JP4831600B2 - Linear drive antenna for high frequency heating equipment - Google Patents

Linear drive antenna for high frequency heating equipment Download PDF

Info

Publication number
JP4831600B2
JP4831600B2 JP2005227647A JP2005227647A JP4831600B2 JP 4831600 B2 JP4831600 B2 JP 4831600B2 JP 2005227647 A JP2005227647 A JP 2005227647A JP 2005227647 A JP2005227647 A JP 2005227647A JP 4831600 B2 JP4831600 B2 JP 4831600B2
Authority
JP
Japan
Prior art keywords
reflector
reflecting mirror
linear
frequency heating
linear drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005227647A
Other languages
Japanese (ja)
Other versions
JP2007040919A (en
Inventor
伸一 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2005227647A priority Critical patent/JP4831600B2/en
Publication of JP2007040919A publication Critical patent/JP2007040919A/en
Application granted granted Critical
Publication of JP4831600B2 publication Critical patent/JP4831600B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)

Description

本発明は、核融合実験装置および核融合炉の高周波加熱装置用直線駆動アンテナに関するものである。   The present invention relates to a fusion experimental apparatus and a linear drive antenna for a high-frequency heating apparatus of a nuclear fusion reactor.

高周波加熱装置は、プラズマに電磁波を入射して加熱したり、プラズマ内部に電流を駆動したりすることにより、効率良く核融合反応が発生する高温高圧プラズマの状態を長時間維持することを目的とする。特にミリ波帯の電磁波を用いる電子サイクロトロン波帯加熱装置は、入射する電磁波がビーム状であり、プラズマ中の特定の箇所を選択的に加熱したり、局所的に電流を駆動したりすることが可能である。この特徴は、プラズマの性能向上に欠かせない電流分布制御や、不安定性の抑制に活用され、そのため、電磁波ビームの入射角度の制御は重要な項目である。波長の短いミリ波帯の電磁波ビームは準光学的な取り扱いが可能で、金属製の反射鏡で簡単にその方向を変えることができる。   The purpose of the high-frequency heating device is to maintain the state of high-temperature and high-pressure plasma that efficiently generates a fusion reaction for a long time by injecting electromagnetic waves into the plasma and heating it, or by driving current inside the plasma. To do. In particular, an electron cyclotron wave heating device using millimeter wave electromagnetic waves has an incident electromagnetic wave in the form of a beam, and can selectively heat a specific location in the plasma or drive a current locally. Is possible. This feature is used for current distribution control, which is indispensable for improving plasma performance, and for suppressing instability. Therefore, control of the incident angle of an electromagnetic wave beam is an important item. The millimeter-wave band electromagnetic wave with a short wavelength can be handled quasi-optically, and its direction can be easily changed with a metal reflector.

ところで、本発明の装置は、プラズマへの電磁波ビームの入射角度を制御する方法として、平面的な反射鏡を回転させる従来の方法と異なり、特殊な面形状の反射鏡を直線運動させる手法を用いている。しかし、従来の装置では、以下の方式(1)、(2)、(3)および(4)で入射角度制御が行われていた。   By the way, the apparatus of the present invention uses a method of linearly moving a special surface-shaped reflecting mirror, unlike the conventional method of rotating a planar reflecting mirror, as a method for controlling the incident angle of an electromagnetic wave beam to plasma. ing. However, in the conventional apparatus, incident angle control is performed by the following methods (1), (2), (3), and (4).

(1)真空容器壁をその法線方向から貫通する導波管の先端部に、固定式の第1反射鏡を設け、電磁波ビームを直角に曲げる。この電磁波ビームが次に反射する第2反射鏡の角度を回転運動によって変えることで、プラズマへの入射角度を制御する方式。このとき第1反射鏡は電磁波ビームの収束を目的として凹面鏡としているが、第2反射鏡は平面である。また、電磁波ビームの反射の際に発生する熱は、入射時間が比較的短い場合には強制冷却が必要ない程度であり、冷却配管は有しない。(非特許文献1)
(2)方式(1)を入射時間が長い場合や核融合プラズマからの中性子束が強い場合に適用するためには、反射鏡の強制冷却が必要となる。このような場合に回転する反射鏡への冷媒の供給を行うためにスパイラル状のフレキシブルチューブを用いる方式(非特許文献2)。
(1) A fixed first reflecting mirror is provided at the tip of the waveguide that penetrates the vacuum vessel wall from the normal direction, and the electromagnetic wave beam is bent at a right angle. A system that controls the angle of incidence on the plasma by changing the angle of the second reflecting mirror to which this electromagnetic beam is reflected next by rotational movement. At this time, the first reflecting mirror is a concave mirror for the purpose of convergence of the electromagnetic wave beam, but the second reflecting mirror is a plane. Further, the heat generated when the electromagnetic wave beam is reflected is such that no forced cooling is required when the incident time is relatively short, and no cooling pipe is provided. (Non-Patent Document 1)
(2) In order to apply method (1) when the incident time is long or when the neutron flux from the fusion plasma is strong, forced cooling of the reflector is required. In such a case, a spiral flexible tube is used to supply the refrigerant to the rotating reflecting mirror (Non-Patent Document 2).

(3)反射鏡をプラズマから遠く離れた位置に置き、入射角の変化によって発射角が変化する特殊な導波管を介する方式。中性子束が比較的弱く、保守が容易な場所に回転式の反射鏡があるが、冷却は必要であり方式(2)と同様な冷却方式が想定される。(非特許文献3)。   (3) A system through a special waveguide in which the reflecting mirror is placed at a position far from the plasma and the launch angle changes according to the change in the incident angle. Although there is a rotating reflector in a place where the neutron flux is relatively weak and easy to maintain, cooling is necessary and a cooling method similar to the method (2) is assumed. (Non-Patent Document 3).

(4)入射角度の2次元的な制御が必要な場合に、方式(1)の第2反射鏡を2次元的に回転運動させる方式。強制冷却が必要な場合は方式(2)に類似した方法で行う。(非特許文献4)。   (4) A method in which the second reflecting mirror of method (1) is rotated two-dimensionally when two-dimensional control of the incident angle is required. When forced cooling is necessary, the method is similar to the method (2). (Non-Patent Document 4).

