CN102122708A - Negative pole material for lithium-ion secondary battery, negative pole containing negative pole material, preparation method of negative pole and battery containing negative pole - Google Patents

Negative pole material for lithium-ion secondary battery, negative pole containing negative pole material, preparation method of negative pole and battery containing negative pole Download PDF

Info

Publication number
CN102122708A
CN102122708A CN2010100340081A CN201010034008A CN102122708A CN 102122708 A CN102122708 A CN 102122708A CN 2010100340081 A CN2010100340081 A CN 2010100340081A CN 201010034008 A CN201010034008 A CN 201010034008A CN 102122708 A CN102122708 A CN 102122708A
Authority
CN
China
Prior art keywords
negative electrode
preferably
si
negative pole
material
Prior art date
Application number
CN2010100340081A
Other languages
Chinese (zh)
Inventor
李泓
钟开富
陈立泉
黄学杰
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Priority to CN2010100340081A priority Critical patent/CN102122708A/en
Publication of CN102122708A publication Critical patent/CN102122708A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

The invention relates to a negative pole material for a lithium-ion secondary battery, and the negative pole material comprises composite particles in core-shell structures, conductive additives and an amide type high-temperature-resistant binder, wherein each composite particle in the core-shell structure comprises an inner core and an outer shell layer, each inner core contains at least one of elemental silicon, a silicon oxide and a silicon alloy, and each outer shell layer is coated by one or more of inorganic materials, namely C, Cu, Ni, Fe, Cr, Al2O3, TiO2, LiPO3, Li2Si2O5, Li2SiO3, Li4SiO4, Li8SiO6 and SiO2; and the amide type high-temperature-resistant binder is one or more of polyamide, imide and amide-imide. The invention further relates to a negative pole containing the negative pole material and a preparation method thereof. The invention further relates to a battery containing the negative pole. The battery has the advantages of higher charge-discharge capacity, better cycle property and high safety, and is suitable for various mobile electronic devices or devices requiring mobile energy sources for driving.

Description

用于锂离子二次电池的负极材料、含该负极材料的负极及其制备方法以及含该负极的电池 A negative electrode material for a lithium ion secondary battery, a negative electrode and a preparation method comprising the negative electrode material and the negative electrode cell containing

技术领域 FIELD

[0001] 本发明涉及一种用于锂离子二次电池的负极材料、含该负极材料的负极及其制备方法以及含该负极的电池。 [0001] The present invention relates to a negative electrode material for a lithium ion secondary battery, the negative electrode containing the negative electrode material and its preparation method and containing the negative electrode of the battery.

背景技术 Background technique

[0002] 设备便携化和各种电子元件的快速发展,对高能量密度二次电池的需求日益增加,其中,锂离子二次电池以其比能量高,轻便,工作电压高等特点,成为化学电源未来的发展方向。 [0002] Portable devices and the rapid development of various types of electronic components, high energy density secondary batteries is increasing demand, wherein the lithium ion secondary battery, its high specific energy, light, and high operating voltage, the power supply becomes chemical the future direction of development. 目前,锂离子二次电池的负极主要使用碳材料,例如石油焦、碳纤维、热解碳、天然石墨、人造石墨等,最初由日本SONY公司于1989年3月申请专利,1992年投入商业化(参见布鲁诺,电化学会志,139卷,2776页,1992)。 Currently, the negative electrode for lithium ion secondary battery mainly uses a carbon material such as petroleum coke, carbon fiber, pyrolytic carbon, natural graphite, artificial graphite, originally March 1989 patent by the SONY Corporation of Japan, 1992, commercialized ( see Bruno, electrochemical Soc., Vol 139, 2776, 1992). 然而,采用碳材料制成的负极材料已经接近石墨的理论容量(372mAh/g),因此,欲通过改良碳材料来进一步提高其理论容量是非常困难的。 However, using a carbon material negative electrode material close to the theoretical capacity of graphite (372mAh / g), therefore, desire to further increase its capacity by improving the theoretical carbon material is very difficult.

[0003] 能与锂发生合金化反应的硅作为锂电池的负极材料很早就引起关注,其理论容量为4400mAh/g,远大于石墨的理论容量。 [0003] Silicon can alloying reaction with lithium as a negative electrode material of lithium battery attention early, theoretical capacity of 4400mAh / g, much larger than the theoretical capacity of graphite. 但研究发现,含硅负极材料的电池在充放电过程中伴随巨大的体积效应,导致硅颗粒粉化,脱落,逐渐失去电接触,从而使得电极循环性非常差。 However, studies have found that a silicon-containing battery anode material accompanying huge volume effects in the discharge process, resulting in the silicon powder particles, off, losing the electrical contact, so that the loop electrode is very poor. 另外,虽然如文献H. Li,XJHuang,LQChen,Ζ. G. Wu, Y. Liang, Electr Ch em. and Solid-StateLett.,2,547-549 (1999)中所报道的,将Si颗粒减小到纳米尺度,并将其与导电添加剂均勻分散,能够有效的提高电极的循环性,但首周效率(65% )和容量保持率较差,主要原因是纳米材料具有较大的表面能,在充放电过程中易发生团聚,同时纳米材料具有较大的比表面,导致较多的副反应,包括表面生长电子绝缘的钝化膜(SEI膜),活性颗粒导电网络逐渐变差,最终导致低的库仑效率和容量保持率。 Further, although the literature such as H. Li, XJHuang, LQChen, Ζ. G. Wu, Y. Liang, Electr Ch em. And Solid-StateLett., 2,547-549 (1999) as reported, the Si particles Save small as nanometer scale, and the conductive additive uniformly dispersed, can effectively improve the circulation of the electrode, but poor efficiency of the first week (65%) and the capacity retention ratio, mainly nanomaterials having a large surface energy, prone to agglomeration during charge and discharge while having a large specific surface of nano-materials, more lead to side reactions, the passivation film (SEI film) is grown on the surface comprising electronically insulating, active particles of the conductive network gradually deteriorates, eventually leading to low coulombic efficiency and capacity retention rate. 因此制备纳米尺度的负极材料, 需要对其结构设计,减少其比表面,提高振实密度。 Thus prepared negative electrode material nanoscale, we need to design, to reduce its surface area, tap density increase.

[0004] 中国专利申请200410030990. X和中国专利申请200510082822. X中公开了通过化学气相沉积(CVD)将碳直接包覆在硅表面形成核壳结构的材料,该材料的循环性和第一周库伦效率有所提高,但在充放电过程中,包覆在内部的硅颗粒由于体积变化较大,使得核壳结构无法保持稳定的结构,最终逐渐粉化,硅颗粒之间的电接触变差,因此相当部分的硅颗粒由于极化而没有显示出应有的电化学活性;此外,由于粉化后仍然可以与电解液接触, 表面重新生长不稳定的SEI膜,导致部分活性颗粒逐渐失去电化学活性。 [0004] Chinese Patent Application No. 200410030990. X and Chinese Patent Application No. 200510082822. X disclosed by chemical vapor deposition (CVD) directly coated carbon material of the core-shell structure is formed on the silicon surface, and circulation of the material in the first week coulombic efficiency is improved, but the charge-discharge process, the coated silicon particles in the interior due to the large change in volume, so that the core-shell structure can not maintain a stable structure, the final powder gradually, poor electrical contact between the silicon particles thus a substantial portion of the silicon particles due to polarization and shows no electrochemical activity due; Furthermore, since still after contact with the electrolyte powder, the SEI surface film regrowth unstable, resulting in gradual loss of the electrical part of the active particles chemical activity.

[0005] 最近,也有通过物理沉积的方法在导电衬底上沉积一层硅薄膜来制备薄膜电极的。 [0005] Recently, there are thin film electrodes prepared by the process of physical deposition of a layer of silicon thin film is deposited on a conductive substrate. 所制备的硅薄膜电极的循环性与薄膜的厚度有关,当薄膜的厚度小于4μ m时,循环性非常好,且充放电效率高(93-95%)。 Silicon thin film electrode prepared with the thickness of the film cyclical, and when the film is less than 4 [mu] m, very good recyclability, and high charge-discharge efficiency (93-95%). 但是,由于薄膜电极有厚度的限制,使得单位面积集流体上,活性物质较少,因此电池的能量密度不高。 However, since the film thickness of the electrode is limited, so that the unit area of ​​the current collector, the active material is less, the energy density of the battery is not high.

[0006] 此外,尽管通过材料改性,比如选取小尺度的Si、碳包覆、Si合金等方法,能较大程度上提高电极的电化学性能。 [0006] Further, although by modifying material, such as small scale method selected Si, carbon-coated, Si alloy or the like, can improve the electrochemical performance greater extent. 但电极在充放电过程中仍然存在着一定的体积效应。 However, during the charge-discharge electrode there are still certain volume effect.

[0007] 高性能的粘结剂对于材料容量保持率起着非常重要的作用。 [0007] High performance binder plays a very important role in the capacity retention rate for the material. 不少研究报导,采用高弹性,或高抗张强度的粘结剂较传统意义上聚偏氟乙烯(PVDF),能更好的改善Si负极的循环稳定性。 Many studies have reported that high elasticity, high tensile strength, or adhesive than traditional sense of polyvinylidene fluoride (PVDF), can better improve the cycle stability of the Si negative electrode.

[0008] 综合以上考虑,本发明对高容量负极材料Si进行综合改进,提供了含有高性能粘结剂的负极材料、含有该负极材料的负极及其制备方法以及含该负极的电池。 [0008] Based on the above considerations, the present invention is a high capacity negative electrode material of Si integrated improved, providing a high-performance negative electrode material containing a binder, a negative electrode containing a negative electrode material and its preparation method and a battery containing the negative electrode.

发明内容 SUMMARY

[0009] 本发明克服现有负极材料循环性能差、可逆容量低、脱锂电位高以及库仑效率低的缺陷,提供一种可以使二次锂电池具有较高的充放电容量、较好的循环特性以及安全性的负极材料,含该负极材料的负极及其制备方法,以及含该负极的电池。 [0009] The present invention overcomes the difference between the prior cycle performance negative electrode material, the reversible capacity is low, de-bit high and low coulombic efficiency of lithium defects, can be made to provide a lithium secondary battery having high charge-discharge capacity, good cycle characteristics and safety of negative electrode material, a negative electrode and a preparation method comprising the negative electrode material, and a battery containing the negative electrode.

[0010] 本发明的目的是通过以下技术方案来实现的: [0010] The object of the present invention is achieved by the following technical solution:

[0011] 一方面,本发明提供一种用于锂离子二次电池的负极材料,该负极材料包括具有核壳结构的复合粒子、导电添加剂和酰胺类耐高温粘结剂。 [0011] In one aspect, the present invention provides a negative electrode material for a lithium ion secondary battery, which cathode material comprises a composite particle, a conductive additive, and amides having a core-shell structure of the high temperature binder.

[0012] 优选地,所述核壳结构的复合粒子包括:含有硅基活性材料的内核和含有无机包覆材料的外壳层。 [0012] Preferably, the composite particles of the core-shell structure comprising: a housing containing a core and cladding material layer contains an inorganic silicon-based active material.

[0013] 优选地,所述硅基活性材料为硅、硅氧化物、硅合金中的一种或多种; [0013] Preferably, the silicon-based active material is silicon, a silicon oxide, a silicon alloy of one or more;

[0014] 优选地,所述硅基活性材料还可以混合有碳材料、锡单质、锡氧化物、锡合金、氧化亚锰和氧化铬中的一种或多种。 [0014] Preferably, the silicon-based active material may also be mixed with the carbon material, the one or more elemental tin, tin oxides, tin alloys, manganous oxide and chromium oxide.

