JP6099828B2 - Microwave heating irradiation device - Google Patents

Microwave heating irradiation device Download PDF

Info

Publication number
JP6099828B2
JP6099828B2 JP2016534299A JP2016534299A JP6099828B2 JP 6099828 B2 JP6099828 B2 JP 6099828B2 JP 2016534299 A JP2016534299 A JP 2016534299A JP 2016534299 A JP2016534299 A JP 2016534299A JP 6099828 B2 JP6099828 B2 JP 6099828B2
Authority
JP
Japan
Prior art keywords
microwave
reaction furnace
irradiation apparatus
lid
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016534299A
Other languages
Japanese (ja)
Other versions
JPWO2016009691A1 (en
Inventor
道生 瀧川
道生 瀧川
良夫 稲沢
良夫 稲沢
本間 幸洋
幸洋 本間
佐々木 拓郎
拓郎 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6099828B2 publication Critical patent/JP6099828B2/en
Publication of JPWO2016009691A1 publication Critical patent/JPWO2016009691A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/12Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1209Features relating to the reactor or vessel
    • B01J2219/1212Arrangements of the reactor or the reactors
    • B01J2219/1215Single reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1248Features relating to the microwave cavity
    • B01J2219/1266Microwave deflecting parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1275Controlling the microwave irradiation variables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind

Landscapes

  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Furnace Details (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

この発明は、試料にマイクロ波を照射して加熱するマイクロ波加熱照射装置に関するものである。   The present invention relates to a microwave heating irradiation apparatus that heats a sample by irradiating it with microwaves.

マイクロ波伝送技術の分野においては、例えば太陽発電衛星(SPS:Solar Power Satellite)の実現に向けて、高効率伝送技術やアクティブフェーズドアレーアンテナ(APAA:Active Phased Array Antenna)によるビーム制御技術などに関する様々な研究開発が行われている。   In the field of microwave transmission technology, for example, various technologies related to high-efficiency transmission technology and beam control technology using an active phased array antenna (APAA) toward the realization of a solar power satellite (SPS). R & D is underway.

また、これらのマイクロ波伝送技術を工業用のアプリケーションに応用する動向もみられる。例えば特許文献1,2には、原料にマイクロ波を照射して加熱することで溶融銑鉄を製造する製鉄システムが開示されている。また、非特許文献1,2には、マイクロ波を用いた製鉄システムにおいて、マイクロ波放射源をフェーズドアレーアンテナで構成する技術について開示されている。さらに、最近では、マイクロ波を化学反応に応用することで化学反応時間を短縮する技術も注目されている。
現状、マイクロ波伝送技術は小規模な装置に適用される例が多い。しかしながら、例えば製鉄システムのように、大規模かつ大電力の装置の開発も求められている。
There is also a trend to apply these microwave transmission technologies to industrial applications. For example, Patent Documents 1 and 2 disclose an iron making system that manufactures molten pig iron by irradiating and heating a raw material with microwaves. Non-Patent Documents 1 and 2 disclose a technique for configuring a microwave radiation source with a phased array antenna in an iron-making system using microwaves. Furthermore, recently, a technique for shortening a chemical reaction time by applying a microwave to a chemical reaction is also attracting attention.
At present, microwave transmission technology is often applied to small-scale devices. However, development of large-scale and high-power devices such as an iron manufacturing system is also demanded.

国際公開第2010/087464号「竪型マイクロ波製鉄炉」International Publication No. 2010/087464, “Vertical Microwave Iron Furnace” 特開2013−11384号公報「マイクロ波加熱炉」JP2013-11384A "Microwave Heating Furnace"

佐藤、永田、篠原、三谷、樫村、「フェーズドアレーアンテナを使った工業用マイクロ波アプリケーターの概念設計」、第5回日本電磁波エネルギー応用学会シンポジウム,講演要旨集2B07(2011)Sato, Nagata, Shinohara, Mitani, Kashimura, “Conceptual design of industrial microwave applicator using phased array antenna”, 5th Japan Electromagnetic Energy Application Society Symposium, Proceedings 2B07 (2011) 瀧川、本間、佐々木、稲沢、小西、「マイクロ波製鉄システムへのマイクロ波伝送技術の応用に関する一検討」、2013年電子情報通信学会総合大会、講演要旨集B-1-13 (2013)Sasakawa, Honma, Sasaki, Inazawa, Konishi, "A Study on Application of Microwave Transmission Technology to Microwave Steel Systems", 2013 IEICE General Conference, Abstracts B-1-13 (2013)

特許文献1,2及び非特許文献1,2に開示された従来のマイクロ波加熱システムは、反応炉の周囲にマイクロ波放射源を円周状に配列している。このため、特定のマイクロ波放射源(以下「第1マイクロ波放射源」という)が放射したマイクロ波のうち、加熱対象の試料で吸収されなかったマイクロ波は、この試料で反射されて、反応炉を介して第1マイクロ波放射源と対峙したマイクロ波放射源(以下「第2マイクロ波放射源」という)に照射される。これにより、第2マイクロ波放射源の故障が発生する課題があった。また、投入する試料の状態は、固体、液体、気体、粉末状と、生成物によってことなるため、反応炉に蓋がない状態では、試料が反応炉から漏れ出てしまう課題があった。   In the conventional microwave heating systems disclosed in Patent Documents 1 and 2 and Non-Patent Documents 1 and 2, microwave radiation sources are arranged circumferentially around a reaction furnace. For this reason, of the microwaves radiated from a specific microwave radiation source (hereinafter referred to as “first microwave radiation source”), the microwaves that are not absorbed by the sample to be heated are reflected by this sample and reacted. A microwave radiation source (hereinafter referred to as a “second microwave radiation source”) facing the first microwave radiation source is irradiated through a furnace. Thereby, there was a problem that a failure of the second microwave radiation source occurred. Moreover, since the state of the sample to be input varies depending on the product such as solid, liquid, gas, and powder, there is a problem that the sample leaks out of the reaction furnace when the reaction furnace has no cover.

この発明は、上記のような課題を解決するためになされたもので、マイクロ波と試料を反応炉内に閉じ込めることができるマイクロ波加熱照射装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a microwave heating irradiation apparatus capable of confining a microwave and a sample in a reaction furnace.

この発明に係るマイクロ波加熱照射装置は、マイクロ波が照射されることで、内部に収められた試料を加熱させる反応炉と、反応炉に設けられ、1つの穴を有する蓋と、反応炉の外側に配置され、マイクロ波を照射する1つのマイクロ波照射源と、反応炉の上方に配置され、マイクロ波照射源により照射されたマイクロ波を、蓋の穴を介して反応炉に反射する回転二次曲面鏡と、蓋の反応炉の内側に対向する面の穴以外の箇所に設けられ、マイクロ波を乱反射させる凹凸部とを備えたものである。 A microwave heating irradiation apparatus according to the present invention includes a reaction furnace that heats a sample contained therein by being irradiated with microwaves, a lid that is provided in the reaction furnace, and that has one hole; One microwave irradiation source that is arranged outside and irradiates microwaves, and a rotation that is arranged above the reaction furnace and reflects the microwaves irradiated by the microwave irradiation source to the reaction furnace through the holes in the lid It is provided with a secondary curved surface mirror and a concavo-convex portion that is provided at a location other than the hole on the surface of the lid facing the inside of the reaction furnace and diffuses the microwaves .

