JP6095453B2 - Diagnostic device for groundwater purification wall - Google Patents

Diagnostic device for groundwater purification wall Download PDF

Info

Publication number
JP6095453B2
JP6095453B2 JP2013081194A JP2013081194A JP6095453B2 JP 6095453 B2 JP6095453 B2 JP 6095453B2 JP 2013081194 A JP2013081194 A JP 2013081194A JP 2013081194 A JP2013081194 A JP 2013081194A JP 6095453 B2 JP6095453 B2 JP 6095453B2
Authority
JP
Japan
Prior art keywords
purification wall
electrode
groundwater
groundwater purification
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013081194A
Other languages
Japanese (ja)
Other versions
JP2014202693A (en
Inventor
雅則 下村
雅則 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2013081194A priority Critical patent/JP6095453B2/en
Publication of JP2014202693A publication Critical patent/JP2014202693A/en
Application granted granted Critical
Publication of JP6095453B2 publication Critical patent/JP6095453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は地下水浄化壁の診断装置に関するものである。   The present invention relates to a diagnostic apparatus for a groundwater purification wall.

特許文献1に示すような有機ハロゲン化合物や重金属などによって汚染された地下水(以下、「汚染地下水」という)を浄化するために用いる地下連続の地下水浄化壁が知られている。
この地下水浄化壁は、単に溝孔に金属系還元剤又は吸着物質を設置してつくった従来の地下水浄化壁と異なり、金属系還元剤又は吸着物質を含む円柱を地中に列状配置してつくることとになるので、金属系還元剤又は吸着物質の材料分離を防止することができ、その結果、帯水層より大きい透水性を容易に得ることが可能になるという効果を備えている。
A continuous underground water purification wall used to purify groundwater contaminated with organic halogen compounds and heavy metals (hereinafter referred to as “contaminated groundwater”) as shown in Patent Document 1 is known.
Unlike the conventional groundwater purification wall, which is simply made by installing a metal reducing agent or adsorbent in the groove, this groundwater purification wall is made up of columns containing metal reducing agent or adsorbent arranged in a row in the ground. Therefore, it is possible to prevent material separation of the metallic reducing agent or the adsorbing substance, and as a result, it is possible to easily obtain water permeability larger than that of the aquifer.

特開平11−156351号公報JP-A-11-156351

しかし上記のような地下水浄化壁では、壁の構築後からその浄化能力が徐々に低下し、所定の浄化能力がなくなった場合には壁の再構築や性能回復の処置が必要となる。
そのために、浄化能力の診断が必要であるが次のような問題があった。
<1> 地下水浄化壁の下流側に観測井を設け、その内部の地下水の汚染物質濃度を測定する方法では、観測井の周辺の汚染状況や地下水の流速の影響を受ける。そのために観測井の内部の地下水の濃度変化だけでは、目的とする地下水浄化壁の反応性が低下しているか否かの判断をすることが困難である。
<2> 地下水浄化壁の一部を掘削して壁に用いた浄化材を抽出して反応性を検査する方法もある。この方法では浄化剤の抽出には浄化壁の掘削工事が必要であり、検査頻度を多くすることが困難であることから、反応性能の経時変化を長期間追跡することができない。
However, in the groundwater purification wall as described above, the purification capacity gradually decreases after the construction of the wall, and when the predetermined purification capacity is lost, the wall needs to be reconstructed or performance recovery is required.
For this purpose, it is necessary to diagnose the purification capacity, but there are the following problems.
<1> The method of measuring the concentration of pollutants in the groundwater inside the observation well provided downstream of the groundwater purification wall is affected by the pollution situation around the well and the flow rate of groundwater. Therefore, it is difficult to determine whether or not the reactivity of the target groundwater purification wall is lowered only by changing the concentration of groundwater inside the observation well.
<2> There is also a method of examining the reactivity by excavating a part of the groundwater purification wall and extracting the purification material used for the wall. In this method, the purification wall needs to be excavated for the purification wall, and it is difficult to increase the frequency of the inspection. Therefore, it is impossible to follow the change in the reaction performance with time.

上記のような課題を解決する本発明の地下水浄化壁の診断装置は、地下水浄化壁の上部地表面付近に設置した非分極性電極と、地下水浄化壁以外の位置に設置した非分極性電極とで構成し、両非分極性電極間に電位差計を接続した装置であり、この装置によって地下水浄化壁の還元反応によって生じる電位を継続的に測定して浄化剤の反応性の変化を測定することを特徴としたものである。
そして上記の装置において、非分極性電極には銅―硫酸銅電極、銀―塩化銀電極、あるいは鉛―塩化鉛電極のいずれかを使用することができる。
The groundwater purification wall diagnostic apparatus of the present invention that solves the above-mentioned problems is a nonpolarizable electrode installed near the upper ground surface of the groundwater purification wall, and a nonpolarizable electrode installed at a position other than the groundwater purification wall; This is a device in which a potentiometer is connected between both non-polarizable electrodes, and by using this device, the potential generated by the reduction reaction of the groundwater purification wall is continuously measured to measure the change in the reactivity of the purification agent. It is characterized by.
In the above apparatus, any one of a copper-copper sulfate electrode, a silver-silver chloride electrode, or a lead-lead chloride electrode can be used as the non-polarizable electrode.

本発明の地下水浄化壁の診断装置は以上説明したようになるから次のような効果を得ることができる。
<1> 地下水浄化壁の酸化還元反応の変化を連続して監視することができる。そのために地下水浄化壁の性能の劣化を早期に発見することができる。
<2> 地下水浄化壁の劣化後に回復工事を行った場合に、それ以前のデータを比較して回復の効果をすぐに確認することができる。
<3> 本発明の装置とは別に独立して観測井でのモニタリングを行って異常が認められた場合に、地下水浄化壁の劣化の影響か、その他の影響かをすぐに分離して検討することができるため、異常値を評価して対応するための判断効率が大幅に向上する。
The groundwater purification wall diagnostic apparatus of the present invention is as described above, so that the following effects can be obtained.
<1> The change in the redox reaction of the groundwater purification wall can be continuously monitored. Therefore, the deterioration of the performance of the groundwater purification wall can be detected at an early stage.
<2> When recovery work is performed after the deterioration of the groundwater purification wall, the effect of the recovery can be confirmed immediately by comparing previous data.
<3> If an abnormality is detected by monitoring at the observation well independently of the apparatus of the present invention, the effect of deterioration of the groundwater purification wall or other effects is immediately separated and examined. Therefore, the judgment efficiency for evaluating and dealing with abnormal values is greatly improved.

本発明の地下水浄化壁の診断装置の実施例の説明図。Explanatory drawing of the Example of the diagnostic apparatus of the groundwater purification wall of this invention. 非分極性電極の設置例の説明図。Explanatory drawing of the example of installation of a non-polarizable electrode. 非分極性電極と地下水浄化壁の配置例の説明図。Explanatory drawing of the example of arrangement | positioning of a non-polarizable electrode and a groundwater purification wall. 非分極性電極と地下水浄化壁の他の配置例の説明図。Explanatory drawing of the other example of arrangement | positioning of a non-polarizable electrode and a groundwater purification wall. 時系列データの処理の説明図。Explanatory drawing of a process of time series data.

以下図面を参照にしながら本発明の地下水浄化壁の診断装置の好適な実施の形態を詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a groundwater purification wall diagnostic apparatus according to the present invention will be described in detail with reference to the drawings.

<1>全体の構成
本発明の地下水浄化壁の反応性の低下を診断する装置は、少なくとも2開所に設置する非分極性電極1と、非分極性電極1間に設置した電位差計2とによって構成する。
<1> Overall Configuration An apparatus for diagnosing a decrease in reactivity of a groundwater purification wall according to the present invention includes a nonpolarizable electrode 1 installed in at least two openings and a potentiometer 2 installed between the nonpolarizable electrodes 1. Configure.

<2>非分極性電極
非分極性電極1とは、電極反応が定常的に起こって電位を任意に変えることのできない電極のことである。
本発明の装置において、非分極性電極1としては、例えば銅―硫酸銅電極、銀―塩化銀電極、あるいは鉛―塩化鉛電極のいずれかを使用することができる。
非分極性電極1は少なくとも2か所に設置する。
そのうちの一か所は、地下水浄化壁3の上部地表面付近に設置した非分極性電極1である。
他の一か所は、地下水浄化壁3以外の位置に設置した非分極性電極1である。
<2> Non-polarizable electrode The non-polarizable electrode 1 is an electrode in which an electrode reaction occurs constantly and the potential cannot be changed arbitrarily.
In the apparatus of the present invention, as the non-polarizable electrode 1, for example, any one of a copper-copper sulfate electrode, a silver-silver chloride electrode, and a lead-lead chloride electrode can be used.
The non-polarizable electrode 1 is installed in at least two places.
One of them is the non-polarizable electrode 1 installed near the upper ground surface of the groundwater purification wall 3.
Another place is the nonpolarizable electrode 1 installed at a position other than the groundwater purification wall 3.

<3>非分極性電極の設置
地中に設置する非分極性電極1は、地盤との電気的接触が良好でなければならない。
そのために図2に示すように、非分極性電極1の周囲を粘土11で包囲して固定する。
また非分極性電極1の上部を車両が通過することを考慮する場合には、養生蓋12を設置して非分極性電極1の損傷を防止する。
<3> Installation of non-polarizable electrode The non-polarizable electrode 1 installed in the ground must have good electrical contact with the ground.
For this purpose, as shown in FIG. 2, the periphery of the non-polarizable electrode 1 is surrounded by clay 11 and fixed.
When considering that the vehicle passes over the nonpolarizable electrode 1, the curing lid 12 is installed to prevent the nonpolarizable electrode 1 from being damaged.

<4>非分極性電極の設置深さ
地下水浄化壁3に設置する非分極性電極1は、その地下水浄化壁3の内部に設置してもよい。
しかし本発明の装置による診断は、年単位の長期間の計測であることから機器の交換や修理、検査などの保守のしやすさを考慮すると、地下水浄化壁3の地表部近くに設置することが好ましい。
<4> Depth of Installation of Nonpolarizable Electrode The nonpolarizable electrode 1 installed on the groundwater purification wall 3 may be installed inside the groundwater purification wall 3.
However, since the diagnosis by the apparatus of the present invention is a long-term measurement in units of years, it should be installed near the ground surface of the groundwater purification wall 3 considering the ease of maintenance such as equipment replacement, repair, and inspection. Is preferred.

<5>非分極性電極の配置例
非分極性電極1の設置位置と地下水浄化壁3の位置との関係を図3、4について説明する。
<5> Arrangement Example of Nonpolarizable Electrode The relationship between the installation position of the nonpolarizable electrode 1 and the position of the groundwater purification wall 3 will be described with reference to FIGS.

<5−1>壁を挟んだ配置(図3)
非分極性電極1を地下水浄化壁3の上流側と下流側に、地下水浄化壁3を挟んだ状態で配置する構成である。
この配置であると、地下水浄化壁3の上流側と下流側とでの地下水の流れの変化の影響を少なくすることができる。
<5-1> Arrangement with wall in between (Fig. 3)
In this configuration, the non-polarizable electrode 1 is disposed on the upstream side and the downstream side of the groundwater purification wall 3 with the groundwater purification wall 3 interposed therebetween.
With this arrangement, the influence of changes in the flow of groundwater between the upstream side and the downstream side of the groundwater purification wall 3 can be reduced.

<5−2>壁の上流側に配置(図4)
非分極性電極1を地下水浄化壁3の上流側にのみ配置する構成である。
この配置であると、場所による地下水流動の相違の影響を受けにくくすることができる。
一般に地下水浄化壁3は、汚染地下水の、汚染サイトの敷地外への流出を阻止するものである。
そのため地下水浄化壁3は敷地の境界に設置する場合が多く、その場合には地下水浄化壁3の下流側は他人の土地であるために利用できないので、図4の配置のように、地下水浄化壁3の上流側にのみ非分極性電極1を配置する構成を採用することになる。
<5-2> Arranged upstream of the wall (FIG. 4)
In this configuration, the nonpolarizable electrode 1 is disposed only on the upstream side of the groundwater purification wall 3.
With this arrangement, it is possible to make it less susceptible to the difference in groundwater flow depending on the location.
In general, the groundwater purification wall 3 prevents contaminated groundwater from flowing out of the site of the contaminated site.
For this reason, the groundwater purification wall 3 is often installed at the boundary of the site. In this case, since the downstream side of the groundwater purification wall 3 is another person's land, it cannot be used. Therefore, a configuration in which the non-polarizable electrode 1 is disposed only on the upstream side of 3 is adopted.

<6>電位差計
上記の二か所の非分極性電極1間に電位差計2を接続する。
電位差計2とは、未知電圧と既知電圧を検出器を用いて比較し,零位法によって未知電圧を求める測定器のことである。
回路に一定電流を流し,可変抵抗部の端子電圧(=電流×抵抗)と未知電圧を比較するもので,一定電流を得るため標準電池を用いる。この場合平衡のための検出器は切り換えて使用する
電位差計2を介在させるために、両非分極性電極1の間には電線21を配線する。
電位差計2は常時接続しておく必要はなく、両非分極性電極1から配線した電線21に定期的に接続して電位差を記録して診断することもできる。
<6> Potentiometer A potentiometer 2 is connected between the two nonpolarizable electrodes 1 described above.
The potentiometer 2 is a measuring device that compares an unknown voltage with a known voltage using a detector and obtains the unknown voltage by a zero method.
A constant current is passed through the circuit, and the terminal voltage (= current x resistance) of the variable resistor is compared with the unknown voltage. A standard battery is used to obtain a constant current. In this case, an electric wire 21 is wired between the non-polarizable electrodes 1 in order to interpose the potentiometer 2 used for switching the detector for balancing.
The potentiometer 2 does not need to be connected at all times, and can be diagnosed by periodically connecting to the electric wire 21 wired from both non-polarizable electrodes 1 and recording the potential difference.

<7>診断の原理
上記したように本発明は、少なくとも二か所に設置した両非分極性電極1間に電位差計2を接続した装置であり、この装置によって地下水浄化壁3の還元反応によって生じる電位を継続的に測定して浄化剤の反応性の変化を測定するものである。
<7> Principle of Diagnosis As described above, the present invention is a device in which the potentiometer 2 is connected between the non-polarizable electrodes 1 installed in at least two places. By this device, the reduction reaction of the groundwater purification wall 3 is performed. The generated potential is continuously measured to measure the change in the reactivity of the cleaning agent.

<8>非分極性電極の問題点
非分極性電極1を用いて地盤の自然電位を測定する方法は、地下水流動の測定や地熱貯留層の評価などに用いられている。
しかし実際に採用するのは簡単ではない。
なぜなら(1)自然電位は微弱である、(2)電源ノイズなどの人為的な電気ノイズの影響がある、(3)降雨の浸透による不飽和帯の比抵抗の変化がある、(4)地下水流動の変化による流動出の影響がある、(5)地下水浄化壁3を設置するような工場地帯では、周辺環境に存在する金属製の人工構造物の影響など低比抵抗材料の影響をうける、といった問題があるからである。
本発明ではそのような問題を前提に、その影響を取り除くために次のような解決策を採用した。
<8> Problems of Non-Polarizable Electrode The method of measuring the natural potential of the ground using the non-polarizable electrode 1 is used for measurement of groundwater flow, evaluation of geothermal reservoirs, and the like.
However, it is not easy to actually adopt.
Because (1) The natural potential is weak, (2) There is an influence of artificial electric noise such as power supply noise, (3) There is a change in specific resistance of the unsaturated zone due to infiltration of rain, (4) Groundwater (5) In a factory zone where the groundwater purification wall 3 is installed, it is affected by low resistivity materials such as the influence of metal artificial structures in the surrounding environment. This is because there is a problem.
In the present invention, on the assumption of such a problem, the following solution is adopted in order to remove the influence.

<9>参照電極の設置位置
自然電位測定の基準となる基準電極(参照電極)は、一般に自然電位が安定した場所に設置するが、本発明では安定した自然電位との電位差ではなく、地下水浄化壁3と同様の自然環境にある参照電極との電位差で評価する方法を採用する。
そのため参照電極の設置位置は、降雨の影響、地下水流動の影響の程度が地下水浄化壁3の構築部と同程度の場所を選択する。
そして二か所以上の参照電極の電位を平均値をもって地下水浄化壁3の自然電位測定の基準とする。
<9> Installation position of reference electrode Although a reference electrode (reference electrode) serving as a reference for measuring a natural potential is generally installed in a place where the natural potential is stable, in the present invention, it is not a potential difference from a stable natural potential, but groundwater purification. A method is used in which the evaluation is performed based on the potential difference between the wall 3 and a reference electrode in the same natural environment.
Therefore, the installation position of the reference electrode is selected so that the influence of rainfall and the influence of groundwater flow are the same as those of the construction part of the groundwater purification wall 3.
And the potential of two or more reference electrodes is used as a standard for measuring the natural potential of the groundwater purification wall 3 with an average value.

<10>時系列データの統計的処理
地下水浄化壁3の酸化還元反応の速度は、初期には早く、徐々に穏やかな反応となるため、地下水浄化壁3の還元作用により発生する自然電位の時系列データも同様に、穏やかで連続的な変化を示す。
前記したようなノイズを含んでいる時系列データから穏やかな自然電位を変化の傾向をとらえるため、フーリエ変換やベイズ法を用いる。
このような方法により、人為的な高周波の電気ノイズや統計的に異常値と判断されるデータを除去した自然電位の時間的変化のトレンドを把握することが可能となる。
<10> Statistical processing of time-series data Since the redox reaction speed of the groundwater purification wall 3 is fast in the initial stage and gradually becomes a mild reaction, the natural potential generated by the reduction action of the groundwater purification wall 3 Series data similarly shows a mild and continuous change.
In order to grasp the tendency of a change in a gentle natural potential from time series data including noise as described above, Fourier transform or Bayesian method is used.
By such a method, it is possible to grasp the trend of the temporal change of the natural potential from which artificially high frequency electrical noise and data that are statistically determined to be abnormal values are removed.

<11>統計的に処理できない場合
非分極性電極1を、金属材料などの低比抵抗の材料が自然電位の測定に影響を及ぼす環境に設置した場合には、局所的な電場の乱れにより自然電位の分布が変化し、自然電位の測定値が変化する。
それが一時的な変化であれば異常値として統計的に処理できるが、環境そのものが変化した場合には測定値がシフトし、統計処理では取り除くことができない。
そこで自然電位の変化は緩やかで連続していると仮定し、時系列データの変曲点の前後でトレンドが同一であるとして、自然電位のシフト量を求め、連続したデータに補正することで、測定環境にある人工構造物の影響を取り除く。
このような操作により、長期的な地下水浄化壁3の還元能力の変化の測定が可能となる。
<11> When it cannot be statistically processed When the non-polarizable electrode 1 is installed in an environment where a low resistivity material such as a metal material affects the measurement of the natural potential, The distribution of potential changes, and the measured value of the natural potential changes.
If it is a temporary change, it can be statistically processed as an abnormal value, but if the environment itself changes, the measured value shifts and cannot be removed by statistical processing.
Therefore, assuming that the change of the natural potential is gentle and continuous, assuming that the trend is the same before and after the inflection point of the time series data, the shift amount of the natural potential is obtained and corrected to continuous data. Eliminate the effects of man-made structures in the measurement environment.
By such an operation, it is possible to measure a long-term change in the reducing ability of the groundwater purification wall 3.

<12>処理した測定例(図5)
相対的な電位差の計測により自然電位のノイズを軽減しても、測定値にはばらつきが生じする。
これらをフーリエ変換やベイズ法により確率的にもっとも確からしいトレンドにフィッティングする。
この変化傾向は連続的であることから、計測値が全体的にシフトするような場合は、周辺環境の変化の影響を受けたことが想定される。
この影響を考慮して変曲点前後の連続性が保たれるように曲線を移動して将来の性能を予測して診断するものである。
<12> Processed measurement examples (FIG. 5)
Even if the noise of the natural potential is reduced by measuring the relative potential difference, the measurement value varies.
These are fitted to the most probable trends by Fourier transform and Bayesian method.
Since this change tendency is continuous, it is assumed that the measurement value is affected by the change in the surrounding environment when the measured value shifts as a whole.
Considering this influence, the curve is moved so that the continuity before and after the inflection point is maintained, and the future performance is predicted and diagnosed.

1:非分極性電極
2:電位差計
3:地下水浄化壁
1: Non-polarizable electrode 2: Potentiometer 3: Groundwater purification wall

Claims (2)

地下水浄化壁の上部地表面付近に設置した非分極性電極と、
地下水浄化壁以外の位置に設置した非分極性電極とで構成し、
両非分極性電極間に電位差計を接続した装置であり、
この装置によって地下水浄化壁の還元反応によって生じる電位を継続的に測定して浄化剤の反応性の変化を測定することを特徴とする、
地下水浄化壁の診断装置。
A non-polarizable electrode installed near the upper ground surface of the groundwater purification wall;
It consists of a non-polarizable electrode installed at a position other than the groundwater purification wall,
It is a device with a potentiometer connected between both non-polarizable electrodes,
This device is characterized by continuously measuring the potential generated by the reduction reaction of the groundwater purification wall and measuring the change in the reactivity of the purification agent.
Diagnosis device for underground water purification wall.
請求項1記載の装置において、
非分極性電極は、銅―硫酸銅電極、銀―塩化銀電極、あるいは鉛―塩化鉛電極のいずれかである、
地下水浄化壁の診断装置。
The apparatus of claim 1.
The non-polarizable electrode is either a copper-copper sulfate electrode, a silver-silver chloride electrode, or a lead-lead chloride electrode.
Diagnosis device for underground water purification wall.
JP2013081194A 2013-04-09 2013-04-09 Diagnostic device for groundwater purification wall Expired - Fee Related JP6095453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081194A JP6095453B2 (en) 2013-04-09 2013-04-09 Diagnostic device for groundwater purification wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081194A JP6095453B2 (en) 2013-04-09 2013-04-09 Diagnostic device for groundwater purification wall

Publications (2)

Publication Number Publication Date
JP2014202693A JP2014202693A (en) 2014-10-27
JP6095453B2 true JP6095453B2 (en) 2017-03-15

Family

ID=52353230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081194A Expired - Fee Related JP6095453B2 (en) 2013-04-09 2013-04-09 Diagnostic device for groundwater purification wall

Country Status (1)

Country Link
JP (1) JP6095453B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374721B (en) * 2018-11-20 2022-11-04 河南理工大学 Method and device for monitoring pollution of urban shallow groundwater

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674933A (en) * 1992-08-31 1994-03-18 Tokyo Gas Co Ltd Measuring method and measuring device for ferrous ion concentration in soil
JP3216014B2 (en) * 1997-11-27 2001-10-09 大成建設株式会社 Continuous underground water purification wall
JP3721979B2 (en) * 2000-11-08 2005-11-30 栗田工業株式会社 Purification method for contaminated soil
JP4332643B2 (en) * 2005-04-05 2009-09-16 独立行政法人産業技術総合研究所 Installation method of non-polarizable electrode on rock or ground, and electric exploration method or electromagnetic exploration method using the same
JP5366274B2 (en) * 2011-05-13 2013-12-11 独立行政法人農業・食品産業技術総合研究機構 Measuring device for measuring redox potential of wet soil, and measuring method for measuring redox potential of wet soil

Also Published As

Publication number Publication date
JP2014202693A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
CN107315138B (en) Fault prediction and health processing method and test system of power MOSFET
WO2009063218A3 (en) Pipeline condition detecting method and apparatus
KR101330091B1 (en) Method of life-decision for high-voltage cables in operation
CN205809241U (en) Corrosion detection circuitry and motor drive
US8310243B2 (en) Local electrochemical impedance spectroscopy (LEIS) for detecting coating defects in buried pipelines
KR100657855B1 (en) A method for detecting grounded network erosion and broken point of substation
CN104820180A (en) Electronic device having function of detecting degradation of printed circuit board
JP6095453B2 (en) Diagnostic device for groundwater purification wall
JP5488755B1 (en) Stain monitoring device
KR101327983B1 (en) Pumping and treating system and method thereof
KR100717597B1 (en) protection monitoring system
JP2018205125A (en) Method and device for measuring soil corrosion speed
JP5179587B2 (en) Diagnostic method for oil-filled electrical equipment, diagnostic device for implementing the diagnostic method, and oil-filled electrical equipment equipped with the diagnostic device
KR100467835B1 (en) Grid-net contraminant leakage detection system of using method of measuring electrical resistance and measuring method thereof
JP2018205124A (en) Device and method for measuring corrosion rate
KR20110084052A (en) Senser unit of sewage pipe monitoring system
RU2636254C1 (en) Method for detecting leakages of technological liquids
CN105301058A (en) Imaging testing system for monitoring pollution dynamic condition of underground water and monitoring method of pollution dynamic condition of underground water
JP2009156819A (en) Deterioration diagnostics method of lined piping
CN111426738A (en) Electrochemical in-situ monitoring device and method for soil/underground water remediation process
RU165273U1 (en) CORROSION SPEED SENSOR
CN215799912U (en) Indoor experimental device for simulating pipeline to pass through box culvert
GB2460484A (en) Pipeline condition detecting method and apparatus
JP2005221381A (en) Corrosion monitoring method
CN111220536A (en) Method, device and system for detecting corrosion probability of pipeline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170214

R150 Certificate of patent or registration of utility model

Ref document number: 6095453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees