物質73は後から少量だけ付着することになり、活物質層72内の厚さ方向に活物質73と結着材74とが均一な分布とならない。このため、活物質層72に成分の偏りが生じることにより、後工程の加熱において密着強度を有する活物質層72が生成できないだけでなく、電極としての性能が発揮できない。   In addition, since the active material 73 has a low volume resistivity, the electric charge applied by the power supply device in the coating booth tends to escape and it is difficult to attach the active material 73 alone. On the other hand, since a thermoplastic resin such as PVDF used for the binder 74 has a volume specific resistance value suitable for electrostatic coating, the charged electric charge does not escape and easily adheres to the base 71. Therefore, when the active material 73 and the binder 74 are simultaneously electrostatically coated, the binder 74 first adheres to the base, and the active material 73 adheres only a small amount later. The active material 73 and the binder 74 are not uniformly distributed in the thickness direction in the material layer 72. For this reason, the bias of components occurs in the active material layer 72, so that the active material layer 72 having adhesion strength cannot be generated in heating in the subsequent process, and the performance as an electrode cannot be exhibited.

そこで、本発明においては、活物質に対して結着材の平均粒径比を0.7以下の範囲に限定するとともに、活物質層での偏りを防止するために、静電塗布前に活物質と結着材とを相互に結合するような処理を行うものとする。
このために、本発明は次の通りの構成を備える。
Therefore, in the present invention, the average particle diameter ratio of the binder with respect to the active material is limited to a range of 0.7 or less, and in order to prevent the bias in the active material layer, the active material is coated before electrostatic coating. It is assumed that processing is performed so that the substance and the binder are bonded to each other.
For this purpose, the present invention has the following configuration.

本発明は、ベースの表面に活物質および結着材を含む活物質層を有する電極を製造するために、前記活物質の粉末および前記結着材の粉末を混合して混合粉末を作成し、前記混合粉末を前記ベースの表面に静電塗装し、塗装された前記混合粉末を加熱して融着させる電極の製造方法であって、
前記結着材の粉末の前記活物質の粉末に対する平均粒径比が0.7以下であり、
前記混合粉末を前記ベースの表面に塗布する前に、前記活物質の粉末に前記結着材の粉末を結合させておくことを特徴とする。
In order to produce an electrode having an active material layer containing an active material and a binder on the surface of the base, the powder of the active material and the binder are mixed to produce a mixed powder. The mixed powder is electrostatically coated on the surface of the base, and the coated powder is heated and fused to produce an electrode,
The average particle size ratio of the binder powder to the active material powder is 0.7 or less,
Before the mixed powder is applied to the surface of the base, the binder powder is bonded to the active material powder.

本発明において、前記混合粉末を前記ベースの表面に塗布する前に、前記活物質の粉末と前記結着材の粉末とを、回転羽根を有する攪拌機に導入し、攪拌により前記混合粉末を生成するとともに、前記混合粉末中の前記活物質の粉末と前記結着材の粉末とを摩擦帯電により結合させる処理を採用することができる。
このような攪拌機を用いる場合、各粉末に十分な摩擦帯電が生じる程度に回転羽根の回転速度を高めるように調整する。具体的には、撹拌の結果を観察し、前記活物質の粉末に前記結着材の粉末が結合した状態が得られるように調整を行う。
In the present invention, before the mixed powder is applied to the surface of the base, the powder of the active material and the powder of the binder are introduced into a stirrer having a rotating blade, and the mixed powder is generated by stirring. In addition, it is possible to employ a process in which the powder of the active material and the powder of the binder in the mixed powder are bonded by frictional charging.
When such a stirrer is used, adjustment is made to increase the rotational speed of the rotary blades to such an extent that sufficient frictional charging is generated in each powder. Specifically, the result of stirring is observed, and adjustment is performed so as to obtain a state in which the powder of the binder is bonded to the powder of the active material.

このような本発明では、混合粉末をベースの表面に塗装する前の段階で、活物質の粉末および結着材の粉末が結合され、平均粒径比が小さな結着材の粒子が活物質の粒子の周囲に付着した状態とされる。このような付着状態でベースの表面に塗装することで、ベースの表面に形成される活物質層においては活物質と結着材との偏りが生じることがなく、加熱融着されることで強固な活物質層とすることができる。
これにより、製造工程が簡単でベースに対する活物質層の密着強度が確保できる電極の製造方法を実現することができる。
In the present invention, the active material powder and the binder powder are bonded to each other before the mixed powder is applied to the base surface, and the binder particles having a small average particle size ratio are the active material particles. It is in a state of being attached around the particle. By coating the surface of the base in such an adhesion state, the active material layer formed on the surface of the base is not biased between the active material and the binder, and is firmly bonded by heat fusion. Active material layer.
Thereby, the manufacturing method of an electrode which can ensure the adhesion strength of the active material layer with respect to a base with a simple manufacturing process is realizable.

静電塗装としては、例えば静電流動浸漬法や静電粉体スプレー法が利用できる。
結着材の粉末を活物質の粉末に対して平均粒径比0.7以下にする手段としては、既存の破砕機および分級機を用いるものとする。
混合粉末を加熱して融着させる手段としては、加熱炉を通す方法のほか、加熱を伴うロールプレスを利用することができる。プレスを行うようにすれば、活物質層における各粒子の間隔を詰めて強度を高めることにも好適である。
As the electrostatic coating, for example, an electrostatic fluid dipping method or an electrostatic powder spray method can be used.
An existing crusher and classifier are used as means for bringing the binder powder into an average particle size ratio of 0.7 or less with respect to the active material powder.
As a means for heating and fusing the mixed powder, in addition to a method of passing through a heating furnace, a roll press with heating can be used. If the pressing is performed, it is also suitable for increasing the strength by reducing the interval between the particles in the active material layer.

本発明において、前記混合粉末は前記活物質が85〜95重量%、前記結着材が15〜5重量%であることが望ましい。
このような本発明では、リチウムイオン電池などに用いられる電極に好適な活物質層を形成することができる。
なお、活物質層には、活物質および結着材のほかに導電助剤が含まれていてもよく、このような導電助剤の好適な成分比率としては概ね5重量%である。
In the present invention, the mixed powder preferably contains 85 to 95% by weight of the active material and 15 to 5% by weight of the binder.
In the present invention, an active material layer suitable for an electrode used for a lithium ion battery or the like can be formed.
Note that the active material layer may contain a conductive additive in addition to the active material and the binder, and a suitable component ratio of such a conductive additive is approximately 5% by weight.

このような本発明によれば、製造工程が簡単でベースに対する活物質層の密着強度が確保できる電極の製造方法を実現することができる。   According to the present invention as described above, it is possible to realize an electrode manufacturing method in which the manufacturing process is simple and the adhesion strength of the active material layer to the base can be ensured.

本発明の一実施形態の製造装置を示す模式図。The schematic diagram which shows the manufacturing apparatus of one Embodiment of this invention. 前記実施形態での静電塗装を示す模式図。The schematic diagram which shows the electrostatic coating in the said embodiment. 前記実施形態による塗装結果を示す模式図。The schematic diagram which shows the coating result by the said embodiment. 前記実施形態での結着材重量%と平均粒径比との関係を示すグラフ。The graph which shows the relationship between the binder weight% in the said embodiment, and an average particle diameter ratio. 前記実施形態での放電容量と結着材重量%との関係を示すグラフ。The graph which shows the relationship between the discharge capacity and binder weight% in the said embodiment. 前記実施形態での密着強度と撹拌機回転数との関係を示すグラフ。The graph which shows the relationship between the contact | adhesion intensity | strength and stirrer rotation speed in the said embodiment. 従来の活物質層を示す模式図。The schematic diagram which shows the conventional active material layer. 小径の結着材を用いた静電塗装を示す模式図。The schematic diagram which shows the electrostatic coating using a small diameter binder. 前記図8の静電塗装による塗装結果を示す模式図。The schematic diagram which shows the coating result by the electrostatic coating of the said FIG.

以下、本発明の一実施形態を図面に基づいて説明する。
図1には、本発明に基づいて電極を製造する電極製造装置1が示されている。
電極製造装置1は、ベース71の表面に活物質73および結着材74を含む活物質層72を有する電極70(図3参照)を製造するものであり、作成部2、塗装部3、融着部4および巻取部5を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an electrode manufacturing apparatus 1 for manufacturing an electrode according to the present invention.
The electrode manufacturing apparatus 1 manufactures an electrode 70 (see FIG. 3) having an active material layer 72 including an active material 73 and a binder 74 on the surface of a base 71. A landing part 4 and a winding part 5 are provided.

作成部2は、前述した通り、活物質73の粉末および結着材74の粉末を混合して混合粉末75を作成するものである。
作成部2は、架台21の上部に活物質タンク22および結着材タンク23を備え、各々の下方に撹拌機24および定量供給機25を備え、架台21の下部から塗装部3に至る空気輸送機26を備えている。
As described above, the creating unit 2 mixes the powder of the active material 73 and the powder of the binder 74 to create the mixed powder 75.
The preparation unit 2 includes an active material tank 22 and a binder tank 23 at the upper part of the gantry 21, and includes a stirrer 24 and a metering feeder 25 below each of them, and pneumatic transportation from the lower part of the gantry 21 to the coating unit 3. A machine 26 is provided.