[0015]优选地,所述无机包覆材料为 C、Cu、Fe、Ni、Cr、A1203、TiO2, Li2Si2O5^ Li2Si03、 Li4SiO4^Li8SiO6, SiO2 和Li3PO4 中的一种或多种。 [0015] Preferably, the inorganic coating material C, Cu, Fe, Ni, Cr, A1203, TiO2, Li2Si2O5 ^ Li2Si03, Li4SiO4 ^ Li8SiO6, SiO2 and Li3PO4 of one or more.

[0016] 优选地,所述内核的粒径为10纳米-4微米,优选为50纳米-4微米,更优选为500 纳米-2微米。 [0016] Preferably, the core particle size of 10 nanometers -4 microns, preferably 50 microns -4 nanometers, more preferably 500 nm to 2 microns.

[0017] 优选地,所述外壳层厚度为1纳米-500纳米,优选为50纳米-100纳米,更优选为50纳米-80纳米。 [0017] Preferably, the shell layer thickness is 1 nm -500 nm, preferably 50 nm -100 nm, more preferably 50 nm -80 nm.

[0018] 优选地,所述核壳结构的复合粒子的粒径为100纳米〜100微米,优选为1微米〜 20微米。 [0018] Preferably, the diameter of the composite particles of the core-shell structure of 100 nm ~ 100 microns, preferably from 1 micrometer to 20 micrometers.

[0019] 优选地,所述导电添加剂为石墨粉,导电炭黑,乙炔黑,碳纳米管,例如单壁碳纳米管、多壁碳纳米管,碳纤维,金属粉和金属纤维中的一种或多种; [0019] Preferably, the conductive additive is graphite powder, conductive carbon black, acetylene black, carbon nanotubes, single walled carbon nanotube, a multi-wall carbon nanotubes, carbon fibers, metal fibers and metal powder or variety;

[0020] 优选地,所述石墨粉、导电炭黑、乙炔黑或金属粉的粒径为1纳米-20微米; [0020] Preferably, the graphite powder, conductive carbon black, acetylene black, metal powder or a particle diameter of 1 nm to 20 microns;

[0021] 更优选地,所述碳纳米管、碳纤维或金属纤维的长度为10纳米-20微米,直径为10 纳米-500纳米。 [0021] More preferably, the carbon nanotube, a carbon fiber or a metal fiber length is 10 nanometers to 20 micrometers, a diameter of 10 nm -500 nm.

[0022] 优选地,所述酰胺类耐高温粘结剂为聚酰胺酰亚胺、聚酰胺、聚酰亚胺中的一种或多种; [0022] Preferably, the amide-based refractory binder is polyamide-imide, polyamide, polyimide, one or more of;

[0023] 优选为芳香族聚酰胺酰亚胺、芳香族聚酰胺、芳香族聚酰亚胺中的一种或多种。 [0023] is preferably an aromatic polyamide-imide, aromatic polyamide, aromatic polyimide is one or more.

[0024] 优选地,所述核壳结构的复合粒子占所述负极材料总重量的3〜98wt%,优选为20〜95wt% ;所述导电添加剂占所述负极材料总重量的1〜35wt%,优选为5-10wt% ; 所述酰胺类耐高温粘结剂占所述负极材料总重量的l-30wt%,优选为5-15wt%,更优选为IOwt %。 [0024] Preferably, the composite particles are core-shell structure account for 3~98wt% of the total weight of the negative electrode material, preferably 20~95wt%; the conductive additive comprises 1~35wt% of the total weight of the negative electrode material , preferably 5-10wt%; amides of the total weight of the refractory binder of the negative electrode material of l-30wt%, preferably 5-15wt%, more preferably IOwt%.

[0025] 另一方面,本发明提供一种用于锂离子二次电池的负极,所述负极包括上述负极材料和集流体;优选地,所述集流体为各种导电的箔、网、多孔体、泡沫体或纤维体材料的载体,例如铜箔、镍网、泡沫镍和碳毡。 [0025] another aspect, the present invention provides a negative electrode for a lithium ion secondary battery, said negative electrode and said negative electrode material comprises a fluid collector; Preferably, the current collector for a variety of electrically conductive foil, a net, a porous body, foam or fibrous carrier material, such as copper foil, nickel mesh, a nickel, and carbon felt.

[0026] 再一方面,本发明提供一种上述负极的制备方法,该制备方法包括:将硅基活性材料、导电添加剂、粘结剂涂覆于集流体上,在真空或惰性气氛中,在80-450°C,优选为1200C _350°C,更优选为120°C _300°C进行热处理,热处理时间为10分钟-10小时。 [0026] In another aspect, the present invention provides a method for preparing the negative electrode, the production method comprising: a silicon-based active material, a conductive additive, a binder coated onto a current collector, in vacuum or in an inert gas atmosphere, in 80-450 ° C, preferably 1200C _350 ° C, more preferably 120 ° C _300 ° C heat treatment, the heat treatment time is 10 minutes to 10 hours.

[0027] 又一方面,本发明提供一种锂离子二次电池,该二次电池包括上述负极。 [0027] In yet another aspect, the present invention provides a lithium ion secondary battery, the secondary battery includes the above negative electrode.

[0028] 本发明的技术方案与现有技术相比较,至少具有以下有益效果: [0028] aspect of the present invention compared with the prior art, at least the following advantages:

[0029] 1、与现有电池的负极材料相比,本发明的负极材料采用核壳结构,这样,内核的活性物质在充放电过程中的体积变化会受到外壳层抑制,从而减小体积效应;此外,由于采用核壳结构,表面钝化膜的生长只与外壳层活性位面积大小有关,可以减小钝化膜的生长。 [0029] 1, as compared with the conventional negative electrode material of a battery, the negative electrode material of the present invention employs a core-shell structure such that the volume change of the core of active substance in the charge-discharge process casing layer will be suppressed, thereby reducing the volume effect ; Furthermore, since the core-shell structure, the surface passivation film is grown only the active site area of ​​the outer shell about the size, the growth of the passivation film can be reduced.

[0030] 2、与现有的电池的负极材料相比,本发明的负极材料采用了高性能酰胺类粘结剂,即酰胺类耐高温粘结剂,该高性能的粘结剂对于材料容量保持率起着非常重要的作用, 本发明采用高抗张强度的粘结剂能更好的改善Si负极的循环稳定性。 [0030] 2, as compared with the conventional negative electrode material of a battery, the negative electrode material of the present invention employs a high-performance adhesive amides, i.e. amides high temperature binder, a binder for the material of the high-performance capacity retention rate plays an important role, the present invention employs a high tensile strength of the adhesive can better improve the cycle stability of the Si negative electrode.

[0031] 3、与现有电池的负极材料相比,本发明的负极材料的电化学性能优异,储锂容量尚ο [0031] 3, as compared with the conventional negative electrode material of a battery, the negative electrode material superior electrochemical performance of the present invention, the lithium storage capacity is still ο

[0032] 4、与现有的制备电极的方法相比,本发明采用高温热处理方法来制备电极,使得粘结剂中未完全酰胺化的聚酰胺酰亚胺酰胺化,分子链进一步增长,同时分子链链段之间还会发生交联,显著提高成膜质量,获得高强度的粘接性能,并进而保证了负极长时间循环稳定性。 [0032] 4, compared with the conventional method of producing an electrode, an electrode of the present invention are prepared by high temperature heat treatment process, so that the binder is not fully amidated polyamideimide amidation, molecular chains grow further, while also the molecular chain segments between crosslinked, significantly improve the quality of the film formation, adhesive properties to obtain a high strength, and thus ensure the stability of the negative cycle time. 而目前现有技术采用的粘接剂如聚偏氟乙烯、羧甲基碳酸酯等主要在120°C以下涂覆,高温会发生分解,这些粘接剂无法获得高强度的粘接性能。 Currently the prior art using an adhesive such as polyvinylidene fluoride, carboxymethyl carbonate mainly applied below 120 ° C, pyrolysis occurs, these adhesive properties can not be obtained a high adhesive strength.

[0033] 以下将对本发明进行更详细的描述。 [0033] The present invention will now be described in more detail.

[0034] 本发明的目的在于,提供用于锂离子二次电池的负极材料。 [0034] The object of the present invention is to provide a negative electrode material for a lithium ion secondary battery. 本发明的另一目的在于,提供含有上述负极材料的电极。 Another object of the present invention is to provide an electrode containing the negative electrode material. 本发明的再一目的在于,提供将硅基活性材料、酰胺类耐高温粘结剂、导电添加剂涂覆于集流体上来制备电极的制作工艺。 A further object of the present invention is to provide a production process of the silicon active material, amides high temperature binder, a conductive additive in preparing an electrode coated onto the current collector. 本发明的再一目的在于,提供含有上述电极的电池。 A further object of the present invention is to provide a battery comprising the electrode.

[0035] 本发明的负极材料包括具有核壳结构的复合粒子、导电添加剂和粘结剂。 [0035] The negative electrode material of the present invention comprises composite particles having a core-shell structure, a conductive additive and a binder.

[0036] 上述复合粒子具有核壳结构,粒径为100纳米〜100微米。 [0036] The composite particles having a core-shell structure, a particle size of 100 nm ~ 100 microns. 所述的核壳结构包括内核和外层壳;所述内核选取硅单质,硅氧化物,硅合金中的至少一种,也可以选择添加商品碳材料,锡单质,锡氧化物以及锡合金,氧化亚锰,氧化铬中的一种或多种,粒径优选为50 纳米-4微米,其为不规则的、球形颗粒或近似球形的颗粒;所述外壳层为一层或多层的、均勻分布的连续膜,或点,或网格,取决于制备条件的变化。 The core-shell structure comprising a core and an outer shell; the core selecting silicon simple substance, a silicon oxide, a silicon alloy, may choose to add product carbon material, simple substance of tin, tin alloys and tin oxide, manganous oxide, chromium oxide or more, preferably a particle size of 50 nanometers -4 microns, which is irregular, or approximately spherical particles spherical particles; the shell layer is a layer or layers, a continuous film of uniform distribution, or point, or grid, depending on changes in preparation conditions. 所述外壳层表面包覆的无机材料可以为C, Cu, Fe, Cr, Ni, Al2O3, TiO2,、Li2Si2O5, Li2SiO3, Li4SiO4, Li8SiO6, SiO2, Li3PO4, Li2O 中的一种或多种,包覆层的厚度为1纳米-500纳米。 The shell layer covering the surface of the inorganic material may be a C, Cu, Fe, Cr, Ni, Al2O3, TiO2,, Li2Si2O5, Li2SiO3, Li4SiO4, Li8SiO6, SiO2, Li3PO4, Li2O one or more cladding layer has a thickness of 1 nm -500 nm.

[0037] 其中,包覆的碳层是良好的电子离子导体,同时也可以作为Si体积变化的缓冲介质。 [0037] wherein the carbon coating layer is a good electron ion conductor, but also can be used as the damping medium volume changes Si. 包覆的Cu,Fe, Ni, Cr层在Si中容易扩散,利于提高Si材料电子电导,连续的Cu,Fe, Ni,Cr层具有较好的延展性,能够有效缓解Si的体积变化,经过热处理,Cu, Fe, Ni, Cr和Si容易形成电子导体的合金,界面接触也较好,即使Si颗粒发生体积变化,也能保持良好的接触,维持整个导电网络。 Coated Cu, Fe, Ni, Cr layer is easily diffused in Si, Si material help to improve electronic conductivity, continuous Cu, Fe, Ni, Cr layer having good ductility, can effectively alleviate the volume change of Si, through heat treatment, Cu, Fe, Ni, Cr and Si alloys readily form an electronic conductor, preferably also the contact interface, even when the volume change of Si particles occur, it is possible to maintain good contact is maintained throughout the conductive network. A1203、TiO2, Li2Si2O5^ Li2Si03、Li4SiO4, Li8SiO6, SiO2, Li3PO4 可控制表面包覆的厚度,有利于减少材料表面暴露的活性位,减少SEI膜生成,从而提高库仑效率。 A1203, TiO2, Li2Si2O5 ^ Li2Si03, Li4SiO4, Li8SiO6, SiO2, Li3PO4 surface coating thickness may be controlled, it helps to reduce the exposure of the active site of the surface of the material, reducing the SEI film-forming, thereby enhancing the coulombic efficiency.