(5)入射角度の2次元的な制御が必要な場合に、方式(1)の第1反射鏡と第2反射鏡をそれぞれ1次元的に回転運動させる方式。強制冷却が必要な場合は方式(2)に類似した方法で行う。(非特許文献5)。
Y. Ikeda et al., "The 110-GHz Electron Cyclotron Range of Frequency System on JT-60U: Design and operation", Fusion Sci. Technol. 42, 435 (2002). K.Takahashi et. al., "Development of EC H&CD launcher components for fusion device", Fusion Engineering and Design 66-68, p.473-479(2003). K.Takahashi et. al., "High power experiments of remote steering launcher for electron cyclotron heating and current drive", Fusion Engineering and Design 65(4), p.589-598(2003). K. Kajiwara et al., "Launcher Performance In the DIII-D ECH System", Proc. 15th Tpic. Conf. on RF Power in Plasmas, Moran Wyoming, May, 694, 325 (2003). 森山伸一 他; "JT-60Uにおける電子サイクロトロン加熱・電流駆動技術の進展“, Journal of Plasma and Fusion Research, Vol.79, No.9, p.935 (2001).
(5) When the two-dimensional control of the incident angle is necessary, the first and second reflecting mirrors of the method (1) are rotated one-dimensionally. When forced cooling is necessary, the method is similar to the method (2). (Non-patent document 5).
Y. Ikeda et al., "The 110-GHz Electron Cyclotron Range of Frequency System on JT-60U: Design and operation", Fusion Sci. Technol. 42, 435 (2002). K. Takahashi et.al., "Development of EC H & CD launcher components for fusion device", Fusion Engineering and Design 66-68, p.473-479 (2003). K. Takahashi et.al., "High power experiments of remote steering launcher for electron cyclotron heating and current drive", Fusion Engineering and Design 65 (4), p.589-598 (2003). K. Kajiwara et al., "Launcher Performance In the DIII-D ECH System", Proc. 15th Tpic. Conf. On RF Power in Plasmas, Moran Wyoming, May, 694, 325 (2003). Shinichi Moriyama et al .; "Progress of electron cyclotron heating and current drive technology in JT-60U", Journal of Plasma and Fusion Research, Vol.79, No.9, p.935 (2001).

上記背景技術、方法(1)の課題は
1) 回転式反射鏡は、保守作業が容易でない真空容器内に設置されている。特に核融合炉環境では構造物の放射化により頻繁な保守は困難である。摩擦を伴う回転軸やリンク機構を有する回転式反射鏡はある頻度での保守、交換が必要となる問題点を有する。
The problems of the above background art and method (1) are
1) The rotary reflector is installed in a vacuum vessel where maintenance work is not easy. Especially in the fusion reactor environment, frequent maintenance is difficult due to the activation of the structure. A rotary reflector having a rotating shaft and a link mechanism with friction has a problem that maintenance and replacement are required at a certain frequency.

上記背景技術、方法(2)の課題は
1) 方式(1)と同様に摩擦を伴う回転軸やリンク機構を有する回転式反射鏡はある頻度での保守、交換が必要である。
2)冷却配管にフレキシブルチューブを用いる方式では、柔軟性を確保するために管壁の肉厚を薄くしなくてはならず、外的要因による破損のリスクがある。
3) 冷却配管にフレキシブルチューブを用いる方式では、柔軟性を確保するために管径を比較的小さくしなければならず、流量に制限がある。
4) 冷却配管にフレキシブルチューブを用いる方式では、冷媒にボイドが発生した際や真空容器に機械的振動が発生した際に、チューブ自身が振動し周辺の構造物と接触するなどして損耗するリスクがある。
The problems of the above background art and method (2) are
1) As with method (1), a rotary reflector having a rotating shaft and a link mechanism with friction requires maintenance and replacement at a certain frequency.
2) In the method using a flexible tube for cooling piping, the wall thickness of the tube must be reduced to ensure flexibility, and there is a risk of damage due to external factors.
3) In the method using a flexible tube for cooling piping, the tube diameter must be relatively small to ensure flexibility, and there is a restriction on the flow rate.
4) In the case of using a flexible tube for the cooling piping, when a void is generated in the refrigerant or when a mechanical vibration is generated in the vacuum vessel, the tube itself vibrates and comes into contact with surrounding structures. There is.

上記背景技術、方法(3)の課題は
1) 反射鏡の位置はプラズマから遠く、核融合炉環境にあっても比較的放射化の程度の小さい場所ではあるが、回転軸やリンク機構の保守が必要であるという点で方式(1)と同様の課題を有する。
2) 反射鏡の熱負荷は小さいものの、強制冷却が必要であり、方式(2)と同様の課題を有する。
The problems of the above background art and method (3) are
1) The position of the reflector is far from the plasma, and even in the fusion reactor environment, it is a place where the degree of activation is relatively small, but the system (1) is necessary in that maintenance of the rotating shaft and link mechanism is necessary. Have similar issues.
2) Although the heat load of the reflector is small, forced cooling is necessary and it has the same problem as the method (2).

上記背景技術、方法(4)、(5)の課題は
1) 駆動機構が方式(1)、(2)よりも複雑であり、方式(1)(2)と同様の課題を有する。
The problems of the above background art and methods (4) and (5)
1) The driving mechanism is more complicated than the methods (1) and (2), and has the same problems as the methods (1) and (2).

従来技術では、電磁波ビームの反射角を変えるために、反射鏡の反射面を回転させるという共通の概念があり、回転を実現させるために必要な回転軸や駆動用リンク機構が必要不可欠であった。本発明では反射鏡は直線駆動するために、これら回転軸、駆動用リンク機構は全く用いない。また、固定された冷却機器と運動する反射鏡を接続する冷却配管に必要な緩衝機構も従来技術では、保守の困難な真空容器内に設置する必要があるという課題があったが、本発明では直線運動を緩衝する単純で信頼性の高いベロー管を保守の容易な真空容器外に設置することで解決している。直線運動によって電磁波ビームの反射角を変えるためには、反射鏡への電磁波ビームの入射位置を変化させることで、入射角度および反射角度が変化するように設計した反射面形状を有する反射鏡を用いる。   In the prior art, there is a common concept of rotating the reflecting surface of the reflecting mirror in order to change the reflection angle of the electromagnetic wave beam, and the rotating shaft and driving link mechanism necessary for realizing the rotation are indispensable. . In the present invention, since the reflecting mirror is linearly driven, these rotating shaft and driving link mechanism are not used at all. In addition, in the prior art, there is a problem that a buffer mechanism necessary for a cooling pipe that connects a fixed cooling device and a moving reflecting mirror needs to be installed in a vacuum container that is difficult to maintain. The problem is solved by installing a simple and reliable bellows tube that absorbs linear motion outside the vacuum vessel, which is easy to maintain. In order to change the reflection angle of the electromagnetic wave beam by linear motion, a reflection mirror having a reflecting surface shape designed to change the incident angle and the reflection angle by changing the incident position of the electromagnetic wave beam to the reflection mirror is used. .

即ち、本発明の装置は、前述したとおり、プラズマへの電磁波ビームの入射角度を制御する方法として、平面的な反射鏡を回転させる従来の方法と異なり、特殊な面形状の反射鏡を直線運動させる手法を用いている。   That is, as described above, the apparatus of the present invention is a method for controlling the incident angle of an electromagnetic wave beam to plasma, unlike a conventional method of rotating a planar reflecting mirror, and a special surface-shaped reflecting mirror is moved linearly. Is used.