活物質タンク22は、活物質73の粉末が貯留されており、この活物質73を撹拌機24へと供給する。活物質73としては、陰極用であれば天然黒鉛や人造黒鉛などの炭素材料が用いられ、正極用であればマンガン酸リチウム等が用いられる。活物質73には導電助剤としてカーボンブラック等が添加されることがある。   The active material tank 22 stores powder of the active material 73 and supplies the active material 73 to the stirrer 24. As the active material 73, a carbon material such as natural graphite or artificial graphite is used for a cathode, and lithium manganate is used for a positive electrode. Carbon black or the like may be added to the active material 73 as a conductive aid.

結着材タンク23は、結着材74の粉末が貯留されており、この結着材74を撹拌機24へと供給する。結着材74としてはPVDF(ポリフッ化ビニリデン)が用いられる。
なお、詳細は後述するが、活物質73の粒径に対し、結着材74の粒径は小さいものとされている。
The binder tank 23 stores the powder of the binder 74 and supplies the binder 74 to the agitator 24. PVDF (polyvinylidene fluoride) is used as the binder 74.
Although details will be described later, the particle size of the binder 74 is smaller than the particle size of the active material 73.

撹拌機24は、閉構造の撹拌槽の内部に回転羽根(図示省略)を備えたものであり、活物質タンク22および結着材タンク23から供給される活物質73および結着材74を強く混合し、混合粉末75を生成する。
撹拌機24は、回転羽根の回転速度が調整可能とされ、この回転羽根は混合粉末75の各粒子(活物質73の粒子および結着材74の粒子)にそれぞれ所期の摩擦帯電が得られるように回転速度を調整される。
The stirrer 24 is provided with a rotating blade (not shown) inside a stirring tank having a closed structure, and strongly strengthens the active material 73 and the binder 74 supplied from the active material tank 22 and the binder tank 23. Mix to produce a mixed powder 75.
The stirrer 24 can adjust the rotation speed of the rotary blade, and the rotary blade can obtain the desired triboelectric charge on each particle of the mixed powder 75 (particles of the active material 73 and particles of the binder 74). So that the rotation speed is adjusted.

定量供給機25は、撹拌機24で生成された混合粉末75を時間あたり所定量ずつ送り出す。
空気輸送機26は、定量供給機25から送り出された混合粉末75を、外部から供給される空気流により搬送し、塗装部3へ供給する。
The fixed amount feeder 25 feeds the mixed powder 75 generated by the stirrer 24 by a predetermined amount per time.
The pneumatic transporter 26 conveys the mixed powder 75 sent out from the fixed amount feeder 25 by an air flow supplied from the outside, and supplies it to the coating unit 3.

このような作成部2により、活物質73および結着材74を混合した混合粉末75が作成されるとともに、作成された混合粉末75は、活物質73および結着材74の各粒子が正負に帯電しており、粒径の大きな活物質73の粒子表面に粒径の小さな結着材74の粒子が静電吸着された状態(図2参照)で送り出される。   The preparation unit 2 creates a mixed powder 75 in which the active material 73 and the binder 74 are mixed, and the created mixed powder 75 has positive and negative particles in the active material 73 and the binder 74. It is charged and sent out in a state where the particles of the binder 74 having a small particle diameter are electrostatically adsorbed on the particle surface of the active material 73 having a large particle diameter (see FIG. 2).

塗装部3は、混合粉末75をベース71の表面に乾式塗装するものである。
塗装部3は、架台31の上部に巻出機32を備え、架台31の上部から下部にかけて巻出機32から送り出されたベース71を搬送するローラ群33を備えている。架台31の内部には垂直に張られたベース71を包囲する塗装ブース34が設置され、塗装ブース34には集塵機36および静電塗装用の電極35が設置されている。
The coating unit 3 performs dry coating of the mixed powder 75 on the surface of the base 71.
The coating unit 3 includes an unwinder 32 at the upper part of the gantry 31, and includes a roller group 33 that conveys the base 71 fed from the unwinder 32 from the upper part to the lower part of the gantry 31. A painting booth 34 that surrounds a vertically extending base 71 is installed inside the gantry 31, and a dust collector 36 and an electrode 35 for electrostatic painting are installed in the painting booth 34.

巻出機32は、コイル状に巻かれたベース71が装着され、このコイルからベース71を連続的に引き出すものである。ベース71としては、負極用に銅箔が用いられ、正極用にはアルミニウム箔が用いられる。これらの箔は、厚さ数十μm、幅数百mmの帯状シートとして供給される。
ローラ群33は、巻出機32から引き出されたベース71を案内し、架台31内で縦方向に送り、後工程である融着部4へ送り出すように構成されている。
The unwinder 32 is provided with a base 71 wound in a coil shape, and the base 71 is continuously drawn out from the coil. As the base 71, a copper foil is used for the negative electrode, and an aluminum foil is used for the positive electrode. These foils are supplied as a belt-like sheet having a thickness of several tens of μm and a width of several hundreds of mm.
The roller group 33 is configured to guide the base 71 drawn out from the unwinder 32, send it in the vertical direction in the gantry 31, and send it out to the fusion part 4 as a subsequent process.

塗装ブース34は、架台31内で縦方向に張られたベース71を包囲して外気から遮断する閉構造とされている。
塗装ブース34の下部には、作成部2の空気輸送機26により混合粉末75を含んだ空気が供給される。
The painting booth 34 has a closed structure that surrounds the base 71 stretched in the vertical direction in the gantry 31 and shields it from the outside air.
Air containing the mixed powder 75 is supplied to the lower part of the coating booth 34 by the air transporter 26 of the preparation unit 2.

電極35は、塗装ブース34の内壁面に配列され、ベース71の塗装面側に所定間隔で対向されている。電極35とベース71との間には外部の図示しない電源装置から高電圧が印加されている。
塗装ブース34の下部に供給された混合粉末75を含む空気は、電極35とベース71との間を通る際に混合粉末75が帯電され、帯電した混合粉末75はベース71の表面に静電吸着されて活物質層72を形成する。
The electrodes 35 are arranged on the inner wall surface of the painting booth 34 and face the painting surface side of the base 71 at a predetermined interval. A high voltage is applied between the electrode 35 and the base 71 from an external power supply device (not shown).
When the air containing the mixed powder 75 supplied to the lower part of the coating booth 34 passes between the electrode 35 and the base 71, the mixed powder 75 is charged, and the charged mixed powder 75 is electrostatically adsorbed on the surface of the base 71. Thus, the active material layer 72 is formed.

図2に示すように、ベース71に静電吸着される混合粉末75においては、粒径の大きな活物質73の粒子の表面に粒径の小さな結着材74が静電気で付着した状態となっており、これらが一体の粒子としてベース71に静電吸着される。このため、従来のような活物質層72における成分の偏りが生じず、最小限の結着材74により活物質73の確実な結着が可能となる。
集塵機36は、塗装ブース34の上部に設置され、塗装ブース34内の搬送用の空気を吸引し、集塵したうえで外部へと排出する。
As shown in FIG. 2, in the mixed powder 75 electrostatically adsorbed on the base 71, the binder 74 having a small particle size is attached to the surface of the particle of the active material 73 having a large particle size by static electricity. These are electrostatically attracted to the base 71 as integral particles. For this reason, the bias | inclination of the component in the active material layer 72 like the past does not arise, and the active material 73 can be reliably bound by the minimum binding material 74.
The dust collector 36 is installed in the upper part of the painting booth 34, sucks the air for conveyance in the painting booth 34, collects the dust, and discharges it outside.

このような塗装部3により、連続的に送られるベース71の表面に、混合粉末75を静電塗装し、活物質層72を形成することができる。
表面に活物質層72が形成されたベース71は、連続して融着部4へと送られる。
By such a coating part 3, the active material layer 72 can be formed by electrostatically coating the mixed powder 75 on the surface of the base 71 that is continuously fed.
The base 71 having the active material layer 72 formed on the surface is continuously sent to the fusion part 4.

融着部4は、塗装された活物質層72に対して加熱およびプレスを行ってベース71の表面に融着させるものである。
融着部4は、塗装部3から連続的に送られるベース71を加熱する加熱装置41と、加熱された活物質層72を圧迫してベース71に定着させるロールプレス42とを備えている。
The fused part 4 is used to heat and press the coated active material layer 72 to be fused to the surface of the base 71.
The fusion unit 4 includes a heating device 41 that heats the base 71 continuously sent from the coating unit 3, and a roll press 42 that presses and fixes the heated active material layer 72 to the base 71.

このような融着部4では、加熱装置41により、活物質層72中の結着材74が融着して活物質73を確実に結着することができる。更に、ロールプレス42により、軟化した結着材74を圧迫して活物質73の粒子間隙間を圧縮することができ、活物質73の体積密度を高めることができる。
このような融着を経て、表面に活物質層72が融着されたベース71が電極70(図3参照)とされる。
巻取部5は、巻取機51を有し、融着部4で形成された電極70をコイル状に巻き取ることができる。
In such a fused portion 4, the heating device 41 can fuse the binding material 74 in the active material layer 72 to securely bind the active material 73. Furthermore, the inter-particle gap of the active material 73 can be compressed by pressing the softened binder 74 by the roll press 42, and the volume density of the active material 73 can be increased.
After such fusion, the base 71 having the active material layer 72 fused on the surface is used as the electrode 70 (see FIG. 3).
The winding unit 5 includes a winding machine 51 and can wind up the electrode 70 formed by the fusion unit 4 in a coil shape.

