JP5102792B2 - Microwave heating device - Google Patents

Microwave heating device Download PDF

Info

Publication number
JP5102792B2
JP5102792B2 JP2009027847A JP2009027847A JP5102792B2 JP 5102792 B2 JP5102792 B2 JP 5102792B2 JP 2009027847 A JP2009027847 A JP 2009027847A JP 2009027847 A JP2009027847 A JP 2009027847A JP 5102792 B2 JP5102792 B2 JP 5102792B2
Authority
JP
Japan
Prior art keywords
microwave
waveguide
heated
applicator
microwave power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009027847A
Other languages
Japanese (ja)
Other versions
JP2010182653A (en
Inventor
真澄 久我
利夫 小倉
慎一郎 古屋
裕文 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Original Assignee
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009027847A priority Critical patent/JP5102792B2/en
Application filed by Satake Corp filed Critical Satake Corp
Priority to EP10738454.7A priority patent/EP2395814A4/en
Priority to PCT/JP2010/051108 priority patent/WO2010090120A2/en
Priority to US13/138,328 priority patent/US20110315678A1/en
Priority to KR1020117020025A priority patent/KR101616151B1/en
Priority to CN2010800070362A priority patent/CN102308668B/en
Priority to TW099103792A priority patent/TWI454647B/en
Publication of JP2010182653A publication Critical patent/JP2010182653A/en
Application granted granted Critical
Publication of JP5102792B2 publication Critical patent/JP5102792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

本発明は、マイクロ波電力を被加熱物へ照射するマイクロ波加熱装置に関し、特に、食品用パック等に収納された個食食品の加熱加工や殺菌などを行うマイクロ波加熱装置に関する。   The present invention relates to a microwave heating apparatus that irradiates an object to be heated with microwave power, and more particularly to a microwave heating apparatus that performs heating processing, sterilization, and the like of individual foods stored in a food pack or the like.

従来、マイクロ波電力を利用して食品などの被加熱物を加熱するアプリケータとして電子レンジなどが広く知られている。このような電子レンジを用いて食品用パックに収納されている個食食品を再加熱することも広く行われている。この場合、マイクロ波照射室となる電子レンジ庫内の形状が立方体であり、且つ、電子レンジ庫内容積が個食食品のそれに対しかなり大きくなっているのが一般的である。そのため、被照射物となる個食食品は、均一にマイクロ波が照射されず、所謂、加熱ムラの問題を生じる。したがって、電子レンジでは、マイクロ波を撹乱させるスターラ(金属回転羽根)や、トレイ(受け皿:置き台)が回転するターンテーブルなどでマイクロ波照射の均一化を図っている。   Conventionally, a microwave oven or the like is widely known as an applicator for heating an object to be heated such as food using microwave power. It is also widely practiced to reheat individual foods stored in food packs using such a microwave oven. In this case, it is general that the shape of the microwave oven serving as the microwave irradiation chamber is a cube, and the volume of the microwave oven is considerably larger than that of the individual food. For this reason, the individual foods to be irradiated are not uniformly irradiated with microwaves, and so-called heating unevenness occurs. Therefore, in the microwave oven, the microwave irradiation is made uniform by a stirrer (metal rotating blade) that disturbs microwaves, a turntable that rotates a tray (a tray: a table), or the like.

また、電子レンジ庫内が大きい分、庫内壁面でのマイクロ波損失が大きくなり、結果的には、加熱効率(電子レンジ庫内へ供給したマイクロ波電力に対する食品が吸収したマイクロ波電力の比)が悪いものとなる。したがって、複数のマイクロ波発生器を用いて電子レンジ庫内を均一に照射するなどして、被加熱物の加熱ムラを少なくしたり加熱効率を向上させたりする工夫がなされている。   In addition, the microwave loss on the inner wall of the microwave oven increases due to the larger size of the microwave oven. As a result, the heating efficiency (the ratio of the microwave power absorbed by the food to the microwave power supplied into the microwave oven) is increased. ) Will be bad. Therefore, the microwave oven is uniformly irradiated using a plurality of microwave generators to reduce the uneven heating of the object to be heated and improve the heating efficiency.

また、矩形導波管と円形導波管とを用いて被加熱物付近にマイクロ波を集中させ、加熱効率を向上させる技術も開示されている(例えば、特許文献1参照)。この技術によれば、矩形導波管にマグネトロンを取り付け、矩形導波管から円形導波管へ伝送されたマイクロ波電力により、その円形導波管に収納された被加熱物にマイクロ波電力を集中させているので、その被加熱物を効率的に加熱することができる。   In addition, a technique for concentrating microwaves in the vicinity of an object to be heated using a rectangular waveguide and a circular waveguide to improve heating efficiency is also disclosed (for example, see Patent Document 1). According to this technology, a magnetron is attached to a rectangular waveguide, and microwave power is transmitted to the object to be heated contained in the circular waveguide by the microwave power transmitted from the rectangular waveguide to the circular waveguide. Since it concentrates, the to-be-heated material can be heated efficiently.