この発明によれば、上記のように構成したので、マイクロ波と試料を反応炉内に閉じ込めることができる。   According to this invention, since it comprised as mentioned above, a microwave and a sample can be confined in a reaction furnace.

この発明の実施の形態1に係るマイクロ波加熱照射装置の構成を示す図であり、(a)上面図であり、(b)側断面図である。It is a figure which shows the structure of the microwave heating irradiation apparatus which concerns on Embodiment 1 of this invention, (a) It is a top view, (b) It is a sectional side view. この発明の実施の形態1における蓋の構成を示す上面図である。It is a top view which shows the structure of the lid | cover in Embodiment 1 of this invention. この発明の実施の形態2に係るマイクロ波加熱照射装置の構成を示す図であり、(a)上面図であり、(b)側断面図である。It is a figure which shows the structure of the microwave heating irradiation apparatus which concerns on Embodiment 2 of this invention, (a) It is a top view, (b) It is a sectional side view. この発明の実施の形態3に係るマイクロ波加熱照射装置の構成を示す図であり、(a)上面図であり、(b)側断面図である。It is a figure which shows the structure of the microwave heating irradiation apparatus which concerns on Embodiment 3 of this invention, (a) It is a top view, (b) It is a sectional side view. この発明の実施の形態3における蓋の構成を示す上面図である。It is a top view which shows the structure of the cover in Embodiment 3 of this invention. この発明の実施の形態4に係るマイクロ波加熱照射装置の構成を示す側断面図である。It is a sectional side view which shows the structure of the microwave heating irradiation apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係るマイクロ波加熱照射装置の構成を示す側断面図である。It is a sectional side view which shows the structure of the microwave heating irradiation apparatus which concerns on Embodiment 5 of this invention. この発明の実施の形態6に係るマイクロ波加熱照射装置の構成を示す側断面図である。It is a sectional side view which shows the structure of the microwave heating irradiation apparatus which concerns on Embodiment 6 of this invention. この発明の実施の形態7に係るマイクロ波加熱照射装置の構成を示す側断面図である。It is a sectional side view which shows the structure of the microwave heating irradiation apparatus which concerns on Embodiment 7 of this invention. この発明の実施の形態7における蓋の構成を示す上面図である。It is a top view which shows the structure of the lid | cover in Embodiment 7 of this invention. この発明の実施の形態8に係るマイクロ波加熱照射装置の構成を示す側断面図である。It is a sectional side view which shows the structure of the microwave heating irradiation apparatus which concerns on Embodiment 8 of this invention. この発明の実施の形態9に係るマイクロ波加熱照射装置の構成を示す側断面図である。It is a sectional side view which shows the structure of the microwave heating irradiation apparatus which concerns on Embodiment 9 of this invention.

以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
図1はこの発明の実施の形態1に係るマイクロ波加熱照射装置の構成を示す図である。
マイクロ波加熱照射装置は、図1に示すように、反応炉1、蓋2、マイクロ波放射源3及び回転二次曲面鏡4から構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a microwave heating irradiation apparatus according to Embodiment 1 of the present invention.
As shown in FIG. 1, the microwave heating irradiation apparatus includes a reaction furnace 1, a lid 2, a microwave radiation source 3, and a rotating quadratic curved mirror 4.

反応炉1は、マイクロ波が照射されることで、内部に収められた試料50を反応させて加熱させるものであり、上方(回転二次曲面鏡4側)に開口を有する筐体である。なお、反応炉1の形状については、反応させる試料50の形態、特性によって適宜選択してよい。また図1に示す例では、反応炉1の形状を矩形としているが、これに限定されるものではなく、例えば円形など任意の形状でよい。   The reaction furnace 1 is a case that reacts and heats the sample 50 accommodated therein by being irradiated with microwaves, and is a casing having an opening on the upper side (the rotating secondary curved mirror 4 side). The shape of the reaction furnace 1 may be appropriately selected depending on the form and characteristics of the sample 50 to be reacted. Moreover, in the example shown in FIG. 1, although the shape of the reactor 1 is made into the rectangle, it is not limited to this, For example, arbitrary shapes, such as a circle, may be sufficient.

蓋2は、反応炉1に設けられ、穴21を有するものである。実施の形態1では、図1,2に示すように、蓋2に1つの穴21をあけた場合を示している。図1では、幾何光学的にマイクロ波の放射の経路を示しているが、実際のマイクロ波は波動的効果を有するため、焦点近傍でも波動的にはビームウェストと呼ばれる波の広がりを有することになる。よって、蓋2に設けられる穴21の形状、大きさについては、回転二次曲面鏡4の形状、配置に応じてビームウェストが異なるため、適宜選択してよい。また図1に示す例では、穴21の形状を円形としているが、これに限定されるものではなく、例えば矩形など任意の形状でよい。   The lid 2 is provided in the reaction furnace 1 and has a hole 21. In the first embodiment, as shown in FIGS. 1 and 2, a case where one hole 21 is formed in the lid 2 is shown. In FIG. 1, the path of microwave radiation is geometrically optically shown. However, since an actual microwave has a wave effect, even in the vicinity of the focal point, the wave has a wave spread called a beam waist. Become. Therefore, the shape and size of the hole 21 provided in the lid 2 may be appropriately selected because the beam waist varies depending on the shape and arrangement of the rotating quadric curved mirror 4. In the example shown in FIG. 1, the shape of the hole 21 is circular. However, the shape is not limited to this, and may be an arbitrary shape such as a rectangle.

マイクロ波放射源3は、反応炉1の外側に配置され、試料50を反応させるためのマイクロ波を照射するものである。図1に示す実施の形態1では、マイクロ波照射源を1つ備えた場合を示している。なお、マイクロ波放射源3の種類、照射するマイクロ波の周波数等は、適宜選択してよい。また、マイクロ波放射源3の放射方向は、回転二次曲面鏡4の方向である。   The microwave radiation source 3 is disposed outside the reaction furnace 1 and irradiates a microwave for causing the sample 50 to react. In Embodiment 1 shown in FIG. 1, the case where one microwave irradiation source is provided is shown. Note that the type of the microwave radiation source 3, the frequency of the microwave to be irradiated, and the like may be appropriately selected. The radiation direction of the microwave radiation source 3 is the direction of the rotating quadric mirror 4.