本発明は、具体的には、高周波加熱装置の真空容器に真空容器のポートを設け、このポート内に第1反射鏡及び第2反射鏡を設け、第1反射鏡には電磁波ビーム用の導波管を設け、第2反射鏡には第2反射鏡の冷却水流路管を内装した第2反射鏡の駆動棒を設け、前記駆動棒の反射鏡の反対端には、真空封止用ベロー、駆動棒の支持・駆動機構及び冷却配管用ベローを設けることにより、導波管内に導入された電磁波ビームを第1反射鏡で反射させた後に第2反射鏡に入射させ、第2反射鏡で反射された電磁波ビームを真空容器壁孔を透過させて核融合装置内のプラズマに入射してプラズマを加熱し、その第2反射鏡の反射角を変化させるために、第2反射鏡の駆動棒を封止ベローを介して駆動機構により前後に移動させて電磁波ビームのプラズマへの入射角を制御し、冷却管内には冷却配管用ベローを介して冷媒を流して第2反射鏡を冷却することを特徴とする、高周波加熱装置用直線駆動アンテナに関するものである。   Specifically, in the present invention, a vacuum container port is provided in a vacuum container of a high-frequency heating device, a first reflecting mirror and a second reflecting mirror are provided in the port, and the first reflecting mirror is guided to an electromagnetic wave beam. A wave tube is provided, and the second reflecting mirror is provided with a driving rod for the second reflecting mirror with the cooling water passage tube of the second reflecting mirror, and a vacuum sealing bellows is provided at the opposite end of the reflecting mirror of the driving rod. By providing a driving rod support / drive mechanism and a cooling pipe bellows, the electromagnetic wave beam introduced into the waveguide is reflected by the first reflecting mirror and then incident on the second reflecting mirror. The reflected electromagnetic wave beam is transmitted through the vacuum vessel wall hole and incident on the plasma in the fusion apparatus to heat the plasma and change the reflection angle of the second reflecting mirror. Is moved back and forth by the drive mechanism through the sealing bellows to Controlling the angle of incidence of the Zuma, the cooling pipe is characterized by cooling the second reflecting mirror by flowing a coolant through the bellows cooling pipe, to a linear driving antenna for high frequency heating apparatus.

本発明の高周波加熱装置用直線駆動アンテナは、反射鏡を直線駆動させることにより、定期的な保守が必要となる摩擦を伴い損耗する機器を真空容器内に使用せず、運動の緩衝に使う配管も単純な構造でかつ保守の容易な真空容器外からアクセス可能な位置に設置できる。以下に特徴的な効果を示す。   The linear drive antenna for a high-frequency heating device according to the present invention is a pipe that is used for buffering motion without using in a vacuum vessel equipment that wears with friction that requires regular maintenance by driving the reflector in a straight line. However, it can be installed at a position accessible from the outside of the vacuum vessel which has a simple structure and is easy to maintain. The characteristic effects are shown below.

(1)定期的な保守が必要となる摩擦を伴い損耗する機器を、保守が困難な真空容器内に使用しない。
(2)冷却配管の緩衝には単純かつ堅牢な直線型ベロー管を、保守の容易な真空容器外に設置できる。
(1) Do not use equipment that wears with friction that requires regular maintenance in a vacuum vessel that is difficult to maintain.
(2) A simple and robust straight bellows pipe can be installed outside the vacuum vessel for easy maintenance.

(3)真空容器の壁面を貫通する反射鏡冷却配管および反射鏡駆動機構の駆動軸と真空容器との取り合いに、堅牢かつ信頼性の高い直線的ベロー管を使用できる。
(4)反射鏡駆動機構の駆動軸内部を反射鏡用冷却配管として用いることができるため、駆動軸用、冷却配管用の真空容器壁貫通部およびベローを兼用でき、アンテナ全体の構造を単純化できる。
(3) A robust and highly reliable linear bellows tube can be used to connect the reflector cooling pipe that penetrates the wall of the vacuum vessel and the drive shaft of the reflector drive mechanism to the vacuum vessel.
(4) Because the inside of the drive shaft of the reflector drive mechanism can be used as a cooling pipe for the reflector, the vacuum vessel wall penetration and bellows for the drive shaft and cooling pipe can be used together, simplifying the structure of the entire antenna it can.

(5)反射鏡駆動機構の駆動軸内部を反射鏡用冷却配管として用いることができるため、管径を太く、厚肉とすることができ、大流量の冷媒を安全に流すことができる。   (5) Since the inside of the drive shaft of the reflecting mirror drive mechanism can be used as the cooling pipe for the reflecting mirror, the tube diameter can be increased and the wall thickness can be increased, and a large flow rate of refrigerant can be safely passed.

反射鏡の個数は、システムを単純化する観点から少ないほうが良い。導波管が真空容器に導入される方向によっては反射鏡を1個とする設計も可能であるが、壁の法線方向から導入される一般的な場合には2個の反射鏡が必要となる。2個の反射鏡の相対位置変化によって反射角の制御が実現されるため、どちらの反射鏡を直線駆動するか、またどちらの反射鏡の反射面形状を変化させるかは、周囲の状況によって選択して設計することが可能である。   The number of reflecting mirrors should be small from the viewpoint of simplifying the system. Depending on the direction in which the waveguide is introduced into the vacuum vessel, a design with one reflector is possible, but two reflectors are required in the general case where the waveguide is introduced from the normal direction of the wall. Become. Since the reflection angle can be controlled by changing the relative position of the two reflectors, which reflector is driven linearly and which reflector's reflecting surface shape is changed can be selected according to the surrounding conditions. Can be designed.

プラズマへの入射角を制御する場合、その角度範囲はできるだけ広く、理想的にはプラズマの端から端までカバーすることが望ましい。また、入射角は連続的に変化させることが望ましい。したがって、直線駆動する反射鏡によってこれを実現するためには、その反射面形状を法線の角度が連続的に変化する曲面でかつその角度範囲が広いことが望まれる。一方で、電磁波ビームは線でなく有限の断面積を持つため、この断面内で反射面の法線が大きく変化すると、電磁波ビームに望ましくない収束、発散を与える。これらの要求を満たすためには反射鏡をできるだけ大型にして、反射面の法線を緩やかに且つ広範囲に変化させる必要がある。したがって、アンテナを設置する空間が許す限り大型の反射鏡とする。しかし、用途や入射角度範囲の限定、あるいは2個の反射鏡の両方を曲面鏡とする方法によって小型化も可能である。また、プラズマ周辺への入射とプラズマ中心への入射など複数の用途を使い分ける場合には非連続的な反射面形状の設計が有効である。また、ビーム角度を2次元的に制御する必要がある場合には、反射面の形状を2次元的に変化させればよい。   When the incident angle to the plasma is controlled, the angle range is as wide as possible, and ideally it is desirable to cover the plasma from end to end. In addition, it is desirable to change the incident angle continuously. Therefore, in order to realize this with a reflecting mirror that is driven linearly, it is desired that the shape of the reflecting surface is a curved surface in which the angle of the normal line continuously changes and the angle range is wide. On the other hand, since the electromagnetic wave beam has not a line but a finite cross-sectional area, if the normal of the reflecting surface changes greatly in this cross section, the electromagnetic wave beam is undesirably converged and diverged. In order to satisfy these requirements, it is necessary to make the reflecting mirror as large as possible and change the normal of the reflecting surface gently and over a wide range. Therefore, the reflector should be as large as the space for installing the antenna allows. However, downsizing is also possible by limiting the application and incident angle range, or by using both curved mirrors as the two reflecting mirrors. In addition, when a plurality of uses such as incidence to the periphery of the plasma and incidence to the center of the plasma are used separately, the design of the discontinuous reflecting surface shape is effective. If the beam angle needs to be controlled two-dimensionally, the shape of the reflecting surface may be changed two-dimensionally.