特開昭63−299084号公報JP-A 63-299084

ところが、工業用で個食食品の加熱加工や殺菌を行う場合において、マイクロ波電力を均一に照射することは当然であるが、加熱効率を最大限に向上させて被加熱物に照射することができる個食食品専用のマイクロ波加熱装置の要求が高まっている。また、マイクロ波加熱装置の信頼性の面から、マイクロ波照射室であるアプリケータ内にスターラやターンテーブルの回転機構などを不要とするマイクロ波加熱装置が要求されている。また、特許文献1に開示された技術においては、スターラやターンテーブルの回転機構を用いないで加熱効率を上げることができるが、円形導波管と相似な形状の被加熱物でない場合は、その被加熱物にマイクロ波を集中させることができない場合がある。そのような場合は加熱効率を向上させることができない。この課題は、家庭用や業務用のマイクロ波加熱装置(電子レンジ)においても同じである。   However, when heating and sterilizing a single food for industrial use, it is natural to irradiate microwave power uniformly, but it is possible to irradiate the object to be heated with the maximum improvement in heating efficiency. There is a growing demand for microwave heating devices dedicated to individual foods. In addition, from the viewpoint of the reliability of the microwave heating apparatus, there is a demand for a microwave heating apparatus that does not require a stirrer or a turntable rotation mechanism in the applicator that is a microwave irradiation chamber. In the technique disclosed in Patent Document 1, the heating efficiency can be increased without using a rotation mechanism of a stirrer or a turntable, but if the object to be heated is not similar in shape to a circular waveguide, In some cases, microwaves cannot be concentrated on the object to be heated. In such a case, the heating efficiency cannot be improved. This problem is the same in microwave heaters (microwave ovens) for home use and business use.

本発明はこのような問題点に鑑みてなされたものであり、回転機構を用いないで、被加熱物へ均一かつ効率よくマイクロ波を照射させることができるマイクロ波加熱装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a microwave heating apparatus that can uniformly and efficiently irradiate an object to be heated without using a rotating mechanism. And

上記目的を達成するために、本発明のマイクロ波加熱装置は、マイクロ波電力を伝送する導波管と、この導波管から伝送されたマイクロ波電力を被加熱物へ均一分散させるように下面を円錐状に切り欠いた円板状であって、かつ比誘電率が1より大きいフッ素樹脂スペーサである誘電体板、および、金属材料で構成され、被加熱物を載置する置き台を有し、導波管から照射されたマイクロ波電力を、誘電体板を介して当該被加熱物へ照射させる円筒状のアプリケータとを備える構成を採っている。 In order to achieve the above object, a microwave heating apparatus of the present invention includes a waveguide that transmits microwave power , and a bottom surface that uniformly distributes the microwave power transmitted from the waveguide to an object to be heated. And a dielectric plate that is a fluororesin spacer having a relative dielectric constant greater than 1 , and a mounting table on which an object to be heated is placed. And the structure provided with the cylindrical applicator which irradiates the said to- be-heated material with the microwave electric power irradiated from the waveguide via a dielectric material board is taken.

本発明によれば、比誘電率が1より大きく誘電損失が小さい誘電体板(例えば、テフロン(登録商標)などのフッ素樹脂板)の形状を最適化することにより、マイクロ波がフッ素樹脂板を通過するときの波長短縮効果によってマイクロ波を屈折させて、被加熱物へマイクロ波を均一に照射させることができる。その結果、アプリケータ内にマイクロ波を散乱させるスターラや被加熱物を回転させるターンテーブルなどを設けなくても、被加熱物へマイクロ波を効率よく均一に照射させることができる。   According to the present invention, by optimizing the shape of a dielectric plate (for example, a fluororesin plate such as Teflon (registered trademark)) having a relative dielectric constant greater than 1 and a low dielectric loss, The microwave can be refracted by the wavelength shortening effect when passing through, and the object to be heated can be uniformly irradiated with the microwave. As a result, the object to be heated can be efficiently and uniformly irradiated with microwaves without providing a stirrer that scatters microwaves or a turntable that rotates the object to be heated in the applicator.

2.45GHzのマイクロ波電力を合成するT型導波管の構成図であり、(a)はT型導波管1の断面図、(b)は(a)のA面を示し、(c)は(a)のB面を示す。It is a block diagram of the T-type waveguide which synthesize | combines the microwave power of 2.45 GHz, (a) is sectional drawing of the T-type waveguide 1, (b) shows the A surface of (a), (c ) Shows the B side of (a). 図1に示すT型導波管1におけるC面の電界方向を示す図である。It is a figure which shows the electric field direction of the C surface in the T-type waveguide 1 shown in FIG. 本発明の実施形態に係るアプリケータの構成断面図である。It is a composition sectional view of the applicator concerning the embodiment of the present invention. 本発明による実施形態のマイクロ波加熱装置の効果を比較例と対比して実測した温度分布図であり、(a)は比較例の実測結果、(b)は本発明による実施形態の実測結果を示す。It is the temperature distribution figure which measured the effect of the microwave heating device of the embodiment by the present invention compared with the comparative example, (a) is the actual measurement result of the comparative example, and (b) is the actual measurement result of the embodiment by the present invention. Show.

以下図面を参照しながら、本発明に係るマイクロ波加熱装置の実施形態について詳細に説明する。なお、実施形態を説明するための全図において、同一要素は原則として同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of a microwave heating apparatus according to the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.

本実施形態のマイクロ波加熱装置は、一例として、T型導波管1を用いて被加熱物12(図3参照)にマイクロ波電力を照射しているので、まずT型導波管1の構成について説明する。図1は、2.45GHzのマイクロ波電力を合成するT型導波管1の構成図であり、図1(a)はT型導波管1の断面図を示し、図1(b)は図1(a)のA面を示し、図1(c)は図1(a)のB面を示している。図1(a)に示すように、T型導波管1は、主導波管1aと副導波管1bが直交して構成されている。   As an example, the microwave heating apparatus of this embodiment irradiates microwave power to the article to be heated 12 (see FIG. 3) using the T-type waveguide 1. The configuration will be described. FIG. 1 is a configuration diagram of a T-type waveguide 1 that synthesizes microwave power of 2.45 GHz. FIG. 1A shows a cross-sectional view of the T-type waveguide 1, and FIG. FIG. 1 (a) shows the A surface, and FIG. 1 (c) shows the B surface of FIG. 1 (a). As shown in FIG. 1A, the T-type waveguide 1 is configured such that a main waveguide 1a and a sub-waveguide 1b are orthogonal to each other.

すなわち、図1(a)に示すT型導波管1は、図1(b)に示すようなA面の開口部の寸法が80mm×80mmの主導波管1aと、図1(c)に示すようなB面の開口部の寸法が80mm×40mmの副導波管1bとが直交した構成となっている。このような構成により、主導波管1aのA面側から供給されたマイクロ波電力と、副導波管1bのB面側から供給されたマイクロ波電力とが、T型導波管1の内部で合成される。そして、合成されたマイクロ波電力は主導波管1aのC面側に伝送されてアプリケータ10(図3参照)へ供給される。   That is, the T-type waveguide 1 shown in FIG. 1A includes a main waveguide 1a having an A-side opening dimension of 80 mm × 80 mm as shown in FIG. As shown in the figure, the size of the opening on the B surface is orthogonal to the sub-waveguide 1b having a size of 80 mm × 40 mm. With such a configuration, the microwave power supplied from the A surface side of the main waveguide 1a and the microwave power supplied from the B surface side of the sub-waveguide 1b are converted into the inside of the T-type waveguide 1. Is synthesized. The synthesized microwave power is transmitted to the C-plane side of the main waveguide 1a and supplied to the applicator 10 (see FIG. 3).

図2は、図1のT型導波管1におけるC面の電界方向を示す図である。すなわち、T型導波管1のC面で合成されたマイクロ波電力の加熱に寄与する電界方向(つまり、図1(a)のC面の電界方向)は、図2に示す通り、A面側から供給されたマイクロ波電力が形成する電界方向(以下、主マイクロ波の電界方向1aeという)と、B面側から供給されたマイクロ波電力が形成する電界方向(以下、副マイクロ波の電界方向1beという)は、90度の方向差を持ち、C面側からアプリケータ10(図3参照)へ供給される。   FIG. 2 is a diagram showing the electric field direction of the C plane in the T-type waveguide 1 of FIG. That is, the electric field direction contributing to the heating of the microwave power synthesized on the C plane of the T-shaped waveguide 1 (that is, the electric field direction of the C plane in FIG. 1A) is the A plane as shown in FIG. Electric field direction formed by microwave power supplied from the side (hereinafter referred to as main microwave electric field direction 1ae) and electric field direction formed by microwave power supplied from the B-side (hereinafter referred to as sub-microwave electric field) Direction 1be) has a direction difference of 90 degrees and is supplied to the applicator 10 (see FIG. 3) from the C-plane side.

このようにして、90度の方向差を持つ両者のマイクロ波電界(つまり、主マイクロ波の電界方向1aeと副マイクロ波の電界方向1be)は、主導波管1aのC面側から図3に示すアプリケータ(マイクロ波照射室)10内に供給される。したがって、アプリケータ10への供給電力は、主導波管1aを伝送したマイクロ波電力と副導波管1bを伝送したマイクロ波電力との和となる。このようにして、2つのマイクロ波電力が合成された高出力のマイクロ波電力をアプリケータ10へ供給することができる。   In this way, both microwave electric fields (that is, the electric field direction 1ae of the main microwave and the electric field direction 1be of the sub microwave) having a direction difference of 90 degrees are shown in FIG. 3 from the C-plane side of the main waveguide 1a. It is fed into an applicator (microwave irradiation chamber) 10 shown. Therefore, the power supplied to the applicator 10 is the sum of the microwave power transmitted through the main waveguide 1a and the microwave power transmitted through the sub waveguide 1b. In this way, high-power microwave power obtained by combining two microwave powers can be supplied to the applicator 10.

図3は、本発明の実施形態に係るアプリケータ10の構成断面図である。図3に示すように、アプリケータ10は円筒型であって、加熱効率を最大化する観点から最小限の容積で構成され、その容積の内径はΦ150mm、高さは75mmである。このような容積の中で、金属置き台11の上面に食品などの被加熱物12が載置されている。   FIG. 3 is a sectional view of the configuration of the applicator 10 according to the embodiment of the present invention. As shown in FIG. 3, the applicator 10 has a cylindrical shape and is configured with a minimum volume from the viewpoint of maximizing heating efficiency. The inner diameter of the volume is Φ150 mm, and the height is 75 mm. In such a volume, a heated object 12 such as a food is placed on the upper surface of the metal table 11.

また、被加熱物12の上部には、円錐状に切り欠いたフッ素樹脂スペーサ13が配置されている。このフッ素樹脂スペーサ13は、外径がΦ150mm、厚みが30mmであり、被加熱物12に対向する面に円錐状の切り欠きが形成されている。この切り欠きの形状は、底面の直径がΦ150mm、頂部の直径がΦ20mmの円錐形状となっている。そして、T型導波管1で合成されたマイクロ波電力が、円錐状に切欠いたフッ素樹脂スペーサ13を介して被加熱物12に照射されるようになっている。   In addition, a fluororesin spacer 13 cut out in a conical shape is disposed on the top of the article 12 to be heated. The fluororesin spacer 13 has an outer diameter of 150 mm and a thickness of 30 mm, and a conical cutout is formed on the surface facing the object to be heated 12. The shape of this notch is a conical shape with a bottom diameter of 150 mm and a top diameter of 20 mm. The microwave power synthesized by the T-shaped waveguide 1 is irradiated to the object to be heated 12 through the fluororesin spacer 13 cut out in a conical shape.

すなわち、T型導波管1は、円筒状のアプリケータ10の上面側に位置し、その真下に、円錐状に切り欠いた形状のフッ素樹脂スペーサ13が円筒状のアプリケータ10の内面に取付けられている。   That is, the T-shaped waveguide 1 is positioned on the upper surface side of the cylindrical applicator 10, and a fluororesin spacer 13 having a shape cut out in a conical shape is attached to the inner surface of the cylindrical applicator 10 immediately below it. It has been.

したがって、T型導波管1から伝送された90度の電界方向差を持つ合成マイクロ波電力は、フッ素樹脂スペーサ13を介し被加熱物12である食品に照射される。フッ素樹脂は一般的に比誘電率εが2程度(2.45GHz時)であり、マイクロ波損失(tanδ)が少ないことから、マイクロ波透過材として仕切り板等の目的で一般的に使用されている。つまり、被加熱物12から発生した水蒸気や油の蒸気が導波管内に流れ込まないように、薄い仕切り板としてフッ素樹脂が用いられている。   Therefore, the synthesized microwave power transmitted from the T-shaped waveguide 1 and having an electric field direction difference of 90 degrees is irradiated to the food that is the object to be heated 12 through the fluororesin spacer 13. Fluororesin generally has a relative dielectric constant ε of about 2 (at 2.45 GHz) and has a low microwave loss (tan δ). Therefore, it is generally used as a microwave transmitting material for the purpose of partition plates and the like. Yes. That is, the fluororesin is used as a thin partition plate so that water vapor or oil vapor generated from the object to be heated 12 does not flow into the waveguide.

フッ素樹脂を通過するマイクロ波の速さは真空中の1/√εとなり、波長も真空中の波長λoの1/√ε倍となる。つまり、マイクロ波がフッ素樹脂スペーサ13を通過する間は、マイクロ波の波長が短縮化することから、フッ素樹脂スペーサ13の形状を円錐状に切り欠いて最適化することにより、マイクロ波を屈折させて被加熱物12全体へ分散させて均一に照射させることができるので、被加熱物12に効率よくマイクロ波を照射させることが可能となる。   The speed of the microwave passing through the fluororesin is 1 / √ε in vacuum, and the wavelength is also 1 / √ε times the wavelength λo in vacuum. In other words, while the microwave passes through the fluororesin spacer 13, the wavelength of the microwave is shortened. Therefore, by optimizing the fluororesin spacer 13 by cutting it into a conical shape, the microwave is refracted. Since the object to be heated 12 can be dispersed and uniformly irradiated, the object to be heated 12 can be efficiently irradiated with microwaves.

さらに詳しく説明すると、円錐状に切り欠いた形状のフッ素樹脂スペーサ13は、光学系の凹レンズと同様の屈折作用を呈するので、T型導波管1からアプリケータ10の内部へ導入された合成マイクロ波は、フッ素樹脂スペーサ13によって屈折し、被加熱物12全体に分散しながら、被加熱物12のエリアへ集中して照射させることができる。したがって、被加熱物12に比べてアプリケータ10の容積が大きくても、フッ素樹脂スペーサ13の形状を被加熱物12の形状に合わせて最適化すれば、マイクロ波を被加熱物12へ集中させ、かつ被加熱物12に均一に照射させることができるので、被加熱物12を効率的に加熱することができる。   More specifically, the fluororesin spacer 13 cut into a conical shape exhibits the same refracting action as that of the concave lens of the optical system. Therefore, the synthetic micro-fiber introduced into the applicator 10 from the T-type waveguide 1. Waves are refracted by the fluororesin spacer 13 and can be radiated in a concentrated manner on the area of the object to be heated 12 while being dispersed throughout the object to be heated 12. Therefore, even if the volume of the applicator 10 is larger than that of the object to be heated 12, if the shape of the fluororesin spacer 13 is optimized according to the shape of the object to be heated 12, the microwaves are concentrated on the object to be heated 12. And since the to-be-heated material 12 can be irradiated uniformly, the to-be-heated material 12 can be heated efficiently.

なお、金属板やパンチングメタルからなる金属置き台11の下部には、ドレインを受けるためのドレイン受け皿14及びドレインを排出するためのドレインピット15が設けられている。金属置き台11の代わりにマイクロ波透過性の材質で置き台を構成し、このドレイン受け皿14を金属材料で構成すれば、上部から照射されたマイクロ波をドレイン受け皿14で反射させて被加熱物12を照射させることができる。これによって、被加熱物12をさらに効率よく加熱することができる。   Note that a drain receiving tray 14 for receiving a drain and a drain pit 15 for discharging the drain are provided at a lower portion of a metal stand 11 made of a metal plate or a punching metal. If the cradle is made of a microwave permeable material instead of the metal cradle 11 and the drain tray 14 is made of a metal material, the microwave irradiated from above is reflected by the drain pan 14 to be heated. 12 can be irradiated. Thereby, the article to be heated 12 can be heated more efficiently.

以上述べたように、本発明のマイクロ波加熱装置によれば、テフロン(登録商標)などのフッ素樹脂板の形状を最適化することにより、マイクロ波がフッ素樹脂板を出入りするときマイクロ波を屈折させて、被加熱物12へマイクロ波を均一に照射させることができる。その結果、アプリケータ10内にマイクロ波を散乱させるスターラや被照射物を回転させるターンテーブルなどがなくても、被加熱物12へマイクロ波を均一に照射させることができる。補足すると、マイクロ波を被加熱物12に選択的に照射でき、かつ、選択的にマイクロ波が照射された被加熱物12においては、均一な加熱ができる。   As described above, according to the microwave heating apparatus of the present invention, by optimizing the shape of the fluororesin plate such as Teflon (registered trademark), the microwave is refracted when entering and exiting the fluororesin plate. Thus, the object 12 to be heated can be uniformly irradiated with microwaves. As a result, even if there is no stirrer that scatters microwaves in the applicator 10 or a turntable that rotates the irradiated object, the object to be heated 12 can be irradiated with microwaves uniformly. Supplementally, the object to be heated 12 can be selectively irradiated with microwaves, and the object to be heated 12 selectively irradiated with microwaves can be heated uniformly.

図4は、本発明による実施形態のマイクロ波加熱装置の効果を比較例と対比して実測した温度分布図であり、図4(a)は比較例の実測結果、図4(b)は本実施形態の実測結果を示している。すなわち、この図は、図3に示す円錐状に切り欠いたフッ素樹脂スペーサ13の有無によって、丸型パックに収納された食品をマイクロ波加熱した場合の温度分布を赤外線放射温度計で実測したものであり、図4(a)はフッ素樹脂スペーサ13がない場合、図4(b)はフッ素樹脂スペーサ13がある場合の温度分布を示したものである。   FIG. 4 is a temperature distribution diagram in which the effect of the microwave heating apparatus according to the embodiment of the present invention is measured in comparison with the comparative example. FIG. 4 (a) is the actual measurement result of the comparative example, and FIG. The actual measurement result of embodiment is shown. That is, in this figure, the temperature distribution when the food stored in the round pack is microwave-heated with an infrared radiation thermometer is measured by the presence or absence of the fluororesin spacer 13 notched in a conical shape shown in FIG. 4A shows the temperature distribution when the fluororesin spacer 13 is not provided, and FIG. 4B shows the temperature distribution when the fluororesin spacer 13 is provided.

図4から明らかなように、フッ素樹脂スペーサ13がある場合、図4(b)の方が被加熱物12に均一にマイクロ波が照射され、かつ加熱温度も高くなっていることがわかる。つまり、本発明によるマイクロ波加熱装置を用いることにより、被加熱物12の加熱効率が高くなり、かつ、被加熱物12へ均一に照射させることができる。   As is apparent from FIG. 4, when the fluororesin spacer 13 is present, it can be seen that in FIG. 4B, the object to be heated 12 is evenly irradiated with microwaves and the heating temperature is higher. That is, by using the microwave heating apparatus according to the present invention, the heating efficiency of the object to be heated 12 is increased, and the object to be heated 12 can be uniformly irradiated.

すなわち、比誘電率が1より大きく、誘電損失(tanδ)が小さい、誘電体に最適化した切り欠きを設けたスペーサを用いれば、上記実施形態と同様の作用効果を呈することができる。このようにして、マイクロ波を被加熱物12へ均一に照射すれば、マイクロ波撹乱用の金属回転羽(スターラ)や被照射物を回転させるターンテーブルを用いる必要はなくなるので、回転機構が不要になってマイクロ波加熱装置の信頼性を一段と高めることができる。   That is, if a spacer having a relative permittivity larger than 1 and a dielectric loss (tan δ) with a notch optimized for a dielectric is used, the same effect as the above embodiment can be obtained. In this way, if microwaves are evenly irradiated to the object 12 to be heated, there is no need to use a metal rotating blade (stirrer) for microwave disturbance or a turntable for rotating the object to be irradiated, so a rotating mechanism is unnecessary. Thus, the reliability of the microwave heating apparatus can be further improved.

以上、本発明を実施形態に基づいて具体的に説明したが、本発明は前記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、テフロン(登録商標)など(フッ素樹脂)に限ることはなく、円錐状に切り欠いたシリコーン樹脂製スペーサを介在させても、被加熱物12にマイクロ波を均一に照射させることができる。   Although the present invention has been specifically described above based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, it is not limited to Teflon (registered trademark) or the like (fluororesin), and the object to be heated 12 can be uniformly irradiated with microwaves even if a silicone resin spacer notched in a conical shape is interposed.

なお、外環形状がリング状を呈する食品や、トレイに盛られた状態で中央部が窪んだ食品の場合は、中央部にマイクロ波を集中的に照射するよりも、周囲にマイクロ波を照射した方が良好な加熱(加熱に要する時間の短縮)ができる。そのような場合は、スペーサの形状を適宜改定して、マイクロ波が被加熱物12の中央よりも周囲に多く照射されるようにする。
あるいは、中央部が盛り上がった食品については、中央部の加熱が遅れる。そのような場合には、スペーサの形状を適宜改定して、マイクロ波が被加熱物12の中央部に多く照射されるようにする。
In addition, in the case of food with an outer ring shape that is ring-shaped or food that is depressed in the center while being placed on a tray, the surrounding area is irradiated with microwaves rather than intensively irradiating the center with microwaves. Better heating (reduction of time required for heating) can be achieved. In such a case, the shape of the spacer is appropriately changed so that the microwave is irradiated more to the periphery than the center of the article to be heated 12.
Or about the food in which the center part rose, heating of the center part is overdue. In such a case, the shape of the spacer is revised as appropriate so that a large amount of microwaves is irradiated on the central portion of the article to be heated 12.

また、アプリケータ10内を、スペーサ13などを用いて密閉加圧可能にすることで、食品からの水分の損失防止と、アプリケータ10内に充満させたスチームによる被加熱物12の均一な加熱とができる。   Further, by allowing the inside of the applicator 10 to be hermetically pressurized using a spacer 13 or the like, moisture loss from food can be prevented, and uniform heating of the article to be heated 12 by steam filled in the applicator 10 is possible. You can.

また、スペーサ13を取り替え可能にしておくことで、単にスペーサ13を取り替えるだけで、マイクロ波加熱装置の加熱特性を一変させることができる。
このような対処で、食品の形状や目的に応じた加熱ができる。
In addition, by making the spacer 13 replaceable, the heating characteristics of the microwave heating device can be completely changed by simply replacing the spacer 13.
By such measures, heating according to the shape and purpose of the food can be performed.

本発明によれば、被加熱物の加熱効率が高く、かつ、被加熱物への均一照射ができるので、個食食品の加熱加工や殺菌などを行うマイクロ波加熱装置などに有効に利用することができる。   According to the present invention, since the heating efficiency of the object to be heated is high, and the object to be heated can be uniformly irradiated, it can be effectively used for a microwave heating apparatus that performs heating processing and sterilization of individual foods. Can do.

1 T型導波管
1a 主導波管
1b 副導波管
1ae 主マイクロ波の電界方向
1be 副マイクロ波の電界方向
10 アプリケータ(マイクロ波照射室)
11 置き台
12 被加熱物(食品)
13 フッ素樹脂スペーサ
1 T-type waveguide 1a Main waveguide 1b Sub-waveguide 1ae Electric field direction of main microwave 1be Electric field direction of sub-microwave 10 Applicator (microwave irradiation chamber)
11 Stand 12 Object to be heated (food)
13 Fluorine resin spacer

Claims (6)

マイクロ波電力を伝送する導波管と、
前記導波管から伝送されたマイクロ波電力を被加熱物へ均一分散させるように下面を円錐状に切り欠いた円板状であって、かつ比誘電率が1より大きいフッ素樹脂スペーサである誘電体板、および、金属材料で構成され、当該被加熱物を載置する置き台を有し、前記導波管から照射されたマイクロ波電力を、該誘電体板を介して当該被加熱物へ照射させる円筒状のアプリケータと、
を備えることを特徴とするマイクロ波加熱装置。
A waveguide for transmitting microwave power;
A dielectric that is a fluororesin spacer having a disc shape with a lower surface cut out in a conical shape so as to uniformly disperse the microwave power transmitted from the waveguide to an object to be heated. body plate, and is formed of a metallic material, having a stand for placing the object to be heated, the microwave power radiated from the waveguide, through a dielectric body plate to the object to be heated A cylindrical applicator to be irradiated;
A microwave heating apparatus comprising:
マイクロ波電力を伝送する導波管と、
前記導波管から伝送されたマイクロ波電力を被加熱物へ均一分散させるように下面を円錐状に切り欠いた形状であって、かつ比誘電率が1より大きいフッ素樹脂スペーサである誘電体板、マイクロ波透過性の材質で構成され、当該被加熱物を載置する置き台、および、金属材料で構成されたドレイン受け皿を有し、前記導波管から照射されたマイクロ波電力を、該誘電体板を介して当該被加熱物へ照射させるアプリケータと、
を備えることを特徴とするマイクロ波加熱装置。
A waveguide for transmitting microwave power;
A dielectric plate which is a fluororesin spacer having a shape in which a lower surface is cut out in a conical shape so as to uniformly disperse microwave power transmitted from the waveguide to an object to be heated. The microwave power irradiated from the waveguide has a placing base on which the object to be heated is placed, and a drain pan made of a metal material. an applicator for irradiating the said object to be heated via a dielectric plate,
A microwave heating apparatus comprising:
前記アプリケータは、前記被加熱物に応じて、前記誘電体板を取り替え可能に構成されていることを特徴とする請求項1又は請求項2に記載のマイクロ波加熱装置。The microwave heating apparatus according to claim 1 or 2, wherein the applicator is configured to be able to replace the dielectric plate according to the object to be heated. 前記アプリケータは、前記誘電体板によって密閉加圧可能に構成されていることを特徴とする請求項1乃至請求項3の何れか1項に記載のマイクロ波加熱装置。The microwave applicator according to any one of claims 1 to 3, wherein the applicator is configured to be capable of being sealed and pressurized by the dielectric plate. 前記導波管は、第1のマイクロ波電力を伝送する主導波管と第2のマイクロ波電力を伝送する副導波管とが、それぞれのマイクロ波によって発生する電界方向が直交するように接続されたT型導波管であること
を特徴とする請求項1乃至請求項の何れか1項に記載のマイクロ波加熱装置。
The waveguide is connected to a main waveguide that transmits the first microwave power and a sub-waveguide that transmits the second microwave power so that directions of electric fields generated by the respective microwaves are orthogonal to each other. The microwave heating device according to any one of claims 1 to 4 , wherein the microwave heating device is a T-shaped waveguide.
前記T型導波管は、前記主導波管の開口部の寸法が80mm×80mmであり、前記副導波管の開口部の寸法が80mm×40mmであること
を特徴とする請求項に記載のマイクロ波加熱装置。
Wherein T Katashirubehakan are dimensions 80 mm × 80 mm of the opening of the main waveguide, according to claim 5, the dimension of the opening of the sub-wave tube is characterized by a 80 mm × 40 mm Microwave heating device.
JP2009027847A 2009-02-09 2009-02-09 Microwave heating device Active JP5102792B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009027847A JP5102792B2 (en) 2009-02-09 2009-02-09 Microwave heating device
PCT/JP2010/051108 WO2010090120A2 (en) 2009-02-09 2010-01-28 Microwave heating device
US13/138,328 US20110315678A1 (en) 2009-02-09 2010-01-28 Microwave heating device
KR1020117020025A KR101616151B1 (en) 2009-02-09 2010-01-28 Microwave heating device
EP10738454.7A EP2395814A4 (en) 2009-02-09 2010-01-28 Microwave heating device
CN2010800070362A CN102308668B (en) 2009-02-09 2010-01-28 Microwave heating device
TW099103792A TWI454647B (en) 2009-02-09 2010-02-08 Microwave heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009027847A JP5102792B2 (en) 2009-02-09 2009-02-09 Microwave heating device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012184101A Division JP5653397B2 (en) 2012-08-23 2012-08-23 Microwave heating device

Publications (2)

Publication Number Publication Date
JP2010182653A JP2010182653A (en) 2010-08-19
JP5102792B2 true JP5102792B2 (en) 2012-12-19

Family

ID=42764057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009027847A Active JP5102792B2 (en) 2009-02-09 2009-02-09 Microwave heating device

Country Status (1)

Country Link
JP (1) JP5102792B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2187618B (en) * 1986-03-06 1989-11-15 Quindicum Ltd Microwave oven
JPH0521420A (en) * 1991-07-12 1993-01-29 Fujitsu Ltd Wafer heater
JP4572213B2 (en) * 2007-04-25 2010-11-04 株式会社日立製作所 Microwave irradiation device

Also Published As

Publication number Publication date
JP2010182653A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
WO2010090120A2 (en) Microwave heating device
AU619919B2 (en) Improved microwave-powered heating device
DK2666371T3 (en) Apparatus and method for heat treatment of a wrapped food product
US20150215996A1 (en) Microwave heating device and firing facility
JP6125106B2 (en) Microwave heating irradiation device
JP5102792B2 (en) Microwave heating device
JP2011249106A (en) Microwave heating device
US4343976A (en) Energy feed system for a microwave oven
JP5653397B2 (en) Microwave heating device
US3532847A (en) Device for heating non-metallic material
RU2660906C1 (en) Superhigh-frequency installation with spherical resonator for thermal processing of raw material of animal origin on continuous basis
JP5963976B2 (en) Microwave heating irradiation device
WO2015199005A1 (en) Microwave emission device
EP3651552A1 (en) Microwave processing device
JP2009100675A (en) Apparatus for continuously and homogeneously heating food by circularly polarized wave
KR100382189B1 (en) Method and device for changing the temperature of a discrete material
JP2012501718A (en) Resonance chamber, in particular for a pasteurizer for liquid products
JP2011045303A (en) Insecticidal-ovicidal apparatus for grains
RU110891U1 (en) INSTALLATION FOR MICROWAVE PROCESSING MATERIALS WITH VARIOUS DIELECTRIC PROPERTIES
TW201210412A (en) Plasma processing device and dielectric window
JP6024066B2 (en) Low energy electromagnetic wave reactor
RU2085057C1 (en) Superhigh-frequency oven
KR100286541B1 (en) Uniform heating apparatus of microwave oven
JP2004327273A (en) Microwave heating device
JP2000179864A (en) High frequency heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5102792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250