本実施形態において、活物質73および結着材74には、本発明に基づく特定の条件が適用される。
本実施形態において、混合粉末75として混合される活物質73および結着材74は、活物質73が85〜95重量%、結着材74が15〜5重量%とされる。これは、電極70とした際に好適な電気的特性が得られ、かつ付着強度が好適となる範囲である。
In the present embodiment, specific conditions based on the present invention are applied to the active material 73 and the binder 74.
In this embodiment, the active material 73 and the binder 74 mixed as the mixed powder 75 are 85 to 95% by weight of the active material 73 and 15 to 5% by weight of the binder 74. This is a range where suitable electrical characteristics can be obtained when the electrode 70 is used, and adhesion strength is suitable.

活物質73の粒子の平均粒径に対し、結着材74の粒子の平均粒径は小さく設定され、平均粒径比=結着材74の平均粒径/活物質73の平均粒径は0.2〜0.7(0.2以上で0.7以下)とされる(図4参照)。
活物質73に用いる黒鉛の平均粒径は一般に5〜30μm程度とされる。一方、結着材74に用いるPVDFの平均粒径は一般に150〜200μmである。このため、結着材74として用いる際には、予め粉砕機で数μmから数十μm程度にまで粉砕し、前述した平均粒径比となるように調整しておく。
The average particle size of the particles of the binder 74 is set smaller than the average particle size of the particles of the active material 73, and the average particle size ratio = the average particle size of the binder 74 / the average particle size of the active material 73 is 0. 2 to 0.7 (0.2 to 0.7) (see FIG. 4).
The average particle size of graphite used for the active material 73 is generally about 5 to 30 μm. On the other hand, the average particle size of PVDF used for the binder 74 is generally 150 to 200 μm. For this reason, when using as the binder 74, it grind | pulverizes from several micrometers to about several tens of micrometers previously with a grinder, and it adjusts so that it may become the average particle diameter ratio mentioned above.

なお、混合粉末75における結着材74は15〜5重量%とされるが、図4のグラフでは、好ましい結着材74の下限は必ずしも5重量%とならない。
結着材74の平均粒径比が活物質73に対して0.2のとき、結着材74の下限は5重量%でよい。しかし、平均粒径比が大きくなるにつれ、活物質73の間に入り込みにくくなるため、同じ活物質73に対してより多くの結着材74が必要となる。このために、平均粒径比が大きくなるに従って好ましい結着材74の下限は高くなり、平均粒径比0.7のとき結着材74は10重量%を確保することが望ましい(図4の下の曲線)。
更に好ましくは、平均粒径比が0.2のとき結着材74が8重量%以上で、平均粒径比が0.7のとき結着材74が15重量%以上である(図4の上の曲線)。
In addition, although the binder 74 in the mixed powder 75 is 15 to 5% by weight, the lower limit of the preferable binder 74 is not necessarily 5% by weight in the graph of FIG.
When the average particle size ratio of the binder 74 is 0.2 with respect to the active material 73, the lower limit of the binder 74 may be 5% by weight. However, as the average particle size ratio increases, it becomes difficult to enter between the active materials 73, so that more binders 74 are required for the same active material 73. For this reason, the lower limit of the preferable binder 74 increases as the average particle size ratio increases, and it is desirable to ensure 10% by weight of the binder 74 when the average particle size ratio is 0.7 (FIG. 4). Bottom curve).
More preferably, the binder 74 is 8% by weight or more when the average particle size ratio is 0.2, and the binder 74 is 15% by weight or more when the average particle size ratio is 0.7 (FIG. 4). Upper curve).

ここで、結着材74の成分比率の設定にあたっては、電極70を用いて製造される放電容量との関係を考慮することが望ましい。
図5に示すように、混合粉末75における結着材74の比率(横軸)が高まると、活物質73の比率が相対的に低下するので、放電容量(縦軸)が小さくなる傾向にある。
Here, in setting the component ratio of the binder 74, it is desirable to consider the relationship with the discharge capacity produced using the electrode 70.
As shown in FIG. 5, when the ratio (horizontal axis) of the binder 74 in the mixed powder 75 increases, the ratio of the active material 73 relatively decreases, so that the discharge capacity (vertical axis) tends to decrease. .

撹拌機24における混合粉末75の撹拌にあたっては、混合粉末75中の活物質73の粒子および結着材74の粒子に、所期の摩擦帯電が生じるように、撹拌機24の回転羽根の回転速度を調整する。
実際には、混合粉末75中の活物質73の粒子および結着材74の粒子における摩擦帯電の状況は測定が困難である。従って、幾つかの条件設定のもとで実際に電極70を製造し、その活物質層72の密着強度を評価することが望ましい。
When stirring the mixed powder 75 in the stirrer 24, the rotational speed of the rotating blades of the stirrer 24 is set so that the desired frictional charge is generated in the particles of the active material 73 and the binder 74 in the mixed powder 75. Adjust.
Actually, it is difficult to measure the state of frictional charging in the particles of the active material 73 and the particles of the binder 74 in the mixed powder 75. Therefore, it is desirable to actually manufacture the electrode 70 under some condition settings and evaluate the adhesion strength of the active material layer 72.

図6において、本実施形態の電極製造装置1で回転速度を変えて電極70を製造した結果、撹拌機24の羽根(300mm径)の回転速度が700rpm(毎分回転数)から高くなるに従って活物質層72の密着強度が漸増し、1300rpm付近から密着強度の向上が急峻になり、1500rpm以上では1300rpm付近での密着強度に対して2〜3倍の強度が得られることが判った。
なお、回転数が1700rpmを超えると、活物質に割れが生じることがあるので、この回転速度以下で使用することが望ましい。
In FIG. 6, as a result of manufacturing the electrode 70 by changing the rotation speed with the electrode manufacturing apparatus 1 of this embodiment, the rotation speed of the blades (300 mm diameter) of the stirrer 24 increases as the rotation speed increases from 700 rpm (rotation speed per minute). It was found that the adhesion strength of the material layer 72 gradually increased, and the improvement of the adhesion strength was sharp from around 1300 rpm, and that the strength of 2 to 3 times the adhesion strength near 1300 rpm was obtained at 1500 rpm or higher.
In addition, since a crack may arise in an active material when rotation speed exceeds 1700 rpm, it is desirable to use below this rotation speed.

以上に述べたように本実施形態によれば、混合粉末75をベース71の表面に塗装する前の段階で、活物質73の粉末および結着材74の粉末が撹拌により摩擦帯電され、平均粒径比が小さな結着材74の粒子が活物質73の粒子の周囲に付着した状態とされる。このような付着状態でベース71の表面に塗装することで、ベース71の表面に形成される活物質層72においては活物質73と結着材74との偏りが生じることがなく、加熱融着されることで強固な活物質層72を有する電極70とすることができる。
これにより、製造工程が簡単でベース71に対する活物質層72の密着強度が確保された電極70を製造することができる。
As described above, according to the present embodiment, the powder of the active material 73 and the powder of the binder 74 are frictionally charged by stirring before the mixed powder 75 is applied to the surface of the base 71, and the average particle The particles of the binder 74 having a small diameter ratio are attached around the particles of the active material 73. By coating the surface of the base 71 in such an attached state, the active material layer 72 formed on the surface of the base 71 is not biased between the active material 73 and the binder 74, and heat fusion is performed. Thus, the electrode 70 having the strong active material layer 72 can be obtained.
Thereby, the electrode 70 in which the manufacturing process is simple and the adhesion strength of the active material layer 72 to the base 71 is ensured can be manufactured.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形等は本発明に含まれるものである。
例えば、活物質73としては、正極用のマンガン酸リチウムのほか、ニッケル酸リチウムあるいはコバルト酸リチウム等、他の金属酸化物を用いてもよい。また、活物質73には導電助剤を添加してもよいが、導電助剤としては黒鉛に限らず、他の導電材料であってもよい。
Note that the present invention is not limited to the above-described embodiment, and modifications and the like within a scope in which the object of the present invention can be achieved are included in the present invention.
For example, as the active material 73, other metal oxides such as lithium nickelate or lithium cobaltate may be used in addition to lithium manganate for the positive electrode. Moreover, although a conductive support agent may be added to the active material 73, the conductive support agent is not limited to graphite but may be other conductive materials.

また、結着材74としては、PVDFに限らず、PTEF(4フッ化エチレン)等を用いてもよく、加熱融着に適した他の熱可塑性樹脂を用いてもよい。
電極製造装置1において、作成部2、塗装部3、融着部4および巻取部5の各部要素は適宜変更してもよく、追加的な他の要素を含んでいてもよい。
前述した実施形態では、電極製造装置1の作成部2に撹拌機24を設置し、混合粉末75を生成する際に、攪拌による摩擦帯電を利用して活物質73の粉末に結着材74の粉末を結合させていた。
これに対し、活物質73の粉末に結着材74の粉末をメカノケミカル的に結合させる処理を行ってもよい。
The binder 74 is not limited to PVDF, and PTEF (tetrafluoroethylene) may be used, or other thermoplastic resin suitable for heat fusion may be used.
In the electrode manufacturing apparatus 1, each component of the creation unit 2, the coating unit 3, the fusion unit 4, and the winding unit 5 may be appropriately changed or may include other additional elements.
In the above-described embodiment, when the stirrer 24 is installed in the preparation unit 2 of the electrode manufacturing apparatus 1 and the mixed powder 75 is generated, the friction material electrification by stirring is used to apply the binder 74 to the powder of the active material 73. The powder was bound.
On the other hand, you may perform the process which combines the powder of the binder 74 with the powder of the active material 73 mechanochemically.

本発明に含まれない参考形態として、前述した図1の電極製造装置1の作成部2において、撹拌機24に代えてメカノフュージョン装置(例えば株式会社奈良製作所製の「ハイブリタイゼーションシステムNHS」装置あるいはホソカワミクロン株式会社製の「循環型メカノフュージョンシステムAMS」装置)を設置することができる
このような参考形態によれば、メカノフュージョン装置において、活物質73の粉末と結着材74の粉末とをメカノケミカル的に結合させ、混合粉末75として生成することができ
As a reference form not included in the present invention , in the preparation unit 2 of the electrode manufacturing apparatus 1 of FIG. 1 described above, a mechanofusion apparatus (for example, “Hybridization System NHS” manufactured by Nara Seisakusho Co., Ltd.) is used instead of the stirrer 24. Alternatively, a “circulating mechanofusion system AMS” apparatus manufactured by Hosokawa Micron Corporation can be installed.
According to this reference embodiment, the mechanofusion device, a powder of powder and binder 74 of active material 73 mechanochemically bound, Ru can be generated as a mixed powder 75.

本発明は電極の製造方法であって、リチウムイオン電池などに用いられる電極の製造に利用できる。   The present invention is a method for manufacturing an electrode, and can be used for manufacturing an electrode used in a lithium ion battery or the like.

1…電極製造装置
2…作成部
21…架台
22…活物質タンク
23…結着材タンク
24…撹拌機
25…定量供給機
26…空気輸送機
3…塗装部
31…架台
32…巻出機
33…ローラ群
34…塗装ブース
35…電極
36…集塵機
4…融着部
41…加熱装置
42…ロールプレス
5…巻取部
51…巻取機
70…電極
71…ベース
72…活物質層
73…活物質
74…結着材
75…混合粉末
DESCRIPTION OF SYMBOLS 1 ... Electrode manufacturing apparatus 2 ... Creation part 21 ... Base 22 ... Active material tank 23 ... Binder tank 24 ... Stirrer 25 ... Fixed quantity supply machine 26 ... Air transporter 3 ... Coating part 31 ... Base 32 ... Unwinder 33 ... Roller group 34 ... Painting booth 35 ... Electrode 36 ... Dust collector 4 ... Fusion part 41 ... Heating device 42 ... Roll press 5 ... Winding part 51 ... Winding machine 70 ... Electrode 71 ... Base 72 ... Active material layer 73 ... Active Substance 74 ... Binder 75 ... Mixed powder

Claims (2)

ベースの表面に活物質および結着材を含む活物質層を有する電極を製造するために、前記活物質の粉末および前記結着材の粉末を混合して混合粉末を作成し、前記混合粉末を前記ベースの表面に静電塗装し、塗装された前記混合粉末を加熱して融着させる電極の製造方法であって、
前記結着材の粉末の前記活物質の粉末に対する平均粒径比が0.7以下であり、
前記混合粉末を前記ベースの表面に塗布する前に、前記活物質の粉末と前記結着材の粉末とを、回転羽根を有する攪拌機に導入し、攪拌により前記混合粉末を生成するとともに、前記混合粉末中の前記活物質の粉末と前記結着材の粉末とを摩擦帯電により結合させる処理を行うことを特徴とする電極の製造方法。
In order to manufacture an electrode having an active material layer including an active material and a binder on the surface of the base, a powder mixture is prepared by mixing the powder of the active material and the powder of the binder, and the mixed powder Electrostatic coating on the surface of the base, and a method of manufacturing an electrode for heating and fusing the coated mixed powder,
The average particle size ratio of the binder powder to the active material powder is 0.7 or less,
Before applying the mixed powder to the base surface and a powder of the powder and the binder of the active material, introduced into a stirrer having rotating blades, it generates the mixed powder by stirring, the mixture A method for producing an electrode, comprising performing a process of bonding the powder of the active material in the powder and the powder of the binder by frictional charging.
請求項1に記載した電極の製造方法において、
前記混合粉末は前記活物質が85〜95重量%、前記結着材が15〜5重量%であることを特徴とする電極の製造方法。
In the manufacturing method of the electrode of Claim 1,
The mixed powder comprises 85 to 95% by weight of the active material and 15 to 5% by weight of the binder.
JP2013007432A 2013-01-18 2013-01-18 Electrode manufacturing method Expired - Fee Related JP6100536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013007432A JP6100536B2 (en) 2013-01-18 2013-01-18 Electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013007432A JP6100536B2 (en) 2013-01-18 2013-01-18 Electrode manufacturing method

Publications (2)

Publication Number Publication Date
JP2014137965A JP2014137965A (en) 2014-07-28
JP6100536B2 true JP6100536B2 (en) 2017-03-22

Family

ID=51415356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013007432A Expired - Fee Related JP6100536B2 (en) 2013-01-18 2013-01-18 Electrode manufacturing method

Country Status (1)

Country Link
JP (1) JP6100536B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6751576B2 (en) * 2016-03-30 2020-09-09 日立造船株式会社 Manufacturing method of all-solid-state secondary battery and coating device
JP7226314B2 (en) 2017-07-18 2023-02-21 株式会社Gsユアサ ELECTRODE, ELECTRODE, AND METHOD FOR MANUFACTURING ELECTRODE
JP7099378B2 (en) * 2019-03-13 2022-07-12 トヨタ自動車株式会社 Electrode sheet manufacturing method
JP7339133B2 (en) * 2019-11-14 2023-09-05 トヨタ自動車株式会社 Electrode plate manufacturing method
JP7202348B2 (en) * 2020-12-14 2023-01-11 プライムプラネットエナジー&ソリューションズ株式会社 Electrode sheet manufacturing method
JP7329004B2 (en) * 2021-02-24 2023-08-17 プライムプラネットエナジー&ソリューションズ株式会社 Electrode plate manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018834A (en) * 2005-07-07 2007-01-25 Hitachi Ltd Electrochemical device
JP2010278125A (en) * 2009-05-27 2010-12-09 Nippon Zeon Co Ltd Method of manufacturing electrode for electrochemical element, and electrochemical element
JP2011077014A (en) * 2009-09-04 2011-04-14 Asahi Sunac Corp Method of manufacturing electrode for battery

Also Published As

Publication number Publication date
JP2014137965A (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP6100536B2 (en) Electrode manufacturing method
Schälicke et al. Solvent‐Free Manufacturing of Electrodes for Lithium‐Ion Batteries via Electrostatic Coating
JP5842407B2 (en) Method for producing lithium ion secondary battery
US10547045B2 (en) Methods and apparatuses for polymer fibrillization under electric field
CN102481595A (en) Applying optical energy to nanoparticles to produce a specified nanostructure
WO2017169567A1 (en) All-solid-state secondary battery production method and coating device
CN107210420A (en) Process for manufacturing conductive particle film and lithium ion battery for lithium ion battery
JP2021166182A (en) System and method for manufacturing electrode with separator
JP2016115569A (en) Method of manufacturing electrode for lithium ion battery
JP7411975B2 (en) All-solid-state battery manufacturing method
CN106537653A (en) Method of manufacturing a lithium-ion secondary battery electrode sheet based on an active material dry powder
JP6274935B2 (en) Method for producing electrode for lithium ion battery
CN112259901A (en) Gluing diaphragm for lithium ion battery and preparation method and application thereof
JP4454782B2 (en) Battery separator manufacturing method
JP2008277784A (en) Manufacturing method for carbon particle film, laminated electrode, and electric double layer capacitor
JP5349821B2 (en) Solid fine particle dispersion, electrode film coating liquid, electrode and method for producing electric double layer capacitor
JP7339133B2 (en) Electrode plate manufacturing method
JP2016164837A (en) Positive electrode manufacturing method and positive electrode
JP2011216504A (en) Method for manufacturing electrode for electrochemical element
JP6760882B2 (en) Method for manufacturing electrodes for lithium-ion secondary batteries
CN107665971A (en) A kind of lithium ion cell electrode raw material decentralized approach early stage
JP7248728B2 (en) Electrode sheet manufacturing method
JP5076275B2 (en) Non-aqueous electrolyte secondary battery electrode plate and method for producing the same
CN116037425B (en) Electrode manufacturing method and electrode manufacturing device
JP7402838B2 (en) Manufacturing method of negative electrode plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170223

R150 Certificate of patent or registration of utility model

Ref document number: 6100536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees