JP6092885B2 - Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the negative electrode active material - Google Patents

Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the negative electrode active material Download PDF

Info

Publication number
JP6092885B2
JP6092885B2 JP2014538138A JP2014538138A JP6092885B2 JP 6092885 B2 JP6092885 B2 JP 6092885B2 JP 2014538138 A JP2014538138 A JP 2014538138A JP 2014538138 A JP2014538138 A JP 2014538138A JP 6092885 B2 JP6092885 B2 JP 6092885B2
Authority
JP
Japan
Prior art keywords
sio
negative electrode
active material
battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014538138A
Other languages
Japanese (ja)
Other versions
JPWO2014049992A1 (en
Inventor
博之 南
博之 南
井町 直希
直希 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50387439&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6092885(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JPWO2014049992A1 publication Critical patent/JPWO2014049992A1/en
Application granted granted Critical
Publication of JP6092885B2 publication Critical patent/JP6092885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池に関するものである。   The present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the negative electrode active material.

SiOで表わされるシリコン酸化物は、比容量が高く、充電時にリチウムを吸収した際の体積膨張率もSiに比べて小さいことから、黒鉛と混合して負極活物質として用いることが検討されている(特許文献1参照)。
しかしながら、SiOで表わされるシリコン酸化物を負極活物質として用いた非水電解質二次電池は、黒鉛のみを負極活物質として使用した場合に比べ、初回充放電効率、及びサイクル初期における容量が著しく低下するという課題がある。
初回充放電効率の向上を図るべく、炭素活物質中にシリコン酸化物が分散され、該シリコン酸化物中にシリコンとリチウムシリケート相とを有する構造の複合体粒子が提案されている(特許文献2参照)。
Since the silicon oxide represented by SiO X has a high specific capacity and a volume expansion coefficient when absorbing lithium during charging is smaller than that of Si, it has been studied to mix with graphite and use it as a negative electrode active material. (See Patent Document 1).
However, the nonaqueous electrolyte secondary battery using the silicon oxide represented by SiO X as the negative electrode active material has significantly higher initial charge / discharge efficiency and capacity at the beginning of the cycle than when only graphite is used as the negative electrode active material. There is a problem of lowering.
In order to improve the initial charge and discharge efficiency, composite particles having a structure in which silicon oxide is dispersed in a carbon active material and silicon and a lithium silicate phase are included in the silicon oxide have been proposed (Patent Document 2). reference).

特開2011−233245号公報JP2011-233245A 特開2007−59213号公報JP 2007-59213 A

しかしながら、特許文献2に記載の提案では、炭素活物質中に分散されたシリコン酸化物は、炭素マトリクス内にシリコン酸化物が点在した構造を有するため、充放電時に炭素マトリクスがリチウム拡散を阻害する。このため、リチウムがシリコン酸化物に十分届かない場合があり、実際の電池容量が理論容量よりも著しく小さくなって、初回充放電効率が低下する等の課題を有していた。   However, in the proposal described in Patent Document 2, since the silicon oxide dispersed in the carbon active material has a structure in which the silicon oxide is scattered in the carbon matrix, the carbon matrix inhibits lithium diffusion during charging and discharging. To do. For this reason, lithium may not reach the silicon oxide sufficiently, and the actual battery capacity is significantly smaller than the theoretical capacity, and the initial charge / discharge efficiency is reduced.

本発明の非水電解質二次電池用負極活物質粒子は、その表面にのみ炭素を備える。上記粒子は、Liシリケート相を含むSiO (0.8≦X≦1.2)粒子を備える。SiO 粒子の表面は、炭素で50%以上100%以下被覆されている。 The negative electrode active material particles for a non-aqueous electrolyte secondary battery of the present invention are provided with carbon only on the surface thereof. The particles include SiO X (0.8 ≦ X ≦ 1.2) particles including a Li silicate phase . The surface of the SiO X particles is covered with carbon by 50% or more and 100% or less.

本発明の実施例によれば、負極活物質としてSiOを用いた非水電解質二次電池において、初回充放電効率とサイクル特性とが飛躍的に向上する。According to the embodiment of the present invention, in the nonaqueous electrolyte secondary battery using SiO 2 X as the negative electrode active material, the initial charge / discharge efficiency and the cycle characteristics are dramatically improved.

電池A1、ZにおけるSiOのXRD測定結果を表すグラフである。It is a graph showing the XRD measurement result of SiO X in cell A1, Z.

本明細書において「略**」とは、「略同等」を例に挙げて説明すると、全く同一はもとより、実質的に同一と認められるものを含む意図である。   In this specification, “substantially **” is intended to include not only exactly the same, but also those that are recognized as substantially the same, with “substantially equivalent” as an example.

本発明の負極活物質は、内部にリチウムシリケート相を含むSiO(0.8≦X≦1.2)からなる粒子であって、SiOからなる粒子の表面が、炭素で50%以上100%以下被覆されている。
上記構成の負極活物質を用いた電池では、初回充放電効率とサイクル特性とを向上させることができる。この理由を以下に示す。
The negative electrode active material of the present invention is a particle composed of SiO X (0.8 ≦ X ≦ 1.2) containing a lithium silicate phase inside, and the surface of the particle composed of SiO X is 50% or more and 100% of carbon. % Or less is covered.
In the battery using the negative electrode active material having the above structure, the initial charge / discharge efficiency and the cycle characteristics can be improved. The reason is shown below.

SiOは、SiとSiOとの微細混合体であり、負極活物質として用いた場合の初回充電反応は、一般的に下記(1)式で表せる。
4SiO(2Si+2SiO)+16Li+16e→3LiSi+LiSiO・・・(1)
上記(1)式の如く、初回充電時にLiSiOが生成されるが、このLiSiOは不可逆反応物である。したがって、SiO中の全てのSiが可逆反応するものではなく、理論効率が低くなる。具体的には、上記(1)式のように不可逆反応物としてLiSiOが生成される場合には、16個のリチウムイオンのうち4個が不可逆となるため、理論効率は75%となる。
SiO X is a fine mixture of Si and SiO 2, and the initial charge reaction when used as a negative electrode active material can be generally expressed by the following formula (1).
4SiO (2Si + 2SiO 2 ) + 16Li + + 16e → 3Li 4 Si + Li 4 SiO 4 (1)
As in the above formula (1), Li 4 SiO 4 is generated during the initial charge, and this Li 4 SiO 4 is an irreversible reactant. Therefore, not all Si in SiO X reacts reversibly, and the theoretical efficiency is lowered. Specifically, when Li 4 SiO 4 is generated as an irreversible reactant as in the above formula (1), four of the 16 lithium ions are irreversible, so the theoretical efficiency is 75%. Become.

そこで、上記構成の如く、電池作製時(初回充電前)のSiOに、LiSiO等のリチウムシリケート相が形成されたSiOを用いる。このような構成であれば、初回充電時において、不可逆反応物に奪われるリチウムが少なくなるので、初回充放電効率を飛躍的に改善することが可能となる。また、SiO粒子は、リチウムシリケート相を形成することにより、体積が大きくなる。そのため、SiOを負極活物質として用いた場合、リチウムシリケート相を有するSiOは、リチウムシリケート相を有しないSiOよりも充放電時における膨張、収縮時の変位が小さい。したがって、リチウムシリケート相を有するSiOを用いれば、負極合剤層内での剥離や、負極合剤層と負極集電体と
の剥離を抑制することができるので、サイクル特性が向上する。加えて、SiOの回りには炭素マトリクスが存在しないので、リチウム拡散が円滑に行われる。したがって、実際の電池容量が大きくなる。
Therefore, as described above, SiO X in which a lithium silicate phase such as Li 4 SiO 4 is formed is used as SiO X at the time of battery fabrication (before the first charge). With such a configuration, the amount of lithium taken away by the irreversible reactant during the first charge is reduced, so that the first charge / discharge efficiency can be drastically improved. In addition, the volume of the SiO X particles is increased by forming a lithium silicate phase. Therefore, in the case of using SiO X as a negative electrode active material, SiO X having lithium silicate phase, the expansion during charge and discharge than SiO X having no lithium silicate phase displacement during shrinkage is small. Therefore, if SiO X having a lithium silicate phase is used, peeling in the negative electrode mixture layer and peeling between the negative electrode mixture layer and the negative electrode current collector can be suppressed, and thus cycle characteristics are improved. In addition, since there is no carbon matrix around SiO X , lithium diffusion is performed smoothly. Therefore, the actual battery capacity is increased.

尚、上記リチウムシリケート相はLiSiOのみならずLiSiO等で構成されることもあるが、いずれの場合にも電気化学的に不活性である。また、リチウムシリケート相は電気化学的に形成するのではなく、化学反応により形成する。例えば、以下の方法により形成できる。The lithium silicate phase may be composed of not only Li 4 SiO 4 but also Li 2 SiO 3 or the like, but in any case, it is electrochemically inactive. Further, the lithium silicate phase is not formed electrochemically, but is formed by a chemical reaction. For example, it can be formed by the following method.

SiO中にリチウムシリケート相を形成するには、例えば、LiOH、LiCO、LiF、又はLiClといったリチウム化合物とSiOとを混合し、高温で熱処理することにより得ることができる。この場合、リチウム化合物としてLiOHを用いた場合の反応式を下記(2)式に示す。(2)式から明らかなように、SiO中に存在するSiOとLiOHとが反応して、LiSiOが生成することがわかる。
SiO+4LiOH→LiSiO+2HO・・・(2)
リチウムシリケート相は、LiとSi、Oとの化合物であり、LiSiO以外にも、LiSiOやLiSiがあり、リチウム化合物の添加量や処理方法によって生成物が異なる場合がある。
In order to form a lithium silicate phase in SiO X , for example, a lithium compound such as LiOH, Li 2 CO 3 , LiF, or LiCl can be mixed with SiO X and heat-treated at a high temperature. In this case, the reaction formula when LiOH is used as the lithium compound is shown in the following formula (2). As is clear from the formula (2), it can be seen that SiO 2 existing in SiO X reacts with LiOH to produce Li 4 SiO 4 .
SiO 2 + 4LiOH → Li 4 SiO 4 + 2H 2 O (2)
The lithium silicate phase is a compound of Li, Si, and O. In addition to Li 4 SiO 4 , there are Li 2 SiO 3 and Li 2 Si 2 O 5 , and the product depends on the amount of lithium compound added and the processing method. May be different.

SiO(0.8≦X≦1.2)粒子の総量に対する上記リチウムシリケート相の割合が、0.5モル%以上25モル%以下であることが好ましい。リチウムシリケート相の割合が0.5モル%未満の場合には、初回充放電効率の改善効果が小さい。一方、リチウムシリケート相の割合が25モル%を超える場合には、可逆反応するSiが少なくなって、充放電容量が低下する。The ratio of the lithium silicate phase to the total amount of SiO X (0.8 ≦ X ≦ 1.2) particles is preferably 0.5 mol% or more and 25 mol% or less. When the proportion of the lithium silicate phase is less than 0.5 mol%, the effect of improving the initial charge / discharge efficiency is small. On the other hand, when the proportion of the lithium silicate phase exceeds 25 mol%, the amount of Si that undergoes reversible reaction decreases, and the charge / discharge capacity decreases.

本発明において用いるSiOは、表面が炭素で50%以上100%以下、好ましくは、100%被覆されている。SiO表面が炭素で50%以上100%以下被覆されていると、SiOにリチウムシリケート相を形成させる際、リチウム化合物とSiOとが直接接触することを抑制できるので、SiO粒子の内部において、リチウムとSiOとを均一に反応させることが可能となるからである。なお、本発明において、SiO表面が炭素で被覆されているとは、粒子断面をSEM観察した場合に、SiO粒子表面が、少なくとも1nm厚以上の炭素被膜で覆われているということである。本発明において、SiO表面が炭素で100%被覆されているとは、粒子断面をSEM観察した場合に、SiO粒子表面の略100%が、少なくとも1nm厚以上の炭素被膜で覆われているということである。炭素で被覆する場合、SiOの反応均一性を高めるべく、SiOの表面を均一に被覆することが好ましい。炭素被膜の厚みは、1nm以上200nm以下であることが好ましい。1nm未満では、導電性が低く、また均一に被覆するのが難しい。一方、200nmを超えると、炭素被膜がリチウム拡散を阻害して、SiOに十分リチウムが届かず、大きく容量が低下する。更に、炭素被覆する場合、SiOに対する炭素の割合は10質量%以下であることが望ましい。The surface of SiO X used in the present invention is 50% or more and 100% or less, preferably 100%, of carbon. When SiO X surface covered 50% to 100% carbon, when to form a lithium silicate phase in SiO X, it is possible to suppress the lithium compound and SiO X is direct contact, the interior of the SiO X particles This is because it is possible to uniformly react lithium with SiO X. In the present invention, the SiO X surface is covered with carbon means that the surface of the SiO X particle is covered with a carbon film having a thickness of at least 1 nm when the particle cross section is observed by SEM. . In the present invention, the SiO X surface is 100% coated with carbon. When the particle cross section is observed by SEM, almost 100% of the SiO X particle surface is covered with a carbon film having a thickness of at least 1 nm. That's what it means. When coating with carbon, to enhance the reaction uniformity of SiO X, it is preferable to uniformly coat the surface of the SiO X. The thickness of the carbon coating is preferably 1 nm or more and 200 nm or less. If it is less than 1 nm, the conductivity is low and it is difficult to coat uniformly. On the other hand, if it exceeds 200 nm, the carbon coating inhibits lithium diffusion, so that lithium does not reach SiO X sufficiently and the capacity is greatly reduced. Further, in the case of carbon coating, the ratio of carbon to SiO X is desirably 10% by mass or less.

本発明に用いるSiOの平均一次粒子径は、1μm以上15μm以下であることが好ましい。SiOの平均一次粒子径が1μm未満の場合は、粒子表面積が大きくなり過ぎて、電解液との反応量が大きくなり、容量低下することがある。また、SiOの膨張収縮量が小さく、負極合剤層へ与える影響は小さい。そのため、SiO中に予めリチウムシリケート相を形成しなくても、負極合剤層と負極集電体との間で剥離が生じ難く、サイクル特性がさほど低下しない。一方、SiOの平均一次粒子径が15μmを超えている場合は、リチウムシリケート相の形成時に、SiO内部までリチウムが拡散せず、SiO表面にのみリチウムシリケート相が形成されることがある。リチウムシリケート相は絶縁性であるため、このような構造になると、リチウム拡散が阻害されて、充放電時にリチウムがSiOの中心付近まで拡散できないため、容量低下や負荷特性が低下することがある。したがって、SiOの平均一次粒子径は、1μm以上15μm以下であることが好ましく、特に4μm以上10μm以下であることが好ましい。
なお、SiOの平均一次粒子径(D50)とは、レーザー回折散乱法で測定された粒度分布における累積50体積%径のことである。
The average primary particle diameter of SiO X used in the present invention is preferably 1 μm or more and 15 μm or less. When the average primary particle diameter of SiO X is less than 1 μm, the particle surface area becomes too large, the amount of reaction with the electrolytic solution increases, and the capacity may decrease. Further, the amount of expansion and contraction of SiO X is small, and the influence on the negative electrode mixture layer is small. Therefore, even if a lithium silicate phase is not formed in advance in SiO X , separation between the negative electrode mixture layer and the negative electrode current collector hardly occurs and the cycle characteristics do not deteriorate so much. On the other hand, when the average primary particle diameter of SiO X exceeds 15 μm, lithium may not diffuse into the inside of SiO X during the formation of the lithium silicate phase, and the lithium silicate phase may be formed only on the SiO X surface. . Since the lithium silicate phase is insulative, when such a structure is used, lithium diffusion is hindered, and lithium cannot be diffused to the vicinity of the center of SiO during charge / discharge, which may result in a decrease in capacity and load characteristics. Therefore, the average primary particle diameter of SiO X is preferably 1 μm or more and 15 μm or less, and particularly preferably 4 μm or more and 10 μm or less.
In addition, the average primary particle diameter (D 50 ) of SiO X is the cumulative 50 volume% diameter in the particle size distribution measured by the laser diffraction scattering method.

本発明において用いるSiOは、負極活物質として単独で用いても良く、黒鉛やハードカーボンといった炭素系活物質と混合して用いても良い。SiOは、炭素系活物質よりも比容量が高いため、添加量が多いほど高容量化が可能となる。しかし、SiOは、炭素系活物質よりも、充放電時の膨張、収縮率が大きく、その割合が多過ぎると、負極合剤層と負極集電体との界面における剥離や、負極活物質粒子間の導電接触が低下するため、サイクル特性が大幅に低下することがある。したがって、SiOと炭素系活物質とを混合して用いる場合、負極活物質の総量に対するSiOの割合は、20質量%以下であることが好ましい。一方、SiOの割合が少な過ぎると、SiOを添加して高容量化するメリットが小さくなるので、負極活物質の総量に対するSiOの割合は1質量%以上であることが好ましい。SiO X used in the present invention may be used alone as a negative electrode active material, or may be used by mixing with a carbon-based active material such as graphite or hard carbon. Since the specific capacity of SiO X is higher than that of the carbon-based active material, the capacity can be increased as the addition amount increases. However, SiO X has a larger expansion / contraction rate at the time of charge / discharge than the carbon-based active material, and if the ratio is too large, peeling at the interface between the negative electrode mixture layer and the negative electrode current collector, or the negative electrode active material Since the conductive contact between the particles is reduced, the cycle characteristics may be significantly reduced. Therefore, when SiO X and a carbon-based active material are mixed and used, the ratio of SiO X to the total amount of the negative electrode active material is preferably 20% by mass or less. On the other hand, if the proportion of SiO X is too small, the merit of increasing the capacity by adding SiO X is reduced, so the proportion of SiO X with respect to the total amount of the negative electrode active material is preferably 1% by mass or more.

正極及び非水電解質は、非水電解質二次電池に用いるものであれば、特に限定されることなく用いることができる。
正極活物質としては、例えば、コバルト酸リチウム、ニッケルあるいはマンガンを含むリチウム複合酸化物、リン酸鉄リチウム(LiFePO)に代表されるオリビン型リン酸リチウム等などが挙げられる。ニッケルあるいはマンガンを含むリチウム複合酸化物としては、Ni−Co−Mn、Ni−Mn−Al、及びNi−Co−Alなどのリチウム複合酸化物などが挙げられる。正極活物質はこれらを単独で用いても良いし、混合して用いてもよい。
The positive electrode and the non-aqueous electrolyte can be used without any particular limitation as long as they are used for a non-aqueous electrolyte secondary battery.
Examples of the positive electrode active material include lithium complex oxide containing lithium cobaltate, nickel or manganese, olivine type lithium phosphate represented by lithium iron phosphate (LiFePO 4 ), and the like. Examples of the lithium composite oxide containing nickel or manganese include lithium composite oxides such as Ni—Co—Mn, Ni—Mn—Al, and Ni—Co—Al. These positive electrode active materials may be used alone or in combination.

正極活物質が、リチウムと、金属元素Mとを含む酸化物を含み、前記金属元素Mが、コバルト、ニッケルを含む群より選択される少なくとも一種を含む場合、正極および負極に含まれるリチウム量の総和xと、上記の酸化物に含まれる金属元素Mの量Mとの比率x/Mは、例えば、1.01より大きいことが好ましく、1.03より大きいことがさらに好ましい。
比率x/Mが上記範囲である場合、電池内に供給されるリチウムイオンの比率が非常に大きくなることになる。つまり、不可逆容量の補填の点で有利である。
When the positive electrode active material contains an oxide containing lithium and a metal element M, and the metal element M contains at least one selected from the group containing cobalt and nickel, the amount of lithium contained in the positive electrode and the negative electrode and the sum x, the ratio x / M C to the amount M C of the metal element M contained in the oxides of the above, for example, preferably greater than 1.01, more preferably greater than 1.03.
If the ratio x / M C is within the above range, so that the proportion of lithium ions supplied to the battery is quite large. That is, it is advantageous in terms of compensation for irreversible capacity.

上記比率x/Mは、例えば、負極活物質が内部にリチウムシリケート相を含むSiOと炭素系活物質とを混合したものである場合、負極活物質の総量に対するSiOの割合等によって、変動する。
比率x/Mは、正極および負極中に含まれるリチウム量xと正極活物質に含まれる金属元素Mの量Mを、それぞれ定量し、xの量を金属元素Mの量Mで除することにより算出できる。
The ratio x / M C, for example, when the anode active material is a mixture of a SiO X and the carbon-based active material containing lithium silicate phase therein, the proportion of SiO X such with respect to the total amount of the anode active material, fluctuate.
The ratio x / M C is the amount M C of the metal element M contained in the lithium content x and the positive electrode active material contained in the positive electrode and the negative electrode, were quantified, respectively, dividing the amount of x in an amount M C of the metal element M This can be calculated.

リチウム量xおよび金属元素Mの量Mは、次のようにして定量できる。
まず、電池を、完全に放電した後、分解し、非水電解質を除去して、電池内部をジメチルカーボネートなどの溶媒を用いて洗浄する。次いで、正極および負極をそれぞれ所定の質量だけ採取し、ICP分析により、正極および負極に含まれるリチウム量を定量することにより、リチウム量(モル量)xを求める。また、正極中のリチウム量の場合と同様にして、正極に含まれる金属元素Mの量(モル量)MをICP分析により定量する。
The amount M C of lithium content x and the metal element M can be quantified as follows.
First, the battery is completely discharged and then decomposed to remove the nonaqueous electrolyte, and the inside of the battery is washed with a solvent such as dimethyl carbonate. Next, the positive electrode and the negative electrode are respectively collected by a predetermined mass, and the amount of lithium (molar amount) x is determined by quantifying the amount of lithium contained in the positive electrode and the negative electrode by ICP analysis. Also, as in the case of the amount of lithium in the positive electrode, the amount of metal element M contained in the positive electrode (molar amount) determined by the M C ICP analysis.

非水電解液の溶媒、溶質については、非水電解質二次電池に用いることができるものであれば特に限定されるものではない。
上記非水電解液の溶質としては、LiBF,LiPF,LiN(SOCF,LiN(SO,LiPF6−x(C2n+1[但し、1<x<6,n=1または2]、或いは、オキサラト錯体をアニオンとするリチウム塩を用いることもできる。このオキサラト錯体をアニオンとするリチウム塩としては、LiBOB〔リチウム−ビスオキサレートボレート〕の他、中心原子にC 2−が配位したアニオンを有するリチウム塩、例えば、Li[M(C](式中、Mは遷移金属,周期律表のIIIb族,IVb族,Vb族から選択される元素、Rはハロゲン、アルキル基、ハロゲン置換アルキル基から選択される基、xは正の整数、yは0又は正の整数である。)で表わされるものを用いることができる。具体的には、Li[B(C)F]、Li[P(C)F]、Li[P(C]等がある。但し、高温環境下においても負極の表面に安定な被膜を形成するためには、LiBOBを用いることが最も好ましい。
The solvent and solute of the nonaqueous electrolyte solution are not particularly limited as long as they can be used for the nonaqueous electrolyte secondary battery.
Solutes of the non-aqueous electrolyte include LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiPF 6-x (C n F 2n + 1 ) x [wherein 1 <x <6, n = 1 or 2], or a lithium salt having an oxalato complex as an anion can also be used. As a lithium salt having this oxalato complex as an anion, in addition to LiBOB [lithium-bisoxalate borate], a lithium salt having an anion in which C 2 O 4 2− is coordinated to the central atom, for example, Li [M (C 2 O 4 ) x R y ] (wherein M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table, R is selected from a halogen, an alkyl group, and a halogen-substituted alkyl group) Group, x is a positive integer, and y is 0 or a positive integer). Specifically, there are Li [B (C 2 O 4 ) F 2 ], Li [P (C 2 O 4 ) F 4 ], Li [P (C 2 O 4 ) 2 F 2 ], and the like. However, it is most preferable to use LiBOB in order to form a stable film on the surface of the negative electrode even in a high temperature environment.

尚、上記溶質は、単独で用いるのみならず、2種以上を混合して用いても良い。また、溶質の濃度は特に限定されないが、電解液1リットル当り0.8〜1.8モルであることが望ましい。更に、大電流での放電を必要とする用途では、上記溶質の濃度が電解液1リットル当たり1.0〜1.6モルであることが望ましい。   In addition, the said solute may be used not only independently but in mixture of 2 or more types. The concentration of the solute is not particularly limited, but is preferably 0.8 to 1.8 mol per liter of the electrolyte. Furthermore, in applications that require discharging with a large current, the concentration of the solute is desirably 1.0 to 1.6 mol per liter of the electrolyte.

一方、上記非水電解液の溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ−ブチルラクトン、ジエチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートなどのカーボネート系溶媒や、これらの溶媒の水素の一部がFにより置換されているカーボネート系溶媒が好ましく用いられる。溶媒としては、環状カーボネートと鎖状カーボネートを組み合わせて用いることが好ましい。   On the other hand, as the solvent of the non-aqueous electrolyte, carbonate solvents such as ethylene carbonate, propylene carbonate, γ-butyl lactone, diethylene carbonate, ethyl methyl carbonate, dimethyl carbonate, and a part of hydrogen in these solvents are F. Substituted carbonate solvents are preferably used. As the solvent, it is preferable to use a combination of a cyclic carbonate and a chain carbonate.

尚、上記特許文献2に記載の発明との違いは以下の通りである。
(1)上記の如く、本発明でもSiOの表面を炭素で被覆している。したがって、特許文献2に記載の発明のみならず本発明においても、SiO粒子に炭素が含まれる。しかしながら、特許文献2に記載の発明では、粒子の内部にまで炭素が存在するのに対して、本発明では粒子の表面にしか炭素が存在しない。また、このことに関連して、粒子中の炭素の割合は、本発明では約10質量%以下であって極めて少ないのに対して、特許文献2に記載の発明では約50質量%以上であって極めて多い。
The difference from the invention described in Patent Document 2 is as follows.
(1) As described above, also in the present invention, the surface of SiO X is coated with carbon. Accordingly, not only the invention described in Patent Document 2 but also the present invention includes carbon in the SiO X particles. However, in the invention described in Patent Document 2, carbon exists up to the inside of the particle, whereas in the present invention, carbon exists only on the surface of the particle. In relation to this, the proportion of carbon in the particles is about 10% by mass or less and extremely low in the present invention, whereas in the invention described in Patent Document 2, it is about 50% by mass or more. It is extremely numerous.

(2)特許文献2に記載の発明では、SiO粉末と、炭素粉末と、リチウム化合物との存在下で、熱処理を行っている。したがって、リチウム化合物のリチウムは、SiOのみならず炭素中にも取り込まれる。これに対し、本発明では、SiO粉末と、リチウム化合物との存在下で、熱処理を行った後、炭素粉末と混合している。したがって、リチウム化合物のリチウムは、SiOにのみ取り込まれる(炭素中には取り込まれない)。 (2) In the invention described in Patent Document 2, heat treatment is performed in the presence of SiO powder, carbon powder, and a lithium compound. Therefore, lithium of the lithium compound is taken into carbon as well as SiO. On the other hand, in this invention, after heat-processing in presence of SiO powder and a lithium compound, it mixes with carbon powder. Therefore, lithium of the lithium compound is taken into only SiO (not taken into carbon).

(3)特許文献2に記載の発明の如く、SiOが炭素マトリクス内に点在した構造の場合、SiOの粒径が小さく、しかも、応力を緩和できる炭素マトリクスでSiOが覆われている。したがって、充放電時の負極活物質の膨張、収縮によって、負極合剤層に与える影響(負極集電体と負極合剤層との間での剥離等)は極めて小さい。このため、特許文献2に記載の発明では、負極活物質の膨張、収縮を緩和することによって電池特性を向上させるという作用効果は、僅かに発揮されるだけである。
これに対して、本発明の如く、内部にリチウムシリケート相を含むSiOからなる粒子(SiOの単独粒子)と黒鉛と混合して用いる場合には、電解液との副反応を抑制するためにSiOの粒径をある程度大きくする必要があり、しかも、SiOの周りには、応力を緩和できるマトリクスも存在しない。したがって、負極活物質の膨張、収縮による、負極合剤層に与える影響は極めて大きい。このため、本発明では、負極活物質の膨張、収縮を緩和することによって電池特性を向上させるという作用効果が大いに発揮される。
(3) as in the embodiment described in Patent Document 2, when the structure SiO X is interspersed within a carbon matrix, the particle size of the SiO X is small and, in SiO X is covered with a carbon matrix that can relieve stress Yes. Accordingly, the influence (exfoliation between the negative electrode current collector and the negative electrode mixture layer) on the negative electrode mixture layer due to the expansion and contraction of the negative electrode active material during charge / discharge is extremely small. For this reason, in the invention described in Patent Document 2, the effect of improving battery characteristics by relaxing expansion and contraction of the negative electrode active material is only slightly exhibited.
In contrast, as in the present invention, when used as a mixture with particles consisting of SiO X containing internal lithium silicate phase (single particles of SiO X) and graphite, in order to suppress a side reaction with the electrolyte solution In addition, it is necessary to increase the particle size of SiO X to some extent, and there is no matrix around SiO X that can relieve stress. Therefore, the influence exerted on the negative electrode mixture layer by the expansion and contraction of the negative electrode active material is extremely large. For this reason, in this invention, the effect of improving a battery characteristic is remarkably exhibited by relieving the expansion | swelling and shrinkage | contraction of a negative electrode active material.

以下、本発明を具体的な実施例によりさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
〈第1実施例〉
Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the present invention. It is a thing.
<First embodiment>

(実施例1)
〔負極の作製〕
表面を炭素で被覆したSiO(X=0.93、平均一次粒子径:5.0μm)を準備した。尚、被覆はCVD法を用いて行い、また、SiOに対する炭素の割合は10質量%、SiO表面の炭素被覆率を100%とした。上記SiO1モルとLiOH0.2モルとを粉状態で混合して(SiOに対するLiOHの割合は20モル%となっている)、SiOの表面にLiOHを付着させた。次に、Ar雰囲気中、800℃で10時間熱処理することにより、内部にリチウムシリケート相が形成されたSiOを作製した。この熱処理後のSiOをXRD(線源はCuKαである)で解析したところ、図1に示すように、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、SiOの総モル数に対するリチウムシリケート相のモル数(以下、SiO中のリチウムシリケート相の割合、と称することがある)は5モル%であった。
Example 1
(Production of negative electrode)
SiO X (X = 0.93, average primary particle size: 5.0 μm) whose surface was coated with carbon was prepared. The coating was performed using a CVD method, the ratio of carbon to SiO X was 10 mass%, and the carbon coverage on the SiO X surface was 100%. 1 mol of SiO X and 0.2 mol of LiOH were mixed in a powder state (the ratio of LiOH to SiO X is 20 mol%), and LiOH was adhered to the surface of SiO X. Next, heat treatment was performed in an Ar atmosphere at 800 ° C. for 10 hours to produce SiO X in which a lithium silicate phase was formed. When SiO X after this heat treatment was analyzed by XRD (the radiation source was CuKα), as shown in FIG. 1, the peaks of Li 4 SiO 4 and Li 2 SiO 3 which are lithium silicates were confirmed. Further, the number of moles of lithium silicate phase to the total number of moles of SiO X (hereinafter, the ratio of the lithium silicate phase in the SiO X, may be referred to as) was 5 mol%.

なお、SiO表面の炭素被覆率は、次の方法で確認した。日立ハイテク社製のイオンミリング装置(ex. IM4000)を用いて、負極活物質粒子の断面を露出させ、粒子断面をSEM及び反射電子像で確認した。粒子断面の炭素被覆層とSiOとの界面は、反射電子像から特定した。そして、各SiO粒子表面における膜厚1nm以上の炭素被膜の割合を、粒子断面におけるSiO外周長に対する、膜厚1nm以上の炭素被膜とSiOとの界面長さの総和の比より算出した。SiO粒子30個の炭素被膜の割合の平均値を、炭素被覆率とした。The carbon coverage on the SiO X surface was confirmed by the following method. Using an ion milling device (ex. IM4000) manufactured by Hitachi High-Tech, the cross section of the negative electrode active material particles was exposed, and the particle cross section was confirmed by SEM and a backscattered electron image. The interface between the carbon coating layer in the particle cross section and SiO X was specified from the reflected electron image. Then, the ratio of the carbon film having a film thickness of 1 nm or more on the surface of each SiO X particle was calculated from the ratio of the sum of the interface lengths of the carbon film having a film thickness of 1 nm or more and SiO X to the outer peripheral length of SiO X in the particle cross section. . The average value of the ratio of the carbon coating of 30 SiO X particles was defined as the carbon coverage.

上記リチウムシリケート相が形成されたSiOと、バインダーであるPAN(ポリアクリロニトリル)とを、質量比で95:5となるように混合し、更に希釈溶媒としてのNMP(N−メチル−2−ピロリドン)を添加した。これを、混合機(プライミクス社製、ロボミックス)を用いて攪拌し、負極合剤スラリーを調製した。
上記負極合剤スラリーを、銅箔の片面上に負極合剤層のlm当りの質量が、25g/mとなるように塗布した。次に、これを大気中105℃で乾燥し、圧延することにより負極を作製した。尚、負極合剤層の充填密度は、1.50g/mlとした。
SiO X in which the lithium silicate phase is formed and PAN (polyacrylonitrile) as a binder are mixed at a mass ratio of 95: 5, and NMP (N-methyl-2-pyrrolidone as a dilution solvent) is further mixed. ) Was added. This was stirred using a mixer (Primics, Robomix) to prepare a negative electrode mixture slurry.
The negative electrode mixture slurry was applied on one surface of a copper foil such that the mass per lm 2 of the negative electrode mixture layer was 25 g / m 2 . Next, this was dried at 105 ° C. in the atmosphere and rolled to prepare a negative electrode. The filling density of the negative electrode mixture layer was 1.50 g / ml.

〔非水電解液の調製〕
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、体積比が3:7の割合となるように混合した混合溶媒に、六フッ化リン酸リチウム(LiPF)を、1.0モル/リットル添加して非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
To a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7, lithium hexafluorophosphate (LiPF 6 ) was added at 1.0 mol / liter. This was added to prepare a non-aqueous electrolyte.

〔電池の組み立て〕
不活性雰囲気中で、外周にNiタブを取り付けた上記負極と、リチウム金属箔と、負極とリチウム金属箔との間に配置させたポリエチレン製セパレータとを用いて電極体を作製した。この電極体を、アルミニウムラミネートからなる電池外装体内に入れ、更に、非水電解液を電池外装体内に注入し、その後電池外装体を封止して電池を作製した。このようにして作製した電池を、以下、電池A1と称する。
[Assembling the battery]
In an inert atmosphere, an electrode body was produced using the above negative electrode with a Ni tab attached to the outer periphery, a lithium metal foil, and a polyethylene separator disposed between the negative electrode and the lithium metal foil. This electrode body was put into a battery casing made of an aluminum laminate, and a non-aqueous electrolyte was injected into the battery casing, and then the battery casing was sealed to produce a battery. The battery thus produced is hereinafter referred to as battery A1.

(実施例2)
リチウム源とSiOとを混合して熱処理する際、リチウム源として、LiOHの代わりにLiCOを用いた(SiOに対するLiCOの割合は10モル%とした)こと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOを、XRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。このようにして作製した電池を、以下、電池A2と称する。
(Example 2)
When mixing and heat-treating the lithium source and SiO X , Li 2 CO 3 was used instead of LiOH as the lithium source (the ratio of Li 2 CO 3 to SiO X was 10 mol%), A battery was fabricated in the same manner as in Example 1 of the first example. Incidentally, the SiO X after heat treatment, was analyzed by XRD, the peak of the Li 4 SiO 4 and Li 2 SiO 3 is a lithium silicate was confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%. The battery thus produced is hereinafter referred to as battery A2.

(実施例4)
リチウム源とSiOとを混合して熱処理する際、リチウム源として、LiOHの代わりにLiClを用いた(SiOに対するLiClの割合は20モル%とした)こと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOを、XRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。このようにして作製した電池を、以下、電池A3と称する。
Example 4
When mixing and heat-treating the lithium source and SiO X , LiCl was used instead of LiOH as the lithium source (the ratio of LiCl to SiO X was 20 mol%). A battery was produced in the same manner as in Example 1. Incidentally, the SiO X after heat treatment, was analyzed by XRD, the peak of the Li 4 SiO 4 and Li 2 SiO 3 is a lithium silicate was confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%. The battery thus produced is hereinafter referred to as battery A3.

(実施例4)
リチウム源とSiOとを混合して熱処理する際、リチウム源として、LiOHの代わりにLiFを用いた(SiOに対するLiFの割合は20モル%とした)こと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOを、XRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。このようにして作製した電池を、以下、電池A4と称する。
Example 4
When the heat treatment was performed by mixing the lithium source and SiO X , LiF was used instead of LiOH as the lithium source (the ratio of LiF to SiO X was 20 mol%). A battery was produced in the same manner as in Example 1. Incidentally, the SiO X after heat treatment, was analyzed by XRD, the peak of the Li 4 SiO 4 and Li 2 SiO 3 is a lithium silicate was confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%. The battery thus produced is hereinafter referred to as battery A4.

(比較例)
LiOHとSiOとを混合せず、且つ、熱処理を行わなかった(即ち、負極活物質としてのSiOとして、未処理のSiOを用いた)こと以外は、上記第1実施例の実施例1と同様に電池を作製した。このSiOをXRDで解析したところ、図1に示すように、リチウムシリケート相は確認されなかった。このようにして作製した電池を、以下、電池Zと称する。
(Comparative example)
Example of the first example except that LiOH and SiO X were not mixed and heat treatment was not performed (that is, untreated SiO X was used as SiO X as the negative electrode active material). A battery was produced in the same manner as in Example 1. When this SiO X was analyzed by XRD, a lithium silicate phase was not confirmed as shown in FIG. The battery thus produced is hereinafter referred to as battery Z.

(実験)
上記電池A1〜A4、Zを、以下の条件で充放電し、下記(3)式で示す初回充放電効率と下記(4)式で示す10サイクル目の容量維持率とを調べたので、その結果を表1に示す。
〔充放電条件〕
0.2It(4mA)の電流で電圧が0Vになるまで定電流充電を行った後、0.05It(1mA)の電流で電圧が0Vになるまで定電流充電を行った。次に、10分間休止した後、0.2It(4mA)の電流で電圧が1.0Vになるまで定電流放電を行った。
(Experiment)
The batteries A1 to A4, Z were charged / discharged under the following conditions, and the initial charge / discharge efficiency represented by the following formula (3) and the capacity retention rate at the 10th cycle represented by the following formula (4) were examined. The results are shown in Table 1.
(Charging / discharging conditions)
Constant current charging was performed until the voltage became 0 V with a current of 0.2 It (4 mA), and then constant current charging was performed until the voltage became 0 V with a current of 0.05 It (1 mA). Next, after resting for 10 minutes, constant current discharge was performed until the voltage became 1.0 V at a current of 0.2 It (4 mA).

〔初回充放電効率の算出式〕
初回充放電効率(%)=(1サイクル目の放電容量/1サイクル目の充電容量)×100・・・(3)
〔10サイクル目の容量維持率の算出式〕
10サイクル目の容量維持率(%)=(10サイクル目の放電容量/1サイクル目の放電容量)×100・・・(4)
[Calculation formula for initial charge / discharge efficiency]
Initial charge / discharge efficiency (%) = (discharge capacity at the first cycle / charge capacity at the first cycle) × 100 (3)
[Calculation formula of capacity maintenance ratio at 10th cycle]
Capacity maintenance ratio (%) at 10th cycle = (discharge capacity at 10th cycle / discharge capacity at 1st cycle) × 100 (4)

内部にリチウムシリケート相を有するSiOを用いた電池A1〜A4は、内部にリチウムシリケート相を有していないSiOを用いた電池Zに比べて、初回充放電効率及びサイクル特性が向上することがわかる。これは、充放電前のSiOにおいて、予めリチウムシリケート相を有していれば、初回充電時に生成するLiSiOに奪われるリチウム量が少量で済み、充放電に関与できるリチウム量が増加するからである。また、内部にリチウムシリケート相を有するSiOは、内部にリチウムシリケート相を有していないSiOに比べた場合、充電量は同一であるにも関わらず、充電時の膨張度合いが小さくなる。したがって、充放電時の膨張収縮量の差が小さくなり、負極合剤層での剥離等が抑制されるからと考えられる。
尚、熱処理時に用いるリチウム化合物としては、LiOHに限らず、LiCO、LiCl、又はLiFでも同様の効果を発現することが確認できた。また、これら以外のリチウム化合物であっても、同様の効果を発現すると推測できる。
Batteries A1 to A4 using SiO X having a lithium silicate phase inside have improved initial charge / discharge efficiency and cycle characteristics as compared to battery Z using SiO X having no lithium silicate phase inside. I understand. This is because if SiO X before charge / discharge has a lithium silicate phase in advance, the amount of lithium taken away by Li 4 SiO 4 generated at the time of initial charge is small, and the amount of lithium that can be involved in charge / discharge increases. Because it does. In addition, SiO X having a lithium silicate phase inside has a smaller degree of expansion during charging although the charge amount is the same as SiO X having no lithium silicate phase inside. Therefore, it is considered that the difference in expansion and contraction during charge / discharge is reduced, and peeling at the negative electrode mixture layer is suppressed.
As the lithium compound used in the heat treatment is not limited to LiOH, Li 2 CO 3, LiCl , or LiF to express same effect it was confirmed. Moreover, it can be estimated that even if it is lithium compounds other than these, the same effect is expressed.

〈第2実施例〉
(実施例1)
LiOHとSiOとを混合して熱処理する際、SiOに対してLiOHを2モル%添加したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は0.5モル%であった。このようにして作製した電池を、以下、電池B1と称する。
<Second embodiment>
(Example 1)
When LiOH and SiO X were mixed and heat-treated, a battery was fabricated in the same manner as in Example 1 of the first example except that 2 mol% of LiOH was added to SiO X. When SiO X after the heat treatment was analyzed by XRD, a peak of Li 2 SiO 3 which is a lithium silicate was confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 0.5 mol%. The battery thus produced is hereinafter referred to as battery B1.

(実施例2)
LiOHとSiOとを混合して熱処理する際、SiOに対してLiOHを50モル%添加したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は12.5モル%であった。このようにして作製した電池を、以下、電池B2と称する。
(Example 2)
When LiOH and SiO X were mixed and heat-treated, a battery was fabricated in the same manner as in Example 1 of the first example except that 50 mol% of LiOH was added to SiO X. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 12.5 mol%. The battery thus produced is hereinafter referred to as battery B2.

(実施例3)
LiOHとSiOとを混合して熱処理する際、SiOに対してLiOHを80モル%添加したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は20モル%であった。このようにして作製した電池を、以下、電池B3と称する。
(Example 3)
When LiOH and SiO X were mixed and heat-treated, a battery was fabricated in the same manner as in Example 1 of the first example except that 80 mol% of LiOH was added to SiO X. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 20 mol%. The battery thus produced is hereinafter referred to as battery B3.

(実施例4)
LiOHとSiOとを混合して熱処理する際、SiOに対してLiOHを100モル%添加したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は25モル%であった。このようにして作製した電池を、以下、電池B4と称する。
Example 4
When LiOH and SiO X were mixed and heat-treated, a battery was fabricated in the same manner as in Example 1 of the first example except that 100 mol% of LiOH was added to SiO X. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 25 mol%. The battery thus produced is hereinafter referred to as battery B4.

(実験)
上記電池B1〜B4を、上記第1実施例の実験で示した条件と同様の条件で充放電し、上記(3)式で示した初回充放電効率と、上記(4)式で示した10サイクル目の容量維持率とを調べたので、その結果を表2に示す。尚、表2には電池A1、Zの結果についても記載している。
(Experiment)
The batteries B1 to B4 were charged / discharged under the same conditions as those shown in the experiment of the first embodiment, and the initial charge / discharge efficiency shown by the above formula (3) and the 10 shown by the above formula (4) were used. The capacity retention rate at the cycle was examined, and the results are shown in Table 2. Table 2 also shows the results of the batteries A1 and Z.

内部にリチウムシリケート相を有するSiOを用いた電池A1、B1〜B4は、内部にリチウムシリケート相を有していないSiOを用いた電池Zに比べて、初回充放電効率が高く、サイクル特性も良好であることがわかった。また、電池A1、B1〜B4を比較した場合、SiO中のリチウムシリケート相の割合が高いほど、初回充放電効率が高く、サイクル特性も良好であることがわかった。更に、SiO中のリチウムシリケート相の割合が12.5モル%以上の電池B2〜B4では、負極活物質としてSiOを用いた場合の理論充放電効率(75%)を越える初回充放電効率を示すことが確認できた。Batteries A1, B1 to B4 using SiO X having a lithium silicate phase inside have higher initial charge / discharge efficiency and cycle characteristics than battery Z using SiO X having no lithium silicate phase inside. Was also found to be good. Moreover, when comparing batteries A1 and B1 to B4, it was found that the higher the ratio of the lithium silicate phase in SiO X , the higher the initial charge / discharge efficiency and the better the cycle characteristics. Furthermore, in the batteries B2 to B4 in which the ratio of the lithium silicate phase in SiO X is 12.5 mol% or more, the initial charge / discharge efficiency exceeding the theoretical charge / discharge efficiency (75%) when SiO X is used as the negative electrode active material. It was confirmed that

以上より、SiO中のリチウムシリケート相の割合は0.5モル%以上25モル%以下であることが望ましい。SiO中のリチウムシリケート相の割合が0.5モル%未満の場合には、リチウムシリケート相を形成した効果が低くなり、当該割合が25モル%を超えると、充放電容量が低下する。From the above, it is desirable that the proportion of the lithium silicate phase in SiO X is 0.5 mol% or more and 25 mol% or less. When the proportion of the lithium silicate phase in SiO X is less than 0.5 mol%, the effect of forming the lithium silicate phase is reduced, and when the proportion exceeds 25 mol%, the charge / discharge capacity decreases.

〈第3実施例〉
(実施例1)
原料としてのSiO(熱処理前のSiO)として、平均一次粒子径が1.0μmであるSiO(x=0.93、炭素被覆量10質量%)を用いたこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。このようにして作製した電池を、以下、電池C1と称する。
<Third embodiment>
Example 1
As SiO X (SiO X before heat treatment) as a raw material, SiO X (x = 0.93, a carbon coating amount of 10 mass%) Average primary particle diameter of 1.0μm Except for using, the first A battery was fabricated in the same manner as in Example 1 of the example. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%. The battery thus produced is hereinafter referred to as battery C1.

(実施例2)
原料としてのSiO(熱処理前のSiO)として、平均一次粒子径が15.0μmであるSiO(x=0.93、炭素被覆量10質量%)を用いたこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。このようにして作製した電池を、以下、電池C2と称する。
(Example 2)
As SiO X (SiO X before heat treatment) as a raw material, SiO X (x = 0.93, a carbon coating amount of 10 mass%) Average primary particle size of 15.0μm Except for using, the first A battery was fabricated in the same manner as in Example 1 of the example. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%. The battery thus produced is hereinafter referred to as battery C2.

(実験)
上記電池C1、C2を、上記第1実施例の実験で示した条件と同様の条件で充放電し、上記(3)式で示した初回充放電効率と、上記(4)式で示した10サイクル目の容量維持率とを調べたので、その結果を表3に示す。尚、表3には電池A1、Zの結果についても記載している。
(Experiment)
The batteries C1 and C2 were charged / discharged under the same conditions as those shown in the experiment of the first example, and the initial charge / discharge efficiency shown by the above formula (3) and the 10 shown by the above formula (4). The capacity retention rate at the cycle was examined, and the results are shown in Table 3. Table 3 also shows the results of the batteries A1 and Z.

内部にリチウムシリケート相を有するSiOを用いた電池A1、C1、C2は、内部にリチウムシリケート相を有していないSiOを用いた電池Zに比べて、初回充放電効率が高く、サイクル特性も良好であることがわかった。したがって、SiOの平均一次粒子径は、1μm以上15μm以下であることが好ましい。尚、SiOの平均一次粒子径が1μm未満の場合には、粒子表面積が大きいため、電解液の副反応が起こり易くなる。一方、SiOの平均一次粒子径が15μmを超える場合は、化成処理時にリチウムがSiO内部まで拡散せず、多くのリチウムシリケート相がSiO表面に形成されるため、容量低下や負荷特性の低下を招くことがある。Cell A1, C1, C2 using a SiO X having an internal lithium silicate phase, than the batteries Z using the SiO X having no internal lithium silicate phase, high initial charge and discharge efficiency, cycle characteristics Was also found to be good. Therefore, the average primary particle diameter of SiO X is preferably 1 μm or more and 15 μm or less. In addition, when the average primary particle diameter of SiO X is less than 1 μm, the particle surface area is large, so that a side reaction of the electrolytic solution easily occurs. On the other hand, when the average primary particle diameter of SiO X exceeds 15 μm, lithium does not diffuse to the inside of the SiO X during the chemical conversion treatment, and many lithium silicate phases are formed on the surface of the SiO X. May cause a drop.

〈第4実施例〉
(実施例1)
熱処理後のSiOを、ろ液のpHが8.0になるまで純水で水洗、濾過して、熱処理後のSiOの表面から未反応のリチウム化合物を除去したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池D1と称する。
<Fourth embodiment>
Example 1
The SiO X after heat treatment, washed with pure water until pH of the filtrate reached 8.0, and filtered, except that removal of the lithium compound unreacted from the surface of the SiO X after the heat treatment, the first A battery was fabricated in the same manner as in Example 1 of the example. The battery thus produced is hereinafter referred to as battery D1.

(実施例2)
以下のような処理を、熱処理前に施したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。
SiOとLiOHとを混合する際、LiOHを予め水に溶解させた液に、所定量のSiOと、非イオン性界面活性剤(商品名:SNウエット980、サンノプコ社製ポリエーテル系界面活性剤)とを添加して、分散させた。尚、非イオン性界面活性剤の添加量は、固形分の総量に対して1質量%とした。次いで、上記分散液を温度110℃に設定した恒温槽で乾燥し、溶媒である水を除去した後、熱処理を行った。このようにして作製した電池を、以下、電池D2と称する。
(Example 2)
A battery was fabricated in the same manner as in Example 1 of the first example except that the following treatment was performed before the heat treatment.
When mixing SiO X and LiOH, a predetermined amount of SiO X and a nonionic surfactant (trade name: SN Wet 980, polyether-based surfactant manufactured by San Nopco Co., Ltd.) are added to a solution in which LiOH is previously dissolved in water. Agent) was added and dispersed. In addition, the addition amount of the nonionic surfactant was 1 mass% with respect to the total amount of solid content. Next, the dispersion was dried in a thermostatic bath set at a temperature of 110 ° C., water as a solvent was removed, and heat treatment was performed. The battery thus produced is hereinafter referred to as battery D2.

(実施例3)
熱処理後のSiOを、ろ液のpHが8.0になるまで純水で水洗、濾過して、熱処理後のSiOの表面から未反応リチウム化合物を除去したこと以外は、上記第4実施例の実施例2と同様にして電池を作製した。このようにして作製した電池を、以下、電池D3と称する。
Example 3
The SiO X after heat treatment, washed with pure water until pH of the filtrate reached 8.0, and filtered, except that to remove unreacted lithium compound from the surface of the SiO X after the heat treatment, the fourth embodiment A battery was fabricated in the same manner as in Example 2. The battery thus produced is hereinafter referred to as battery D3.

(実験)
上記電池D1〜D3を、上記第1実施例の実験で示した条件と同様の条件で充放電し、上記(3)式で示した初回充放電効率と、上記(4)式で示した10サイクル目の容量維持率とを調べたので、その結果を表4に示す。尚、表4には電池A1の結果についても記載している。
(Experiment)
The batteries D1 to D3 were charged / discharged under the same conditions as those shown in the experiment of the first embodiment, and the initial charge / discharge efficiency shown by the above formula (3) and the 10 shown by the above formula (4). The capacity retention rate at the cycle was examined, and the results are shown in Table 4. Table 4 also shows the results of battery A1.

熱処理後の水洗を行った電池D1は、水洗を行わなかった電池A1よりも、初回充放電効率及びサイクル特性が向上したことがわかる。電池D1の如く水洗を行えば、熱処理時の未反応物であるリチウム化合物を除去することができるので、負極活物質粒子の表面抵抗が低下する。したがって、放電時に負極活物質粒子間の導電パスが十分に形成されるからと考えられる。   It turns out that the battery D1 which performed the water washing after heat processing improved the first time charge / discharge efficiency and cycling characteristics rather than the battery A1 which did not wash with water. Washing with water as in the battery D1 can remove the lithium compound that is an unreacted substance during the heat treatment, so that the surface resistance of the negative electrode active material particles decreases. Therefore, it is considered that a sufficient conductive path is formed between the negative electrode active material particles during discharge.

また、熱処理前のSiOとリチウム化合物とを混合する際、予め界面活性剤を用いて湿式処理を行った電池D2は、熱処理前のSiOとリチウム化合物とを単に乾式混合した電池A1よりも、初回充放電効率及びサイクル特性が向上したことがわかる。電池D1の如く界面活性剤を添加して湿式で混練すれば、SiO表面により微細なLiOHが均一に析出する。このため、熱処理時に、より均一なリチウムシリケート相が形成されたことによると考えられる。In addition, when mixing SiO X before the heat treatment and the lithium compound, the battery D2, which has been wet-treated using a surfactant in advance, is more than the battery A1 simply dry-mixing the SiO X and the lithium compound before the heat treatment. It can be seen that the initial charge / discharge efficiency and the cycle characteristics were improved. When a surfactant is added and wet-kneaded as in the battery D1, fine LiOH is uniformly deposited on the SiO X surface. For this reason, it is considered that a more uniform lithium silicate phase was formed during the heat treatment.

更に、界面活性剤を用いた湿式処理と化成処理後の水洗処理とを行った電池D3は、一方の処理しか行っていない電池D1、D2に比べて、初回充放電効率及びサイクル特性が向上していることがわかる。したがって、2つの処理を組み合わせることで、更に特性を改善できる。
尚、上記実験結果より、SiO表面にLiOHを均一に配置させるのが好ましいことがわかったが、このような状
態とするには、上記湿式処理に限定するものではなく、乾式処理であっても達成できる。
Further, the battery D3 that has been subjected to the wet treatment using the surfactant and the water washing treatment after the chemical conversion treatment has improved initial charge / discharge efficiency and cycle characteristics compared to the batteries D1 and D2 that have been subjected to only one treatment. You can see that Therefore, the characteristics can be further improved by combining the two processes.
Incidentally, from the above experimental results, it was found that preferable to uniformly arrange the LiOH to SiO X surface, in such a state, not limited to the above wet process, a dry process Can also be achieved.

〈第5実施例〉
(実施例1)
[正極の作製]
正極活物質としてのコバルト酸リチウムと、導電剤としてのアセチレンブラック(電気化学工業社製、HS100)と、結着剤としてのポリフッ化ビニリデン(PVdF)とを、質量比が95.0:2.5:2.5の割合になるように秤量、混合し、分散媒としてのN−メチル−2−ピロリドン(NMP)を添加した。次に、これを混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極スラリーを調製した。次に、この正極スラリーを、アルミニウム箔から成る正極集電体の両面に塗布、乾燥した後、圧延ローラにより圧延して、正極集電体の両面に正極合剤層が形成された正極を作製した。尚、正極合剤層における充填密度は3.60g/mlとした。
<Fifth embodiment>
Example 1
[Production of positive electrode]
Lithium cobaltate as a positive electrode active material, acetylene black (HS100, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder have a mass ratio of 95.0: 2. Weighed and mixed to a ratio of 5: 2.5, and added N-methyl-2-pyrrolidone (NMP) as a dispersion medium. Next, this was stirred using a mixer (Primix Co., Ltd., TK Hibismix) to prepare a positive electrode slurry. Next, this positive electrode slurry is applied to both surfaces of a positive electrode current collector made of aluminum foil, dried, and then rolled by a rolling roller to produce a positive electrode in which a positive electrode mixture layer is formed on both surfaces of the positive electrode current collector. did. The filling density in the positive electrode mixture layer was 3.60 g / ml.

[負極の作製]
上記第1実施例の実施例1で用いた熱処理後のSiOと黒鉛との混合物を、負極活物質として用いた。尚、負極活物質の総量に対する熱処理後のSiOの割合は5質量%とした。上記負極活物質と、増粘剤としてのカルボキシメチルセルロース(CMC、ダイセルファインケム社製♯1380、エーテル化度:1.0〜1.5)と,結着剤としてのSBR(スチレン−ブタジエンゴム)とを、質量比で97.5:1.0:1.5となるように混合し、希釈溶媒としての水を添加した。これを、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、負極スラリーを調製した。次に、上記負極スラリーを、銅箔から成る負極集電体の両面に、負極合剤層の1m当たりの質量が190gとなるように均一に塗布した。次いで、これを大気中105℃で乾燥させた後、圧延ローラにより圧延して、負極集電体の両面に負極合剤層が形成された負極を作製した。尚、負極合剤層における充填密度は1.60g/mlとした。
[Production of negative electrode]
The mixture of SiO X and graphite after heat treatment used in Example 1 of the first example was used as the negative electrode active material. In addition, the ratio of SiO X after the heat treatment with respect to the total amount of the negative electrode active material was 5% by mass. The negative electrode active material, carboxymethylcellulose (CMC, manufactured by Daicel Finechem # 1380, degree of etherification: 1.0 to 1.5) as a thickener, and SBR (styrene-butadiene rubber) as a binder Were mixed at a mass ratio of 97.5: 1.0: 1.5, and water as a dilution solvent was added. This was stirred using a mixer (manufactured by Primics, TK Hibismix) to prepare a negative electrode slurry. Next, the said negative electrode slurry was apply | coated uniformly on both surfaces of the negative electrode collector which consists of copper foil so that the mass per 1 m < 2 > of a negative mix layer might be set to 190 g. Subsequently, after drying this at 105 degreeC in air | atmosphere, it rolled with the rolling roller, and produced the negative electrode by which the negative mix layer was formed on both surfaces of the negative electrode collector. The filling density in the negative electrode mixture layer was 1.60 g / ml.

[電池の作製]
上記正極と負極とを、ポリエチレン微多孔膜からなるセパレータを介して対向させた。次に、正極タブと負極タブとを、各電極における最外周部に位置するように正極及び負極に取り付けた後、正極、負極及びセパレータを渦巻き状に巻回して電極体を作製した。次いで、該電極体をアルミニウムラミネートからなる電池外装体内に配置し、105℃で2時間真空乾燥した。その後、上記第1実施例の実施例1で示した非水電解液と同一の非水電解液を上記電池外装体内に注入し、更に、電池外装体の開口部を封止することにより非水電解質二次電池を作製した。当該非水電解質二次電池の設計容量は800mAhである。このようにして作製した電池を、以下、電池E1と称する。
[Production of battery]
The positive electrode and the negative electrode were opposed to each other through a separator made of a polyethylene microporous film. Next, the positive electrode tab and the negative electrode tab were attached to the positive electrode and the negative electrode so as to be positioned on the outermost peripheral portion of each electrode, and then the positive electrode, the negative electrode, and the separator were wound in a spiral shape to produce an electrode body. Next, the electrode body was placed in a battery outer package made of an aluminum laminate and vacuum-dried at 105 ° C. for 2 hours. Thereafter, the same non-aqueous electrolyte as the non-aqueous electrolyte shown in Example 1 of the first embodiment is injected into the battery outer package, and the opening of the battery outer package is sealed to make the non-aqueous electrolyte. An electrolyte secondary battery was produced. The design capacity of the nonaqueous electrolyte secondary battery is 800 mAh. The battery thus produced is hereinafter referred to as battery E1.

(実施例2)
上記負極の作製において、負極活物質の総量に対する熱処理後のSiOの割合を10質量%としたこと以外は、上記第5実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池E2と称する。
(Example 2)
A battery was fabricated in the same manner as in Example 1 of the above fifth example, except that in the production of the negative electrode, the ratio of SiO X after heat treatment to the total amount of the negative electrode active material was 10% by mass. The battery thus produced is hereinafter referred to as battery E2.

(実施例3)
上記負極の作製において、負極活物質の総量に対する熱処理後のSiOの割合を20質量%としたこと以外は、上記第5実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池E3と称する。
(Example 3)
A battery was fabricated in the same manner as in Example 1 of the above fifth example, except that in the production of the negative electrode, the ratio of SiO X after heat treatment to the total amount of the negative electrode active material was 20% by mass. The battery thus produced is hereinafter referred to as battery E3.

(比較例1〜3)
SiOとして、未処理のSiO(熱処理していないSiO)を用いたこと以外は、それぞれ、上記第5実施例の実施例1〜実施例3と同様にして電池を作製した。このようにして作製した電池を、以下それぞれ、電池Y1〜Y3と称する。
(Comparative Examples 1-3)
As SiO X, except for using untreated SiO X (SiO X non-heat treated), respectively, the battery was fabricated in the same manner as in Example 1 to Example 3 of the fifth embodiment. The batteries thus produced are hereinafter referred to as batteries Y1 to Y3, respectively.

(実験)
上記電池E1〜E3、Y1〜Y3を、以下の条件で充放電し、上記(3)式で示した初回充放電効率とサイクル寿命とを調べたので、それらの結果を表5に示す。尚、1サイクル目の放電容量の80%に達したときのサイクル数をサイクル寿命とした。また、各電池のサイクル寿命は、電池Y1のサイクル寿命を100としたときの指数で表している。
更に、初回充放電効率とサイクル寿命とにおける向上率は、SiOの混合率が同じである電池同士を比較したときのものであり、例えば、電池E1の場合には、電池Y1に対する向上率である。
〔充放電条件〕
1.0It(800mA)電流で電池電圧が4.2Vとなるまで定電流充電を行った後、4.2Vの電圧で電流値が0.05It(40mA)となるまで定電圧充電を行った。10分間休止した後、1.0It(800mA)電流で電池電圧が2.75Vとなるまで定電流放電を行った。〔正極及び負極中のリチウム量xと正極活物質に含まれる金属元素Mの量Mとの比x/M〕
これらの電池において正極および負極中に含まれるリチウム量xと、正極材料に含まれる金属元素Mの量Mとを、既述のように定量し、x/M比を算出した結果を、表5に示す。
(Experiment)
The batteries E1 to E3 and Y1 to Y3 were charged / discharged under the following conditions, and the initial charge / discharge efficiency and cycle life indicated by the above equation (3) were examined. Table 5 shows the results. The cycle life was defined as the cycle number when the discharge capacity reached 80% of the first cycle. The cycle life of each battery is expressed as an index when the cycle life of the battery Y1 is 100.
Furthermore, the improvement rates in the initial charge / discharge efficiency and the cycle life are those when the batteries having the same mixing ratio of SiO X are compared. For example, in the case of the battery E1, the improvement rate with respect to the battery Y1. is there.
(Charging / discharging conditions)
After constant current charging at a current of 1.0 It (800 mA) until the battery voltage was 4.2 V, constant voltage charging was performed at a voltage of 4.2 V until the current value was 0.05 It (40 mA). After resting for 10 minutes, constant current discharge was performed until the battery voltage became 2.75 V at a current of 1.0 It (800 mA). [Ratio x / M of the amount M C of the metal element M contained in the lithium content x and the positive electrode active material for the positive electrode and the negative electrode]
And the amount of lithium x contained in the positive electrode and the negative electrode in these cells, and the amount M C of the metal element M contained in the positive electrode material, the results were quantified as described above, was calculated x / M C ratio, Table 5 shows.

上記表5から明らかなように、電池E1〜E3は電池Y1〜Y3に比べて、初回充放電効率とサイクル特性とが向上していることが認められる。したがって、SiOと黒鉛とを混合した負極活物質を用いた場合であっても、SiOとして、熱処理後のSiO(内部にリチウムシリケート相を有するSiO)を用いることが好ましいことがわかる。
また、SiOの割合が高いほど、初回充放電効率における向上率とサイクル特性における向上率とが高くなっていることが認められる。但し、SiOの割合が高くなり過ぎると、負極合剤層の剥がれが顕著に生じることがある。したがって、SiOの割合は20質量%以下であることが好ましい。尚、SiOの割合が少な過ぎると、SiOの添加効果が十分に発揮されないので、SiOの割合は1質量%以上であることが望ましい。
As apparent from Table 5 above, it is recognized that the batteries E1 to E3 have improved initial charge / discharge efficiency and cycle characteristics as compared with the batteries Y1 to Y3. Therefore, even in the case of using a negative electrode active material of a mixture of SiO X and graphite, as SiO X, it can be seen that it is preferable to use a SiO X after heat treatment (SiO X having an internal lithium silicate phase) .
Moreover, it is recognized that the improvement rate in the initial charge / discharge efficiency and the improvement rate in the cycle characteristics are higher as the ratio of SiO X is higher. However, if the ratio of SiO X becomes too high, the negative electrode mixture layer may be peeled off significantly. Therefore, the proportion of SiO X is preferably 20% by mass or less. Incidentally, when the ratio of SiO X is too small, since the effect of the addition of SiO X is not sufficiently exhibited, it is preferable ratio of SiO X is at least 1 mass%.

〈第6実施例〉
(実施例1)
[負極の作製]
上記第1実施例の実施例1で用いた熱処理後のSiOと黒鉛との混合物を、負極活物質として用いた。尚、負極活物質の総量に対する熱処理後のSiOの割合は5質量%とした。上記負極活物質と、増粘剤としてのカルボキシメチルセルロース(CMC、ダイセルファインケム社製♯1380、エーテル化度:1.0〜1.5)と,結着剤としてのSBR(スチレン−ブタジエンゴム)とを、質量比で97.5:1.0:1.5となるように混合し、希釈溶媒としての水を添加した。これを、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、負極スラリーを調製した。次に、上記負極スラリーを、銅箔から成る負極集電体の両面に、負極合剤層の1m当たりの質量が190gとなるように均一に塗布した。次いで、これを大気中105℃で乾燥させた後、圧延ローラにより圧延して、負極集電体の両面に負極合剤層が形成された負極を作製した。尚、負極合剤層における充填密度は1.60g/mlとした。
<Sixth embodiment>
Example 1
[Production of negative electrode]
The mixture of SiO X and graphite after heat treatment used in Example 1 of the first example was used as the negative electrode active material. In addition, the ratio of SiO X after the heat treatment with respect to the total amount of the negative electrode active material was 5% by mass. The negative electrode active material, carboxymethylcellulose (CMC, manufactured by Daicel Finechem # 1380, degree of etherification: 1.0 to 1.5) as a thickener, and SBR (styrene-butadiene rubber) as a binder Were mixed at a mass ratio of 97.5: 1.0: 1.5, and water as a dilution solvent was added. This was stirred using a mixer (manufactured by Primics, TK Hibismix) to prepare a negative electrode slurry. Next, the said negative electrode slurry was apply | coated uniformly on both surfaces of the negative electrode collector which consists of copper foil so that the mass per 1 m < 2 > of a negative mix layer might be set to 190 g. Subsequently, after drying this at 105 degreeC in air | atmosphere, it rolled with the rolling roller, and produced the negative electrode by which the negative mix layer was formed on both surfaces of the negative electrode collector. The filling density in the negative electrode mixture layer was 1.60 g / ml.

〔非水電解液の調製〕
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、体積比が3:7の割合となるように混合した混合溶媒に、六フッ化リン酸リチウム(LiPF)を、1.0モル/リットル添加して非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
To a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7, lithium hexafluorophosphate (LiPF 6 ) was added at 1.0 mol / liter. This was added to prepare a non-aqueous electrolyte.

〔電池の組み立て〕
不活性雰囲気中で、外周にNiタブを取り付けた上記負極と、リチウム金属箔と、負極とリチウム金属箔との間に配置させたポリエチレン製セパレータとを用いて電極体を作製した。この電極体を、アルミニウムラミネートからなる電池外装体内に入れ、更に、非水電解液を電池外装体内に注入し、その後電池外装体を封止して電池を作製した。このようにして作製した電池を、以下、電池F1と称する。
[Assembling the battery]
In an inert atmosphere, an electrode body was produced using the above negative electrode with a Ni tab attached to the outer periphery, a lithium metal foil, and a polyethylene separator disposed between the negative electrode and the lithium metal foil. This electrode body was put into a battery casing made of an aluminum laminate, and a non-aqueous electrolyte was injected into the battery casing, and then the battery casing was sealed to produce a battery. The battery thus produced is hereinafter referred to as battery F1.

(実施例2)
原料としてのSiO(熱処理前のSiO)として、平均一次粒子径が1.0μmであるSiO(x=0.93、炭素被覆量10質量%)を用いたこと以外は、上記第6実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。このようにして作製した電池を、以下、電池F2と称する。
(Example 2)
As SiO X (SiO X before heat treatment) as a raw material, SiO X (x = 0.93, a carbon coating amount of 10 mass%) Average primary particle diameter of 1.0μm Except for using, the sixth A battery was fabricated in the same manner as in Example 1 of the example. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. The battery thus produced is hereinafter referred to as battery F2.

(実施例3)
原料としてのSiO(熱処理前のSiO)として、平均一次粒子径が0.5μmであるSiO(x=0.93、炭素被覆量10質量%)を用いたこと以外は、上記第6実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。このようにして作製した電池を、以下、電池F3と称する。
(Example 3)
As SiO X (SiO X before heat treatment) as a raw material, SiO X (x = 0.93, a carbon coating amount of 10 mass%) Average primary particle size of 0.5μm Except for using, the sixth A battery was fabricated in the same manner as in Example 1 of the example. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. The battery thus produced is hereinafter referred to as battery F3.

(比較例1)
SiO(x=0.93、平均一次粒子径15.0μm)とLiOH0.2mol(SiOxに対しLiOHを0.2mol%)を、遊星ボールミルを用いて混合し、平均一次粒子径5.0μmのSiOを作製した。さらに黒鉛を加えて混合した後、ハードカーボンと複合化し、Ar雰囲気中800℃で5時間熱処理し、平均一次粒子径40μmの負極活物質を作製した。
負極活物質と黒鉛とを、質量比で10:90(SiO:黒鉛=5:95)としたこと以外は、上記第6実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池Z1と称する。
(Comparative Example 1)
SiO X (x = 0.93, average primary particle diameter 15.0 μm) and LiOH 0.2 mol (0.2 mol% of LiOH with respect to SiOx) were mixed using a planetary ball mill, and the average primary particle diameter was 5.0 μm. SiO X was produced. Further, graphite was added and mixed, and then composited with hard carbon and heat-treated in an Ar atmosphere at 800 ° C. for 5 hours to prepare a negative electrode active material having an average primary particle diameter of 40 μm.
A battery was fabricated in the same manner as in Example 1 of the sixth example except that the negative electrode active material and graphite were 10:90 (SiO: graphite = 5: 95) in mass ratio. The battery thus produced is hereinafter referred to as battery Z1.

(比較例2)
ボールミル処理後の平均一次粒子径を1.0μmとしたSiO(x=0.93、炭素被覆量10質量%)を用い、ハードカーボンと複合後の負極活物質の平均一次粒子径を8.0μmとしたこと以外は、上記第6実施例の比較例1と同様にして電池を作製した。このように作製した電池を、以下、電池Z2と称する。
(Comparative Example 2)
Using SiO X (x = 0.93, carbon coverage 10 mass%) with an average primary particle size after ball milling of 1.0 μm, the average primary particle size of the negative active material combined with hard carbon is 8. A battery was fabricated in the same manner as in Comparative Example 1 of the sixth example except that the thickness was 0 μm. The battery thus produced is hereinafter referred to as battery Z2.

(比較例3)
ボールミル処理後の平均一次粒子径を0.5μmとしたSiO(x=0.93、炭素被覆量10質量%)を用い、ハードカーボンと複合後の負極活物質の平均一次粒子径を4.0μmとしたこと以外は、上記第6実施例の比較例1と同様にして電池を作製した。このように作製した電池を、以下、電池Z3と称する。
尚、上記第6実施例の比較例1〜比較例3の電池Z1〜Z3に使用された負極活物質は、特許文献2に近い内容である。
(Comparative Example 3)
Using SiO X (x = 0.93, carbon coating amount 10% by mass) with an average primary particle size after ball milling of 0.5 μm, the average primary particle size of the negative active material combined with hard carbon is 4. A battery was fabricated in the same manner as in Comparative Example 1 of the sixth example except that the thickness was 0 μm. The battery thus produced is hereinafter referred to as battery Z3.
In addition, the negative electrode active material used for the batteries Z1 to Z3 of Comparative Examples 1 to 3 of the sixth embodiment is similar to that of Patent Document 2.

(実験)
(電池性能評価)
上記電池F1〜F3、Z1〜Z3の初回充電容量及び上記(3)式で示した初回充放電効率を測定したので、それらの結果を表6に示す。尚、充放電条件は、上記第1実施例の実験で示した条件と同様である。
(Experiment)
(Battery performance evaluation)
Since the initial charge capacities of the batteries F1 to F3 and Z1 to Z3 and the initial charge and discharge efficiency shown by the above formula (3) were measured, the results are shown in Table 6. The charging / discharging conditions are the same as the conditions shown in the experiment of the first embodiment.

上記表6から明らかなように、電池F1〜F3は電池Z1〜Z3に比べて、初回充電容量と初回充放電効率とが向上していることが認められる。
電池Z1〜Z3に使用されている負極活物質は、炭素質中にSiOを分散させた構造を持つ。一方、電池F1〜F3における負極活物質は、SiO表面に薄く炭素被覆膜を有する構造を持つ。SiOの粒径が1.0μm未満の場合、炭素質中にSiOを分散させた構造とSiO表面に薄く炭素被覆膜を有する構造の違いにおける電池特性の差異は小さいことが認められる。一方、SiOの粒径が1.0μm以上の場合、SiO表面に薄く炭素被覆膜を有する構造の方が、初回充電容量、初回充放電効率共に大きいことが分かる。これは、特許文献2に記載の炭素質中にSiOを分散させた構造の場合、SiOを覆っている炭素質が抵抗となり、充放電時のSiOの利用率を下げていることが考えられるためである。上記表6の結果より、SiO表面に薄く炭素被覆膜を有する構造でかつ、粒径が1.0μm以上の場合に、SiOの利用率を高め、初回効率が上がる効果が認められる。
As is apparent from Table 6 above, it is recognized that the batteries F1 to F3 have improved initial charge capacity and initial charge / discharge efficiency compared to the batteries Z1 to Z3.
The negative electrode active material used in the batteries Z1 to Z3 has a structure in which SiO is dispersed in carbon. On the other hand, the negative electrode active materials in the batteries F1 to F3 have a structure having a thin carbon coating film on the SiO surface. When the particle size of SiO is less than 1.0 μm, it is recognized that the difference in battery characteristics between the structure in which SiO is dispersed in the carbonaceous material and the structure having a thin carbon coating film on the SiO surface is small. On the other hand, when the particle size of SiO is 1.0 μm or more, it can be seen that the structure having a thin carbon coating film on the SiO surface has a larger initial charge capacity and initial charge / discharge efficiency. This is because in the case of the structure in which SiO is dispersed in the carbonaceous material described in Patent Document 2, it is considered that the carbonaceous material covering the SiO serves as a resistance, reducing the utilization rate of SiO during charging and discharging. It is. From the results of Table 6 above, it can be seen that when the structure has a thin carbon coating film on the SiO surface and the particle diameter is 1.0 μm or more, the SiO utilization rate is increased and the initial efficiency is increased.

〈第7実施例〉
(実施例1)
SiOに対する炭素の割合を2質量%、SiO表面の炭素被覆率を80%としたこと以外は、第1実施例の実施例2と同様にして、電池を作製した。このように作製した電池を、以下、電池G1と称する。
<Seventh embodiment>
Example 1
2 wt% the proportion of carbon to SiO X, except that the carbon coverage of the SiO X surface and 80%, in the same manner as in Example 2 of the first embodiment, a battery was prepared. The battery thus manufactured is hereinafter referred to as battery G1.

(実施例2)
SiOに対する炭素の割合を1.5質量%、SiO表面の炭素被覆率を50%としたこと以外は、第1実施例の実施例2と同様にして、電池を作製した。このように作製した電池を、以下、電池G2と称する。
(Example 2)
1.5 wt% the proportion of carbon to SiO X, carbon coverage of SiO X surface except that was 50%, in the same manner as in Example 2 of the first embodiment, a battery was prepared. The battery thus produced is hereinafter referred to as battery G2.

(比較例1)
SiO表面に炭素被覆を行わなかったこと以外は、第1実施例の実施例2と同様にして、電池を作製した。このように作製した電池を、以下、電池R1と称する。
(Comparative Example 1)
A battery was fabricated in the same manner as in Example 2 of the first example except that the SiO X surface was not coated with carbon. The battery thus produced is hereinafter referred to as battery R1.

(比較例2)
SiO表面に炭素被覆を行わなかったこと以外は、第1実施例の比較例1と同様にして、電池を作製した。このように作製した電池を、以下、電池R2と称する。
(Comparative Example 2)
A battery was fabricated in the same manner as Comparative Example 1 of the first example except that the SiO X surface was not coated with carbon. The battery thus manufactured is hereinafter referred to as battery R2.

(実験)
上記電池G1〜G2及びR1〜R2を、上記第1実施例の実験で示した条件と同様の条件で充放電し、上記(3)式で示した初回充放電効率と、上記(4)式で示した10サイクル目の容量維持率とを調べたので、その結果を表7に示す。尚、表7には電池A2、Zの結果についても記載している。
(Experiment)
The batteries G1 to G2 and R1 to R2 are charged and discharged under the same conditions as those shown in the experiment of the first example, and the initial charge and discharge efficiency shown by the above formula (3) and the above formula (4) The capacity retention rate at the 10th cycle shown in Fig. 7 was examined, and the results are shown in Table 7. Table 7 also shows the results of batteries A2 and Z.

上記表7から明らかなように、表面の50%以上が炭素被覆され、かつ、リチウムシリケート相を有するSiOを用いた電池A2及びG1〜G2は電池R1〜R2及びZに比べて、初回充放電効率とサイクル特性とが向上していることが認められる。As is clear from Table 7 above, the batteries A2 and G1 to G2 using SiO X having 50% or more of the surface coated with carbon and having a lithium silicate phase are first charged compared to the batteries R1 to R2 and Z. It can be seen that the discharge efficiency and cycle characteristics are improved.

本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源で、特に高容量が必要とされる用途に適用することができる。また、高温での連続駆動が要求される高出力用途で、電気自動車や電動工具といった電池の動作環境が厳しい用途にも展開が期待できる。   The present invention can be applied to a drive power source of a mobile information terminal such as a mobile phone, a notebook personal computer, and a PDA, for example, in applications that require a particularly high capacity. In addition, it can be expected to be used in high output applications that require continuous driving at high temperatures, and in applications where the battery operating environment is severe, such as electric vehicles and power tools.

Claims (7)

非水電解質二次電池用負極活物質粒子であって、Negative electrode active material particles for a non-aqueous electrolyte secondary battery,
上記粒子は、その表面にのみ炭素を備え、The particles comprise carbon only on the surface,
上記粒子は、内部にLiシリケート相を含むSiOThe particles are composed of SiO containing Li silicate phase inside. X (0.8≦X≦1.2)粒子を備え、(0.8 ≦ X ≦ 1.2) particles,
上記SiOSiO X 粒子の表面は、炭素で50%以上100%以下被覆されている、The surface of the particle is coated with carbon by 50% or more and 100% or less,
非水電解質二次電池用負極活物質粒子。Negative electrode active material particles for nonaqueous electrolyte secondary batteries.
上記SiO 粒子の総モル量に対する、上記リチウムシリケート相のモル数の割合が、0.5mol%以上25mol%以下である、請求項1に記載の非水電解質二次電池用負極活物質粒子2. The negative electrode active material particles for a nonaqueous electrolyte secondary battery according to claim 1, wherein the ratio of the number of moles of the lithium silicate phase to the total mole amount of the SiO X particles is 0.5 mol% or more and 25 mol% or less. 上記SiO 粒子の表面が、炭素で100%被覆されている、請求項1又は2に記載の非水電解質二次電池用負極活物質粒子The negative electrode active material particles for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the surface of the SiO X particles is 100% coated with carbon. 上記SiO 粒子の平均一次粒子径は、1μm以上15μm以下である、請求項1〜3の何れか1項に記載の非水電解質二次電池用負極活物質粒子4. The negative active material particle for a non-aqueous electrolyte secondary battery according to claim 1, wherein an average primary particle diameter of the SiO X particles is 1 μm or more and 15 μm or less. 請求項1〜4の何れか1項に記載の負極活物質粒子と、黒鉛粒子を備える、非水電解質二次電池用負極活物質 A negative electrode active material for a non-aqueous electrolyte secondary battery, comprising the negative electrode active material particles according to claim 1 and graphite particles . 請求項1〜4の何れか1項に記載の負極活物質粒子または請求項5に記載の負極活物質を含む負極と、
正極活物質を含む正極と、
上記正極と上記負極との間に配置されたセパレータと、
非水電解質と、
を備える非水電解質二次電池。
A negative electrode comprising the negative electrode active material particle according to any one of claims 1 to 4 or the negative electrode active material according to claim 5 ,
A positive electrode including a positive electrode active material;
A separator disposed between the positive electrode and the negative electrode;
A non-aqueous electrolyte,
A non-aqueous electrolyte secondary battery.
前記正極活物質が、リチウムと、金属元素Mとを含む酸化物を含み、
前記金属元素Mが、コバルト、ニッケルを含む群より選択される少なくとも一種を含み

前記正極および前記負極に含まれるリチウム量の総和xと、前記酸化物に含まれる前記金属元素Mの量MCとの比率x/MCが、1.01より大きい、請求項6に記載の非水電解質二次電池。
The positive electrode active material includes an oxide containing lithium and a metal element M;
The metal element M includes at least one selected from the group including cobalt and nickel,
The non-aqueous solution according to claim 6, wherein a ratio x / MC between a total amount x of lithium contained in the positive electrode and the negative electrode and an amount MC of the metal element M contained in the oxide is larger than 1.01. Electrolyte secondary battery.
JP2014538138A 2012-09-27 2013-09-11 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the negative electrode active material Active JP6092885B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012214841 2012-09-27
JP2012214841 2012-09-27
JP2013061394 2013-03-25
JP2013061394 2013-03-25
PCT/JP2013/005377 WO2014049992A1 (en) 2012-09-27 2013-09-11 Negative electrode active material for non-aqueous electrolyte rechargeable battery, and non-aqueous electrolyte rechargeable battery using negative electrode active material

Publications (2)

Publication Number Publication Date
JPWO2014049992A1 JPWO2014049992A1 (en) 2016-08-22
JP6092885B2 true JP6092885B2 (en) 2017-03-08

Family

ID=50387439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014538138A Active JP6092885B2 (en) 2012-09-27 2013-09-11 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the negative electrode active material

Country Status (4)

Country Link
US (1) US20150221950A1 (en)
JP (1) JP6092885B2 (en)
CN (1) CN104603993B (en)
WO (1) WO2014049992A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437074B1 (en) * 2011-10-24 2014-09-02 주식회사 엘지화학 Manufacturing Method of Negative Active Material, Negative Active Material thereof And Lithium Secondary Battery Comprising The Same
JP6474548B2 (en) * 2014-01-16 2019-02-27 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode material and method for producing negative electrode active material particles
KR102367610B1 (en) * 2014-07-15 2022-02-28 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
WO2016121320A1 (en) * 2015-01-28 2016-08-04 三洋電機株式会社 Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6386414B2 (en) * 2015-04-22 2018-09-05 信越化学工業株式会社 Anode active material for nonaqueous electrolyte secondary battery, method for producing the same, nonaqueous electrolyte secondary battery using the anode active material, and method for producing anode material for nonaqueous electrolyte secondary battery
JP6389159B2 (en) * 2015-10-08 2018-09-12 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for producing nonaqueous electrolyte secondary battery negative electrode material, and method for producing nonaqueous electrolyte secondary battery
JP6422847B2 (en) * 2015-11-17 2018-11-14 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6445956B2 (en) * 2015-11-17 2018-12-26 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP6460960B2 (en) * 2015-11-18 2019-01-30 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6535581B2 (en) * 2015-11-18 2019-06-26 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP6453203B2 (en) 2015-11-20 2019-01-16 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, and method for producing lithium ion secondary battery
JP6496672B2 (en) * 2016-01-21 2019-04-03 信越化学工業株式会社 Method for producing negative electrode active material and method for producing non-aqueous electrolyte secondary battery
JP7078346B2 (en) * 2016-02-15 2022-05-31 信越化学工業株式会社 Method for manufacturing negative electrode active material and lithium ion secondary battery
JP6867821B2 (en) 2016-02-23 2021-05-12 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material material, negative electrode for non-aqueous electrolyte secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, negative electrode active material manufacturing method, negative electrode manufacturing method, and lithium ion secondary Battery manufacturing method
JP6688663B2 (en) * 2016-04-07 2020-04-28 株式会社大阪チタニウムテクノロジーズ Li-containing silicon oxide powder and method for producing the same
HUE062435T2 (en) * 2016-06-02 2023-11-28 Lg Energy Solution Ltd Cathode active material, cathode comprising same, and lithium secondary battery comprising same
JP6704327B2 (en) * 2016-10-21 2020-06-03 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6876946B2 (en) * 2016-11-30 2021-05-26 パナソニックIpマネジメント株式会社 Negative electrode material and non-aqueous electrolyte secondary battery
CN106816594B (en) * 2017-03-06 2021-01-05 贝特瑞新材料集团股份有限公司 Composite, preparation method thereof and application thereof in lithium ion secondary battery
JP2018152161A (en) * 2017-03-09 2018-09-27 株式会社豊田自動織機 Negative electrode material
JP6634398B2 (en) * 2017-03-13 2020-01-22 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6765997B2 (en) * 2017-03-13 2020-10-07 信越化学工業株式会社 Negative electrode material, manufacturing method of the negative electrode material, and mixed negative electrode material
KR102223723B1 (en) 2017-05-12 2021-03-05 주식회사 엘지화학 Negative eletrode active material, negative electrode comprising the negative electrode material and lithium secondarty battery comprising the negative electrode
EP3719880A4 (en) * 2017-11-29 2020-12-23 Panasonic Intellectual Property Management Co., Ltd. Lithium ion battery
WO2019130787A1 (en) * 2017-12-28 2019-07-04 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery
US11152613B2 (en) 2018-01-19 2021-10-19 Amprius, Inc. Stabilized, prelithiated silicon oxide particles for lithium ion battery anodes
US11605811B2 (en) 2018-01-30 2023-03-14 Lg Energy Solution, Ltd. Negative electrode active material, preparation method thereof, negative electrode including the negative electrode active material, and secondary battery including the negative electrode
JP6981338B2 (en) * 2018-03-28 2021-12-15 トヨタ自動車株式会社 Negative electrode materials, non-aqueous electrolyte secondary batteries and their manufacturing methods
AU2019359479A1 (en) * 2018-10-12 2021-05-27 Albemarle Corporation Particles comprising silicon and lithium
CN109755500B (en) * 2018-12-05 2022-06-24 华为技术有限公司 Silica composite negative electrode material and preparation method thereof
CN111293284B (en) 2018-12-07 2023-02-28 贝特瑞新材料集团股份有限公司 Negative electrode material, preparation method and application thereof
US11594725B1 (en) * 2019-12-03 2023-02-28 GRU Energy Lab Inc. Solid state pretreatment of active materials for negative electrodes in electrochemical cells
CN112349895B (en) * 2020-10-23 2023-08-15 欣旺达电动汽车电池有限公司 Composite negative electrode material, preparation method thereof and lithium ion battery
KR102511822B1 (en) * 2021-02-18 2023-03-17 에스케이온 주식회사 Anode active material for lithium secondary battery and lithium secondary battery including the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702510B2 (en) * 2001-09-05 2011-06-15 信越化学工業株式会社 Lithium-containing silicon oxide powder and method for producing the same
JP4533822B2 (en) * 2005-08-24 2010-09-01 株式会社東芝 Nonaqueous electrolyte battery and negative electrode active material
US8216719B2 (en) * 2006-02-13 2012-07-10 Hitachi Maxell Energy, Ltd. Non-aqueous secondary battery and method for producing the same
JP2009277485A (en) * 2008-05-14 2009-11-26 Toyota Motor Corp METHOD OF MANUFACTURING Si/C COMPLEX TYPE NEGATIVE ELECTRODE ACTIVE MATERIAL
JP5464653B2 (en) * 2009-11-27 2014-04-09 日立マクセル株式会社 Non-aqueous secondary battery and manufacturing method thereof
CN102122708A (en) * 2010-01-08 2011-07-13 中国科学院物理研究所 Negative pole material for lithium-ion secondary battery, negative pole containing negative pole material, preparation method of negative pole and battery containing negative pole
JP5566723B2 (en) * 2010-03-01 2014-08-06 古河電気工業株式会社 Fine particle mixture, active material aggregate, positive electrode active material, positive electrode, secondary battery, and production method thereof
JP5411780B2 (en) * 2010-04-05 2014-02-12 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing anode material for non-aqueous electrolyte secondary battery, and lithium ion secondary battery
WO2012054766A2 (en) * 2010-10-22 2012-04-26 Amprius Inc. Composite structures containing high capacity porous active materials constrained in shells
KR101181848B1 (en) * 2011-01-28 2012-09-11 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
JP5729163B2 (en) * 2011-06-24 2015-06-03 トヨタ自動車株式会社 Negative electrode active material and method for producing negative electrode active material

Also Published As

Publication number Publication date
CN104603993B (en) 2017-09-01
US20150221950A1 (en) 2015-08-06
JPWO2014049992A1 (en) 2016-08-22
CN104603993A (en) 2015-05-06
WO2014049992A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP6092885B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the negative electrode active material
JP6092558B2 (en) Method for producing negative electrode active material
CN110800142B (en) Negative active material for lithium secondary battery and method for preparing same
JP6652125B2 (en) Non-aqueous electrolyte secondary battery
KR101378125B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP6129404B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP6314990B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the negative electrode active material
Shen et al. Lithium cobalt oxides functionalized by conductive Al-doped ZnO coating as cathode for high-performance lithium ion batteries
Wu et al. Sol–gel synthesis of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
He et al. SmPO4-coated Li1. 2Mn0. 54Ni0. 13Co0. 13O2 as a cathode material with enhanced cycling stability for lithium ion batteries
JP6105556B2 (en) Nonaqueous electrolyte secondary battery
Liu et al. Low-temperature and high-performance Si/graphite composite anodes enabled by sulfite additive
KR20230109122A (en) Anode for secondary battery, secondary battery including the same
JP2020510976A (en) Cathode for secondary battery, method of manufacturing the same, and lithium secondary battery manufactured using the same
JP2012049124A (en) Nonaqueous electrolyte secondary battery
JP6232931B2 (en) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
CA2949364A1 (en) Silicon material and negative electrode of secondary battery
KR101722960B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP6913067B2 (en) A method of extending the life of a silicon-based negative electrode with particles having a silicon oxide- and LiPON coating.
JP7415019B2 (en) Lithium manganate positive electrode active materials, positive electrode sheets containing the same, secondary batteries, battery modules, battery packs, and electrical devices
KR20220126101A (en) Anode active material for secondary battery, secondary battery including the same and method of preparing the same
CA2950251C (en) Silicon material and negative electrode of secondary battery
Xu et al. Improve electrochemical performance of LiFePO 4/C cathode by coating Ti 2 O 3 through a facile route
EP4148823A1 (en) Anode active material and lithium secondary battery including the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170209

R150 Certificate of patent or registration of utility model

Ref document number: 6092885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350