アンテナの機械的支持および駆動、冷媒の供給はいずれも真空容器外から行い、駆動軸に冷却配管を内蔵することで、真空容器との取り合いは単純な直線型ベロー管1個とする。固定された冷却装置と直線運動する冷却配管の取り合いは、真空容器から十分離れた位置において、単純な直線型ベロー管で行う。   The antenna is mechanically supported and driven, and the coolant is supplied from outside the vacuum vessel, and the cooling shaft is built in the drive shaft so that the connection with the vacuum vessel is a simple straight bellows tube. The fixed cooling device and the cooling pipe that moves linearly are connected with a simple straight bellows pipe at a position sufficiently away from the vacuum vessel.

本発明の実施例について図1〜図5を用いて説明する。
(実施例1)
図1aは本発明の原理図であり、高周波加熱装置用直線駆動アンテナの原理説明に必要な座標と記号を示すものである。曲面鏡の最も単純な場合として球面反射鏡を用いる場合を示す。球面反射鏡の曲率中心アを原点(0,0)とする極座標系(r,θ)を考え、原点ア(0,0)から距離dだけ離れた点イ(d,0)を通過する入射ビームr=d/cos(θ-π/2)が、極率半径Rの球面反射鏡上の点ウ(R,φ)にて反射する。核融合装置のトーラス中心を点エとしたとき、入射ビームのイウはウエと直交するものとする。入射ビームの球面鏡に対する入射角、反射角は等しく、π/2-φであり、反射した電磁波ビームr=d/cos(θ+2φ)のトーラスへの入射角αは2φ-π/2である。距離d=Rcosφであるからトーラスへの入射角α= 2cos-1(d/R) -π/2となる。これは距離dを変化させることにより、トーラスへの入射角αを制御できることを示している。また、トーラスへの入射角αの可変範囲はd/Rが大きいほど大きく取れることも示している。しかし、距離dの範囲が小さいほど球面反射鏡を小さくできるため、コンパクトなアンテナとなる。
An embodiment of the present invention will be described with reference to FIGS.
Example 1
FIG. 1a is a principle diagram of the present invention and shows coordinates and symbols necessary for explaining the principle of a linear drive antenna for a high-frequency heating device. The case where a spherical reflector is used is shown as the simplest case of a curved mirror. Considering a polar coordinate system (r, θ) with the origin of curvature (a, 0) of the spherical reflector as the origin (0, 0), an incident light passing through a point (d, 0) that is a distance d away from the origin (0, 0). The beam r = d / cos (θ−π / 2) is reflected at a point C (R, φ) on a spherical reflector having a radius of curvature R. When the center of the torus of the fusion device is point d, the incident beam is assumed to be perpendicular to the wafer. The incident angle and reflection angle of the incident beam with respect to the spherical mirror are equal and π / 2−φ, and the incident angle α of the reflected electromagnetic wave beam r = d / cos (θ + 2φ) to the torus is 2φ−π / 2. . Since the distance d = Rcosφ, the incident angle to the torus α = 2cos −1 (d / R) −π / 2. This indicates that the incident angle α to the torus can be controlled by changing the distance d. It also shows that the variable range of the incident angle α to the torus can be increased as d / R increases. However, since the spherical reflector can be made smaller as the range of the distance d is smaller, the antenna becomes more compact.

一方、電磁波ビームが実際には線でなく有限の断面積を持っているためにその断面積内でのαは均一でない。均一性を高め断面積内での光路長(または位相)変化を抑えるためにはRは大きいほど良い。しかしRが小さいほど球面反射鏡を小さくできるためコンパクトなアンテナとなる。一方、αが不均一であるがゆえに電磁波ビームは収束傾向となるが、焦点距離を過ぎると発散傾向となるので、プラズマ中での加熱位置近くで電磁波ビームの幅が大きくならないように曲率半径Rを選ぶ必要がある。したがって、dの範囲とRは実際の電磁波ビームの断面積、アンテナとプラズマ中での加熱位置との距離、アンテナ設置場所の空間的制約、ビーム光路長の変化幅の要求等から最適値を選ぶ必要がある。単純な球面鏡の場合、図1aに示す断面に垂直な方向、すなわち紙面に垂直な方向のビームの幅に関する収束点は曲率中心となり、焦点距離よりも遠くなる。この効果を補正する必要がある場合には、紙面に垂直な方向の曲率半径を小さくする方法がある。   On the other hand, since the electromagnetic wave beam actually has a finite cross section instead of a line, α in the cross section is not uniform. In order to increase the uniformity and suppress the change in the optical path length (or phase) within the cross-sectional area, the larger R is better. However, the smaller R is, the smaller the spherical reflector can be, so the antenna becomes compact. On the other hand, the electromagnetic wave beam tends to converge because α is non-uniform, but since it tends to diverge after the focal length, the radius of curvature R prevents the electromagnetic beam width from increasing near the heating position in the plasma. It is necessary to choose. Therefore, the range of d and R are selected optimally from the actual cross-sectional area of the electromagnetic wave beam, the distance between the antenna and the heating position in the plasma, the spatial constraints on the antenna installation location, the request for the change width of the beam optical path length, and the like. There is a need. In the case of a simple spherical mirror, the convergence point related to the beam width in the direction perpendicular to the cross section shown in FIG. 1a, that is, in the direction perpendicular to the paper surface, is the center of curvature and is farther than the focal length. When this effect needs to be corrected, there is a method of reducing the radius of curvature in the direction perpendicular to the paper surface.

図1bに電磁波ビームの発散、収束による、ビーム径の変化を示す。導波管端部アでのビーム半径をwとすると導波管端部から距離zだけ離れた球面鏡位置イでのビーム半径w、さらに距離z離れた収束位置ウでのビーム半径w、さらに距離z離れたプラズマ加熱位置エでのビーム半径wは以下の式で表される。 FIG. 1b shows changes in the beam diameter due to the divergence and convergence of the electromagnetic wave beam. Assuming that the beam radius at the waveguide end a is w 0 , the beam radius w 1 at the spherical mirror position i separated from the waveguide end by the distance z 1 , and the beam radius at the convergence position c further separated by the distance z 2 w 2, the beam radius w 3 in yet a distance z 3 spaced plasma heating position error is represented by the following equation.

Figure 0004831600
Figure 0004831600

ここで 電磁波ビームの波長をλとしたとき、d0=pw0 2/l, d1=pw1 2/l, d2=pw2 2/l である。図2及び図3の本発明の実施例において、これらの式を用いてビーム径を見積もった。
(実施例2)
図2に本発明の一実施例である、第1反射鏡駆動方式の高周波加熱装置用直線駆動アンテナ断面図を示す。本実施例では第1反射鏡イは平面鏡、第2反射鏡ウは単純な球面(凹面)鏡としている。導波管ア内を伝送される高周波は導波管アの端部で空間に放射され、平面鏡である第1反射鏡イで直角に曲げられた後、曲率中心エを持つ球面鏡である第2反射鏡で再び曲げられ、プラズマに入射される。第1反射鏡イは駆動棒オによって直線的に駆動され、第2反射鏡ウと入射ビームとの相対距離、すなわち図1の距離dに相当する量を変化させる。距離dの変化によってプラズマへの入射角αを変化させることができる。図2は、電磁波ビームが半径2cmの平行光線であると仮定し、第2反射鏡の曲率半径Rが1mとしたときに、距離dを54cmから35cmに変化させると入射角αを20°から45°に変えることができる設計例に基づく作図である。トーラス中心方向の第2反射鏡ウの奥行きは距離dの可変範囲とビーム径の合計に多少の余裕を加えて30cm程度にできる。このとき幾何学的な焦点距離はR/2=50cmであるが、ビームの発散、収束を考慮して、第2反射鏡からの距離50cm及び2mでのビーム半径はそれぞれ1.9cmおよび5.7cmである。第2反射鏡が従来技術の回転する平面鏡であった場合を仮定するとビーム半径はそれぞれ2.7cmおよび5.7cmであり、球面にしたことによるビーム径の変化は小さく、図2の設計例は第2反射鏡の曲率半径Rを適切に選んだ例といえる。
(実施例3)
図3に本発明の一実施例である、第2反射鏡駆動方式の高周波加熱装置用直線駆動アンテナ断面図を示す。本実施例では第1反射鏡イは平面鏡、第2反射鏡ウは単純な球面(凹面)鏡としている。導波管ア内を伝送される高周波は導波管アの端部で空間に放射され、平面鏡である第1反射鏡イで直角に曲げられた後、曲率中心エを持つ球面鏡である第2反射鏡で再び曲げられ、プラズマに入射される。第2反射鏡ウは駆動棒オによって直線的に駆動され、第2反射鏡ウと入射ビームとの相対距離、すなわち図1の距離dに相当する量を変化させる。距離dの変化によってプラズマへの入射角αを変化させることができる。図3は、電磁波ビームが半径2cmの平行光線であると仮定し、第2反射鏡の曲率半径Rが1.5mとしたときに、距離dを54cmから83cmに変化させると入射角αを20°から45°に変えることができる設計例に基づく作図である。トーラス中心方向の第2反射鏡ウの奥行きは距離dの可変範囲とビーム幅の合計に多少の余裕を加えて40cm程度にできる。このとき幾何学的な焦点距離はR/2=75cmであるが、ビームの発散、収束を考慮すると第2反射鏡からの距離50cm及び2mでのビーム半径はそれぞれ2.0cm、5.3cmである。第2反射鏡が従来技術の回転する平面鏡であった場合を仮定するとそれぞれ2.7cmおよび5.7cmであるので、球面にしたことによるビーム径の変化は非常に小さく、図3の設計例は第2反射鏡の曲率半径Rを適切に選んだ例といえる。
(実施例4)
図4に本発明の一実施例である第2、第3反射鏡駆動方式による2次元掃引の高周波加熱装置用直線駆動アンテナ断面図を示す。本実施例では第1反射鏡ウは平面鏡、第2反射鏡イは複合平面鏡、第3反射鏡アは単純な球面(凹面)鏡としている。導波管カ内を伝送される高周波は導波管カの端部で空間に放射され、平面鏡である第1反射鏡ウで直角に曲げられた後、角度の異なる2つの平面鏡で構成された第2反射鏡イで紙面奥行き方向に曲げられ、さらに球面鏡である第3反射鏡アで曲げられ、プラズマに入射される。第2反射鏡イは駆動棒エによって、第3反射鏡は駆動棒オによってそれぞれ直線的に駆動され、プラズマへの入射角を2次元的に変化させることができる。
(従来例)
図5aに背景技術(2)項に相当する従来の回転反射鏡式高周波アンテナの構造を示す。従来例では第1、第2反射鏡ともに平面鏡である。導波管コで伝送され、その端部から放射される電磁波ビームは固定式の第1反射鏡ケで方向を変えられ、回転式の第2反射鏡アに入射する。第2反射鏡アは平面鏡であるが、その角度を回転によって変えられ、反射ビームの方向を制御する。第2反射鏡アは回転軸を支持機構で固定されており、駆動棒イの直線運動をリンク機構スが回転運動に変換して駆動される。回転軸およびリンク機構にはベアリングなど摩擦を低減する部品が必要であるが、これらの中性子環境下での耐久性は必ずしも確認されておらず、定期的な交換が必要だとされている。第2反射鏡アは核融合装置からの中性子および入射する電磁波ビームによる熱を除去するために冷却が必要であるが、その回転運動のため冷却水配管の接続にはスパイラル管クを用いてその弾性で位置の変化を吸収する。駆動棒イは支持機構カによって機械的に支持され、回転式モーターとギアの組み合わせまたはリニアモーターを用いた駆動機構オによって直線的に駆動される。支持機構カおよび駆動機構オは支持構造キに固定される。直線駆動する駆動棒イは、真空容器のポートフランジを貫通するときその相対位置の変化をベローのエで吸収する。
(実施例5)
図5bは本発明の一実施例である第2反射鏡駆動方式の高周波加熱装置用直線駆動アンテナの支持駆動機構および冷却機構を示す断面図である。本実施例では第1反射鏡ケは平面鏡、第2反射鏡アは単純な球面(凹面)鏡としている。球面鏡である第2反射鏡アは駆動棒イによって直線的に駆動される。駆動棒イは支持機構カによって機械的に支持され、回転式モーターとギアの組み合わせまたはリニアモーターを用いた駆動機構オによって直線的に駆動される。駆動距離は図2または図3の設計例で20〜30cmである。支持機構カおよび駆動機構オは支持柱キに固定される。直線駆動する駆動棒イは、真空容器のポートフランジを貫通するときその相対位置の変化をベローのエで吸収する。駆動棒イの内部には第2反射鏡アを冷却するための冷却水流路ウを設ける。固定された冷却系統と直線駆動される冷却水流路ウの取り合いにはベローのクを設ける。プラズマから放出される中性子の影響を受けにくく、メンテナンスのしやすい、トーラスから離れた真空容器外に、全ての駆動機構、支持機構、ベローなどの変形部品を設置できる本発明の長所が図5aとbの比較により明らかである。
Here, when the wavelength of the electromagnetic wave beam is λ, d 0 = pw 0 2 / l, d 1 = pw 1 2 / l, d 2 = pw 2 2 / l. In the embodiment of the present invention shown in FIGS. 2 and 3, the beam diameter was estimated using these equations.
(Example 2)
FIG. 2 is a sectional view of a linear drive antenna for a high frequency heating apparatus of the first reflecting mirror driving system, which is an embodiment of the present invention. In this embodiment, the first reflecting mirror A is a plane mirror and the second reflecting mirror C is a simple spherical (concave) mirror. The high-frequency wave transmitted through the waveguide is radiated into the space at the end of the waveguide, bent at a right angle by the first reflecting mirror (a flat mirror), and then a second spherical mirror having a center of curvature. It is bent again by the reflector and is incident on the plasma. The first reflecting mirror (i) is linearly driven by a drive rod (e) and changes the relative distance between the second reflecting mirror (c) and the incident beam, that is, the amount corresponding to the distance d in FIG. The incident angle α to the plasma can be changed by changing the distance d. FIG. 2 assumes that the electromagnetic wave beam is a parallel light beam having a radius of 2 cm, and when the radius of curvature R of the second reflector is 1 m, the incident angle α is changed from 20 ° when the distance d is changed from 54 cm to 35 cm. It is a drawing based on a design example that can be changed to 45 °. The depth of the second reflecting mirror C in the direction of the center of the torus can be set to about 30 cm by adding some margin to the sum of the variable range of the distance d and the beam diameter. At this time, the geometric focal length is R / 2 = 50 cm, but considering the beam divergence and convergence, the beam radii at the distance of 50 cm and 2 m from the second reflector are 1.9 cm and 5.7 cm, respectively. is there. Assuming that the second reflecting mirror is a rotating plane mirror of the prior art, the beam radii are 2.7 cm and 5.7 cm, respectively, and the change in the beam diameter due to the spherical surface is small, and the design example of FIG. It can be said that the radius of curvature R of the reflector is appropriately selected.
(Example 3)
FIG. 3 is a cross-sectional view of a linear drive antenna for a high frequency heating device of the second reflector driving system, which is an embodiment of the present invention. In this embodiment, the first reflecting mirror A is a plane mirror and the second reflecting mirror C is a simple spherical (concave) mirror. The high-frequency wave transmitted through the waveguide is radiated into the space at the end of the waveguide, bent at a right angle by the first reflecting mirror (a flat mirror), and then a second spherical mirror having a center of curvature. It is bent again by the reflector and is incident on the plasma. The second reflecting mirror C is linearly driven by the drive rod E to change the relative distance between the second reflecting mirror C and the incident beam, that is, the amount corresponding to the distance d in FIG. The incident angle α to the plasma can be changed by changing the distance d. FIG. 3 assumes that the electromagnetic wave beam is a parallel beam having a radius of 2 cm, and when the radius of curvature R of the second reflecting mirror is 1.5 m, the incident angle α is 20 when the distance d is changed from 54 cm to 83 cm. Drawing based on a design example that can be changed from ° to 45 °. The depth of the second reflecting mirror C in the direction of the center of the torus can be set to about 40 cm by adding some margin to the sum of the variable range of the distance d and the beam width. At this time, the geometric focal length is R / 2 = 75 cm, but considering the beam divergence and convergence, the beam radii at the distance of 50 cm and 2 m from the second reflecting mirror are 2.0 cm and 5.3 cm, respectively. Assuming that the second reflecting mirror is a rotating plane mirror of the prior art, it is 2.7 cm and 5.7 cm, respectively. Therefore, the change of the beam diameter due to the spherical surface is very small, and the design example of FIG. It can be said that the radius of curvature R of the reflector is appropriately selected.
Example 4
FIG. 4 is a cross-sectional view of a linear drive antenna for a two-dimensional sweep high-frequency heating apparatus using the second and third reflector driving systems according to an embodiment of the present invention. In this embodiment, the first reflecting mirror C is a plane mirror, the second reflecting mirror A is a compound plane mirror, and the third reflecting mirror A is a simple spherical (concave) mirror. The high-frequency wave transmitted through the waveguide is radiated into the space at the end of the waveguide, bent at a right angle by the first reflecting mirror, which is a plane mirror, and then composed of two plane mirrors with different angles. It is bent in the depth direction of the paper by the second reflecting mirror A, further bent by the third reflecting mirror, which is a spherical mirror, and enters the plasma. The second reflecting mirror (i) is driven linearly by the driving rod (d) and the third reflecting mirror is driven linearly by the driving rod (e), so that the incident angle to the plasma can be changed two-dimensionally.
(Conventional example)
FIG. 5a shows the structure of a conventional rotary reflector type high frequency antenna corresponding to the section (2) in the background art. In the conventional example, both the first and second reflecting mirrors are plane mirrors. The electromagnetic wave beam transmitted through the waveguide core and emitted from the end thereof is changed in direction by the fixed first reflecting mirror and is incident on the rotating second reflecting mirror. The second reflecting mirror is a plane mirror, but its angle can be changed by rotation to control the direction of the reflected beam. The second reflecting mirror has a rotating shaft fixed by a support mechanism, and is driven by converting the linear motion of the drive rod A into a rotational motion. Parts that reduce friction, such as bearings, are required for the rotating shaft and link mechanism, but their durability under neutron environments has not necessarily been confirmed, and periodic replacement is required. The second reflector mirror needs to be cooled to remove heat from the neutron and incident electromagnetic wave beam from the fusion device, but because of its rotational movement, a spiral pipe is used to connect the cooling water pipe. Absorbs changes in position with elasticity. The drive rod is mechanically supported by a support mechanism and is linearly driven by a drive mechanism using a combination of a rotary motor and a gear or a linear motor. The support mechanism and the drive mechanism are fixed to the support structure. When the drive rod (b) driven linearly penetrates the port flange of the vacuum vessel, the change in the relative position is absorbed by the bellows.
(Example 5)
FIG. 5b is a cross-sectional view showing a support driving mechanism and a cooling mechanism of a linear driving antenna for a high frequency heating apparatus of a second reflecting mirror driving system according to an embodiment of the present invention. In this embodiment, the first reflecting mirror is a plane mirror and the second reflecting mirror is a simple spherical (concave) mirror. The second reflecting mirror, which is a spherical mirror, is linearly driven by the drive rod (a). The drive rod is mechanically supported by a support mechanism and is linearly driven by a drive mechanism using a combination of a rotary motor and a gear or a linear motor. The driving distance is 20 to 30 cm in the design example of FIG. 2 or FIG. The support mechanism and the drive mechanism are fixed to the support column. When the drive rod (b) driven linearly penetrates the port flange of the vacuum vessel, the change in the relative position is absorbed by the bellows. A cooling water passage C for cooling the second reflecting mirror is provided in the drive rod i. Bellows are provided for the connection between the fixed cooling system and the linearly driven cooling water passage C. The advantage of the present invention is that all drive mechanisms, support mechanisms, and deformed parts such as bellows can be installed outside the vacuum vessel away from the torus, which is not easily affected by neutrons emitted from the plasma and easy to maintain. It is clear from the comparison of b.

本発明の高周波加熱装置用直線駆動アンテナは、核融合実験装置および核融合炉において使用することができる。   The linear drive antenna for a high-frequency heating device of the present invention can be used in a fusion experimental device and a fusion reactor.

図1aは、本発明の原理図であり、高周波加熱装置用直線駆動アンテナの原理説明に必要な座標と記号を示すものである。図1bはビームの発散、収束による、ビーム径の変化を示す。FIG. 1a is a principle diagram of the present invention and shows coordinates and symbols necessary for explaining the principle of a linear drive antenna for a high-frequency heating device. FIG. 1b shows the change in beam diameter due to beam divergence and convergence. 本発明の一実施例である第1反射鏡駆動方式の高周波加熱装置用直線駆動アンテナ断面図である。1 is a cross-sectional view of a linear drive antenna for a high frequency heating apparatus of a first reflecting mirror driving system that is an embodiment of the present invention. 本発明の一実施例である第2反射鏡駆動方式の高周波加熱装置用直線駆動アンテナ断面図である。It is sectional drawing of the linear drive antenna for high frequency heating devices of the 2nd reflective mirror drive system which is one Example of this invention. 本発明の一実施例である第2第3反射鏡駆動方式による2次元掃引の高周波加熱装置用直線駆動アンテナ断面図である。It is sectional drawing of the linear drive antenna for two-dimensional sweep high frequency heating devices by the 2nd 3rd reflective mirror drive system which is one Example of this invention. 図5aは背景技術(2)項に相当する従来の回転反射鏡式高周波アンテナの構造図である。図5bは、本発明の一実施例である第2反射鏡駆動方式の高周波加熱装置用直線駆動アンテナの支持駆動機構および冷却機構を示す断面図である。FIG. 5a is a structural diagram of a conventional rotary reflector type high frequency antenna corresponding to the item (2) in the background art. FIG. 5b is a cross-sectional view showing a support driving mechanism and a cooling mechanism of a linear drive antenna for a high frequency heating apparatus of the second reflecting mirror driving system which is an embodiment of the present invention.

符号の説明Explanation of symbols

(図1a)
ア・・・球面鏡の曲率中心かつ曲座標系(r,θ)の中心(0,0)
イ・・・入射ビームから点アに下ろした垂線の足(d,0)
ウ・・・球面鏡上のビームの入射点(R,φ)
エ・・・核融合装置のトーラス中心
d・・・入射ビームの点アからの距離
φ・・・点ウのθ座標
R・・・球面鏡の曲率半径
(図1b)
ア・・・導波管端部(ビーム半径をw
イ・・・球面鏡位置(ビーム半径w
ウ・・・収束位置(ビーム半径w
エ・・・プラズマ加熱位置(ビーム半径w
(図2)
ア・・・導波管
イ・・・第1反射鏡(直線駆動式平面鏡)
ウ・・・第2反射鏡(固定式球面鏡)
エ・・・第2反射鏡の曲率中心
オ・・・第1反射鏡の駆動棒
α・・・プラズマへのビーム入射角度
(図3)
ア・・・導波管
イ・・・第1反射鏡(固定式平面鏡)
ウ・・・第2反射鏡(直線駆動式球面鏡)
エ・・・第2反射鏡の曲率中心
オ・・・第2反射鏡の駆動棒
α・・・プラズマへの電磁波ビーム入射角度
(図4)
ア・・・第3反射鏡(直線駆動式球面鏡)
イ・・・第2反射鏡(直線駆動式複合平面鏡)
ウ・・・第1反射鏡(固定式平面鏡)
エ・・・第2反射鏡の駆動棒
オ・・・第3反射鏡の駆動棒
カ・・・導波管
(図5a)
ア・・・第2反射鏡(回転駆動式平面鏡)
イ・・・第2反射鏡の駆動棒
ウ・・・冷却水流配管
エ・・・真空封止用ベロー
オ・・・駆動棒イの駆動機構
カ・・・駆動棒イの支持機構
キ・・・駆動機構オおよび支持機構イを含むアンテナ系全体を固定する支持機構
ク・・・冷却配管用スパイラルチューブ
ケ・・・第1反射鏡
コ・・・導波管
サ・・・核融合実験装置の真空容器
シ・・・真空容器のポート
(図5b)
ア・・・第2反射鏡(直線駆動式球面鏡)
イ・・・第2反射鏡の駆動棒
ウ・・・冷却水流路
エ・・・真空封止用ベロー
オ・・・駆動棒イの駆動機構
カ・・・駆動棒イの支持機構
キ・・・駆動機構オおよび支持機構イを固定する支持柱
ク・・・冷却配管用ベロー
ケ・・・第1反射鏡
コ・・・導波管
サ・・・核融合実験装置の真空容器
シ・・・真空容器のポート
(Fig. 1a)
A: Center of curvature of spherical mirror and center (0, 0) of the coordinate system (r, θ)
B ... Vertical foot (d, 0) from the incident beam down to point A
C. Incident point (R, φ) of beam on spherical mirror
D ... Torus center of fusion device d ... Distance from point A of incident beam φ ... θ coordinate of point C
R ... radius of curvature of spherical mirror (Fig. 1b)
A ... waveguide end (the beam radius w 0)
B ... Spherical mirror position (beam radius w 1 )
C: Convergence position (beam radius w 2 )
D ... Plasma heating position (beam radius w 3 )
(Figure 2)
A ... Waveguide A ... First reflector (Linear drive type plane mirror)
C ... Second reflector (fixed spherical mirror)
D: Center of curvature of the second reflecting mirror E: Driving rod α of the first reflecting mirror: Beam incident angle to the plasma (FIG. 3)
A ... Waveguide A ... First reflector (fixed plane mirror)
C ... Second reflecting mirror (straight-drive spherical mirror)
D ... Center of curvature of the second reflecting mirror E ... Driving rod α of the second reflecting mirror ... Incident angle of the electromagnetic wave beam to the plasma (Fig. 4)
A ... Third reflector (Straight-line drive spherical mirror)
B ... Second reflector (Linear drive type compound plane mirror)
C ... First reflector (fixed plane mirror)
D ... Driver rod of the second reflecting mirror E ... Driver rod of the third reflector ... Waveguide (Fig. 5a)
A ... Second reflecting mirror (rotary drive type plane mirror)
A ... Drive rod of the second reflector ... Cooling water flow pipe D ... Velocity for vacuum sealing ... Drive mechanism of drive rod A ... Support mechanism of drive rod A ... Support mechanism for fixing the entire antenna system including the drive mechanism E and the support mechanism A ... Spiral tube for cooling piping ... First reflector ... Waveguide support ... Vacuum container: Port of vacuum container (Fig. 5b)
A ... Second reflecting mirror (Straight-drive spherical mirror)
A ... Drive rod of the second reflecting mirror ... Cooling water flow path D ... Velocity for vacuum sealing ... Drive mechanism of drive rod A ... Support mechanism of drive rod A ... Support column C for fixing the drive mechanism E and the support mechanism A ... Bellows for cooling pipe ... First reflector Mirror ... Waveguide support ... Vacuum vessel of fusion experimental device ... Vacuum Container port

Claims (6)

核融合炉または核融合実験装置の真空容器に取付けた、導波管、金属製反射鏡、反射鏡冷却配管、および反射鏡駆動機構で構成され、
前記金属製反射鏡として、電磁波ビームの入射位置を変化させることで入射角度および反射角度が変化するように設計した反射面形状を有する反射鏡と、少なくとも1つの更なる反射鏡とを有し、
導波管端部から放射されるミリ波帯の電磁波ビームをプラズマに入射する角度の制御を、前記金属製反射鏡の回転運動によらず、該金属製反射鏡のうち少なくとも1つの直線運動によって実現することを特徴とする高周波加熱装置用直線駆動アンテナ。
Consists of a waveguide , metal reflector , reflector cooling piping, and reflector drive mechanism attached to the vacuum vessel of the nuclear fusion reactor or fusion experimental device,
The metal reflector includes a reflector having a reflecting surface shape designed to change an incident angle and a reflection angle by changing an incident position of an electromagnetic wave beam, and at least one further reflector.
The control of the angle of incident electromagnetic radiation beam of a millimeter wave band which is emitted from the waveguide end into the plasma, regardless of the rotational movement of the metallic reflector, by at least one linear motion of the said metallic reflector A linear drive antenna for a high-frequency heating device, characterized in that it is realized.
前記反射面形状を有する反射鏡への電磁波ビームの入射位置の変化を、前記直線運動により金属製反射鏡間の相対位置を変化させることによって実現し、該相対位置の変化によって電磁波ビームのプラズマへの入射角度を制御することを特徴とする、請求項1に記載の高周波加熱装置用直線駆動アンテナ。 The change of the incident position of the electromagnetic wave beam on the reflecting mirror having the reflecting surface shape is realized by changing the relative position between the metal reflecting mirrors by the linear motion, and the change of the relative position changes the plasma of the electromagnetic wave beam to the plasma. The linear drive antenna for a high-frequency heating device according to claim 1, wherein the incident angle is controlled. 前記反射鏡駆動機構は、真空領域内に設けられた前記直線運動する反射鏡を、回転運動に必要な摩擦を伴う回転軸やリンク機構無しに直線的に駆動させる機構であることを特徴とする、請求項1又は2に記載の高周波加熱装置用直線駆動アンテナ。 The reflecting mirror driving mechanism is a mechanism that linearly drives the reflecting mirror that is provided in a vacuum region and that does not require a rotating shaft or a link mechanism with friction necessary for rotating motion. The linear drive antenna for a high-frequency heating device according to claim 1 or 2 . 前記直線運動する反射鏡と固定された冷却装置とを接続する、反射鏡冷却配管の緩衝機構として、直線的ベロー管を保守の容易な真空容器外に設置し、該直線的ベロー管は軸方向にのみ伸縮することを特徴とする、請求項1乃至3のいずれか1項に記載の高周波加熱装置用直線駆動アンテナ。 As a buffer mechanism for the reflector cooling pipe that connects the linearly moving reflector and a fixed cooling device, a linear bellows pipe is installed outside the vacuum container for easy maintenance, and the linear bellows pipe is axially The linear drive antenna for a high-frequency heating device according to any one of claims 1 to 3, wherein the linear drive antenna according to any one of claims 1 to 3, wherein the linear drive antenna extends and contracts only. 真空容器の壁面を貫通する反射鏡冷却配管兼反射鏡駆動機構の駆動軸と真空容器との取り合いに、直線的ベロー管を使用し、該直線的ベロー管は軸方向にのみ伸縮することを特徴とする、請求項1乃至4のいずれか1項に記載の高周波加熱装置用直線駆動アンテナ。 A straight bellows tube is used to connect the vacuum vessel with the drive shaft of the reflector cooling pipe / reflector driving mechanism penetrating the wall of the vacuum vessel, and the linear bellows tube expands and contracts only in the axial direction. The linear drive antenna for a high-frequency heating device according to any one of claims 1 to 4 . 前記反射鏡駆動機構の駆動軸内部を反射鏡用冷却配管として用いることを特徴とする、請求項1乃至4のいずれか1項に記載の高周波加熱装置用直線駆動アンテナ。 The linear drive antenna for a high-frequency heating device according to any one of claims 1 to 4, wherein the inside of the drive shaft of the reflector drive mechanism is used as a reflector cooling pipe.
JP2005227647A 2005-08-05 2005-08-05 Linear drive antenna for high frequency heating equipment Expired - Fee Related JP4831600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227647A JP4831600B2 (en) 2005-08-05 2005-08-05 Linear drive antenna for high frequency heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227647A JP4831600B2 (en) 2005-08-05 2005-08-05 Linear drive antenna for high frequency heating equipment

Publications (2)

Publication Number Publication Date
JP2007040919A JP2007040919A (en) 2007-02-15
JP4831600B2 true JP4831600B2 (en) 2011-12-07

Family

ID=37799025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227647A Expired - Fee Related JP4831600B2 (en) 2005-08-05 2005-08-05 Linear drive antenna for high frequency heating equipment

Country Status (1)

Country Link
JP (1) JP4831600B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1961942B1 (en) 2007-02-21 2018-10-24 NGK Spark Plug Co., Ltd. Diagnostic method and control apparatus for gas sensor
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
CN102222528B (en) * 2011-04-11 2013-02-13 核工业西南物理研究院 First mirror sample irradiation support and irradiation method
PE20190836A1 (en) * 2016-11-15 2019-06-17 Tae Tech Inc SYSTEMS AND METHODS TO IMPROVE THE SUSTAINABILITY OF A HIGH PERFORMANCE FRC AND A HEATING OF THE HIGH HARMONIC RAPID WAVE ELECTRONS IN A HIGH PERFORMANCE FRC

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833460B2 (en) * 1988-02-04 1996-03-29 株式会社日立製作所 RF injection device

Also Published As

Publication number Publication date
JP2007040919A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4831600B2 (en) Linear drive antenna for high frequency heating equipment
JP5679820B2 (en) Subreflector of double reflector antenna
US3986767A (en) Optical focus device
EP1168490B1 (en) Antenna apparatus and waveguide for use therewith
JP4119352B2 (en) Lens antenna device
JPH03274802A (en) Waveguide and gyrotron device using the same
WO2012113293A1 (en) Dual reflector antenna
JP2001249288A (en) Deformable mirror for material processing device by laser beam in particular
EP2325536B1 (en) High temperature range axial seal, system and method
WO2018216472A1 (en) Heat transportation device and furnace using same
JP2016123091A (en) Feed re-pointing technique for multiple shaped beams reflector antennas
WO2016009691A1 (en) Microwave heating and radiating device
US7868839B2 (en) Planar scanner antenna for high frequency scanning and radar environments
JP5908127B2 (en) Microwave heating irradiation device
US7450079B1 (en) Gimbaled gregorian antenna
JP5961087B2 (en) Wide scan operability without keyhole antenna
Moriyama et al. Design study of a new antenna system for steering microwave beam in electron cyclotron heating/current drive system
JP6157788B2 (en) Antenna device
US20090128040A1 (en) Systems and methods for waveguides
US20120194398A1 (en) Radio frequency transmitting device
JP2005156749A (en) Electromagnetic wave converging device
CN111129698B (en) Offset-fed electric control fusion antenna and system
JP2009204423A (en) Infrared imaging device
JP2009022034A (en) Waveguide
Henderson et al. The Enhanced Performance Launcher Design For The ITER Upper Port ECH Antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees