JP6098298B2 - 画像処理装置およびコンピュータプログラム - Google Patents

画像処理装置およびコンピュータプログラム Download PDF

Info

Publication number
JP6098298B2
JP6098298B2 JP2013073133A JP2013073133A JP6098298B2 JP 6098298 B2 JP6098298 B2 JP 6098298B2 JP 2013073133 A JP2013073133 A JP 2013073133A JP 2013073133 A JP2013073133 A JP 2013073133A JP 6098298 B2 JP6098298 B2 JP 6098298B2
Authority
JP
Japan
Prior art keywords
pixel
image processing
pixels
value
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013073133A
Other languages
English (en)
Other versions
JP2014197804A (ja
Inventor
良平 小澤
良平 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2013073133A priority Critical patent/JP6098298B2/ja
Priority to US14/178,371 priority patent/US9088754B2/en
Publication of JP2014197804A publication Critical patent/JP2014197804A/ja
Application granted granted Critical
Publication of JP6098298B2 publication Critical patent/JP6098298B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/64Systems for the transmission or the storage of the colour picture signal; Details therefor, e.g. coding or decoding means therefor
    • H04N1/642Adapting to different types of images, e.g. characters, graphs, black and white image portions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/40062Discrimination between different image types, e.g. two-tone, continuous tone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Analysis (AREA)

Description

本発明は、画像内のオブジェクトに対する画像処理に関し、特に、オブジェクトの特性に関する判断を行うための画像処理に関する。
画像データを解析して、画像内に含まれるオブジェクトの属性を判断する技術が知られている。例えば、特許文献1には、画像内で検出された文字に対して細線化処理を行い、細線化された文字の色に基づいて、文字が単色であるか否かを判断する画像処理技術が開示されている。
特開2004−242075号公報
しかしながら、上記文献には、文字以外のオブジェクトを細線化することについては開示されていない。このために、上記文献に開示された技術では、文字か否かが不明なオブジェクトや、文字以外のオブジェクトの色数を適切に判断することができない可能性がある。
本発明の目的は、オブジェクトの種類に拘わらずに、オブジェクトの色数を判断することができる新たな技術を提供することである。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の適用例として実現することが可能である。
[適用例1]画像処理装置であって、
対象画像データによって表される対象画像において、オブジェクトを構成する複数個の第1の画素と、背景を構成する画素を少なくとも含む複数個の第2の画素と、を特定するオブジェクト特定部と、
前記第1の画素と前記第2の画素とを含む複数個の画素によって構成される注目範囲を用いて、前記注目範囲内の少なくとも1個の前記第1の画素を、前記第2の画素に変更する変更部であって、前記変更される第1の画素は、前記第2の画素と隣り合う画素を少なくとも含む、前記変更部と、
前記第2の画素に変更される前記第1の画素を除く複数個の前記第1の画素の値を用いて、前記オブジェクトの色数に関する特徴量を決定する決定部と、
を備える、画像処理装置。
上記構成によれば、注目範囲内の第1の画素と第2の画素とに基づいて、第2の画素に変更される第1の画素を除く複数個の第1の画素の値を用いて、オブジェクトの色数に関する特徴量を決定する。この結果、様々なオブジェクトの色数を適切に判断することができる。
本発明は、種々の形態で実現することが可能であり、例えば、上記装置の機能を実現する方法、上記装置の機能を実現するコンピュータプログラム、当該コンピュータプログラムを記録した記録媒体、等の形態で実現することができる。
本発明の一実施例としての計算機200の構成を示すブロック図である。 画像処理のフローチャートである。 領域特定処理とオブジェクト特定処理との説明図である。 本実施例におけるエッジ強度の算出式を示している。 オブジェクト属性判定処理のフローチャートである。 対象オブジェクトの輝度のヒストグラムの一例を示す図である。 色数決定処理のフローチャートである。 オブジェクト収縮処理のフローチャートである。 オブジェクト収縮処理の説明図である。 収縮二値画像について説明する図である。 Cr値のヒストグラムの一例を示す図である。 判定テーブル233の一例を示す図である。 高圧縮方式PDFについて説明する図である。
A.実施例:
A−1:計算機200の構成
次に、本発明の実施の形態を実施例に基づき説明する。図1は、本発明の一実施例としての計算機200の構成を示すブロック図である。計算機200は、例えば、パーソナルコンピュータであり、CPU210と、DRAM(Dynamic Random Access Memoryの略)等を含む揮発性記憶装置220と、フラッシュメモリやハードディスクドライブ等を含む不揮発性記憶装置230と、タッチパネルやキーボード等の操作部240と、外部装置と通信を行うためのインタフェースである通信部250と、を備えている。
計算機200は、通信部250を介して、スキャナ300と複合機400等の外部装置に、通信可能に接続されている。スキャナ300は、例えば、原稿などの対象物を光学的に読み取ることによってスキャンデータを取得する画像読取装置である。複合機400は、光学的に対象物を読み取ることによってスキャンデータを取得する画像読取部を備えている。なお、画像読読取部の図示は、省略されている。
揮発性記憶装置220には、CPU210が処理を行う際に生成される種々の中間データを一時的に格納するバッファ領域221が設けられている。不揮発性記憶装置230は、ドライバプログラム231と、画像処理を実行する画像処理プログラム232と、画像処理にて用いられる判定テーブル233と、を格納している。これらのプログラムおよびテーブルは、一体化された1個のプログラムとして、あるいは、分離された複数個のプログラムとして、例えば、CD−ROM(Compact Disc Read Only Memoryの略)やDVD−ROM(Digital Versatile Disc Read Only Memoryの略)などに格納された形態で提供される。あるいは、これらのプログラムおよびテーブルは、ネットワークを介して計算機200に接続されたサーバからダウンロードされる形態で提供される。
CPU210は、ドライバプログラム231を実行することにより、スキャナ300または複合機400の画像読取部を制御して、スキャンデータを生成するためのスキャナドライバ50として機能する。CPU210は、画像処理プログラム232を実行することにより、対象画像データ(例えば、スキャンデータ)に対して後述する画像処理を実行して、圧縮PDFファイルを生成する画像処理部100として機能する。画像処理部100は、領域特定部110と、オブジェクト特定部120と、変更部130と、決定部140と、変換部150と、判定部160と、を備えている。
領域特定部110は、対象画像データを解析して対象画像内のオブジェクト領域や周囲領域を特定する。具体的には、領域特定部110は、対象画像から、オブジェクト領域の一例である非ベタ領域と、オブジェクト領域の周囲に位置する周囲領域の一例であるベタ領域と、を特定する。オブジェクト特定部120は、対象画像のオブジェクト領域内のオブジェクトを特定する。具体的には、後段にて詳述するが、オブジェクト特定部120は、第1の画素の一例であるオブジェクト領域内のオブジェクトを構成する複数個のオブジェクト画素と、第2の画素の一例である複数個の背景画素と、を特定する。変更部130は、複数個のオブジェクト画素のうちの一部の画素を、背景画素に変更する処理を実行する。決定部140は、背景画素に変更されるオブジェクト画素を除く複数個のオブジェクト画素の色値を用いて、オブジェクトの色数に関する特徴量を決定する。変換部150は、RGBの表色系で表されるRGB値等の画素の色値を、明るさを示す第1の成分値と、色味を示す第2の成分値と、を含むYCrCb表色系等の特定の表色系に変換する。判定部160は、色数に関する特徴量を用いて、オブジェクトが、文字であるか否かを判定する。これらの各機能部が実行する処理については後述する。
A−2:画像処理
図2は、画像処理のフローチャートである。この画像処理は、スキャナドライバ50が利用者から読取指示を受け付けたときに実行される。利用者は、読取対象の原稿をスキャナ300または複合機400にセットして、読取指示を実行する。ステップS10では、スキャナドライバ50(図1)は、通信部250を介して、スキャンデータを対象画像データとして取得し、取得したスキャンデータをバッファ領域221(図1)に格納する。具体的には、スキャナドライバ50は、スキャナ300または複合機400の画像読取部を制御して、スキャンデータを取得する。スキャンデータは、複数の画素毎の色をRGB値で表すビットマップデータである。
図3は、領域特定処理(図2のステップS15〜S25)と、オブジェクト特定処理(図2のステップS15〜S25)と、の説明図である。図3(A)の対象画像SIは、スキャンデータ等の対象画像データによって表される画像の一例である。対象画像SIには、図示しない複数の画素が、第1方向D1と、第1方向D1と直交する第2方向D2と、に沿って、マトリクス状に配置されている。1個の画素の色値であるRGB値は、例えば、赤(R)と緑(G)と青(B)との3個の色成分の階調値(以下、成分値とも呼ぶ)を含んでいる。本実施例では、各成分値の階調数は、256階調である。
図3(A)の例では、対象画像SIは、背景Bgと、描画DRと、写真PTと、4個の文字TX1〜TX4と、を含んでいる。描画は、イラスト、表、グラフ、線図、ベクトルグラフィックス、模様等を含む。4個の文字TX1〜TX4は、実質的に1つの色を有している単色のオブジェクトである。ここで、単色のオブジェクトとは、通常の観察者、例えば、スキャナ300や複合機400の利用者が、対象画像SIの当該オブジェクトを観察した場合に、1色であると認識するオブジェクトである。単色のオブジェクトは、当該オブジェクトを構成する複数個の画素の色値であるRGB値が、1種類の値であることを意味するわけではない。写真PTは、一般的には、単色のオブジェクトではなく、描画DRは、単色のオブジェクトである場合もあるが、単色のオブジェクトではない場合が多い。
図2のステップS15では、領域特定部110(図1)は、対象画像データを用いて、エッジ画像データを生成して、バッファ領域221に格納する。図3(B)は、エッジ画像データによって表されるエッジ画像EIの概略図である。
エッジ画像EIは、対象画像SI内の各画素位置におけるエッジ強度を表している。エッジ強度は、画像内の位置の変化に対する階調値の変化の大きさ、すなわち、互いに隣り合う複数個の画素間の階調値の差分の大きさを表している。なお、画像内の位置の変化に対する階調値の変化の大きさの一例は、微分等がある。図4は、本実施例におけるエッジ強度の算出式を示している。本実施例では、領域特定部110は、いわゆるソーベルオペレータ(Sobel operator)を用いて、RGBの3個の色成分毎に、エッジ強度Seを算出する。
図4の階調値P(x,y)は、対象画像SI内の特定の画素位置(x,y)の階調値を表している。位置xは、第1方向D1の画素位置を示し、位置yは、第2方向D2の画素位置を示している。図示するように、対象画像SI内の画素位置(x,y)におけるエッジ強度Se(x,y)は、その画素位置(x,y)を中心とし隣り合う3行3列の9つの画素を用いて算出される。図4の算出式の第1項および第2項は、9つの位置の画素の階調値に、対応する係数をそれぞれ乗じた値の和の絶対値である。第1項は、第1方向D1の階調値の微分(すなわち、横方向の微分)であり、第2項は、第2方向D2の階調値の微分(すなわち、縦方向の微分)である。
図3(B)では、エッジ強度が比較的大きい画素(以下、エッジ画素とも呼ぶ)の位置を、一点破線Eg1〜Eg6で示している。図3(B)のエッジ画像EIは、対象画像SIの描画DR、写真PT、文字TX1〜TX4にそれぞれ対応する複数個のエッジ画素Eg1〜Eg6を含んでいることが解る。
エッジ画像データを生成した後、続くステップS20では、領域特定部110は、複数個の画素を含むブロックBLをエッジ画像EI上に設定する。図3(B)の破線は、エッジ画像EI上にマトリクス状に配置されたブロックBLを示している。1個のブロックBLは、例えば、BLn行×BLn列(BLnは、2以上の整数)の画素PXで構成されたブロックである。BLnの値には、例えば、10〜50の範囲内の値を採用可能である。エッジ画像EIと対象画像SIとは、互いに同じサイズ(縦横の画素数が等しい)であるので、ブロックBLは、対象画像SI上に設定されていると言うこともできる。
ブロックBLが設定されると、続くステップS25では、領域特定部110は、ブロックBL単位で、ベタ領域と非ベタ領域とを特定する。ベタ領域は、領域が有するエッジ強度が所定の基準未満の領域であり、非ベタ領域とは、領域が有するエッジ強度が所定の基準以上の領域である。具体的には、領域特定部110は、ブロックBL毎に、平均エッジ強度であるERave、EGave、EBaveを算出する。平均エッジ強度ERave、EGave、EBaveは、RGBの3個の色成分毎に、算出される。領域特定部110は、処理対象のブロックBLの平均エッジ強度と所定の基準とを比較して、処理対象のブロックBLを、ベタブロックおよび非ベタブロックのいずれかに分類する。ベタブロックは、平均エッジ強度が所定の基準より小さいブロックBLである。非ベタブロックは、平均エッジ強度が所定の基準以上であるブロックBLである。本実施例では、領域特定部110は、平均エッジ強度ERave、EGave、EBaveを、色成分ごとに定められた基準値であるETr、ETg、ETbと比較する。この結果、領域特定部110は、ERave<ETr、かつ、EGave<ETg、かつ、EBave<ETbが成立する場合には、処理対象のブロックBLをベタブロックに分類する。ERave≧ETr、および、EGave≧ETg、および、EBave≧ETbのうちの少なくとも一つが成立する場合には、領域特定部110は、処理対象のブロックBLを非ベタブロックに分類する。
図3(B)のエッジ画像EIにおいて、非ベタブロックには、ハッチングが付され、ベタブロックには、ハッチングが付されていない。領域特定部110は、全てのブロックBLを、ベタブロックと非ベタブロックとに分類した後、互いに隣り合う(連続する)1個以上の非ベタブロックに対応する領域を、1個の非ベタ領域として特定する。また、領域特定部110は、互いに隣り合う1個以上のベタブロックに対応する領域を、1個のベタ領域として特定する。このように、連続する1個以上の非ベタブロックは、1個の非ベタ領域に組み込まれるので、非ベタ領域は、通常は、ベタ領域およびエッジ画像EIの外縁に囲まれている。図3(B)の例では、対象画像SI(図3(A))の描画DRと写真PTにそれぞれ対応する2個の非ベタ領域L11、L12が特定されている。また、対象画像SIの2個の文字TX1、TX2に対応する1個の非ベタ領域L13と、2個の文字TX3、TX4に対応する1個の非ベタ領域L14と、が特定されている。さらに、対象画像SIの背景Bgに対応する1個のベタ領域L10が特定されている。エッジ画像EIにおいて、ベタ領域と非ベタ領域が特定されることは、対象画像SIにおいて、同様にベタ領域と非ベタ領域が特定されること、と同義である。なお、非ベタ領域は、オブジェクト領域の一例であり、ベタ領域は、オブジェクト領域の周囲に位置する周囲領域の一例である。
続く、ステップS30では、オブジェクト特定部120は、対象画像SI内の各非ベタ領域を二値化するための基準値(以下、二値化基準値とも呼ぶ)を、対象画像SI内の非ベタ領域の周囲を囲むベタ領域内の画素の色値を用いて、非ベタ領域L11〜L14毎に決定する。本実施例では、二値化基準値は、RGBの成分毎に決定される。具体的には、非ベタ領域の周囲を囲むベタ領域の全ての画素についての、RGBの各成分値の平均値であるRr、Gr、Brが、二値化基準値として採用される。図3(B)の例では、全ての非ベタ領域L11〜L14は、背景Bgに対応する1個のベタ領域L10に囲まれているので、全ての非ベタ領域L11〜L14の二値化基準値は、同じ値、すなわち、ベタ領域L10内の各成分値の平均値となる。
例えば、Rr、Gr、Brなどの二値化基準値が決定されると、次のステップS35では、オブジェクト特定部120は、非ベタ領域L11〜L14毎に、二値画像データを生成する。本実施例では、オブジェクト特定部120は、二値化基準値であるRr、Gr、Brを用いて算出される6個の閾値R1、R2、G1、G2、B1、B2を用いて二値化処理を実行する。
R成分の下限閾値R1=Rr−dV、R成分の上限閾値R2=Rr+dV
G成分の下限閾値G1=Gr−dV、G成分の上限閾値G2=Gr+dV
B成分の下限閾値B1=Br−dV、B成分の上限閾値B2=Br+dV
ここで、値dVは、予め決められた値である。これらの値R1、R2、G1、G2、B1、B2は、二値化対象の非ベタ領域を囲むベタ領域の平均色に比較的近い色の範囲、すなわち、背景の色に比較的近い色の範囲を、定めている。
オブジェクト特定部120は、これらの6個の閾値R1、R2、G1、G2、B1、B2を用いて、対象画像SIにおける非ベタ領域内の各画素を、1画素毎に、オブジェクト画素と、背景画素とに分類することによって、非ベタ領域の二値画像データを生成する。
具体的には、非ベタ領域内の画素Pxiの階調値であって、RGBの色成分の階調値であるRi、Gi、Biが、以下の3つの条件を全て満たす場合に、オブジェクト特定部120は、画素Pxiを、背景画素に分類し、以下の3つの条件のいずれかを満たさない場合に、画素Pxiをオブジェクト画素に分類する。
(第1条件)R1<Ri<R2
(第2条件)G1<Gi<G2
(第3条件)B1<Bi<B2
このように、ベタ領域内の画素の色を用いて算出された背景の色に比較的近い画素を、背景画素に分類し、その他の画素をオブジェクト画素に分類することによって、オブジェクトを構成するオブジェクト画素を精度良く特定した二値画像データを生成することができる。例えば、二値画像データが生成される際に、オブジェクト画素に分類した画素の画素値を「1」に設定し、背景画素に分類した画素の画素値を「0」に設定する。図3(C)には、二値画像BIが示されている。実際には、上述した非ベタ領域L11〜L14毎に、別々の二値画像データが生成されるが、図3(C)では、1個の二値画像BIで示している。
二値画像データを生成された後、続くステップS40では、オブジェクト特定部120は、二値画像データを利用して、オブジェクトと背景とを特定して、特定されたオブジェクトと背景に識別子を付すラベリングを実行する。
具体的には、オブジェクト特定部120は、1個の非ベタ領域内の複数個のオブジェクト画素で構成される1個の領域を、1個のオブジェクトとして特定する。また、オブジェクト特定部120は、連続する1個以上の背景画素で構成される1個の領域を、1個の背景として特定する。ラベリングの結果、例えば、特定されたオブジェクトまたは背景と、これらを識別する識別子とを、対応付けたラベルデータが生成されて、バッファ領域221に格納される。さらに、オブジェクトに外接する外接矩形に対応する部分二値画像を表す部分二値画像データが、オブジェクトを識別する識別子と対応付けて、バッファ領域221に格納される。
図3(C)の例では、二値画像BIにおいて、描画DRに対応するオブジェクトOb1と、写真PTに対応するオブジェクトOb2と、2個の文字TX1、TX2に対応するオブジェクトOb3と、2個の文字TX3、TX4に対応するオブジェクトOb4と、が特定される。そして、これらのオブジェクトOb1〜Ob4に外接する外接矩形に対応する部分二値画像BI1〜BI4を表す部分二値画像データがバッファ領域221に格納される。二値画像BIを構成する各画素は、対象画像SIを構成する各画素と対応しているので、二値画像BIにおいて、オブジェクトOb1〜Ob4が特定されることは、対象画像SIにおいて、オブジェクトOb1〜Ob4に対応するオブジェクト、すなわち、描画DR、写真PT、文字TX3〜TX4の位置が特定されること同義である。また、単に、オブジェクト画素の色値と呼ぶときには、二値画像データによって特定されたオブジェクト画素に対応する対象画像SIのRGB値等の画素の色値を意味するものとする。
ステップS50では、画像処理部100は、対象画像SI内で特定されたオブジェクトごとに、オブジェクトの種類が「文字」であるか否かを判定するオブジェクト属性判定処理を実行する。
図5は、オブジェクト属性判定処理のフローチャートである。ステップS110では、画像処理部100は、ステップS110では、特定されたオブジェクトOb1〜Ob4の中から処理対象のオブジェクト(以下、対象オブジェクトとも呼ぶ)を選択する。
ステップS120では、画像処理部100は、対象オブジェクトの画素密度Sを算出して、バッファ領域221に格納する。画素密度Sは、対象オブジェクトを表す部分二値画像内の総画素数に対する、対象オブジェクトを構成するオブジェクト画素の画素数であり、例えば、オブジェクトOb3を表す部分二位置画像BI3(図3(C))内の総画素数に対する、オブジェクトOb3構成するオブジェクト画素の画素数である。すなわち、画素密度Sは、単位面積当たりのオブジェクト画素の画素数である。なお、部分二値画像内の総画素数は、対象オブジェクトに外接する外接矩形内の総画素数と言い換えることができる。
ステップS130は、画像処理部100は、対象オブジェクトの色の分布幅Wを算出して、バッファ領域221に格納する。図6は、対象オブジェクトの輝度のヒストグラムの一例を示す図である。先ず、画像処理部100は、図6に示すような輝度のヒストグラムを表すヒストグラムデータを生成する。このヒストグラムデータは、対象オブジェクトを構成する各オブジェクト画素を、各オブジェクト画素の輝度に応じて、複数のクラスに分類することによって得られるデータである。本実施例では、各オブジェクト画素の色値に基づいて256階調の輝度値が算出され、256階調の輝度値のそれぞれを1個のクラスとして、ヒストグラムデータが生成される。各オブジェクト画素の輝度値は、例えば、RGBの3個の成分値から、YCbCr色空間の輝度成分であるY成分を算出する算出式が、用いられる。図6に示すように、画像処理部100は、輝度のヒストグラムデータにおいて、頻度値、すなわち、画素数が所定の閾値THu以上である輝度値の最低値と最高値との間の差(幅)を、色の分布幅Wとして算出する。
ステップS140では、画像処理部100は、対象オブジェクトの色数に関する特徴量Cを算出(決定)するための色数決定処理を実行する。
図7は、色数決定処理のフローチャートである。ステップS210では、二値画像BI上において対象オブジェクトを収縮させるオブジェクト収縮処理を実行する。このオブジェクト収縮処理は、二値画像BIにおいて複数個のオブジェクト画素、すなわち、画素値が「1」の画素によって構成されるオブジェクトOb1〜Ob4(図3(C))をそれぞれ収縮させる処理である。オブジェクト収縮処理は、対象画像SI内のオブジェクトである描画DR、写真PT、文字TX1〜TX4(図3(A))に変化をもたらす処理ではない。二値画像BIにおけるオブジェクトの収縮は、対象オブジェクトを構成する複数個のオブジェクト画素を、背景画素に変更することによって、実現される。
図8は、オブジェクト収縮処理のフローチャートである。図9は、オブジェクト収縮処理の説明図である。ステップS310では、変更部130は、対象画像データの解像度に応じてオブジェクトの収縮に用いるフィルタのサイズを決定する。フィルタの横方向および縦方向の幅FWは、変数N(Nは自然数)を用いて、FW=2N+1で表される。図9(A)には、フィルタの例として、N=1(FW=3)、N=2(FW=5)、N=3(FW=7)にそれぞれ対応する3個のフィルタFI1〜FI3が図示されている。変数Nは、オブジェクトを収縮させる程度を表し、変数Nが大きいほど、オブジェクトを収縮させる程度が大きくなる。
本実施例では、変数Nは、対象画像データであるスキャンデータが生成される場合に、読取対象の原稿がスキャナ300または複合機400に読み取られる際の読み取り解像度が低いほど大きな値に設定される。例えば、本実施例では、読み取り解像度が300dpiである場合には、変数N=3に設定され、読み取り解像度が600dpiである場合には、変数N=1に設定される。この理由については後述する。
ステップS320では、変更部130は、収縮二値画像を表す収縮二値画像データの初期データをバッファ領域221に準備する。初期データは、対象オブジェクトを表す部分二値画像と同じサイズの領域を表す二値画像データであり、全ての画素値が、初期値として、例えば、「0」に設定されている。
ステップS330では、変更部130は、対象オブジェクトを表す部分二値画像内の複数個の画素の中から1個の注目画素を選択する。
ステップS340では、変更部130は、注目画素と中心位置CC(図9(A))とが重なるように配置されたフィルタの範囲(以下、注目範囲とも呼ぶ)内に、背景画素が存在するか否かを判断する。図9(B)には、対象オブジェクトを表す部分二値画像の一例としての画像BIaの一部分が示されている。部分二値画像BIaは、ハッチングされた部分である複数個のオブジェクト画素で構成されたオブジェクトObaと、ハッチングされていない部分である複数個の背景画素で構成された背景Bgaと、を含んでいる。この部分二値画像BIaに、縦5画×横5画素のフィルタFI2(図9(A))の適用する場合を例に説明する。背景画素が注目画素である場合には、背景画素PX1が注目画素である例(図9(B))のように、注目画素の周囲の画素とは無関係に、注目範囲内に背景画素が存在すると判断される。オブジェクト画素PX2が注目画素である例(図9(B))のように、オブジェクト画素が注目画素である場合であって、注目範囲内に少なくとも1個の背景画素が存在する場合には、注目範囲内に背景画素が存在すると判断される。ブジェクト画素PX3が注目画素である例(図9(B))のように、オブジェクト画素が注目画素である場合であって、注目範囲内に1個の背景画素も存在しない場合には、注目範囲内に背景画素が存在しないと判断される。
変更部130は、注目範囲内に背景画素が存在する場合には(ステップS340:YES)、注目画素に対応する収縮二値画像内の画素(以下、対応画素とも呼ぶ)を背景画素に設定する(ステップS350)。具体的には、変更部130は、対応画素の画素値を「0」のまま変更しない。変更部130は、注目範囲内に背景画素が存在しない場合には(ステップS340:NO)、収縮二値画像内の対応画素をオブジェクト画素に設定する(ステップS360)。具体的には、変更部130は、対応画素の画素値を「0」から「1」に変更する。
収縮二値画像内の対応画素がオブジェクト画素と背景画素とのうちのいずれかに設定されると、ステップS370では、変更部130は、対象オブジェクトを表す部分二値画像内の全ての画素を注目画素として選択したか否かを判断する。未選択の画素がある場合には(ステップS370:NO)、変更部130は、ステップS330に戻って、未選択の画素を新たに選択して、上述したステップS340〜S360の処理を繰り返す。全ての画素が選択済みである場合には(ステップS370:YES)、変更部130は、オブジェクト収縮処理を終了する。なお、オブジェクト収縮処理が完了することで、収縮二値画像データは、全ての画素値が「0」に設定されていた初期データから、全ての画素が「0」又は「1」に設定された変更済みのデータに変更される。
図9(C)には、部分二値画像BIa(図9(B))に対応する収縮二値画像BIbが示されている。収縮二値画像BIbは、ハッチングされた部分である複数個のオブジェクト画素で構成されたオブジェクトObbと、ハッチングされていない部分である複数個の背景画素で構成された背景Bgbと、を含んでいる。図3(B)の破線は、部分二値画像BIa(図9(B))のオブジェクトObaの外縁を示している。収縮二値画像BIbのオブジェクトObbは、部分二値画像BIaのオブジェクトObaと比較して、2画素分だけ収縮されていることが解る。図9の(B)(C)の例で用いたフィルタFI2(図9(A))は、N=2のフィルタであることから解るように、フィルタのサイズを規定する変数Nは、画素数を単位とする収縮量を表す値と、言うことができる。
図10は、収縮二値画像について説明する図である。図10(A)〜(C)には、対象画像SI内の3つのオブジェクト、すなわち、文字TX3、描画DR、写真PTが図示されている。ハッチングされた領域である文字TX3、描画DR、写真PTのそれぞれの外縁部OE1〜OE3の外側の線は、収縮処理前の二値画像のオブジェクトと対応する領域を示している。また、文字TX3、描画DR、写真PTのそれぞれの外縁部OE1〜OE3の内側の線は、収縮二値画像のオブジェクトと対応する領域を示している。換言すれば、図10の外縁部OE1〜OE3に対応する二値画像内のオブジェクト画素が、オブジェクト収縮処理によって、背景画素に変更される画素である。また、具体的には、画素値が「1」から「0」に変更される画素である。
ここで、対象画像データはスキャンデータであるので、対象画像SI内のオブジェクトの外縁部OE1〜OE3、すなわち、オブジェクトと背景の境界領域には、いわゆる「ぼけ」が発生する。例えば、スキャナは、イメージセンサの原稿に対する位置を副走査方向に移動させながら、イメージセンサによって原稿からの光を受光して、スキャンデータを生成する。このとき、外縁部の画素データは、オブジェクトからの光と、背景からの光との両方に基づいて生成され得る。この結果、外縁部の色は、原稿のオブジェクトの色と背景の色とに基づく様々な色となり、「ぼけ」が発生する。例えば、オブジェクトの色が濃い赤で、背景の色が白である場合には、外縁部の色は、薄い赤やピンクなどの色を含み得る。本実施例において、収縮二値画像を生成するのは、対象画像SIにおいて、「ぼけ」が発生している外縁部を除いたオブジェクトを特定するためである。したがって、オブジェクト収縮処理において、オブジェクトを収縮させる程度、すなわち、除くべき外縁部の幅(換言すると、太さ)は、対象画像SIに発生している「ぼけ」が大きいほど、大きくすることが好ましい。
ここで、上述したオブジェクト収縮処理のステップS310にて、読み取り解像度が低いほど、変数Nの値、換言すると、フィルタのサイズを大きくするのは、読み取り解像度が低いほど、対象画像SI内に発生する「ぼけ」が大きくなる傾向があるためである。この結果、読み取り解像度に応じて、適切なオブジェクト画素が背景画素に変更された収縮二値画像データを生成することができる。
図7に戻って説明を続ける。オブジェクト収縮処理が終了すると、続くステップS220では、決定部140は、収縮二値画像において対象オブジェクトを構成するオブジェクト画素の個数PNを算出する。ステップS230では、決定部140は、オブジェクト画素の個数PNが基準値TH1以上であるか否かを判断する。以下では、収縮二値画像において対象オブジェクトを構成するオブジェクト画素、すなわち、収縮処理前の二値画像において対象オブジェクトを構成する複数個のオブジェクト画素から外縁部(図10参照)のオブジェクト画素を除いた画素を、収縮後のオブジェクト画素とも呼ぶ。
収縮後のオブジェクト画素の個数PNが基準値TH1以上である場合には(ステップS230:YES)、決定部140の変換部150は、PN個のオブジェクト画素の色値を、YCrCb表色系の色値に変換する(ステップS250)。
ステップS260では、決定部140は、Cr値と、Cb値と、のヒストグラムを表すヒストグラムデータを生成して、バッファ領域221に格納する。ヒストグラムデータは、収縮後の各オブジェクト画素を、各オブジェクト画素のCr値に応じて、複数のクラスに分類することによって得られるデータである。本実施例では、256階調のCr値のそれぞれを1個のクラスとして、ヒストグラムデータが生成される。Cb値についても同様である。図11は、Cr値のヒストグラムの一例を示す図である。図11のヒストグラムHG1は、文字に代表される単色のオブジェクトのヒストグラムである。このために、ヒストグラムHG1では、頻度値(画素数)が、Cr値やCb値が取り得る範囲内の比較的狭い範囲に集中して分布している。単色ではないオブジェクト、例えば、カラー写真のヒストグラムでは、例えば、図6に示すヒストグラムのように、頻度値が、Cr値やCb値が取り得る範囲内の比較的広い範囲に亘って分布する。
ステップS270では、決定部140は、生成されたヒストグラムデータを用いて、Cr値の最頻値Crmと、Cb値の最頻値Cbmと、を算出する。図11には、Cr値の最頻値Crmが図示されている。
ステップS280では、決定部140は、対象オブジェクトの色数に関する特徴量Cを算出して、バッファ領域221に格納する。先ず、決定部は、Cr値に基づく特徴量C_crと、Cb値に基づく特徴量C_cbを算出する。Cr値に基づく特徴量C_crは、(PNa+PNb)/PNtotalと表される。PNa、PNbは、図11のヒストグラムにおいてハッチングで示す領域CAa、CAbに属するオブジェクト画素の個数である。領域CAa、CAbは、Cr値の最頻値Crmを中心とした所定範囲{(Crm−TH2)<Cr<(Crm+TH2)}の外側の領域である。TH2は、予め定められた基準値である。すなわち、PNaは、(Crm−TH2)以下のCr値を有するオブジェクト画素の個数であり、PNbは、(Crm+TH2)以上のCr値を有するオブジェクト画素の個数である。PNtotalは、収縮後のオブジェクト画素の総数である。以上の説明から解るように、Cr値に基づく特徴量C_crは、収縮後のオブジェクト画素の総数に対する、所定範囲内のオブジェクト画素の割合である。
同様に、Cb値に基づく特徴量C_cbは、(PNc+PNd)/PNtotalと表される。PNcは、(Cbm−TH2)以下のCb値を有するオブジェクト画素の個数であり、PNdは、(Cbm+TH2)以上のCb値を有するオブジェクト画素の個数である。決定部は、Cr値に基づく特徴量C_crと、Cb値に基づく特徴量C_cbと、の平均値を、色数に関する特徴量Cとして算出する。
図11に示すように、基準値TH2の値は、所定範囲{(Crm−TH2)<Cr<(Crm+TH2)}が、実質的に単色とみなせる程度に狭いCr値の範囲を規定するように、予め定められている。このために、対象オブジェクトが単色である場合には、色数に関する特徴量Cは、比較的小さくなり、対象オブジェクトの色数が多くなるほど、色数に関する特徴量Cは、大きくなる。なお、決定部140は、ステップS280にて、対象オブジェクトの色数に関する特徴量Cを算出すると、色数決定処理を終了する。
収縮後のオブジェクト画素の個数PNが基準値TH1未満である場合には(ステップS230:NO)、決定部140は、オブジェクト画素の色値に拘わらずに、対象オブジェクトの色数に関する特徴量Cを最小値に決定し、バッファ領域221に格納する(ステップS240)。具体的には、最小値は、「0」である。
ここで、対象オブジェクトが文字でない場合、すなわち、非文字である場合、例えば、図10(B)の描画DRや図10(C)の写真PTである場合には、オブジェクトの面積に対する外縁部の比率が比較的小さいので、収縮後のオブジェクト画素の個数PNが基準値TH1未満となる可能性は低い。これに対して、対象オブジェクトが文字である場合、例えば、図10(A)の文字TX3である場合には、オブジェクトの面積に対する外縁部の比率が比較的大きくなる。特に、文字が比較的小さい場合や、文字が比較的細い場合には、オブジェクトの面積に対する外縁部の比率が大きくなり、場合によっては、収縮後のオブジェクト画素がほとんどなくなってしまう可能性がある。このような場合には、収縮後のオブジェクト画素の色値を用いて、適切に、特徴量Cを決定することができない可能性がある。さらに、収縮後のオブジェクト画素がほとんどなくなってしまう場合には、対象オブジェクトが比較的細い線である可能性や、文字である可能性が高いので、対象オブジェクトは、単色である可能性が高い。このために、本実施例では、収縮後のオブジェクト画素の個数PNが基準値TH1未満である場合には、オブジェクト画素の色値に拘わらずに、色数に関する特徴量Cを最小値に決定している。この結果、収縮後のオブジェクト画素の個数PNが過度に少ない場合であっても、適切な特徴量Cを決定することができる。なお、決定部140は、ステップS240にて、対象オブジェクトの色数に関する特徴量Cを決定すると、色数決定処理を終了する。
図5に戻って説明を続ける。色数決定処理が終了すると、続くステップS150では、判定部160は、画素密度Sと、分布幅Wと、色数に関する特徴量Cと、に基づいて、対象オブジェクトの属性を判定する。一般的に、文字は、単色で表現されることが多い。逆に、描画や写真などの非文字は、色数が比較的多くなる。例えば、写真は、撮影された被写体の種々の色を表すので、色数が比較的多くなる。また、一般的に、文字は、背景上に、背景とは異なる色の線で書かれているので、外接矩形の大部分を占める可能性が低いため画素密度Sが比較的小さくなる。逆に、非文字は、画素密度Sが比較的大きくなる。例えば、写真は、外接矩形の大部分を占める可能性が高いので、写真は、画素密度Sが比較的大きくなる。以上を考慮して作成された判定テーブル233を参照して、判定部160は、対象オブジェクトが、文字であるか否かを判定する。判定結果は、対象オブジェクトの識別子と関連付けられて、バッファ領域221に格納される。
図12は、判定テーブル233の一例を示す図である。判定テーブル233から解るように、判定部160は、以下に示す判定条件(1)または(2)が満たされる場合には、対象オブジェクトは、文字であると判定し、判定条件が満たされない場合には、対象オブジェクトは、文字でない(非文字である)と判定する。
(1)分布幅Wが閾値Wth以上、かつ、色数に関する特徴量Cが閾値Cth未満、かつ、画素密度Sが閾値Sth未満であること
(2)分布幅Wが閾値Wth未満、かつ、色数に関する特徴量Cが閾値Cth未満、かつ、画素密度Sが閾値Sth未満であること
なお、閾値Cthは、色数に関する特徴量Cが閾値Cth未満である場合に、対象オブジェクトが単色となるように、実験的に定められている。
対象オブジェクトが文字であるか否かが判定されると、続くステップS160では、画像処理部100は、特定された全てのオブジェクトを対象オブジェクトとして選択したか否かを判断する。未選択のオブジェクトがある場合には(ステップS160:NO)、画像処理部100は、ステップS110に戻って、未選択のオブジェクトを新たに選択して、上述したステップS120〜S160の処理を繰り返す。全てのオブジェクトが選択済みである場合には(ステップS160:NO)、画像処理部100は、オブジェクト属性判定処理を終了する。
図2に戻って説明を続ける。オブジェクト属性判定処理が終了すると、続くステップS55では、画像処理部100は、対象画像SIから文字が消去された背景画像GIを表す背景画像データを生成する。具体的には、画像処理部100は、ステップS35にて、オブジェクトを特定するために生成された二値画像データのうち、文字であると判定されたオブジェクトを表す部分二値画像BI3、BI4(図3(C))を表す二値画像データを用いて、対象画像SIにおける文字を構成する画素を特定する。そして、画像処理部100は、対象画像SIにおける文字を構成する画素の色値を、対象画像SIの背景Bgの色を表す値に変更する。この結果、対象画像SIから文字が消去される。なお、対象画像SIの背景Bgの色を表す値は、ステップS30にて、二値化基準値であるRr、Gr、Brとして、算出されている。
図13は、高圧縮方式PDFについて説明する図である。図13(A)には、背景画像GIの一例が示されている。背景画像GIは、対象画像SI(図3(A))の描画DRおよび写真PTを含んでいるが、文字TX1〜TX4を含んでいないことが解る。
続くステップS60では、画像処理部100は、文字を表す二値画像データを圧縮して、圧縮文字画像データを生成する。具体的には、画像処理部100は、文字であると判定されたオブジェクトを表す部分二値画像BI3、BI4を表す二値画像データを、それぞれ、可逆圧縮方式、例えば、FLATE圧縮方式を用いて圧縮する。生成された圧縮文字画像データは、バッファ領域221に格納される。
続くステップS65では、ステップS55にて生成された背景画像データを圧縮して圧縮背景画像データを生成する。背景画像データの圧縮には、非可逆圧縮方式、例えば、JPEG圧縮方式が用いられる。生成された圧縮背景画像データは、バッファ領域221に格納される。
続くステップS70では、画像処理部100は、圧縮済みの各画像データを用いて、圧縮PDFファイルを生成する。具体的には、画像処理部100は、ステップS65にて生成された圧縮背景画像データを、最下層のレイヤーとして表示させる画像データとして、PDFファイルに格納する。
また、画像処理部100は、ステップS60にて生成された圧縮文字画像データを、圧縮背景画像データより上位層のレイヤーとして表示する画像データとして、PDFファイルに格納する。圧縮文字画像データは、文字色値TCおよび座標値CDと関連付けて、PDFファイルに格納される。文字色値TCは、文字の色を表すRGB値であり、例えば、対象画像SI内の文字を構成する画素の色値であるRGB値の平均値である。座標値CDは、圧縮背景画像データによって表される背景画像GIに対して、圧縮文字画像データによって表される部分二値画像が配置されるべき位置を表す情報である。座標値CDは、例えば、部分二値画像の左上の角の画素の座標値(X、Y)で表される。図13(B)の例では、部分二値画像BI3を表す圧縮文字画像データに、文字色値TC1(R1、G1、B1)と、座標値CD1(X1、Y1)と、が関連付けられている。部分二値画像BI4を表す圧縮文字画像データに、文字色値TC2(R2、G2、B2)と、座標値CD2(X2、Y2)と、が関連付けられている。
圧縮PDFファイルが生成されると、例えば、画像処理部100は、生成されたPDFファイルを、例えば、不揮発性記憶装置230に格納し、バッファ領域221に格納された各種の中間データを消去した後、画像処理を終了する。
PDFファイルは、複数個の異なる形式の画像データを1個のファイルに格納可能であり、当該ファイルを用いて画像を表示する際には、格納された複数個の画像データを重畳して1個の画像として再現可能なように規格が定められている。ステップS70において、PDF規格に従って、圧縮済みの各画像データ(図13)がPDFファイルに格納されるので、本実施例にて作成された圧縮PDFファイルは、PDFファイルの閲覧ソフトを用いて表示すると、対象画像SI(図3(A))を、再現することができる。
以上説明した本実施例の画像処理によれば、変更部130は、オブジェクト収縮処理(図8)を実行することによって、収縮前の二値画像内のオブジェクトを構成するオブジェクト画素のうち、オブジェクトの外縁部(図10参照)に位置する画素が、背景画素に変更された収縮二値画像を生成する。そして、決定部140は、色数決定処理(図7)を実行することによって、収縮後のオブジェクト画素の色値を用いて、オブジェクトの色数に関する特徴量Cを決定する。この結果、オブジェクトの色数に関する特徴量Cを適切に決定することができる。したがって、オブジェクトが文字であるか否かを適切に判断することができる。
仮に、オブジェクト収縮処理を行うことなく、収縮前の二値画像内のオブジェクト画素に基づいて、特徴量Cを算出すると、オブジェクトの外縁部(図10)に位置する画素の色値が、特徴量Cの算出に用いられてしまう。図11に破線で示すヒストグラムHG2は、収縮前の二値画像内のオブジェクト画素に基づいて算出されるヒストグラムを示している。オブジェクトの外縁部は、上述したように、オブジェクトが単色である場合であっても、様々な色を有するオブジェクト画素を含み得る。この結果、オブジェクトが単色である場合であっても、ヒストグラムHG2において、Cr値やCb値が取り得る範囲内の比較的広い範囲に、オブジェクト画素が分布してしまう。外縁部に含まれるオブジェクト画素の色は、周囲の背景の色や、スキャナの特性によって、変化する。このために、外縁部(図10)に位置するオブジェクト画素の色値が、特徴量Cの算出に用いられると、特徴量Cの算出に用いられる基準値TH2(図11)や、特徴量Cを用いてオブジェクトが単色であるか否かを判断するための閾値Cth(図12)を、適切な1個の値に定めることは困難である。この結果、オブジェクトが単色であるか否かを適切に判断することが困難になる。さらには、オブジェクトが文字であるか否かを適切に判断することが困難になる。
さらに、上記実施例のオブジェクト収縮処理によれば、フィルタ(図9(A))を用いることによって、注目範囲内(具体的には、フィルタが配置された範囲内)のオブジェクト画素と背景画素とに基づいて、背景画素に変更すべきオブジェクト画素を適切に判断することができる。この手法は、オブジェクトの種類に拘わらずに採用できるので、例えば、オブジェクトが文字であるか否かが不明であっても、適切に外縁部を除いた収縮後のオブジェクト画素を特定することができる。したがって、予めオブジェクトの属性を判定することなく、様々なオブジェクトの色数を適切に判断することができる。
上記実施例のオブジェクト収縮処理によれば、収縮前の二値画像に配置されたフィルタ内の注目画素がオブジェクト画素であり、かつ、フィルタの範囲内に背景画素が含まれる場合に、対応画素が背景画素に設定された収縮二値画像が生成される(図8:ステップS340、S350)。すなわち、収縮前の二値画像に配置された注目画素としてのオブジェクト画素が、背景画素に変更された収縮二値画像が生成される。この結果、複数個のオブジェクト画素のうちの変更すべき適切な画素を背景画素に変更することができる。
さらに、上記実施例の色数決定処理では、変換部150は、オブジェクト画素の色値、具体的にはRGB値を、YCrCb表色系の色値に変換し、決定部140は、変換して得られるY値を用いずに、変換して得られるCr値、Cb値を用いて、特徴量Cを算出している(図8:ステップS250〜S280)。一般的に、スキャンデータによって表される画像では、Cr値、Cb値などの色味を示す成分値のばらつきが、輝度値などの明るさを示す成分のばらつきより大きい。このために、オブジェクトの色数を判断するためには、色味を示す成分値のみを用いることによって、より適切に、オブジェクトの色数を判断できる。ここで、YCrCb表色系のCr値、Cb値に限らず、Lab表色系の*a値、*b値や、HSV表色系のS値やV値が用いられても良い。一般的に言えば、明るさを示す第1の成分値と、色味を示す第2の成分値と、を含む特定の表色系における第2の成分値を用いて、特徴量Cが算出されることが好ましい。
C.変形例:
(1)上記実施例では、スキャンデータが、対象画像データとして用いられている。このために、スキャンデータによって表される画像に生じる「ぼけ」に影響されることなく、画像内のオブジェクトの特徴量Cを適切に決定することができる。これに限らず、例えば、JPEG方式などの非可逆圧縮方式を用いて圧縮済みの圧縮画像データが対象画像データとして用いられても良い。例えば、JPEG方式では、圧縮によってエッジのシャープさが失われるので、オブジェクトの外縁部に「ぼけ」が発生する。本実施例の画像処理を用いれば、圧縮画像データによって表される画像に生じる「ぼけ」に影響されることなく、画像内のオブジェクトの特徴量Cを適切に決定することができる。
(2)上記実施例のオブジェクト収縮処理における収縮二値画像の生成方法は、一例であり、これに限られない。例えば、変更部130は、収縮二値画像データの初期データとして、全ての画素値がオブジェクト画素、例えば、画素値が「1」である画像データを準備する。変更部130は、図9(A)に示すフィルタを、実施例と同様に、収縮前の二値画像の注目画素と、フィルタの中心位置CC(図9(A))とが重なるように、配置する。そして、変更部130は、注目画素が背景画素である場合には、フィルタ内の全ての画素に対応する収縮二値画像内の複数個の画素を背景画素、例えば、画素値を「0」に設定する。一方、変更部130は、注目画素がオブジェクト画素である場合には、収縮二値画像内の画素値の変更を行わない。変更部130は、収縮前の二値画像内の全ての画素を注目画素として、上記処理を実行することによって、収縮二値画像データを生成しても良い。この例によれば、実施例と同様に、フィルタの横方向および縦方向の幅FW=2N+1の矩形のフィルタを用いることによって、N画素分だけ収縮されたオブジェクトを表す収縮二値画像データを生成することができる。
また、変更部130は、横方向および縦方向の幅FW=N+1の矩形のフィルタを用いることによって、N画素分だけ収縮されたオブジェクトを表す収縮二値画像データを生成することができる。具体的には、変更部130は、収縮二値画像データの初期データとして、全ての画素値がオブジェクト画素、例えば、画素値が「1」である画像データを準備する。変更部130は、収縮前の二値画像の注目画素と、当該矩形のフィルタ内の特定の位置、例えば、左上の角の位置とが重なるように、配置する。変更部130は、フィルタ内に少なくとも1個の背景画素が存在する場合には、フィルタ内の全ての画素に対応する収縮二値画像内の複数個の画素を背景画素、例えば、画素値を「0」に設定する。一方、変更部130は、フィルタ内の全ての画素がオブジェクト画素である場合には、収縮二値画像内の画素値の変更を行わない。変更部130は、収縮前の二値画像内の全ての画素を注目画素として、上記処理を実行することによって、収縮二値画像データを生成しても良い。
(3)上記実施例では、色数に関する特徴量Cを用いて、オブジェクトが単色であるか否かを判断しているが、単色か否かに限らず、色数に関する様々な判断がなされ得る。例えば、オブジェクトが2色であるか否か、3色であるか否かなどが判断されても良い。また、色数に関する判断の内容に応じて、色数に関する特徴量も1個または複数個の様々な値が用いられ得る。例えば、色数に関する特徴量は、例えば、ヒストグラム(図11参照)のピークの数、ピークの幅などが用いられても良い。
(4)上記実施例の色数算出処理において、収縮後のオブジェクト画素の個数PNが基準値TH1未満である場合には、色数に関する特徴量Cは、最小値、例えば、「0」に決定される(図7:ステップS240)。これに限らず、特徴量Cは、最小値とは異なる値に決定されても良い。例えば、上記実施例では、色数に関する特徴量Cが、閾値Cth(図12)より小さい値に決定されれば、文字であるか否かの判定結果は、同じになる。
(5)上記実施例では、原稿の読み取り解像度が小さいほど、フィルタの大きさ、すなわち、変数Nの値を大きくしているが、スキャナの特性などによっては、原稿の読み取り解像度が大きいほど、フィルタの大きさを小さくしても良い。例えば、収縮二値画像におけるオブジェクトの収縮幅を、原稿上における実寸値を単位として比較した場合に、読み取り解像度に拘わらずに同じ値にする場合には、N=(SR/300)に設定されても良い。SRは、dpiが単位である読み取り解像度である。
(6)上記実施例の画像処理では、色数算出処理(図7)のステップS210のオブジェクト収縮処理の後に、ステップS250にて、色数に関する特徴量Cを算出するために、変換部150は、オブジェクト画素の色値であるRGB値を、YCrCb表色系の色値に変換している。この表色系の変換は、オブジェクト収縮処理の後に限らず、他のタイミングで実行されても良い。例えば、変換部150は、色数算出処理の前、例えば、オブジェクト属性判定処理(図5)の対象オブジェクトの選択(ステップS110)と、画素密度Sの算出(ステップS120)と、の間に、オブジェクト収縮処理前の対象オブジェクトを構成する複数個のオブジェクト画素の色値を、YCrCb表色系の色値に変換しても良い。また、変換部150は、図2のステップS10にて、スキャンデータが取得された直後に、スキャンデータの全ての画素の色値を、YCrCb表色系の色値に変換しても良い。この場合には、ステップS15のエッジ画像データの生成や、ステップS35の二値画像データの生成は、YCrCb表色系に変換済みのスキャンデータを用いて実行されても良い。
(7)上述した計算機200の画像処理部100による画像処理機能は、光学的に対象物を読み取ることによって対象物を表す画像データを生成する画像読取部を含む画像処理装置によって実現されてもよい。例えば、複合機400やスキャナ300や図示しないデジタルカメラによって実現されてもよい。この場合には、画像処理装置は、自身の画像読取部によって生成された画像データを用いて、画像処理(例えば、図2の処理)を行えばよい。
一般的には、画像処理、例えば、図2の処理を実現する画像処理装置は、計算機200に限らず、種々の装置であってよい。例えば、プリンタ、デジタルカメラ、スキャナなどの画像関連機器の内部のコンピュータ、汎用のパーソナルコンピュータ、ネットワークに接続されたサーバ等を採用可能である。また、ネットワークを介して互いに通信可能な複数個のコンピュータが、画像処理に要する機能を一部ずつ分担して、全体として、画像処理の機能を提供してもよい。この場合、複数個のコンピュータの全体が、画像処理装置に対応する。
(8)上記各実施例において、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えるようにしてもよく、逆に、ソフトウェアによって実現されていた構成の一部あるいは全部をハードウェアに置き換えるようにしてもよい。
以上、実施例、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。
50...スキャナドライバ、100...画像処理部、110...領域特定部、120...オブジェクト特定部、130...変更部、140...決定部、150...変換部、160...判定部、200...計算機、210...CPU、220...揮発性記憶装置、221...バッファ領域、230...不揮発性記憶装置、231...ドライバプログラム、232...画像処理プログラム、233...判定テーブル、240...操作部、241...バッファ領域、250...通信部、300...スキャナ、400...複合機

Claims (11)

  1. 画像処理装置であって、
    対象画像データによって表される対象画像において、オブジェクトを構成する複数個の第1の画素と、背景を構成する画素を少なくとも含む複数個の第2の画素と、を特定するオブジェクト特定部と、
    前記第1の画素と前記第2の画素とを含む複数個の画素によって構成される注目範囲を用いて、前記注目範囲内の少なくとも1個の前記第1の画素を、前記第2の画素に変更する変更部であって、前記変更される第1の画素は、前記第2の画素と隣り合う画素を少なくとも含む、前記変更部と、
    前記第2の画素に変更される前記第1の画素を除く複数個の前記第1の画素の値を用いて、前記オブジェクトの色数に関する特徴量を決定する決定部と、
    前記オブジェクトの色数に関する特徴量を用いて、前記オブジェクトの種類を判定する判定部と、
    を備える、画像処理装置。
  2. 請求項1に記載の画像処理装置であって、
    前記決定部は、前記第2の画素に変更される前記第1の画素を除く複数個の前記第1の画素の総数に対する特定の前記第1の画素の数の割合に基づいて、前記色数に関する特徴量を決定し、
    前記特定の第1の画素は、前記第2の画素に変更される前記第1の画素を除く複数個の前記第1の画素のうち、特定範囲の外側の値を有する画素であり、
    前記特定範囲は、前記第2の画素に変更される前記第1の画素を除く複数個の前記第1の画素の値の最頻値を含む範囲である、画像処理装置。
  3. 請求項1または2に記載の画像処理装置であって、
    前記変更部は、前記注目範囲内の特定の位置の画素である注目画素が前記第1の画素であり、かつ、前記注目範囲内に前記第2の画素が含まれる場合に、前記注目画素としての前記第1の画素を前記第2の画素に変更する、画像処理装置。
  4. 請求項1ないし請求項3のいずれかに記載の画像処理装置であって、
    前記決定部は、前記第2の画素に変更される画素を除く複数個の前記第1の画素の個数が、基準値未満である場合には、複数個の前記第1の画素の値に拘わらずに、前記色数に関する特徴量を特定値に決定する、画像処理装置。
  5. 請求項1ないし請求項のいずれかに記載の画像処理装置であって、さらに、
    前記オブジェクトの種類の判定は、前記オブジェクトが文字であるか否か判定を含む、画像処理装置。
  6. 請求項1ないし請求項のいずれかに記載の画像処理装置であって、
    前記対象画像データは、原稿を読み取ることによって生成されるデータであり、
    前記注目範囲のサイズは、前記原稿が読み取られる際の読み取り解像度に応じて決定される、画像処理装置。
  7. 請求項6に記載の画像処理装置であって、
    前記注目範囲のサイズは、前記読み取り解像度が第1の解像度である場合に、第1のサイズに決定され、前記読み取り解像度が前記第1の解像度より低い第2の解像度である場合に、前記第1のサイズより大きな第2のサイズに決定される、画像処理装置。
  8. 請求項1ないし請求項のいずれかに記載の画像処理装置であって、さらに、
    画素の値を、明るさを示す第1の成分値と、色味を示す第2の成分値と、を含む特定の表色系に変換する変換部を備え、
    前記決定部は、前記第2の画素に変更される画素を除く複数個の前記第1の画素の値を変換して得られる複数個の前記第2の成分値を用いて、前記色数に関する特徴量を決定する、画像処理装置。
  9. 請求項1ないし請求項のいずれかに記載の画像処理装置であって、
    前記対象画像データは、原稿を読み取ることによって生成されるデータ、および、非可逆圧縮方式を用いて圧縮済みのデータのうちの少なくとも一方のデータである、画像処理装置。
  10. 請求項1ないし請求項のいずれかに記載の画像処理装置であって、
    前記オブジェクト特定部は、
    前記第1の画素と前記第2の画素とを含むオブジェクト領域と、前記オブジェクト領域の周囲に配置される周囲領域と、を特定する領域特定部と、を備え、
    前記オブジェクト特定部は、前記周囲領域内の画素の値を用いて、前記オブジェクト領域内における前記第1の画素と前記第2の画素とを特定する、画像処理装置。
  11. 画像処理を実現するためのコンピュータプログラムであって、
    対象画像データによって表される対象画像において、オブジェクトを構成する複数個の第1の画素と、背景を構成する画素を少なくとも含む複数個の第2の画素と、を特定するオブジェクト特定機能と、
    前記第1の画素と前記第2の画素とを含む複数個の画素によって構成される注目範囲を用いて、前記注目範囲内の少なくとも1個の前記第1の画素を、前記第2の画素に変更する変更機能であって、前記変更される第1の画素は、前記第2の画素と隣り合う画素を少なくとも含む、前記変更機能と、
    前記第2の画素に変更される前記第1の画素を除く複数個の前記第1の画素の値を用いて、前記オブジェクトの色数に関する特徴量を決定する決定機能と、
    前記オブジェクトの色数に関する特徴量を用いて、前記オブジェクトの種類を判定する判定機能と、
    をコンピュータに実現させる、コンピュータプログラム。
JP2013073133A 2013-03-29 2013-03-29 画像処理装置およびコンピュータプログラム Active JP6098298B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013073133A JP6098298B2 (ja) 2013-03-29 2013-03-29 画像処理装置およびコンピュータプログラム
US14/178,371 US9088754B2 (en) 2013-03-29 2014-02-12 Image processing device determining characteristic quantity relating to number of colors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073133A JP6098298B2 (ja) 2013-03-29 2013-03-29 画像処理装置およびコンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2014197804A JP2014197804A (ja) 2014-10-16
JP6098298B2 true JP6098298B2 (ja) 2017-03-22

Family

ID=51620553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073133A Active JP6098298B2 (ja) 2013-03-29 2013-03-29 画像処理装置およびコンピュータプログラム

Country Status (2)

Country Link
US (1) US9088754B2 (ja)
JP (1) JP6098298B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820848B1 (ko) * 2013-09-05 2018-01-22 에스프린팅솔루션 주식회사 화상형성장치, 화상처리방법 및 컴퓨터 판독가능 기록매체
US10368097B2 (en) * 2014-01-07 2019-07-30 Nokia Technologies Oy Apparatus, a method and a computer program product for coding and decoding chroma components of texture pictures for sample prediction of depth pictures
JP6472884B2 (ja) * 2015-08-11 2019-02-20 オリンパス株式会社 画像処理装置、画像処理方法および画像処理プログラム
EP3173979A1 (en) 2015-11-30 2017-05-31 Delphi Technologies, Inc. Method for identification of characteristic points of a calibration pattern within a set of candidate points in an image of the calibration pattern
EP3174007A1 (en) 2015-11-30 2017-05-31 Delphi Technologies, Inc. Method for calibrating the orientation of a camera mounted to a vehicle
CN106934814B (zh) * 2015-12-31 2020-08-14 腾讯科技(深圳)有限公司 一种基于图像的背景信息识别方法及装置
EP3534334B1 (en) 2018-02-28 2022-04-13 Aptiv Technologies Limited Method for identification of characteristic points of a calibration pattern within a set of candidate points derived from an image of the calibration pattern
EP3534333A1 (en) * 2018-02-28 2019-09-04 Aptiv Technologies Limited Method for calibrating the position and orientation of a camera relative to a calibration pattern
US11265579B2 (en) * 2018-08-01 2022-03-01 Comcast Cable Communications, Llc Systems, methods, and apparatuses for video processing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778092A (en) * 1996-12-20 1998-07-07 Xerox Corporation Method and apparatus for compressing color or gray scale documents
JPH10222609A (ja) * 1997-02-10 1998-08-21 Oki Electric Ind Co Ltd 文字色判定装置
JP3788496B2 (ja) * 1999-09-02 2006-06-21 富士ゼロックス株式会社 画像処理装置および画像処理方法
JP2004242075A (ja) * 2003-02-06 2004-08-26 Canon Inc 画像処理装置および方法
US7991238B2 (en) * 2004-04-30 2011-08-02 Neiversan Networks Co. Llc Adaptive compression of multi-level images
JP2008099149A (ja) * 2006-10-13 2008-04-24 Konica Minolta Business Technologies Inc 画像処理装置、画像処理方法および画像処理プログラム
JP4698743B2 (ja) * 2009-01-22 2011-06-08 シャープ株式会社 画像圧縮方法、画像圧縮装置、画像形成装置、コンピュータプログラム及び記録媒体
JP5853470B2 (ja) * 2011-07-29 2016-02-09 ブラザー工業株式会社 画像処理装置、画像処理プラグラム
JP5776419B2 (ja) * 2011-07-29 2015-09-09 ブラザー工業株式会社 画像処理装置、画像処理プラグラム

Also Published As

Publication number Publication date
JP2014197804A (ja) 2014-10-16
US9088754B2 (en) 2015-07-21
US20140293299A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6098298B2 (ja) 画像処理装置およびコンピュータプログラム
US9219841B2 (en) Image-processing device identifying object in image specified by encircling line
US10332262B2 (en) Removal of background information from digital images
EP2645697B1 (en) Image processing apparatus and method
JP5939154B2 (ja) 画像処理装置およびコンピュータプログラム
JP6781406B2 (ja) 画像処理装置、および、コンピュータプログラム
JP2007129535A (ja) 画像処理装置、画像処理方法、そのプログラム、およびそのプログラムを記録したコンピュータ読取り可能な記録媒体
JP5842441B2 (ja) 画像処理装置およびプログラム
JP4853560B2 (ja) 画像処理方法、画像処理装置およびコンピュータプログラム
JP2005012768A (ja) 画像処理装置、画像処理用プログラム及び記憶媒体
JP5796392B2 (ja) 画像処理装置、および、コンピュータプラグラム
US10565465B2 (en) Image processing apparatus that identifies character pixel in target image using first and second candidate character pixels
US9781308B2 (en) Non-transitory computer-readable medium
US9277074B2 (en) Image processing apparatus, method, and medium determining whether image data of a page to be processed is blank and contains a foreground object and transmitting the foreground object obtained by removing a background object
JP7457283B2 (ja) コンピュータプログラム、画像処理装置、および、画像を表示するための表示方法
JP6091400B2 (ja) 画像処理装置
JP6145983B2 (ja) 画像処理装置およびコンピュータプログラム
JP4228905B2 (ja) 画像処理装置及びプログラム
JP7205689B2 (ja) 画像処理装置、および、コンピュータプログラム
JPH1063833A (ja) 画像処理装置及びその方法
JP6350362B2 (ja) コンピュータプログラム、および、画像処理装置
JP2021117622A (ja) 画像処理装置、および、コンピュータプログラム
JP5846011B2 (ja) 画像処理装置およびプログラム
JP2005303506A (ja) 画像処理装置、画像処理方法、画像処理用プログラム及び記憶媒体
JP5636674B2 (ja) 画像処理装置及び画像処理プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6098298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150