回転二次曲面鏡4は、反応炉1の上方に配置され、マイクロ波放射源3により照射されたマイクロ波を、蓋2の穴21を介して反応炉1に反射するものである。ここで、マイクロ波放射源3(第1の焦点101)から放射されたマイクロ波は、入射波102のように回転二次曲面鏡4に入射される。その後、回転二次曲面鏡4で反射されたマイクロ波は、入射波103のように蓋2の穴21(第2の焦点104)で集束される。すなわち、回転二次曲面鏡4は、マイクロ波放射源3と蓋2の穴21の位置にそれぞれ第1,2の焦点101,104を有するものである。なお図1では回転楕円鏡として図示している。
なお、反応炉1、蓋2及び回転二次曲面鏡4の構成材料は適宜選択してよい。
The rotating quadric curved mirror 4 is disposed above the reaction furnace 1 and reflects the microwave irradiated by the microwave radiation source 3 to the reaction furnace 1 through the hole 21 of the lid 2. Here, the microwave radiated from the microwave radiation source 3 (the first focal point 101) is incident on the rotating quadric mirror 4 like the incident wave 102. After that, the microwave reflected by the rotating quadric curved mirror 4 is focused at the hole 21 (second focal point 104) of the lid 2 like the incident wave 103. That is, the rotating quadratic curved mirror 4 has the first and second focal points 101 and 104 at the positions of the microwave radiation source 3 and the hole 21 of the lid 2, respectively. In FIG. 1, it is illustrated as a spheroid mirror.
In addition, you may select suitably the constituent material of the reaction furnace 1, the lid | cover 2, and the rotation quadratic curved mirror 4. FIG.

次に、上記のように構成されたマイクロ波加熱照射装置の動作について説明する。
マイクロ波放射源3からマイクロ波が照射されると、このマイクロ波は、回転二次曲面鏡4を介して蓋2の穴21の位置に一旦集束され、反応炉1内の試料50に向けて発散しながら照射される。そして、試料50に照射されたマイクロ波のうちの一部は、試料50での反応により熱となって吸収される。一方、吸収されなかったマイクロ波は、反射波105となって、試料50への入射方向とは逆方向に反射する。
Next, the operation of the microwave heating irradiation apparatus configured as described above will be described.
When microwaves are irradiated from the microwave radiation source 3, the microwaves are once focused on the position of the hole 21 of the lid 2 through the rotating quadric curved mirror 4 and directed toward the sample 50 in the reaction furnace 1. Irradiates while diverging. A part of the microwave irradiated to the sample 50 is absorbed as heat by the reaction in the sample 50. On the other hand, the microwave that has not been absorbed becomes the reflected wave 105 and is reflected in the direction opposite to the direction of incidence on the sample 50.

ここで、本発明では、反応炉1の上方に蓋2が配置されているため、この蓋2によってマイクロ波が反射されて、再び、試料50に照射される。これにより、効率的に試料50を加熱することができる。なお、蓋2の穴21から漏れ出ていくマイクロ波は非常に少なく、また仮に漏れ出たとしても、装置内の伝搬損失から考えれば小さいものであり、マイクロ波放射源3を壊すことはない。さらに、反応炉1に蓋2を設けることで、試料50が反応炉1から外に出ていく心配もなくなる。   Here, in this invention, since the lid | cover 2 is arrange | positioned above the reaction furnace 1, a microwave is reflected by this lid | cover 2, and the sample 50 is irradiated again. Thereby, the sample 50 can be heated efficiently. The microwave leaking from the hole 21 of the lid 2 is very small, and even if it leaks, it is small considering the propagation loss in the apparatus, and the microwave radiation source 3 is not broken. . Furthermore, by providing the lid 2 on the reaction furnace 1, there is no fear that the sample 50 goes out of the reaction furnace 1.

以上のように、この実施の形態1によれば、回転二次曲面鏡4を用い、穴21をあけた蓋2を反応炉1に設けたので、マイクロ波と試料50を反応炉1内に閉じ込めることができる。その結果、マイクロ波放射源3の故障を防止し且つ試料50の漏えいを防止することができる。さらに、反応炉1内にマイクロ波を閉じ込めることができるため、試料50から反射されたマイクロ波を反応炉1内で有効活用して、再び試料50へ照射することができ、エネルギーの効率化の効果が得られる。   As described above, according to the first embodiment, since the rotating secondary curved mirror 4 is used and the lid 2 having the holes 21 is provided in the reaction furnace 1, the microwave and the sample 50 are placed in the reaction furnace 1. Can be confined. As a result, failure of the microwave radiation source 3 can be prevented and leakage of the sample 50 can be prevented. Furthermore, since the microwave can be confined in the reaction furnace 1, the microwave reflected from the sample 50 can be effectively used in the reaction furnace 1, and can be irradiated again to the sample 50, thereby improving energy efficiency. An effect is obtained.

実施の形態2.
図3はこの発明の実施の形態2に係るマイクロ波加熱照射装置の構成を示す図である。 図3に示す実施の形態2に係るマイクロ波加熱照射装置は、図1に示す実施の形態1に係るマイクロ波加熱照射装置のマイクロ波放射源3及び回転二次曲面鏡4を2系統設け、各系統の第2の焦点104を蓋2の1つの穴21の位置に設定したものである。なお図では、各系統を区別するため、各構成の符号に接尾記号(a,b)を付して示している。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 2. FIG.
FIG. 3 is a diagram showing a configuration of a microwave heating irradiation apparatus according to Embodiment 2 of the present invention. The microwave heating irradiation apparatus according to Embodiment 2 shown in FIG. 3 is provided with two systems of the microwave radiation source 3 and the rotating quadratic curved mirror 4 of the microwave heating irradiation apparatus according to Embodiment 1 shown in FIG. The second focus 104 of each system is set at the position of one hole 21 of the lid 2. In the figure, in order to distinguish each system, suffixes (a, b) are added to the reference numerals of the respective components. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.

ここで、第1の焦点101は各系統のマイクロ波放射源3の位置とし、第2の焦点104は、蓋2の1つの穴21の位置に設定するようにマイクロ波放射源3及び回転二次曲面鏡4を配置する。図3に示す例では、マイクロ波放射源3及び回転二次曲面鏡4を2系統設けた場合を示しているが、3系統以上設けてもよく、その数を限定するものではない。   Here, the first focal point 101 is set to the position of the microwave radiation source 3 of each system, and the second focal point 104 is set to the position of one hole 21 of the lid 2 so as to be set to the position of the microwave radiation source 3 and the rotation source 2. The next curved mirror 4 is arranged. Although the example shown in FIG. 3 shows the case where two systems of the microwave radiation source 3 and the rotating quadratic curved mirror 4 are provided, three or more systems may be provided, and the number is not limited.

以上のように、この実施の形態2によれば、マイクロ波放射源3及び回転二次曲面鏡4を複数系統設け、各系統の第2の焦点104を蓋2の1つの穴21の位置に設定するように構成しても、実施の形態1と同様の効果が得られる。   As described above, according to the second embodiment, the microwave radiation source 3 and the rotating secondary curved mirror 4 are provided in a plurality of systems, and the second focal point 104 of each system is placed at the position of one hole 21 in the lid 2. Even if it is configured to set, the same effect as in the first embodiment can be obtained.

実施の形態3.
図4はこの発明の実施の形態3に係るマイクロ波加熱照射装置の構成を示す図であり、図5は蓋10の構成を示す上面図である。図4,5に示す実施の形態3に係るマイクロ波加熱照射装置は、図1に示す実施の形態1に係るマイクロ波加熱照射装置のマイクロ波放射源3及び回転二次曲面鏡4を4系統設け、蓋2に4つの穴21を設けて、各系統の第2の焦点104を互いに異なる穴21の位置に設定したものである。なお図では、各系統を区別するため、各構成の符号に接尾記号(a〜d)を付して示している。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 3 FIG.
4 is a diagram showing the configuration of the microwave heating irradiation apparatus according to the third embodiment of the present invention, and FIG. 5 is a top view showing the configuration of the lid 10. The microwave heating irradiation apparatus according to the third embodiment shown in FIGS. 4 and 5 includes four systems of the microwave radiation source 3 and the rotating quadratic curved mirror 4 of the microwave heating irradiation apparatus according to the first embodiment shown in FIG. And four holes 21 are provided in the lid 2, and the second focal points 104 of the respective systems are set at different positions of the holes 21. In the drawing, in order to distinguish each system, suffixes (a to d) are added to the reference numerals of the respective components. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.

ここで、第1の焦点101は各系統のマイクロ波放射源3の位置とし、第2の焦点104は、蓋2の異なる穴21の位置に設定するようにマイクロ波放射源3及び回転二次曲面鏡4を配置する。図4に示す例では、マイクロ波放射源3及び回転二次曲面鏡4を4系統設け、蓋2に4つの穴21を設けた場合を示しているが、少なくとも2系統以上設け、蓋2に対応する数の穴21を設ければよく、その数を限定するものではない。   Here, the first focal point 101 is set to the position of the microwave radiation source 3 of each system, and the second focal point 104 is set to the position of the different hole 21 of the lid 2 so that the microwave radiation source 3 and the rotating secondary source are set. A curved mirror 4 is arranged. In the example shown in FIG. 4, four microwave radiation sources 3 and rotating quadric curved mirrors 4 are provided, and four holes 21 are provided in the lid 2. A corresponding number of holes 21 may be provided, and the number is not limited.

以上のように、この実施の形態3によれば、マイクロ波放射源3及び回転二次曲面鏡4を複数系統設け、蓋2に対応する数の穴21を設け、各系統の第2の焦点104を蓋2の互いに異なる穴21の位置に設定するように構成しても、実施の形態1,2と同様の効果が得られる。   As described above, according to the third embodiment, the microwave radiation source 3 and the rotating secondary curved mirror 4 are provided in a plurality of systems, the number of holes 21 corresponding to the lid 2 is provided, and the second focus of each system is provided. Even if the configuration is such that 104 is set at the position of the hole 21 which is different from each other in the lid 2, the same effect as in the first and second embodiments can be obtained.

実施の形態4.
図6はこの発明の実施の形態4に係るマイクロ波加熱照射装置の構成を示す図である。
図6に示す実施の形態4に係るマイクロ波加熱照射装置は、図1に示す実施の形態1に係るマイクロ波加熱照射装置の蓋2の裏面(反応炉1の内側と対向する面)に凹凸部22を設けたものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 4 FIG.
FIG. 6 is a diagram showing the configuration of a microwave heating irradiation apparatus according to Embodiment 4 of the present invention.
The microwave heating irradiation apparatus according to the fourth embodiment shown in FIG. 6 is uneven on the back surface (the surface facing the inner side of the reaction furnace 1) of the lid 2 of the microwave heating irradiation apparatus according to the first embodiment shown in FIG. A portion 22 is provided. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.

凹凸部22は、蓋2の裏面に設けられ、反応炉1内で反射したマイクロ波を乱反射させるものである。この凹凸部22の材料、形状、種類は、適宜選択してよい。この凹凸部22を設けることで、図1に示す実施の形態1の構成に対して、試料50からのマイクロ波の反射波105がより複雑に反応炉1内で多重反射し、蓋2の穴21から漏れ出ていくマイクロ波を軽減させる効果が得られる。   The concavo-convex portion 22 is provided on the back surface of the lid 2 and diffuses the microwave reflected in the reaction furnace 1. The material, shape, and type of the uneven portion 22 may be appropriately selected. By providing the uneven portion 22, the reflected wave 105 of the microwave from the sample 50 is more complicatedly reflected in the reaction furnace 1 than the configuration of the first embodiment shown in FIG. The effect of reducing the microwave leaking from 21 is obtained.

以上のように、この実施の形態4によれば、蓋2の裏面に凹凸部22を設けることで、実施の形態1の効果に対し、試料50へのより効率的な加熱効果と、マイクロ波の穴21からの漏えいをより軽減する効果が得られる。   As described above, according to the fourth embodiment, by providing the concavo-convex portion 22 on the back surface of the lid 2, a more efficient heating effect on the sample 50 than the effect of the first embodiment, and the microwave An effect of further reducing leakage from the hole 21 is obtained.

なお上記では、図1に示す実施の形態1の構成に対して凹凸部22を適用した場合を示したが、図3〜5に示す実施の形態2,3の構成に対しても同様に適用可能であり、同様の効果を得ることができる。   In addition, although the case where the uneven | corrugated | grooved part 22 was applied with respect to the structure of Embodiment 1 shown in FIG. 1 was shown above, it is applied similarly to the structure of Embodiment 2 and 3 shown to FIGS. It is possible and the same effect can be obtained.

実施の形態5.
図7はこの発明の実施の形態5に係るマイクロ波加熱照射装置の構成を示す図である。
図7に示す実施の形態5に係るマイクロ波加熱照射装置は、図1に示す実施の形態1に係るマイクロ波加熱照射装置の反応炉1の内側の側壁に凹凸部11を設けたものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 5. FIG.
FIG. 7 is a diagram showing a configuration of a microwave heating irradiation apparatus according to Embodiment 5 of the present invention.
The microwave heating irradiation apparatus according to the fifth embodiment shown in FIG. 7 is provided with an uneven portion 11 on the inner side wall of the reaction furnace 1 of the microwave heating irradiation apparatus according to the first embodiment shown in FIG. . Other configurations are the same, and the same reference numerals are given and description thereof is omitted.

凹凸部11は、反応炉1の内側の側壁に設けられ、反応炉1内で反射したマイクロ波を乱反射させるものである。この凹凸部11の材料、形状、種類は、適宜選択してよい。この凹凸部11を設けることで、図1に示す実施の形態1の構成に対して、試料50からのマイクロ波の反射波105がより複雑に反応炉1内で多重反射し、蓋2の穴21から漏れ出ていくマイクロ波を軽減させる効果が得られる。   The concavo-convex portion 11 is provided on the inner side wall of the reaction furnace 1 to diffusely reflect the microwave reflected in the reaction furnace 1. The material, shape, and type of the uneven portion 11 may be selected as appropriate. By providing the concavo-convex portion 11, the reflected wave 105 of the microwave from the sample 50 is more complicatedly reflected in the reaction furnace 1 than the configuration of the first embodiment shown in FIG. The effect of reducing the microwave leaking from 21 is obtained.

以上のように、この実施の形態5によれば、反応炉1の内側の側壁に凹凸部11を設けることで、実施の形態1の効果に対し、試料50へのより効率的な加熱効果と、マイクロ波の穴21からの漏えいをより軽減する効果が得られる。   As described above, according to the fifth embodiment, by providing the concavo-convex portion 11 on the inner side wall of the reaction furnace 1, a more efficient heating effect on the sample 50 than the effect of the first embodiment can be achieved. An effect of further reducing leakage from the microwave hole 21 can be obtained.

なお上記では、図1に示す実施の形態1の構成に対して凹凸部11を適用した場合を示したが、図3〜5に示す実施の形態2,3の構成に対しても同様に適用可能であり、同様の効果を得ることができる。   In addition, although the case where the uneven | corrugated | grooved part 11 was applied with respect to the structure of Embodiment 1 shown in FIG. 1 was shown above, it is applied similarly to the structure of Embodiment 2 and 3 shown to FIGS. It is possible and the same effect can be obtained.

実施の形態6.
図8はこの発明の実施の形態6に係るマイクロ波加熱照射装置の構成を示す図である。
図8に示す実施の形態6に係るマイクロ波加熱照射装置は、図1に示す実施の形態1に係るマイクロ波加熱照射装置の蓋2の裏面(反応炉1の内側と対向する面)に凹凸部22を設け、反応炉1の内側の側壁に凹凸部11を設けたものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 6 FIG.
FIG. 8 is a diagram showing a configuration of a microwave heating irradiation apparatus according to Embodiment 6 of the present invention.
The microwave heating irradiation apparatus according to the sixth embodiment shown in FIG. 8 is uneven on the back surface (the surface facing the inner side of the reaction furnace 1) of the lid 2 of the microwave heating irradiation apparatus according to the first embodiment shown in FIG. The portion 22 is provided, and the uneven portion 11 is provided on the inner side wall of the reaction furnace 1. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.

凹凸部22は、蓋2の裏面に設けられ、反応炉1内で反射したマイクロ波を乱反射させるものである。また、凹凸部11は、反応炉1の内側の側壁に設けられ、反応炉1内で反射したマイクロ波を乱反射させるものである。この凹凸部11,22の材料、形状、種類は、適宜選択してよい。この凹凸部11,22を設けることで、図1に示す実施の形態1の構成に対して、試料50からのマイクロ波の反射波105がより複雑に反応炉1内で多重反射し、蓋2の穴21から漏れ出ていくマイクロ波を軽減させる効果が得られる。   The concavo-convex portion 22 is provided on the back surface of the lid 2 and diffuses the microwave reflected in the reaction furnace 1. Further, the concavo-convex portion 11 is provided on the inner side wall of the reaction furnace 1 to diffusely reflect the microwave reflected in the reaction furnace 1. You may select suitably the material, shape, and kind of these uneven | corrugated | grooved parts 11 and 22. FIG. By providing the uneven portions 11 and 22, the reflected wave 105 of the microwave from the sample 50 is more complicatedly reflected in the reaction furnace 1 than the configuration of the first embodiment shown in FIG. The effect of reducing the microwave leaking from the hole 21 is obtained.

以上のように、この実施の形態6によれば、蓋2の裏面に凹凸部22を設け、反応炉1の内側の側壁に凹凸部11を設けることで、実施の形態1の効果に対し、試料50へのより効率的な加熱効果と、マイクロ波の穴21からの漏えいをより軽減する効果が得られる。   As described above, according to the sixth embodiment, the concave and convex portion 22 is provided on the back surface of the lid 2 and the concave and convex portion 11 is provided on the inner side wall of the reaction furnace 1. A more efficient heating effect on the sample 50 and an effect of further reducing leakage from the microwave hole 21 can be obtained.

なお上記では、図1に示す実施の形態1の構成に対して凹凸部11,22を適用した場合を示したが、図3〜5に示す実施の形態2,3の構成に対しても同様に適用可能であり、同様の効果を得ることができる。   In addition, although the case where the uneven | corrugated | grooved parts 11 and 22 were applied with respect to the structure of Embodiment 1 shown in FIG. 1 was shown above, it is the same also about the structure of Embodiment 2 and 3 shown to FIGS. The same effect can be obtained.

また、実施の形態4〜6において、凹凸部11,22は、例えば三角柱を並べたような面の形状でもよいし、三角錐、四角錐、半球を並べたような面の形状でもよい(すなわち、拡散反射の効果が得られる形状であればよい)。   In the fourth to sixth embodiments, the concavo-convex portions 11 and 22 may have a surface shape in which triangular prisms are arranged, for example, or may have a surface shape in which triangular pyramids, quadrangular pyramids, and hemispheres are arranged (that is, Any shape that can achieve the effect of diffuse reflection is acceptable.

実施の形態7.
図9はこの発明の実施の形態7に係るマイクロ波加熱照射装置の構成を示す図であり、図10は蓋10の構成を示す上面図である。図9,10に示す実施の形態7に係るマイクロ波加熱照射装置は、図1に示す実施の形態1に係るマイクロ波加熱照射装置の蓋2の穴21にカバー5を設けたものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 7 FIG.
FIG. 9 is a diagram showing the configuration of the microwave heating irradiation apparatus according to the seventh embodiment of the present invention, and FIG. 10 is a top view showing the configuration of the lid 10. The microwave heating irradiation apparatus according to Embodiment 7 shown in FIGS. 9 and 10 is provided with a cover 5 in the hole 21 of the lid 2 of the microwave heating irradiation apparatus according to Embodiment 1 shown in FIG. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.

カバー5は、蓋2の穴21に設けられ、マイクロ波を通過させるものである。このカバー5は、マイクロ波を通過させることができれば、その材料の種類は、適宜選択してよい。このように、蓋2の穴21をカバー5で塞ぐことにより、反応炉1内に試料50を閉じ込めることが可能となる。   The cover 5 is provided in the hole 21 of the lid 2 and allows microwaves to pass therethrough. As long as the cover 5 can pass microwaves, the type of the material may be appropriately selected. Thus, the sample 50 can be confined in the reaction furnace 1 by closing the hole 21 of the lid 2 with the cover 5.

以上のように、この実施の形態7によれば、蓋2の穴21の部分にカバー5を設けることで、実施の形態1における効果に加え、試料50の穴21から漏えいをより軽減する効果が得られる。   As described above, according to the seventh embodiment, by providing the cover 5 in the portion of the hole 21 of the lid 2, the effect of further reducing leakage from the hole 21 of the sample 50 in addition to the effect of the first embodiment. Is obtained.

なお上記では、図1に示す実施の形態1の構成に対してカバー5を適用した場合を示したが、図3〜8に示す実施の形態2〜6の構成に対しても同様に適用可能であり、同様の効果を得ることができる。   In addition, although the case where the cover 5 was applied with respect to the structure of Embodiment 1 shown in FIG. 1 was shown above, it is applicable similarly to the structure of Embodiments 2-6 shown in FIGS. Thus, the same effect can be obtained.

実施の形態8.
図11はこの発明の実施の形態8に係るマイクロ波加熱照射装置の構成を示す図である。
図11に示す実施の形態8に係るマイクロ波加熱照射装置は、図1に示す実施の形態1に係るマイクロ波加熱照射装置に加熱部6を設けたものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 8 FIG.
FIG. 11 is a diagram showing the configuration of the microwave heating irradiation apparatus according to the eighth embodiment of the present invention.
The microwave heating irradiation apparatus according to the eighth embodiment shown in FIG. 11 is obtained by providing a heating unit 6 to the microwave heating irradiation apparatus according to the first embodiment shown in FIG. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.

加熱部6は、反応炉1の外部に設けられ、当該反応炉1を加熱するものである。この加熱部6の方法や装置の種類は、適宜選択してよい。このように、試料50をマイクロ波で加熱することに加えて、加熱部6により反応炉1自体を加熱することで、反応炉1内の温度が上昇し、試料50の反応速度を高めることができる。   The heating unit 6 is provided outside the reaction furnace 1 and heats the reaction furnace 1. You may select the method of this heating part 6, and the kind of apparatus suitably. Thus, in addition to heating the sample 50 with microwaves, heating the reaction furnace 1 itself with the heating unit 6 increases the temperature in the reaction furnace 1 and increases the reaction rate of the sample 50. it can.

以上のように、この実施の形態8によれば、反応炉1に熱を加える加熱部6を設けることで、実施の形態1の効果に対し、試料50へのより効率的な加熱効果が得られる。   As described above, according to the eighth embodiment, by providing the heating unit 6 for applying heat to the reaction furnace 1, a more efficient heating effect on the sample 50 can be obtained compared to the effect of the first embodiment. It is done.

なお上記では、図1に示す実施の形態1の構成に対して加熱部6を適用した場合を示したが、図3〜9に示す実施の形態2〜7の構成に対しても同様に適用可能であり、同様の効果を得ることができる。   In addition, although the case where the heating part 6 was applied with respect to the structure of Embodiment 1 shown in FIG. 1 was shown above, it is applied similarly to the structure of Embodiments 2-7 shown in FIGS. It is possible and the same effect can be obtained.

実施の形態9.
図12はこの発明の実施の形態9に係るマイクロ波加熱照射装置の構成を示す図である。
図12に示す実施の形態9に係るマイクロ波加熱照射装置は、図1に示す実施の形態1に係るマイクロ波加熱照射装置のマイクロ波放射源3をアクティブフェーズドアレーアンテナ7としたものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 9 FIG.
FIG. 12 is a diagram showing a configuration of a microwave heating irradiation apparatus according to Embodiment 9 of the present invention.
The microwave heating irradiation apparatus according to Embodiment 9 shown in FIG. 12 is an active phased array antenna 7 as the microwave radiation source 3 of the microwave heating irradiation apparatus according to Embodiment 1 shown in FIG. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.

アクティブフェーズドアレーアンテナ7は、アンテナ素子毎、もしくは複数のアンテナ素子で構成するサブアレーアンテナ毎に増幅器及び位相器を備えたものである。そして、各々の増幅量及び位相量を最適化することで、試料50に照射されるマイクロ波の照射分布をフレキシブルに制御することができる。なお、目的とする照射分布を達成するため、増幅量と位相量の調整は適宜選択してよい。   The active phased array antenna 7 is provided with an amplifier and a phase shifter for each antenna element or for each sub-array antenna composed of a plurality of antenna elements. Then, by optimizing each amplification amount and phase amount, it is possible to flexibly control the irradiation distribution of the microwave irradiated to the sample 50. In order to achieve the target irradiation distribution, the adjustment of the amplification amount and the phase amount may be appropriately selected.

以上のように、この実施の形態9によれば、マイクロ波放射源3として、放射するマイクロ波の振幅及び位相を調整自在なアクティブフェーズドアレーアンテナ7を用いたので、実施の形態1の効果に対し、試料50への照射分布をフレキシブルに制御できる効果が得られる。   As described above, according to the ninth embodiment, since the active phased array antenna 7 capable of adjusting the amplitude and phase of the radiated microwave is used as the microwave radiation source 3, the effect of the first embodiment is achieved. On the other hand, the effect that the irradiation distribution to the sample 50 can be controlled flexibly is obtained.

なお上記では、図1に示す実施の形態1の構成にアクティブフェーズドアレーアンテナ7を適用した場合を示したが、図3〜11に示す実施の形態2〜8の構成に対しても同様に適用可能であり、同様の効果を得ることができる。   In addition, although the case where the active phased array antenna 7 was applied to the structure of Embodiment 1 shown in FIG. 1 was shown above, it is applied similarly to the structure of Embodiments 2-8 shown in FIGS. It is possible and the same effect can be obtained.

また実施の形態1〜9において、第2の焦点104の位置を、蓋2の穴21の位置に厳密に合わせなくてもよい。すなわち、第2の焦点104の位置が、蓋2の穴21の上又は下の位置となったとしても、加熱効果は大きく変わらない。しかしながら、第2の焦点104を蓋2の穴21の位置に合わせた方が、(ビームウェストを考慮しても、)穴21の径(サイズ)を小さくできて試料50の漏えい抑止に効率的である(試料50の量にもよるが試料50の表面に焦点が合った場合の方がより大きな加熱効果が期待できる)。   In the first to ninth embodiments, the position of the second focal point 104 may not be strictly matched with the position of the hole 21 of the lid 2. That is, even if the position of the second focal point 104 is above or below the hole 21 of the lid 2, the heating effect does not change greatly. However, if the second focal point 104 is aligned with the position of the hole 21 in the lid 2, the diameter (size) of the hole 21 can be reduced (even if the beam waist is taken into consideration), and the leakage of the sample 50 can be effectively suppressed. (Although depending on the amount of the sample 50, a larger heating effect can be expected when the surface of the sample 50 is focused).

また実施の形態1〜9では、蓋2を平面として示したが、これに限るものではなく、例えば曲面でもよい。   Moreover, in Embodiment 1-9, although the lid | cover 2 was shown as a plane, it is not restricted to this, For example, a curved surface may be sufficient.

なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。   In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .

この発明に係るマイクロ波加熱照射装置は、マイクロ波が照射されることで、内部に収められた試料を加熱させる反応炉と、反応炉に設けられ、1つの穴を有する蓋と、反応炉の外側に配置され、マイクロ波を照射する1つのマイクロ波照射源と、反応炉の上方に配置され、マイクロ波照射源により照射されたマイクロ波を、蓋の穴を介して反応炉に反射する回転二次曲面鏡とを備えることで、マイクロ波と試料を反応炉内に閉じ込めることができ、試料の加熱に好適である。   A microwave heating irradiation apparatus according to the present invention includes a reaction furnace that heats a sample contained therein by being irradiated with microwaves, a lid that is provided in the reaction furnace, and that has one hole; One microwave irradiation source that is arranged outside and irradiates microwaves, and a rotation that is arranged above the reaction furnace and reflects the microwaves irradiated by the microwave irradiation source to the reaction furnace through the holes in the lid By providing the quadric curved mirror, the microwave and the sample can be confined in the reaction furnace, which is suitable for heating the sample.

1 反応炉、2 蓋、3,3a〜3d マイクロ波放射源、4,4a〜4d 回転二次曲面鏡、5 カバー、6 加熱部、7 アクティブフェーズドアレーアンテナ、11 凹凸部、21,21a〜21d 穴、22 凹凸部、50 試料、101,101a,101b 第1の焦点、102,102a,102b 入射波、103,103a,103b 入射波、104,104a,104b 第2の焦点、105 反射波。   DESCRIPTION OF SYMBOLS 1 Reactor, 2 lid | cover, 3,3a-3d Microwave radiation source, 4,4a-4d Rotating quadratic curved mirror, 5 cover, 6 heating part, 7 Active phased array antenna, 11 Irregularity part, 21,21a-21d Hole, 22 Concavity and convexity, 50 Sample, 101, 101a, 101b First focus, 102, 102a, 102b Incident wave, 103, 103a, 103b Incident wave, 104, 104a, 104b Second focus, 105 Reflected wave.

Claims (15)

マイクロ波が照射されることで、内部に収められた試料を加熱させる反応炉と、
前記反応炉に設けられ、1つの穴を有する蓋と、
前記反応炉の外側に配置され、マイクロ波を照射する1つのマイクロ波放射源と、
前記反応炉の上方に配置され、前記マイクロ波放射源により照射されたマイクロ波を、前記蓋の穴を介して前記反応炉に反射する回転二次曲面鏡と
前記蓋の前記反応炉の内側に対向する面の前記穴以外の箇所に設けられ、前記マイクロ波を乱反射させる凹凸部と
を備えたマイクロ波加熱照射装置。
A reactor that heats a sample stored inside by being irradiated with microwaves,
A lid provided in the reactor and having one hole;
One microwave radiation source disposed outside the reactor and radiating microwaves;
A rotating quadric mirror that is disposed above the reactor and that reflects the microwave irradiated by the microwave radiation source to the reactor through the hole in the lid ;
The microwave heating irradiation apparatus provided with the uneven | corrugated | grooved part which is provided in locations other than the said hole of the surface facing the inside of the said reaction furnace of the said lid, and irregularly reflects the said microwave .
マイクロ波が照射されることで、内部に収められた試料を加熱させる反応炉と、
前記反応炉に設けられ、1つの穴を有する蓋と、
前記反応炉の外側に配置され、マイクロ波を照射する複数のマイクロ波放射源と、
前記複数のマイクロ波放射源に対応して前記反応炉の上方に複数配置され、対応する当該マイクロ波放射源により照射されたマイクロ波を、前記蓋の穴を介して前記反応炉に反射する回転二次曲面鏡と
前記蓋の前記反応炉の内側に対向する面の前記穴以外の箇所に設けられ、前記マイクロ波を乱反射させる凹凸部と
を備えたマイクロ波加熱照射装置。
A reactor that heats a sample stored inside by being irradiated with microwaves,
A lid provided in the reactor and having one hole;
A plurality of microwave radiation sources disposed outside the reactor and radiating microwaves;
A plurality of microwaves disposed above the reaction furnace corresponding to the plurality of microwave radiation sources, and rotating to reflect the microwaves irradiated by the corresponding microwave radiation sources to the reaction furnace through the holes of the lid A quadric curved mirror ,
The microwave heating irradiation apparatus provided with the uneven | corrugated | grooved part which is provided in locations other than the said hole of the surface facing the inside of the said reaction furnace of the said lid, and irregularly reflects the said microwave .
マイクロ波が照射されることで、内部に収められた試料を加熱させる反応炉と、
前記反応炉に設けられ、複数の穴を有する蓋と、
前記反応炉の外側に配置され、マイクロ波を照射する複数のマイクロ波放射源と、
前記複数のマイクロ波放射源に対応して前記反応炉の上方に複数配置され、対応する当該マイクロ波放射源により照射されたマイクロ波を、互いに異なる前記蓋の穴を介して前記反応炉に反射する複数の回転二次曲面鏡と
前記蓋の前記反応炉の内側に対向する面の前記複数の穴以外の箇所に設けられ、前記マイクロ波を乱反射させる凹凸部と
を備えたマイクロ波加熱照射装置。
A reactor that heats a sample stored inside by being irradiated with microwaves,
A lid provided in the reactor and having a plurality of holes;
A plurality of microwave radiation sources disposed outside the reactor and radiating microwaves;
A plurality of microwaves disposed above the reaction furnace corresponding to the plurality of microwave radiation sources, and the microwaves irradiated by the corresponding microwave radiation sources are reflected to the reaction furnace through different holes of the lid. A plurality of rotating quadric mirrors ,
The microwave heating irradiation apparatus provided with the uneven | corrugated | grooved part which is provided in locations other than the said several hole of the surface facing the inner side of the said reaction furnace of the said lid, and irregularly reflects the said microwave .
前記反応炉の内側の側壁に設けられ、マイクロ波を乱反射させる凹凸部を備えた
ことを特徴とする請求項1記載のマイクロ波加熱照射装置。
The microwave heating irradiation apparatus according to claim 1, further comprising a concavo-convex portion that is provided on an inner side wall of the reaction furnace and diffuses and reflects microwaves.
前記反応炉の内側の側壁に設けられ、マイクロ波を乱反射させる凹凸部を備えた
ことを特徴とする請求項2記載のマイクロ波加熱照射装置。
The microwave heating irradiation apparatus according to claim 2, further comprising a concavo-convex portion that is provided on an inner side wall of the reaction furnace and diffuses and reflects microwaves.
前記反応炉の内側の側壁に設けられ、マイクロ波を乱反射させる凹凸部を備えた
ことを特徴とする請求項3記載のマイクロ波加熱照射装置。
The microwave heating irradiation apparatus according to claim 3, further comprising a concavo-convex portion that is provided on an inner side wall of the reactor and diffuses and reflects microwaves.
前記蓋の穴に設けられ、マイクロ波を通過させるカバーを備えた
ことを特徴とする請求項1記載のマイクロ波加熱照射装置。
The microwave heating irradiation apparatus according to claim 1, further comprising a cover that is provided in the hole of the lid and allows microwaves to pass therethrough.
前記蓋の穴に設けられ、マイクロ波を通過させるカバーを備えた
ことを特徴とする請求項2記載のマイクロ波加熱照射装置。
The microwave heating irradiation apparatus according to claim 2, further comprising a cover that is provided in the hole of the lid and allows microwaves to pass therethrough.
前記蓋の穴に設けられ、マイクロ波を通過させるカバーを備えた
ことを特徴とする請求項3記載のマイクロ波加熱照射装置。
The microwave heating irradiation apparatus according to claim 3, further comprising a cover that is provided in the hole of the lid and allows microwaves to pass therethrough.
前記反応炉の外部に設けられ、当該反応炉を加熱する加熱部を備えた
ことを特徴とする請求項1記載のマイクロ波加熱照射装置。
The microwave heating irradiation apparatus according to claim 1, further comprising a heating unit that is provided outside the reaction furnace and heats the reaction furnace.
前記反応炉の外部に設けられ、当該反応炉を加熱する加熱部を備えた
ことを特徴とする請求項2記載のマイクロ波加熱照射装置。
The microwave heating irradiation apparatus according to claim 2, further comprising a heating unit that is provided outside the reaction furnace and heats the reaction furnace.
前記反応炉の外部に設けられ、当該反応炉を加熱する加熱部を備えた
ことを特徴とする請求項3記載のマイクロ波加熱照射装置。
The microwave heating irradiation apparatus according to claim 3, further comprising a heating unit that is provided outside the reaction furnace and heats the reaction furnace.
前記マイクロ波放射源は、放射するマイクロ波の振幅及び位相を調整自在なアクティブフェーズドアレーアンテナである
ことを特徴とする請求項1記載のマイクロ波加熱照射装置。
The microwave heating irradiation apparatus according to claim 1, wherein the microwave radiation source is an active phased array antenna capable of adjusting an amplitude and a phase of a microwave to be radiated.
前記マイクロ波放射源は、放射するマイクロ波の振幅及び位相を調整自在なアクティブフェーズドアレーアンテナである
ことを特徴とする請求項2記載のマイクロ波加熱照射装置。
The microwave heating irradiation apparatus according to claim 2, wherein the microwave radiation source is an active phased array antenna capable of adjusting an amplitude and a phase of a microwave to be radiated.
前記マイクロ波放射源は、放射するマイクロ波の振幅及び位相を調整自在なアクティブフェーズドアレーアンテナである
ことを特徴とする請求項3記載のマイクロ波加熱照射装置。
The microwave heating irradiation apparatus according to claim 3, wherein the microwave radiation source is an active phased array antenna capable of adjusting an amplitude and a phase of a microwave to be radiated.
JP2016534299A 2014-07-17 2015-04-16 Microwave heating irradiation device Active JP6099828B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014146811 2014-07-17
JP2014146811 2014-07-17
PCT/JP2015/061721 WO2016009691A1 (en) 2014-07-17 2015-04-16 Microwave heating and radiating device

Publications (2)

Publication Number Publication Date
JP6099828B2 true JP6099828B2 (en) 2017-03-22
JPWO2016009691A1 JPWO2016009691A1 (en) 2017-04-27

Family

ID=55078196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016534299A Active JP6099828B2 (en) 2014-07-17 2015-04-16 Microwave heating irradiation device

Country Status (5)

Country Link
US (1) US9823019B2 (en)
JP (1) JP6099828B2 (en)
CN (1) CN106662403A (en)
MY (1) MY187667A (en)
WO (1) WO2016009691A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574821B (en) 2014-07-29 2019-01-22 三菱电机株式会社 Microwave heating irradiation unit
MY181056A (en) 2014-07-29 2020-12-16 Mitsubishi Electric Corp Microwave irradiating and heating device
CN108518710A (en) * 2018-02-12 2018-09-11 四川大学 Micro-wave oven based on phased array and its space partition zone heating means
CN110013809B (en) * 2019-05-06 2020-11-06 江南大学 Constant temperature control system of kettle type microwave reactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026408A1 (en) * 1993-05-11 1994-11-24 Srl Inc. Microwave irradiation method and microwave irradiation device
WO2006098180A1 (en) * 2005-03-16 2006-09-21 Shimane Prefecture Electromagnetic wave heating device
JP2013011384A (en) * 2011-06-29 2013-01-17 Kazuhiro Nagata Microwave heating furnace
JP2014015381A (en) * 2012-07-11 2014-01-30 Kazuhiro Nagata Manufacturing method of silicon by microwave and microwave reduction furnace
WO2014054276A1 (en) * 2012-10-03 2014-04-10 三菱電機株式会社 Electromagnetic transmission device, power amplification device, and electromagnetic transmission system
WO2014115704A1 (en) * 2013-01-23 2014-07-31 三菱電機株式会社 Microwave heating irradiation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101604884B1 (en) 2009-01-31 2016-03-18 도쿄 게이주쯔 다이가쿠 Vertical microwave smelting furnace
CN102313310A (en) * 2010-06-29 2012-01-11 乐金电子(天津)电器有限公司 Reflector structure of light wave tube reflector housing and microwave oven with reflector housing
EP2445313B1 (en) * 2010-10-21 2015-05-13 Electrolux Home Products Corporation N.V. Microwave oven cavity and microwave oven
CN106574821B (en) 2014-07-29 2019-01-22 三菱电机株式会社 Microwave heating irradiation unit
MY181056A (en) 2014-07-29 2020-12-16 Mitsubishi Electric Corp Microwave irradiating and heating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026408A1 (en) * 1993-05-11 1994-11-24 Srl Inc. Microwave irradiation method and microwave irradiation device
WO2006098180A1 (en) * 2005-03-16 2006-09-21 Shimane Prefecture Electromagnetic wave heating device
JP2013011384A (en) * 2011-06-29 2013-01-17 Kazuhiro Nagata Microwave heating furnace
JP2014015381A (en) * 2012-07-11 2014-01-30 Kazuhiro Nagata Manufacturing method of silicon by microwave and microwave reduction furnace
WO2014054276A1 (en) * 2012-10-03 2014-04-10 三菱電機株式会社 Electromagnetic transmission device, power amplification device, and electromagnetic transmission system
WO2014115704A1 (en) * 2013-01-23 2014-07-31 三菱電機株式会社 Microwave heating irradiation device

Also Published As

Publication number Publication date
US20170131032A1 (en) 2017-05-11
JPWO2016009691A1 (en) 2017-04-27
CN106662403A (en) 2017-05-10
MY187667A (en) 2021-10-08
WO2016009691A1 (en) 2016-01-21
US9823019B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
JP6125106B2 (en) Microwave heating irradiation device
JP6099828B2 (en) Microwave heating irradiation device
Krueger et al. Design of a new 45 kW e high-flux solar simulator for high-temperature solar thermal and thermochemical research
JP5963976B2 (en) Microwave heating irradiation device
Morabito Synthesis of maximum-efficiency beam arrays via convex programming and compressive sensing
JPWO2016006249A1 (en) Microwave heating device
Bai et al. Manipulation of electromagnetic and acoustic wave behaviors via shared digital coding metallic metasurfaces
JPWO2018216472A1 (en) Heat transport device and furnace using the same
Pavlovic et al. Ray tracing study of optical characteristics of the solar image in the receiver for a thermal solar parabolic dish collector
JP5908127B2 (en) Microwave heating irradiation device
Takahashi et al. High power experiments of remote steering launcher for electron cyclotron heating and current drive
Lumsdaine et al. Pre-conceptual design activities for the materials plasma exposure experiment
JP4831600B2 (en) Linear drive antenna for high frequency heating equipment
JPWO2019009174A1 (en) Microwave processing equipment
JP2011504046A (en) Waveguide system and method
Katare et al. Near-field phase modulation using a semicircular radially gradient metasurface for beam steering of an RF antenna
JP2015201344A (en) microwave heating device
Rödig et al. Testing of actively cooled mock-ups in several high heat flux facilities—An International Round Robin Test
JP2007329423A (en) Apparatus and method for heating substrate
CN219418961U (en) Light blocking device for laser annealing and laser annealing equipment
WO2019087418A1 (en) Heating cooker
KR102157966B1 (en) REFLECTED WAVE CIRCULATION DEVICE AND HIGH EFFICIENCY MICROWAVE DEVICE WITH IMPROVED ENERGY EFFICIENCY THROUGH reflected WAVE CIRCULATION
Karathanasis et al. Receiver Secondary Reflector
Kang et al. Efficiency and symmetry of heavy ion driven inertial fusion hohlraum targets
JP5102792B2 (en) Microwave heating device

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170221

R150 Certificate of patent or registration of utility model

Ref document number: 6099828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250