5[0038] 所述导电添加剂占所述负极材料总重量的1〜35wt%,该导电添加剂包括石墨粉、导电炭黑、乙炔黑、碳纳米管(单壁碳纳米管、多壁碳纳米管)、碳纤维、金属粉及金属纤维;所述石墨粉、导电炭黑、乙炔黑和金属粉的粒径为1纳米到20微米;所述碳纳米管、碳纤维和金属纤维的长度为10纳米到20微米,直径为10纳米到500纳米。 5 [0038] The conductive additive comprises 1~35wt% of the total weight of the negative electrode material, the conductive additive comprising graphite, conductive carbon black, acetylene black, carbon nanotubes (single-walled carbon nanotubes, multi-walled carbon nanotube ), carbon fibers, metal powder and metal fiber; a graphite powder, conductive carbon black, acetylene black, and metal powder particle diameter of 1 nm to 20 microns; the carbon nanotube, carbon fiber and metal fiber length is 10 nanometers to 20 m, a diameter of 10 nanometers to 500 nanometers.

[0039] 所述粘结剂可以为聚酰胺酰亚胺,聚酰胺,聚酰亚胺中的至少一种高分子,或者上述未完全聚合的高分子中的一种。 [0039] The adhesive may be a polyamide-imide, polyamide, at least one polyimide polymer, or incompletely polymerized polymer in the above. 考虑到化学稳定性、力学性能以及粘结性能,粘结剂优选为芳香族聚酰胺酰亚胺,芳香族聚酰胺,芳香族聚酰亚胺类高分子的一种或多种。 Consideration of chemical stability, mechanical properties and adhesive properties, the binder is preferably an aromatic polyamide-imide, aromatic polyamide, one or more aromatic polyimide polymer. 所述粘结剂的用量优选占所述负极材料总重量的1_30%。 The amount of the binder is preferably from 1_30% of the total weight of the negative electrode material. 当该用量小于1%,会出现粘结力不足的情况,当该用量大于30%,会影响到材料的容量。 When the amount is less than 1%, the case of insufficient adhesive force occurs, when the amount is more than 30%, will affect the capacity of the material.

[0040] 上述高分子大部分都有良好的热稳定性,化学稳定性,具有较高的抗张强度,强的粘合性,使得高容量负极材料具有优异的循环特性。 [0040] Most of the polymer had good thermal stability, chemical stability, high tensile strength, adhesion, so that a high capacity negative electrode material having excellent cycle characteristics. 这些高分子上的极性基团一方面使其具有较好的粘附性,另一方面也利于锂离子的传输,本身的分子链结构使其具有较好的抗张强度。 These polar groups on the one hand it has a good polymer adhesion, it also facilitates transmission of lithium ions, so that molecular chain structure itself has good tensile strength. 此外,采用80°C -450°C的温度处理,对于未完全聚合的高分子可以发生进一部交联,分子链可以进一步增长,可以提高成膜质量,有利于电极结构的稳定,从而提高电化学性能。 Further, the processing using a temperature 80 ° C -450 ° C, for the incompletely polymerized into a crosslinked polymer can occur, may further increase the molecular chain, can improve film quality, conducive to the stability of the electrode structure, thereby improving electrochemical properties.

[0041] 本发明具有核壳结构的复合粒子(负极活性材料)可采用(I)喷雾干燥法;(II) 化学沉积包覆法;(III)机械法;(IV)水热法;(V)化学气相沉积法等方法来制备。 [0041] The present invention, composite particles (negative electrode active material) having a core-shell structure may be employed (I) spray-drying method; (II) coated with a chemical deposition method; (III) mechanical method; (IV) hydrothermal method; (V method) chemical vapor deposition method or the like is prepared.

[0042] (I)使用喷雾干燥法制备本发明用于二次锂离子电池的负极活性材料,包括如下的步骤: [0042] (I) prepared by spray drying using the negative electrode active material of the present invention for a secondary lithium ion battery, comprising the steps of:

[0043] (1)对内部活性物质Si进行表面处理,所述表面处理方法选自以下方法之一: [0043] (1) the active material on the Si surface treatment, the surface treatment method is selected from one of the following methods:

[0044] a.将活性物质(Si)先用稀氢氟酸(稀HF酸)溶液处理,除去表面的SiO2,再在硅表面采用镀液沉积Cu,Fe,Ni或Cr颗粒,调节镀液的浓度和沉积时间可以控制Cu,Fe,Ni 或Cr的含量,厚度控制在1纳米-500纳米。 [0044] a. The active substance (Si) first treated with dilute hydrofluoric acid (dilute HF acid) solution to remove the SiO2 surface, and then deposited using plating solutions of Cu, Fe, Ni, or Cr particles in the silicon surface, adjust the plating solution the concentration of the deposition time can be controlled and the content of Cu, Fe, Ni or Cr, thickness control in 1 nm -500 nm.

[0045] b.将活性物质Si和Cu,Fe,Ni或Cr按一定的比例机械混合,再经过热处理,或者将Si和含Cu,Fe, Ni或Cr的各种盐按一定的比例机械混合,最后在惰性气氛中热处理。 [0045] b. The active substance containing Si and Cu, Fe, Ni or Cr mechanically mixed in a certain proportion, and then subjected to heat treatment, and various salts or Si-containing Cu, Fe, Ni or Cr by a certain percentage mechanically mixing Finally, the heat treatment in an inert atmosphere.

[0046] c.将活性物质Si先用稀HF酸溶液处理,除去表面的SiO2,采用化学水解(例如用钛酸四丁脂水解的方法)在表面包覆一层TiO2或Al2O3,厚度控制在1纳米-100纳米。 [0046] c. The first Si active material treated with dilute HF solution to remove the SiO2 surface, chemical hydrolysis (e.g. tetrabutyl titanate lipolytic method) coated with a layer of TiO2 or Al2O3 on the surface, the thickness control 1 nm -100 nm. 这样一方面可以减少Si表面的固体电解质膜(SEI膜)和负反应,另一方面可以中和电解液中LiPF6由于微量水的存在生成的HF。 Thus one can reduce the Si surface of the solid electrolyte film (SEI film) and a negative reaction, on the other hand the presence of trace LiPF6 HF and water generated in the electrolytic solution.

[0047] d.在原位制备Si粉中,例如在利用SiH4还原制备Si粉中,采用原位原子层沉积(ALD)流化床方法,在Si粉表面均勻包覆一层TiO2或Al2O3或Cu,Fe, Ni或Cr层,厚度控制在1纳米-500纳米,这样可以防止由于纳米Si表面接触空气,生成SiO2,减少后续电池体系中的副反应。 [0047] d. Si powder prepared in situ, for example by using SiH4 reduction in the Si powder was prepared, in situ atomic layer deposition (ALD) method fluidized bed, a uniform coated layer of TiO2 or Al2O3 in the powder or the surface of the Si Cu, Fe, Ni or Cr layer, controlling the thickness of 1 nm -500 nm, which can prevent the surface of the nano Si contact with air, generating of SiO2, to reduce the side effects of the subsequent cell system.

[0048] e.将活性物质如Si放入有惰性气体(如氩气、氢气、氮气)保护和碳源气(如乙烯气、乙炔气、甲苯蒸汽、苯蒸汽等)的管式炉中,在一定的温度下(300〜1200°C),加热0.5 小时〜15小时,通过化学气相沉积(CVD)包覆C层,包覆厚度控制在1纳米-100纳米。 [0048] e. The active substance an inert gas (such as argon, hydrogen, nitrogen) protection and a carbon source gas (e.g., ethylene gas, acetylene gas, steam toluene, benzene, steam or the like) is placed in a tube furnace with a Si as in at a certain temperature (300~1200 ° C), for 0.5 hour ~ 15 hours, the coating layer C by chemical vapor deposition (CVD), coating thickness control in a nanometer -100 nm.

[0049] f.如果选取尺度较小的Si (如500nm以下),表面含有较多的SiO2,可以通过与含锂的无机物(如醋酸锂,碳酸锂,氢氧化锂,硝酸锂)反应生成Li2Si2O5,Li2SiO3, Li4SiO4, Li8SiO6等,减少副反应。 [0049] f. If you select a smaller scale Si (such as 500nm or less), the surface containing more in SiO2, by the lithium-containing inorganic (e.g. lithium acetate, lithium carbonate, lithium hydroxide, lithium nitrate) to produce Li2Si2O5, Li2SiO3, Li4SiO4, Li8SiO6, to reduce side reactions. [0050] 通过上述方法或其它常规方法可以对活性物质进行表面包覆处理。 [0050] The treatment may be surface coating of the active material by the above method or other conventional methods.

[0051] (2)将上述经过表面处理(也可以不经过表面处理)的活性材料Si、硅氧化物和硅合金中的至少一种,也可以添加商品碳材料,锡单质,锡氧化物以及锡合金、氧化亚锰、氧化铬中的一种或多种组合,与浙青、树脂、聚氯乙烯、蔗糖、淀粉、葡萄糖、环糊精、黄糊精、柠檬酸等含碳的有机前驱体(对碳源没有特别限制),乙炔黑,按一定配比加入适当的溶剂通过机械搅拌获得均勻的浆料;再用喷雾干燥技术将所得的浆料喷雾干燥,获得球形前驱体粉末;也可以在浆料里面加入铜盐,裂解后在材料里掺入Cu,提高材料的电导率。 [0051] (2) at least one of the foregoing active material of the surface-treated Si (may not be surface-treated) of silicon oxide and silicon alloy, carbon material may be added commodities, simple substance of tin, tin oxide, and carbon-tin alloy, manganous oxide, chromium oxide in combination with one or more, and cyan Zhejiang, resins, polyvinyl chloride, sucrose, starch, glucose, cyclodextrin, yellow dextrin, citric acid and other organic precursors body (carbon source is not particularly limited), acetylene black, a certain ratio suitable solvent is added by mechanical agitation to obtain a homogeneous slurry; and then spray drying the resulting slurry was spray-dried to obtain spherical precursor powder; also copper may be added to the slurry which, after cleavage incorporated in the Cu material, the conductivity of the material is improved.

[0052] (3)在内部复合颗粒表面形成热解碳层 [0052] (3) pyrolytic carbon layer is formed in the interior surface of the composite particles

[0053] 将步骤(¾得到的球形前驱体粉末在惰性气氛(如氩气、氢气、氮气)下于一定的温度范围内(300〜1200°C )热处理0. 5小时〜72小时,上述含碳的有机前驱体将转化为热解碳,并包覆在内部复合颗粒的表面形成热解碳层,得到本发明用于二次锂离子电池的负极活性材料。 [0053] Step (¾ spherical precursor powder obtained under an inert atmosphere (e.g., argon, hydrogen, nitrogen) within a certain temperature range (300~1200 ° C) heat treatment ~72 hours 0.5 hours, the above-containing the organic carbon precursor is converted to pyrolytic carbon, and coated pyrolytic carbon layer is formed on the inside surface of the composite particles, the present invention is to obtain a negative active material for a secondary lithium ion battery.

[0054] 以下步骤(4)、(5)、(6)均为可选择的方法: [0054] The steps (4), (5), (6) are alternative methods:

[0055] (4)在复合颗粒表面覆盖CVD碳层 [0055] (4) CVD carbon layer covering the surface of the composite particles

[0056] 将步骤(3)得到的包覆了热解碳层的复合颗粒放入有惰性气体(如氩气、氢气、氮气)保护和碳源气(如甲烷、乙烯、乙炔、苯或甲苯等有机气体)的管式炉中,在一定的温度下(300〜1200°C ),加热0. 5小时〜72小时,利用化学气相沉积在包覆了热解碳层的内部复合颗粒的表面再包覆一层或多层的CVD碳层。 Obtained [0056] The step (3) a composite particle coated pyrolytic carbon layer is placed in an inert gas (such as argon, hydrogen, nitrogen) protection and a carbon source gas (e.g., methane, ethylene, acetylene, benzene or toluene organic gas) in a tubular furnace, at a certain temperature (300~1200 ° C), heated 0.5 hours ~72 hours, by chemical vapor deposition inside of the composite particles in the coating of the pyrolytic carbon layer surface then CVD coated with one or more layers of the carbon layer.

[0057] 经步骤C3)处理后,其表面覆盖的热解碳层的形貌与处理条件及内部复合颗粒的几何外形有关,可能是一层均勻包覆的表面膜,也可能是呈岛状的或有一定起伏碳颗粒层, 其覆盖度不是很高,且比表面积较大。 [0057] after step C3) after treatment, the surface coverage of the pyrolytic carbon layer and the treatment conditions and the topography of the internal geometry of the composite particles is about, may be uniformly coated with a layer of surface film may be an island shape or carbon particles have a relief layer, which is not very high degree of coverage and large specific surface area. 经过步骤(4)的进一步处理,可以在其表面形成均勻分布的连续碳薄膜,完全覆盖了内部复合颗粒,降低整个复合颗粒的比表面积。 After step (4) further processing, continuous carbon thin film can be formed uniformly distributed on the surface thereof, completely covers the inside of the composite particles, specific surface area decreases throughout the composite particles.

[0058] (5)使用喷雾干燥技术制备本发明用于二次锂离子电池的负极活性材料,也可以不经过步骤G),直接在包覆了热解碳层的颗粒表面沉积一层Cu,厚度控制在1纳米-100 纳米,最后在100-1200°C,惰性气氛或还原性气氛(如氩气、氢气、氮气)中热处理。 [0058] Preparation of spray-drying (5) the use of the present invention, a negative active material for a secondary lithium ion battery, may not through step G), directly at the surface of the particles coated with pyrolytic carbon layer is deposited a layer of Cu, control the thickness of 1 nm -100 nm, and finally heat-treated at 100-1200 ° C, an inert atmosphere or a reducing atmosphere (e.g., argon, hydrogen, nitrogen). 让Cu 扩散到材料颗粒内部,增加导电性,另外Cu颗粒之间也会发生熔合,形成网格结构,其具体的形貌与处理的温度、升温的速率、气氛和热处理时间有关。 Let Cu diffusion into the interior of the particle material, to increase the conductivity, additional fusion also occurs between the Cu particles, forming a grid structure, morphology and the specific treatment temperature, heating rate, atmosphere and the heat treatment time related.

[0059] (6)使用喷雾干燥技术制备的本发明的用于二次锂离子电池的负极活性材料,也可以不经过步骤(4)和步骤(5),直接在包覆了热解碳层的颗粒表面包覆Al2O3或TiO2,如可以采用钛酸四丁脂水解可以在核壳材料结构表面包覆1纳米-100纳米的TiO2,或者也可以采用原子层沉积在碳层表面包覆一层Al2O3,厚度可以精确控制,负极材料表面的SEI膜的生长与活性比表面积大小有关,采用A1203、TiO2包覆能够钝化这些材料的活性表面,减少SEI膜的生成,从而提高首次库仑效率。 Negative electrode active material for a lithium ion secondary battery of the present invention, [0059] (6) Preparation of a spray drying technique used, may not be subjected to step (4) and (5), directly in the coating a pyrolytic carbon layer particle surface coated Al2O3 or TiO2, such as tetrabutyl titanate, may be employed lipolytic 1 nm -100 coated surface of core-shell structure nano materials TiO2, or atomic layer deposition may be used on the surface of the carbon layer coated with a layer Al2O3, thickness can be precisely controlled, the growth of the active material of the anode SEI film surface than the size of surface area, the use of A1203, TiO2 coating can be passivated active surfaces of these materials, to reduce the generation of the SEI film, thereby improving the initial coulombic efficiency.

[0060] 使用喷雾干燥法制备本发明的用于二次锂离子电池的负极活性材料在步骤(2) 制备浆料中,也可以适当加入溶于相应溶剂的铜盐,经过后续的热处理,让Cu,Fe, Ni或Cr 均勻分布在核壳结构的里面,增加材料的导电性。 [0060] Use of the present invention is prepared by spray drying a negative electrode active material for a lithium ion secondary battery in the step (2) to prepare a slurry, the copper salt may be suitably dissolved in the respective solvent added, after subsequent heat treatment, so that Cu, Fe, Ni or Cr uniformly distributed inside the core-shell structure, to increase the conductivity of the material.

[0061] 使用喷雾干燥法制备本发明的用于二次锂离子电池的负极活性材料,也可以不经过步骤(1),直接通过步骤(2)、(3)、(4)、(5)、(6)。 [0061] Preparation of spray-drying a negative electrode active material for a lithium ion secondary battery of the present invention may not be subjected to step (1), directly through the step (2), (3), (4), (5) , (6).

[0062] 需要指出的是,具有上述组成和结构特征的用于二次锂离子电池的负极活性材料的制备方法不局限于上述方法,其结构特征可见附图Ia和图lb。 [0062] It should be noted that the composition having the above structural features and methods of preparation of the anode active material for a secondary lithium-ion battery is not limited to the above-described method, the structure wherein the visible figures Ia and lb.

[0063] 使用上述喷雾干燥制备的用于二次锂离子电池的负极活性材料,其活性物质的几何外观呈球形形状,其有较高的振实密度,较低的比表面。 [0063] Preparation of spray-dried using the negative active material for secondary lithium ion batteries, the appearance of the geometric shape of spherical active material which has a higher tap density, lower surface area.

[0064] (II)使用化学沉积法制备本发明的M/Si (Μ = Cu, Fe, Ni或Cr以Cu为例说明) 的负极活性材料,包括化学气相原子层沉积和化学液相沉积。 [0064] (II) using a chemical deposition method of the present invention, M / Si (Μ = Cu, Fe, Ni or Cr Cu as an example) of the negative electrode active material, including chemical vapor deposition and atomic layer chemical liquid deposition.

[0065] 1.化学气相原子层沉积(ALD),ALD过程中化学反应物(如三甲基铝和水气)每次以气态引入反应腔体,并以脉冲方式到达反应器。 [0065] 1. The chemical vapor atomic layer deposition (ALD), ALD during chemical reactions (e.g. trimethylaluminum and water vapor) each introduced into the reaction chamber in gaseous state, and in a pulsed manner reach the reactor. 反应物通过吹扫气体流动或者抽气来彼此分散。 The reaction was suction dispersed flow or to each other by a purge gas. 每个反应物脉冲同颗粒表面发生化学反应,使得ALD可以通过这种自限制过程精确地单层生长,同时包覆均勻。 Each chemical reaction with the reactant pulse generating particle surfaces, so that the monolayer can be accurately self-limiting process by this, while uniformly coated ALD. ALD技术在集成电路半导体工艺是很成熟的工艺,我们把这种技术运用于粉末电极材料的包覆处理,其中包括材料可以包含各种金属,氧化物,硫化物,氮化物。 ALD technique in a semiconductor integrated circuit process technology is very mature, we have used this technology electrode material powder coating process, may contain various materials including metals, oxides, sulfides and nitrides. 附图2显示的ALD包覆Al2O3的工艺流程。 BRIEF coated Al2O3 ALD process of the second display.

[0066] 化学气相原子层沉积(ALD)制备M/Si (Μ = Cu, Fe, Ni或Cr,以Cu为例说明)负极活性材料包括如下步骤: [0066] The chemical vapor atomic layer deposition (ALD) Preparation of M / Si (Μ = Cu, Fe, Ni, or Cr, Cu as an example) a negative electrode active material comprising the steps of:

[0067] (1)选择合适的含铜前驱物,对含铜前驱物的选取须满足以下几个条件:1)有足够的挥发性,这样才能被载气带入反应腔体中,并维持一定的反应物浓度,和包覆的粉体材料表面有充分的接触;幻有足够的热稳定性,使反应源在加热挥发过程中不会发生分解; 3)有合适的反应活性,如含铜前驱物在吸附于粉末颗粒的热表面后,不会立刻分解,需要下一个脉冲还原气体的参与反应,这样才能实现Cu膜的精确控制和均勻生长。 [0067] (1) Select the appropriate copper precursor, the copper precursor is the selection of the following conditions must be met: 1) have sufficient volatility so as to be a carrier gas reaction chamber and maintained certain reactant concentrations, and the surface of the powder material coated with a sufficient contact; magic have sufficient thermal stability, so that the decomposition reaction does not occur in the heat source during evaporation; 3) with a suitable reactive, such as those containing after the copper precursor is adsorbed on the surface of the powder particles heat, it does not immediately break down, the reaction requires the participation of a pulse of reducing gas, so as to achieve precise and uniform control of the growth of the Cu film. 含铜前驱物可以选取脒基亚铜配合物,一般通式可以表示为[(R,NC(R)NR”)Cu]2,(其中,R,和R”可以为正丙基、异丙基、正丁基、异丁基、伯丁基、叔丁基等,R可以为甲基、丁基等),例如为N, N-双-异丙基乙酰脒基铜、N,N-双-仲丁基乙酰脒基铜等,也可以选取氯化亚铜(Cu3Cl3), β-二酮铜(II)配合物衍生物,如乙酰丙酮酸铜,双(2,2,6,6,-四甲基_3,5-庚二酮酸) 铜,六氟乙酰丙酮酸铜等。 Copper precursor may select amidine sulfoxide copper complexes, may be represented as the general formula [(R, NC (R) NR ") Cu] 2, (wherein, R, and R" may be n-propyl, isopropyl, group, n-butyl, isobutyl, Bo Dingji, tert-butyl, R may be methyl, butyl, etc.), for example, N, N- bis - isopropyl copper acetyl amidino group, N, N- bis - acetyl sec-amidino copper, etc., can also select copper (Cu3Cl3) chloride, [beta] diketone copper (II) complexes of derivatives thereof, such as copper acetylacetonate, bis (2,2,6,6 , - _3,5- tetramethyl heptanedionate) copper, such as copper-hexafluoro-acetylacetonate. 还原脉冲气体可以选取氢气,或甲醛。 Reducing gas pulse can be selected hydrogen, or formaldehyde.

[0068] (2)将硅基材料(颗粒尺寸优为300ηπι-4μπι),放入反应腔体中,抽真空加热,目的除去腔体和材料表面的水气,反应腔体的温度最终稳定在100-300°C之间。 [0068] (2) the silicon-based material (preferably of a particle size 300ηπι-4μπι), into a reaction chamber, vacuum heating, the purpose of removing moisture of the cavity and the surface of the material, the final temperature of the reaction chamber in stable between 100-300 ° C.

[0069] (3)加热含铜前驱物,并利用载气(优选为氮气)把含铜前驱物,氢气反应物以脉冲的形式依次送入反应腔体内。 [0069] (3) heating the copper-containing precursor, and carrier gas (preferably nitrogen) the copper precursor, was reacted with hydrogen in a pulsed sequentially into the reaction chamber. 可以调节反应物脉冲剂量,反应物与粉体的接触时间,脉冲之间的间隔时间,反应腔体的温度,脉冲的循环次数等来控制沉积条件,被包覆的粉末利用气流的流动混合使其与反应物充分接触。 May adjust the interval between the reactant pulses dose, the contact time of the reactants with the powder, pulse, temperature of the reaction chamber, the number of pulse cycles and the like to control the deposition conditions, the coated powder by a gas flow so that the flow mixing sufficiently in contact with the reactants. 最终获得本发明的Cu/Si用于二次锂电池的负极活性材料,其结构见附图lc。 Finally obtained according to the present invention, Cu / Si negative active material for a secondary lithium battery, which structure is shown in figures lc.

[0070] 采用化学气相原子层沉积法制备本发明的Cu/Si核壳结构的复合粒子,也可以在Si颗粒表面采用原子层沉积(ALD)包覆一些其他金属,改变其界面张力,或者氧化物如A1203、TiO2,厚度控制在1纳米-100纳米。 [0070] The chemical vapor Cu / Si composite particles are core-shell structure of the atomic layer deposition method of the present invention may be employed in the particle surface Si atomic layer deposition (ALD) coated with other metals, which change the interfacial tension, or oxidation as was A1203, TiO2, controlling the thickness of 1 nm -100 nm.

[0071] 2.化学液相沉积制备本发明M/Si (Μ = Cu, Fe, Ni或Cr,以Cu为例说明)负极活性材料步骤包含如下步骤: [0071] 2. Preparation of the present invention, a chemical liquid deposition M / Si (Μ = Cu, Fe, Ni, or Cr, Cu as an example) a negative electrode active material step comprises the steps:

[0072] (1)将商品Si粉(颗粒尺寸为500nm-4 μ m)用稀的HF酸预处理,除去Si表面的SiO2,也可以适当加入一些HNO3促进刻蚀,让Si颗粒表面粗糙化,最后将溶液过滤。 [0072] (1) The product Si powder (particle size 500nm-4 μ m) pretreated with dilute HF acid to remove the surface of SiO2 Si may be appropriately added to promote some of HNO3 etching, so that the particle surface is roughened Si Finally, the solution was filtered.

[0073] (2)将经过表面处理的Si粉加入到含Cu溶液或PdCl2、SnCl2溶液中活化Si表面, 也可以不经过表面活化。 [0073] (2) After the surface-treated Si powder was added to the solution containing Cu or PdCl2, SnCl2 solution and activated the Si surface may be a surface without activation. [0074] (3)将经过上述处理的Si粉末加入到含Cu的镀液中,对镀液的选取没有特别要求,如可以选择含乙二胺四乙基二钠,氯化铜或硫酸铜或醋酸铜溶液,用甲醛作还原剂。 [0074] (3) After the Si powder was added to the above-described process of plating solution containing Cu, no special requirements, may be selected as containing disodium ethylene diamine tetra-ethyl selected plating bath, copper chloride, copper sulfate or a copper acetate solution, formaldehyde is used as reducing agent. 控制反应镀液浓度、温度、PH值,反应时间可以控制Cu的包覆厚度,厚度控制在10纳米-100 纳米。 Controlling the reaction bath concentration, temperature, PH value, the reaction time can control the coating thickness of the Cu, the thickness control of 10 nm -100 nm.

[0075] (4)将所得Cu/Si核壳结构的粉末,在惰性或还原性气氛中(如氩气、氢气、氮气),IOO0C -SOO0C中热处理,一方面让Cu扩散进入Si颗粒内部,增加导电性。 [0075] (4) The resulting powder was Cu / Si core-shell structure in an inert or reducing atmosphere (e.g., argon, hydrogen, nitrogen), IOO0C -SOO0C heat treatment, the Cu diffusion into the interior of one hand Si particles, increase conductivity. 另一方面铜颗粒之间也会发生熔合。 On the other hand fusion also occurs between the copper particles. 铜层的形貌跟升温速率,热处理温度,热处理时间,降温速率,热处理的气氛有关。 Morphology of the copper layer with the heating rate, the heat treatment temperature, heat treatment time, cooling rate, the heat treatment atmosphere relevant.

[0076] 经过上述化学沉积法得到Cu/Si复合材料,有必要也可以在颗粒表面覆盖CVD碳层,将上述所得的颗粒放入有惰性气体(如氩气、氢气、氮气)保护和碳源气(如甲烷、乙烯、乙炔、苯或甲苯等有机气体)的管式炉中,在一定的温度下(300〜1200°C ),加热0.5 小时〜72小时,利用化学气相沉积再在Cu/Si表面包覆一层或多层的CVD碳层,其结构特征见附图Id。 [0076] After the above chemical deposition method to obtain Cu / Si composite material, it is necessary to CVD carbon layer may be coated on the surface of the particles, the particles obtained as described above into an inert gas (such as argon, hydrogen, nitrogen) protection and a carbon source tube furnace gas (such as methane, ethylene, acetylene, benzene or toluene, an organic gas), at a certain temperature (300~1200 ° C), for 0.5 hours ~72 hours, and then by chemical vapor deposition on Cu / Si surface coated with one or more layers of the CVD carbon layer, wherein the structure see Figure Id.

[0077] 经过上述化学液相沉积法得到Cu/Si核壳复合材料,也可以利用化学水解或者原子层沉积方法在表面包覆一层TiO2或者Al2O3,厚度控制在1纳米-100纳米。 [0077] The chemical liquid deposition obtained Cu / Si material through the core-shell composite may be by chemical hydrolysis or an atomic layer deposition method of the surface coating layer of TiO2 or Al2O3, controlling the thickness of 1 nm -100 nm. TiA或者Al2O3 包覆可以钝化颗粒表面的活性位,减少副反应,提高首次效率。 TiA or Al2O3 particles coated surface can be passivated active sites and reduce side reactions, for the first time to improve efficiency.

[0078] 需要指出的是,具有上述组成和结构特征的用于二次锂电池的负极活性材料的还可以采用(III)机械法;(IV)水热法;(V)化学气相沉积法来制备,具体制备方法可以参考专利:CN200410030990. X,CN200510082822. X,制备核壳结构的负极材料方法不局限于此。 [0078] It should be noted that structural features and having the above composition for a negative active material of a secondary lithium battery may also be employed (III) mechanical method; (IV) hydrothermal method; (V) chemical vapor deposition method preparation, the specific preparation method can refer to Patent:.. CN200410030990 X, CN200510082822 X, the negative electrode material of the process for preparing core-shell structure is not limited thereto.

[0079] 本发明还提供包括上述负极材料和集流体的电极;所述集流体可以为各种导电的箔、网、多孔体、泡沫体或纤维体材料的载体,例如铜箔、镍网、泡沫镍和碳毡。 [0079] The present invention further provides the above-described negative electrode comprising an electrode material and a collector; the current collector can be of various conductive foil, net, porous body, foam or fibrous carrier material, such as copper foil, nickel mesh, a nickel and carbon felt.

[0080] 本发明的上述负极的制备方法如下: [0080] The negative electrode production method of the present invention is as follows:

[0081] 将上述负极活性材料、粘结剂、导电添加剂按一定的比例混合,涂覆于各种导电的箔、网、多孔体、泡沫体或纤维体材料的载体上(如铜箔、镍网、泡沫镍、碳毡等),在真空或惰性气氛中,80-450°C,优选为120°C _350°C,更优选为120°C _300°C进行热处理,热处理时间为10分钟-10小时。 [0081] The negative electrode active material, a binder, a conductive additive is mixed in a certain proportion, coated on a variety of conductive foils, a mesh, a porous body, a foam or fibrous carrier material (such as copper foil, a nickel net, foamed nickel, carbon felt, etc.), in a vacuum or inert atmosphere, 80-450 ° C, preferably 120 ° C _350 ° C, more preferably 120 ° C _300 ° C heat treatment, the heat treatment time was 10 minutes - 10 hours. 对负极的制备方法没有特别限制,例如可以将负极材料,导电添加剂分散在含有粘结剂的溶液中,混合得到具有一定粘稠度的浆料,涂覆于金属集流体上(例如铜箔),其结构如图4所示。 The negative electrode is not particularly limited in production method, for example, the negative electrode material, the conductive additive is dispersed in a binder solution and mixed to obtain a slurry having a certain viscosity, and applied to (e.g., copper) on a metal current collector , the structure as shown in FIG.

[0082] 上述浆料的制备,优选的方法是:将粘结剂溶解在相应的溶剂中,溶剂可以根据相容性作适当的选择,对溶剂成分没有特别限制,例如可以选择N-甲基-2-吡咯烷酮(NMP), N,N- 二甲基甲酰胺,N, N- 二甲基二乙酰胺等。 Preparation [0082] The slurry method is preferred: The binder was dissolved in the appropriate solvent, the solvent may be suitably selected according to the compatibility of the work, the solvent component is not particularly limited, may be selected for example methyl N- 2-pyrrolidone (of NMP), N, N- dimethylformamide, N, N- dimethyl diethyl amide. 它们可以单独使用,也可以两种或更多种组合使用。 These may be used alone or in combination of two or more kinds. 在不影响本发明效果的前提下,也可以适当加入一些促进聚合反应的添加剂,或者加入一些提高粘结剂溶解性和粘结性的添加剂。 Without effect of the present invention, may be suitably added to some of the additives which promote the polymerization reaction, or adding some binder to improve solubility and adhesion additives.

[0083] 上述负极的制备方法中,粘结剂选取酰胺类高分子,优选芳香族聚酰胺酰亚胺、 芳香族聚酰胺、芳香族聚酰亚胺,以及未完全聚合的前驱体的一种或多种组合。 One kind of [0083] the production method of the negative electrode, the binder polymer selected amides, preferably aromatic polyamideimide, aromatic polyamide, aromatic polyimide, and the precursor is not completely polymerized or various combinations. 例如可以将含有未完全酰胺化的芳香族聚酰胺酰亚胺(其中链中含有酰胺酸)NMP溶液,将复合粒子,导电添加剂进行混合,涂覆于金属集流体上,在惰性气氛中或真空环境下,80-450°C,优选为120°C -350°C,更优选为120°C -300°C进行热处理,从而使得未完全酰胺化的聚酰胺酰亚胺酰胺化,分子链进一步增长,同时分子链链段之间还会发生交联,从而提高成膜质 For example, containing not fully amidated aromatic polyamideimide (wherein the chain contains an amic acid) solution of NMP, the composite particles, the conductive additive were mixed, coated on a metal current collector, in an inert atmosphere or in vacuo ambient, 80-450 ° C, preferably 120 ° C -350 ° C, more preferably 120 ° C -300 ° C heat treatment, so that not fully amidated polyamideimide amidation, molecular chains further growth, while the cross-linking will occur between the molecule chain segments, thereby improving the film quality into

9量。 9 amount. 也可以选择组成粘结剂的单体(羧酸或酸酐和二胺成分)比如羧酸或酸酐可以选取苯三甲酸,苯四甲酸,二苯基四羧酸二酐,苯四甲酸二酐,二苯醚四羧酸二酐,二苯甲酮四羧酸二酐等,二胺成分可以选取为二氨基二苯醚,苯二胺,乙二胺,丙二胺,1,2丙二胺,二乙基甲苯二胺等,酸酐,二胺的成分的选择不局限于此,与复合粒子,导电添加剂一起混合制得浆料,使其初步聚合,涂敷于集流体上,然后在惰性气氛或真空环境下,在80-450°C,优选为1200C _350°C,更优选为120°C -300°C热处理10分钟-10小时,使其聚合成膜。 You can also select monomers (carboxylic acid or anhydride and a diamine component), such as the composition of the binder may be selected carboxylic acid or anhydride trimellitic acid, pyromellitic acid, diphenyl tetracarboxylic dianhydride, pyromellitic dianhydride, diphenyl ether tetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, the diamine component may be selected as oxydianiline, p-phenylenediamine, ethylenediamine, propylenediamine, 1,2-propanediamine selecting component diethyl toluene diamine, acid anhydride, the diamine is not limited thereto, and the composite particles, mixed with a conductive additive to obtain a slurry, so that the preliminary polymerization, coated on a current collector, in an inert atmosphere or under vacuum, at 80-450 ° C, preferably 1200C _350 ° C, more preferably 120 ° C -300 ° C heat-treated 10 minutes to 10 hours, so that a polymerization film. 热处理的温度可以根据粘结剂的不同进行选择。 The heat treatment temperature can be selected depending on the binder. 附图3给出了一些不同程度酰胺化,酰亚胺化的芳香族酰胺,酰亚胺类分子结示意图,采用的粘结剂种类不限于此。 Figure 3 shows some different degrees of amidation, imidation aromatic amides, imides schematic molecular structure, the type of binder used is not limited thereto.

[0084] 电极的包覆处理: [0084] The electrode coating treatment:

[0085] 在上述电极的制备中,将浆料涂覆于集流体上后,也可以采用化学气相沉积的方法如原子层沉积(ALD)在电极表面包覆一层无机化合物,包覆的无机物可以为Al2O3,TiO2 等,厚度控制在1纳米-100纳米,优选为1纳米-20纳米,无机化合物包覆可以减少电极的活性位,减少副反应的发生,比如减少SEI膜的生成,提高电池的首次库伦效率,另外惰性碱性化合物的包覆如Al2O3也可以和电解液由于水解产生的HF酸反应,避免电极材料结构的破坏。 [0085] In the preparation of the electrodes, the slurry is applied to the current collector, a chemical vapor deposition method may be employed, such as atomic layer deposition (ALD) coated with a layer of inorganic compound on the electrode surface coated inorganic may be as Al2O3, TiO2, etc., control the thickness of 1 nm -100 nm, preferably 1 nanometers to 20 nanometers, the inorganic compound may be coated to reduce active sites of the electrode, reduce the incidence of side reactions, such as reducing the generated SEI film and improve initial coulombic efficiency of the cell, additional inert basic compound such as Al2O3 coated and the electrolyte may be due to the reaction of HF acid hydrolysis, to avoid destruction of the electrode material structure. 厚度的控制主要是避免无机化合物影响负极的电子和离子的传输。 Controlling the thickness of the main transport of electrons and ions to avoid the negative effect of the inorganic compound. 附图5所示为负极经过原子层沉积包覆一层无机化合物的示意图。 After 5 shown in the drawings a schematic view of an atomic layer deposition coated with a layer of the inorganic compound is a negative electrode. 极片涂覆干燥后再包覆无机化合物的优点是,无机物包覆在整个颗粒导电网络的上面,不会阻隔整个导电网络,进而影响极片电子的传输。 Pole piece after coating and drying the coating advantage is that the inorganic compound, inorganic particles coated on a conductive network throughout the upper, not the entire conductive barrier network, thereby affecting the transfer of electrons pole piece. 无机化物的包覆和极片的热处理可以同时进行,也可以先热处理后进行包覆。 Heat treating the coating and the pole pieces of the inorganic compound may be performed simultaneously, it may be coated before heat treatment.

[0086] 关于原子层沉积(ALD)包覆一层无机化合物,以Al2O3包覆为例描述如下:将上述制备好的极片放入真空腔体中,将水蒸汽,三甲基铝以惰性气体如氮气为载气,循环依次以脉冲气送入真空腔体中,真空腔体沉积温度控制在100-300°C,优选150-250°C。 [0086] For an atomic layer deposition (ALD) coated with a layer of an inorganic compound, the coating of Al2O3 as an example is described as follows: The above-prepared electrode sheets into a vacuum chamber, water vapor, inert trimethylaluminum the carrier gas was nitrogen gas, into the gas circulating sequentially in a pulsed vacuum chamber, the vacuum deposition chamber temperature is controlled at 100-300 ° C, preferably 150-250 ° C. 通过三甲基铝的单分子层的水解,逐层在活性材料的颗粒表面包覆Al2O3,具体原理见附图2,选用不同的有机金属源,可以包覆不同的无机材料,如Ti02、Cu、Fe、Ni或Cr等,原子层沉积包覆均勻,包覆厚度精确可控。 By hydrolysis monolayers trimethylaluminum, layer by layer on the active material particle surface is coated with Al2O3, specific principle see Figure 2, use of different organic metal source, various inorganic materials can be coated, such as Ti02, Cu , like Fe, Ni or Cr, an atomic layer deposition coating uniformity, precisely controllable coating thickness.

[0087] 本发明提供一种上述负极活性材料的用途,可将此负极活性材料直接用于二次锂离子电池的负极材料中。 [0087] The present invention provides a use of the negative electrode active material, this may be a negative electrode active material, a negative electrode material was used directly in secondary lithium ion battery.

[0088] 本发明提供另一种上述负极活性材料的用途,可将此负极活性材料与其它现有的负极材料(如石墨)混合,用于二次锂离子电池的负极材料中,其中,所述负极活性材料占负极材料总重量的3〜98wt%。 [0088] The present invention further provides use of the above-described negative electrode active material, this may be a negative electrode active material and the negative electrode of the other existing material (such as graphite) were mixed, the negative electrode material for a lithium ion secondary battery, wherein the said negative electrode active material comprises 3~98wt% of the total weight of the negative electrode material.

[0089] 本发明提供的具有核壳结构的负极活性材料,内核的活性物质在充放电过程中的体积变化受到外壳层热解碳层、Cu, Fe,M或Cr层,或CVD碳层的抑制,即使在充放电过程中活性物质粉化,也可以始终和导电添加剂保持着良好的电接触。 [0089] The present invention provides a negative electrode active material having a core-shell structure, the core volume change of the active substance in the charge-discharge process of the skin layer by pyrolytic carbon layer, Cu, Fe, M, or Cr layer, or the CVD carbon layer inhibiting, even if the active material pulverized during charging and discharging, and electrically conductive additive may always maintain good electrical contact.

[0090] 另外,由于内核的活性物质被碳层、Cu, Fe, Ni或Cr层或A1203、TiO2包覆,表面钝化膜的生长只与外壳层活性位面积大小有关,对外壳层的表面包覆处理,可以显著减小钝化膜的生长。 [0090] Further, since the core of the active material is a carbon layer, Cu, Fe, Ni, or Cr layer or A1203, TiO2 coating, surface passivation film is grown only on the size of the area of ​​the active site shell layer external surface of the shell coating treatment, can be significantly reduced the growth of the passivation film.

[0091] 例如采用CVD方法在在复合粒子外包覆一层致密的碳层,减小复合粒子比表面积,这样带来的好处是内部活性物质表面避免了钝化膜的生长和分解,外表面的钝化膜可以稳定生长,且消耗的锂不多。 [0091] CVD method using, for example, coating the composite particles on the outer layer of dense carbon layer, the specific surface area of ​​the composite particles is reduced, Such benefits are the active material surface from the decomposition of the growth and the passivation film, the outer surface the passivation film can be stably grown, and a small consumption of lithium. 也可以在外表面包覆1纳米-100纳米厚的A1203、TiO2等, 这样可以减少钝化膜的生长,同时又不影响材料的电子和离子输运。 The outer surface coating may be 1 nm -100 nm thick A1203, TiO2 and the like, which can reduce the growth of the passivation film, without affecting the electron and ion-transporting material. [0092] 采用高抗张强度、高粘合性的酰胺类耐高温粘结剂,以及采用热处理方法来制备负极,保证了负极长时间循环稳定性。 [0092] The prepared high tensile strength, high adhesiveness amides temperature binder, and heat treatment method of the negative electrode, the negative electrode time to ensure cycle stability.

[0093] 实验证明,通过采用核壳结构的负极活性材料、表面包覆处理,以及采用高性能的酰胺类耐高温粘结剂,充分利用和发挥了内部活性物质储锂容量大的优势,解决了体积变化的问题,解决了表面钝化膜生长不稳定的问题,因此循环性和充放电效率显著提高。 [0093] The experiments show that by using the negative electrode active material of the core-shell structure, the surface coating treatment, and the use of high temperature adhesive performance amides, full utilization of the active material of the lithium storage capacity big advantage, solution a volume change and solve the problem of the growth surface of the passivation film unstable, and thus the charge-discharge cycle efficiency is significantly improved. 另外,本发明采用的作为内部活性物质的材料具有充放电电位低的特点,因此,采用本发明的负极活性材料制备的二次锂离子电池还具有能量密度高的优点。 Further, the present invention is employed has a low charge-discharge potential as the material characteristics of the active material, thus prepared secondary lithium ion battery using the negative active material according to the present invention also has the advantage of high energy density.

[0094] 本发明核壳结构的高容量负极活性材料与其它现有的负极材料(如石墨)混合使用用于二次锂离子电池的负极材料时,也可提高该混合负极材料的电化学性质。 [0094] Electrochemical properties of the high capacity of the core-shell structure according to the present invention, the conventional negative electrode active material and the other anode material (e.g., graphite) using a negative electrode material is mixed for a secondary lithium ion batteries, can also improve the mixing of the negative electrode material . 例如石墨的储锂容量为300〜370mAh/g,本发明提供的一种硅基复合颗粒负极材料的可逆容量为2300mAh/g,如果将这两种材料简单混合,当硅基复合颗粒负极材料占混合负极材料20wt% 时,该混合负极材料的可逆容量可达到730mAh/g ;当硅基复合颗粒负极材料占混合负极材料5wt%时,该混合负极材料的可逆容量仍然高达450mAh/g,都明显高于石墨的储锂容量。 E.g. lithium storage capacity of graphite is 300~370mAh / g, a reversible capacity of a silicon-based composite particles of the present invention provides a negative electrode material was 2300mAh / g, if the two materials are simply mixed, the composite particles as a negative electrode material comprises silicon when the negative electrode material mixing 20wt%, the reversible capacity of the negative electrode material mixture may reach 730mAh / g; silicon composite particles when the negative electrode material comprises mixing a negative electrode material 5wt%, the reversible capacity of the negative electrode material mixture still as high as 450mAh / g, were significantly higher than the lithium storage capacity of graphite.

[0095] 本发明还提供包含上述负极的二次锂离子电池,该电池的正极活性材料为现有的用于二次锂离子电池的正极材料,即能可逆地嵌入和脱出锂的含锂的过渡金属氧化物,例如LiCo02、LiNiO2, LiMn2O4, LiFePO4, LiNi1^xCoxMnO2 等,并且不局限于此。 [0095] The present invention further provides the above-described negative electrode comprising a lithium ion secondary battery, a positive electrode active material of the battery positive electrode material used for the conventional lithium ion secondary batteries, i.e., capable of reversibly inserting and extracting lithium-containing lithium transition metal oxides such as LiCo02, LiNiO2, LiMn2O4, LiFePO4, LiNi1 ^ xCoxMnO2 the like, and is not limited thereto.

[0096] 根据本发明的一个实施方案,本发明的二次锂离子电池的正极的制备方法如下: 将正极活性材料、导电添加剂(如乙炔黑)、粘结剂(如5%聚偏氟乙烯的环己烷溶液)在常温常压下,按重量百分比85 : 10 : 5混合形成复合材料浆液,把其均勻的涂敷在作为集流体的铝箔上,所得薄膜厚度为5微米〜40微米,然后在100〜150°C下烘干,在压力为0. 2〜20Mpa/Cm2下压紧,继续在100〜150°C烘12小时,烘干后将所得薄膜按所制备的电池规格裁剪成各种形状即为正极。 [0096] According to an embodiment of the present invention, the positive electrode of the lithium ion secondary battery production method of the present invention is as follows: the positive electrode active material, a conductive additive (e.g., acetylene black), a binder (e.g., 5% polyvinylidene fluoride solution in cyclohexane) at ambient temperature and pressure, by weight percent 85: 10: 5 mixed to form a slurry of the composite material, the uniformly coated on an aluminum foil as a current collector, the resultant film thickness of 5 [mu] m ~ 40 [mu] m, then drying at 100~150 ° C, pressing at a pressure of 0. 2~20Mpa / Cm2, to continue drying at 100~150 ° C 12 hours, the resulting film after drying is prepared according to the battery specifications cut into It is the positive electrode of various shapes.

[0097] 本发明的二次锂离子电池的电解质可以为有机电解质溶液,可以由一种有机溶剂或几种有机溶剂组成的混合溶剂添加一种或几种可溶锂盐组成。 Secondary lithium ion battery electrolyte [0097] The present invention may be an organic electrolyte solution, may be added to a mixture solvent of an organic solvent or an organic solvent consisting of several or more soluble lithium salt. 典型的有机溶剂包括:例如,乙烯碳酸酯(EC ethylene carbonate),丙烯碳酸酯(PC propylene carbonate),二乙基碳酸酯(DEC diethyl carbonate),二甲基碳酸酯(DME :dimethyl carbonate),乙基甲基碳酸酯(EMC :ethylmethyl carbonate),二甲氧基乙烷(DME :dimethoxy_ethane)等;典型的可溶锂盐包括:例如,LiClO4, LiBF4, LiPF6, LiCF3SO3, LiAsF6等;典型的体系包括:例如IM LiPF6(EC-DEC体积比1 : 1),IM LiPF6(EC-DMC体积比3 : 7)等。 Typical organic solvents include: for example, ethylene carbonate (EC ethylene carbonate), propylene carbonate (PC propylene carbonate), diethyl carbonate (DEC diethyl carbonate), dimethyl carbonate (DME: dimethyl carbonate), ethyl methyl carbonate (EMC: ethylmethyl carbonate), dimethoxyethane (DME: dimethoxy_ethane) and the like; typically soluble lithium salts include: for example, LiClO4, LiBF4, LiPF6, LiCF3SO3, LiAsF6 like; typical system comprises : e.g. IM LiPF6 (EC-DEC volume ratio of 1: 1), IM LiPF6 (EC-DMC volume ratio of 3: 7) and the like. 另外,还可以在上述电解液中添加各种功能型添加剂,例如联苯,乙烯基碳酸酯(VEC)等。 Further, in the electrolyte solution may be added in a variety of functional additives, such as biphenyl, vinyl carbonate (VEC) and the like. 电解液的选择也可以不局限于此。 Selection of the electrolytic solution may not be limited thereto.

[0098] 本发明的二次锂离子电池的电解质也可为聚合物电解质,可采用现有的二次锂离子电池用聚合物电解质,如聚乙烯腈、LiClO4、丙烯碳酸酯和乙烯碳酸酯以重量比20 : 5 : 45 : 30组成的混合物,或是聚偏氟乙烯和六氟丙烯的共聚物与六氟磷酸锂的混合物,并且不局限于此。 [0098] The lithium ion secondary battery electrolyte of the invention may also be a polymer electrolyte, may be employed conventional secondary lithium ion polymer electrolyte battery, nitriles such as polyethylene, of LiClO4, and ethylene carbonate, propylene carbonate are weight ratio of 20: 5: 45: 30 mixture consisting of a mixture or a copolymer of polyvinylidene fluoride and hexafluoropropylene and lithium hexafluorophosphate, and is not limited thereto.

[0099] 本发明的二次锂离子电池的隔膜为现有通用的二次锂离子电池用的隔膜,如多孔聚丙烯隔膜,无纺布,并且不局限于此。 [0099] Secondary lithium ion battery separator of the invention is a conventional general lithium ion secondary battery separator, such as porous polypropylene membrane, a nonwoven fabric, and is not limited thereto.

[0100] 本发明的二次锂离子电池基本结构由含有本发明提供的具有核壳结构的复合粒子作为负极活性材料的负极,含有锂的化合物作为正极活性材料的正极,有机电解质溶液或聚合物电解质,隔膜,集流体,电池壳,引线等组成。 [0100] The positive electrode as a positive electrode active material a lithium ion secondary battery basic compound structure of the present invention is a composite comprising particles having a core-shell structure of the present invention provides a negative electrode active material, lithium-containing, organic electrolyte solution or a polymer electrolyte, separator, current collector, the battery, such as lead composition. 其中,正极与负极之间由浸泡了有机电解质溶液的隔膜或者由聚合物电解质隔开,正极和负极的一端分别焊上引线与相互绝缘的电池壳两端相连。 Wherein, between the cathode and the anode by a separator soaked organic electrolyte solution or separated by a polymer electrolyte, the positive and negative electrodes are welded to the lead end of both ends of the battery case is connected to the mutually insulated. 该二次锂离子电池的外形可以分别作成扣式(单层),圆柱型(多层卷绕),方型(多层折叠),口香糖型(多层折叠)等,并且不局限于此。 The secondary lithium ion battery can be made separately button shape (single layer), cylindrical (wound multilayer), square (multilayer sheet), the chewing gum type (multi-layer fold) and the like, and is not limited thereto.

[0101] 本发明的二次锂离子电池适用于各种移动电子设备或需要移动能源驱动的设备, 例如移动电话,笔记本电脑,便携式录像机,电子玩具,电动工具,电动汽车,混合动力车,电动鱼雷等领域,并且不局限于此。 [0101] a lithium ion secondary battery of the present invention is applicable to various mobile electronic device or a mobile device driven energy needs, such as mobile phones, laptop computers, portable recorders, electronic toys, electric tools, electric vehicles, hybrid vehicles, electric torpedoes and other fields, and is not limited thereto.

[0102] 与现有的电池的负极材料相比,本发明的负极材料的优益之处在于:本发明的负极材料采用了高储锂容量的硅基为核心活性材料,并采用了特殊的核壳结构,此外,本发明采用了高性能酰胺类粘结剂,并采用高温热处理工艺,因而,将该负极材料应用于二次锂离子电池的负极时,具有充放电电位低,可逆容量高,循环性好,安全可靠,第一周库仑效率高的显著优点。 [0102] Compared with the conventional negative electrode material of a battery, the negative electrode material superior benefits of the present invention is that: the negative electrode material of the present invention employs a high silicon lithium storage capacity of the core active material, and using a special when the core-shell structure, furthermore, the present invention uses a high-performance adhesive amides, and high-temperature heat treatment process, and therefore, the negative electrode material is applied to the negative electrode of secondary lithium ion batteries, having a low charge-discharge potential, a high reversible capacity , good cycle, safe, reliable, high coulombic efficiency of the first week of significant advantages.

附图说明 BRIEF DESCRIPTION

[0103] 以下,结合附图来详细说明本发明的实施例,其中: [0103] Hereinafter, embodiments of the present invention in conjunction with the accompanying drawings will be described in detail, in which:

[0104] 图Ia为采用喷雾干燥制备的核壳结构的复合粒子示意图,其中,1 :内部活性物质-硅基材料,2 :活性物质(如碳材料,氧化锰,氧化铬),3 :导电添加剂或金属颗粒,4 :包覆层(如:热解碳层,CVD碳层,金属层,金属氧化物层);图Ib为采用机械法制备的核壳结构的复合粒子示意图,其中,1 :内部活性物质,2 :热解碳层或导电添加剂,3:包覆层(如CVD碳层);图Ic为采用化学沉积法制备的M/Si (Μ = Cu, Fe, Ni或Cr)复合粒子示意图, 其中,1 :内部活性物质,2 :金属层;图Id为本发明制备的C/M/Si (Μ = Cu, Fe, Ni或Cr)核壳结构的复合粒子示意图,其中,1 :内部活性物质,2 :金属层,3 :包覆层(如热解碳层,CVD 碳层,金属层,金属氧化物层); [0104] FIG. Ia is a core-shell composite particles prepared by spray drying a schematic view, wherein 1: the active material - silicon-based material, 2: active material (e.g., carbon material, manganese oxide, chromium oxide), 3: conductive additive or metallic particles, 4: coating layer (eg: pyrolytic carbon layer, the CVD carbon layer, a metal layer, a metal oxide layer); FIG. Ib is a schematic view of a composite particle of the core-shell structure prepared by using the mechanical method, wherein 1 : the active material, 2: pyrolytic carbon layer or a conductive additive 3: cladding layer (e.g., CVD carbon layer); FIG. Ic is prepared by chemical deposition using M / Si (Μ = Cu, Fe, Ni, or Cr) a schematic view of the composite particles, wherein, a: the active material, 2: a metal layer; FIG. Id oriented C / M / Si (Μ = Cu, Fe, Ni, or Cr) core-shell composite particles prepared schematic structure of the present invention, wherein, 1: the active material, 2: a metal layer, 3: coating layer (e.g., pyrolytic carbon layer, the CVD carbon layer, a metal layer, a metal oxide layer);

[0105] 图2为原子层沉积(ALD)包覆Al2O3的工艺流程图,其中,弯曲线条代表颗粒表面; [0105] Figure 2 is an atomic layer deposition (ALD) process flow diagram of Al2O3 coating, wherein the curved lines represent the surface of the particles;

[0106] 图3a为部分酰胺化的聚酰胺酰亚胺分子结构,其中,1 :酰胺酸结构,2 :酰亚胺结构;图%为前驱体聚酰胺酸分子结构;图3c为聚酰亚胺分子结构;图3d为聚酰胺分子结构; [0106] Figure 3a is a partially amidated polyamideimide molecular structure, wherein 1: the amic acid structure, 2: imide structure; FIG.% Molecular structure of the polyamic acid precursor; FIG. 3c is a polyimide amine molecule structure; FIG. 3d is a polyamide molecular structure;

[0107] 图4为本发明电极制作过程示意图; [0107] FIG. 4 is a schematic production process of an electrode of the present invention;

[0108] 图5为在极片上采用原子层气相沉积(ALD)包覆无机化合物的示意图,最下方的粗线条代表包覆的无机化合物层,圆形代表复合颗粒; [0108] FIG. 5 is a schematic diagram of using an atomic layer vapor deposition (ALD) an inorganic compound coated on the pole piece, thick lines represent the most inorganic compound layer coated underneath, circles represent the composite particles;

[0109] 图6a和图6b为采用本发明实施例1所述的喷雾干燥法制备的碳/硅核壳复合粒子的不同放大倍数扫描电镜扫描(SEM)照片; [0109] Figures 6a and 6b different magnification SEM scan carbon / silicon core-shell composite particles prepared by a spray drying method described in Example 1 (SEM) photograph embodiment of the present invention;

[0110] 图7为采用本发明实施例1制备的碳/硅核壳复合粒子以金属锂为对电极前5周的充放电曲线,其中,首次效率为80% ; [0110] FIG. 7 embodiment employing a carbon / silicon core-shell composite particles prepared in Example 1 metal lithium on charge-discharge curve of the front electrode 5 weeks, wherein the first efficiency was 80% according to the present invention;

[0111] 图8为采用本发明实施例1制备的碳/硅核壳结构复合粒子循环性曲线(2V-5mv); [0111] FIG. 8 is a carbon cyclic curve prepared in Example 1 / silicon composite core-shell structure particles (2V-5mv) embodiment of the present invention;

[0112] 图9为采用本发明实施例1制备的碳/硅核壳结构负极材料限制电压循环性曲线(2V-IlOmV); [0112] Example 9 is prepared using an embodiment of the present invention, the carbon / silicon anode material core-shell structure to limit voltage cycling curve (2V-IlOmV);

[0113] 图IOa和图IOb为采用本发明实施例2制备的碳/硅核壳结构复合粒子不同放大倍数的SEM照片; Carbon [0113] FIGS IOa and IOb Preparation Example 2 of the present invention / silicon composite particles of different core-shell structure enlarged SEM photograph multiple;

[0114] 图11为采用本发明实施例2制备的碳/硅核壳结构负极材料限制电压循环性曲线(2V-IlOmV); [0114] Example 11 is prepared using embodiment 2 of the present invention, a carbon / silicon anode material core-shell structure to limit voltage cycling curve (2V-IlOmV);

[0115] 图1¾为本发明实施例8中原料Si的SEM照片,其中颗粒尺寸为1_4微米;图12b 为本发明实施例8在Si上均勻包覆Cu后的SEM照片;图12c为在惰性气氛保护下,经过250°C热处理的Cu的表面形貌;图12d为离子束刻蚀Cu/Si核壳材料的截面SEM照片; [0115] FIG 1¾ SEM photograph of the starting material in Example 8 Si embodiment of the invention, wherein the particle size 1_4 microns; Example 8 Figure 12b after uniformly coated on a Cu Si SEM photograph embodiment of the present invention; FIG. 12c as an inert under protective atmosphere, through the surface morphology of the Cu heat treatment is 250 ° C; FIG. 12d is / cross-sectional SEM Si ion beam etching Cu core-shell material photographs;

[0116] 图13为采用本发明实施例1制备的核壳材料制作的电极经过本发明实施例16的ALD后续处理的充放电曲线,其中,首次效率为84%,提高了4%。 [0116] FIG. 13 embodiment employing charge-discharge curve of Example 16 ALD subsequent processing of the core-shell material of the electrode prepared in Example 1 of the present invention produced via the present invention, wherein the first efficiency was 84% ​​and 4% increase.

具体实施方式 Detailed ways

[0117] _仿丨丨1 #鹏軒睡狐铺刷彻麵牛遍I [0117] 1 _ # Peng Shushu imitation Hin sleep fox Toru plated surface cow brush passes I

[0118] (1)将干燥的商品Si (粒度为500纳米),商品碳材料(粒度为1-15微米,碳材料可以为中间相碳微球MCMB,天然石墨,人造石墨),作为导电添加剂的炭黑(平均粒径为40 纳米),酚醛树脂,按重量1 : 2 : 0.4 : 1配比加入乙醇溶液中,均勻混合得到具有一定浓度的浆料(也可以不加入导电添加剂); [0118] (1) The dried product Si (particle size of 500 nm), product carbon material (particle size of 15 microns, the carbon material may be the MCMB carbon micro beads, natural graphite, artificial graphite as an intermediate), as a conductive additive carbon black (average particle size 40 nm), a phenolic resin, by weight of 1: 2: 0.4: 1 ratio of ethanol solution was added, uniformly mixed to obtain a slurry having a concentration (conductive additive may not be added);

[0119] (2)将上述得到的浆料用喷雾干燥机在70°C下干燥得球形前驱体粉末,干燥气体可以是压缩空气或惰性气体,干燥气体的流量为lOL/min,压缩空气压力为7bar,浆料的流量为300ml/h ; [0119] (2) The above-obtained slurry was spray dried to obtain spherical precursor powder at 70 ° C, the drying gas may be compressed air or an inert gas, drying gas flow rate of lOL / min, air pressure is 7bar, the flow rate of the slurry was 300ml / h;

[0120] (3)将步骤(¾得到的球形前驱体粉末,在高纯氮气下热解,热解的方法为:先用4 小时从室温升温到400°C,再用5小时从400°C升温到900°C,然后在900°C恒温10小时后, 最后用2小时降到室温,得到包覆了热解碳层的球形复合颗粒,粒度粒径在10-30微米; [0120] (3) The step (¾ spherical precursor powder obtained under pure nitrogen pyrolysis, pyrolysis of: first raised from room temperature over 4 hours to 400 ° C, then 5 hours from 400 ° C temperature was raised to 900 ° C, and after 900 ° C temperature for 10 hours and finally to room temperature over 2 hours, to obtain a spherical composite particles coated pyrolytic carbon layer, a size of 10-30 microns in diameter;

[0121] (4)在含有甲苯和高纯氮气的混合气体下(体积比为1 : 4,流量为200ml/分钟, 管式炉体积为0. 02立方米),将上述球形复合颗粒在管式炉中800°C热解(热解方法为:先用5小时从室温升到800°C,在800°C恒温2小时,再用2小时降到室温),得到本发明的用于二次锂离子电池的负极活性材料I,其各部分的重量比列于表1。 [0121] (4) in a mixed gas containing high purity nitrogen and toluene (volume ratio of 1: 4, flow rate of 200ml / min, a tube furnace volume of 0.02 cubic meters), to the spherical composite particles in the tube 800 ° C furnace pyrolysis (pyrolysis process: first 5 hours from room temperature to rise to 800 ° C, temperature at 800 ° C for 2 hours to room temperature then 2 hours), to give the present invention the negative electrode active material I secondary lithium ion battery, the weight ratio of each portion thereof are shown in table 1.

[0122] 为了研究使用本发明的二次锂离子电池负极活性材料的电化学性能,以下将采用一个实验电池来进行研究。 [0122] In order to investigate the use of a lithium ion secondary battery of the present invention, the negative electrode active material, electrochemical properties, using a test cell will be studied.

[0123] 实验电池是在H2O含量< 1. Oppm的充氩手套箱中装配的。 [0123] In the test cell is assembled H2O content <1. ​​Oppm in an argon-filled glove box.

[0124] 实验电池的电解液为IM LiPF6溶于乙烯碳酸酯和二甲基碳酸酯的混合溶剂中(体积比为1:1)。 A mixed solvent of electrolytic solution [0124] was dissolved in the test cell of ethylene carbonate and dimethyl carbonate was IM LiPF6 (volume ratio 1: 1).

[0125] 实验电池的负极的制备:将含有Si和碳材料的用于二次锂离子电池的负极活性材料I与导电炭黑,未完全聚合的聚酰胺酰亚胺的溶液(其分子结构类似图2a,溶剂为N-甲基2-吡咯烷酮),在常温常压下混合形成浆料(烘干后三者的重量比为85 : 5 : 10), 作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜50微米的薄膜;将此薄膜在150°C 下烘干后,在20Kg/cm2下压紧,继续在250°C惰性气氛中热处理1小时使其交联聚合,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 Preparation of negative electrode [0125] The experimental cells: the material I containing Si and the conductive carbon black used for lithium ion secondary battery negative electrode active carbon material, not fully polymerized polyamideimide solution (which is similar to the molecular structure FIG. 2a, the solvent is N- methyl-2-pyrrolidone), to form a slurry mixture (in a weight ratio of 85 after three drying at normal temperature and pressure: 5: 10) as the negative electrode coating uniformly applied to copper foil on the substrate to give a film thickness of about 2~50 microns; this film after drying at 150 ° C, compression at 20Kg / cm2, heat treatment is continued for one hour to crosslink at 250 ° C the polymerization an inert gas atmosphere , and then the film was cut into a circular sheet Icm2 area as the negative electrode of the test cell.

[0126] 实验电池的正极的制备:将LiMn2O4粉末与导电炭黑,5% PVDF的环己烷溶液混合形成浆料(三者烘干后的重量比为85 : 10 : 5),作为正极涂层均勻涂敷于铝箔衬底上, 得到厚度为5〜40微米的薄膜;将此薄膜在150°C下烘干后,在20Kg/cm2下压紧,继续在150°C下烘干12小时,后将此薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的正极。 Preparation of Positive Electrode [0126] The experimental cells: the LiMn2O4 powder and conductive carbon black, 5% PVDF solution was mixed to form a slurry in cyclohexane (weight ratio after drying is three 85: 10: 5), as a positive electrode coating layer was uniformly applied onto an aluminum foil substrate, to obtain a film having a thickness of 5 ~ 40 micrometers; this film after drying at 150 ° C, compression at 20Kg / cm2, and drying continued at 150 ° C 12 hours after this film was cut into a circular sheet Icm2 area as the positive electrode of the test cell.

[0127] 将实验电池的除电解液或固体电解质外的其它基本构件,如负极、正极、隔膜、集流体、电池壳、引线等干燥后在充氩手套箱中按常规方法组装成实验电池。 [0127] The test cell of the other base member in addition to a solid electrolyte or an electrolytic solution, such as a negative electrode, a positive electrode, a separator, a current collector, the battery, such as lead and dried in an argon-filled glove box assembled into a test cell according to a conventional method.

[0128] 使用受计算机控制的自动充放电仪进行充放电循环测试,测试的电流密度为0. 4mA/cm2,充电截止电压为4. 25V,放电截止电压为2V,测试结果列于表1。 [0128] A computer-controlled automated instrument for charging and discharging the charge-discharge cycle test, the test current density is 0. 4mA / cm2, charge-cutoff voltage 4. 25V, the discharge cut-off voltage of 2V, the test results are shown in Table 1.

[0129] 使用由复合负极与锂组装的模拟电池来研究本发明的复合负极材料相对于金属锂的放电特点,模拟电池的对电极为金属锂箔,充放电循环测试的电流密度为0. 4mA/cm2, 充电截止电压为2V,放电截止电压为0.0V。 [0129] used by an analog cell composite negative electrode and a lithium negative electrode assembled to study the composite material of the present invention relative to the discharge characteristics of metal lithium, the battery simulation metal lithium foil as an electrode, the charge-discharge cycle test current density of 0. 4mA / cm2, a charge-cutoff voltage of 2V, the discharge cutoff voltage was 0.0V. 对于容量较高的活性负极,可以采用限制电压的方式,有利于提高循环性。 For higher capacity of the negative electrode active, voltage-limiting embodiment can be used, help to improve the cycle properties. 实施例1制备的材料结构特征如图6所示,模拟电池的充放电曲线如图7所示,模拟电池的循环性曲线如图8和图9所示,测试结果列于表1。 Preparation Example 1 wherein the material structure of the embodiment shown in FIG. 6, the charge and discharge curve of a battery simulation shown in Figure 7, analog cell cycle curve shown in FIG. 8 and FIG. 9, the test results are shown in Table 1.

[0130] ^MM 2 '燥法泡丨各含有硅的命、极活t牛材料II [0130] ^ MM 2 'each containing a drying method bulb life Shu silicon electrode material II live cattle t

[0131] (1)将干燥的商品Si (平均粒度在500纳米),导电碳黑(平均粒径30纳米),酚醛树脂按10 : 0.5 : 3配比加入乙醇溶液中,均勻混合得到具有一定浓度的浆料; [0131] (1) The dried product Si (average particle size 500 nm), conductive carbon black (average particle size 30 nm), a phenol resin was 10: 0.5: 3 ratio of ethanol solution was added, uniformly mixed to obtain a certain the concentration of the slurry;

[0132] (2)将上述得到的浆料用喷雾干燥机在80°C用压缩空气干燥得球形前驱体粉末, 干燥气体的流量8L/min,压缩空气压力为6bar,浆料的流量为250ml/h ; [0132] (2) The above-obtained slurry was spray drier at 80 ° C with compressed air and dried to give a spherical precursor powder, drying gas flow rate of 8L / min, air pressure 6bar, the slurry flow rate of 250ml / h;

[0133] (3)将步骤(¾所得的球形前驱体粉末,在高纯氮气下热解,热解的方法为:先用4 小时从室温升温到400°C,再用5小时从400°C升温到800°C,然后在800°C恒温10小时后, 最后用2小时降到室温,得到包覆了热解碳层的球形复合颗粒; [0133] (3) The step (¾ obtained spherical precursor powder pyrolysis under high purity nitrogen, pyrolysis of: first raised from room temperature over 4 hours to 400 ° C, then 5 hours from 400 ° C was heated to 800 ° C, and after 800 ° C temperature for 10 hours and finally to room temperature over 2 hours, to obtain a spherical composite particles coated pyrolytic carbon layer;

[0134] (4)在含有乙炔和高纯氮气的混合气体下(体积比为1 : 4,流量为200ml/分钟, 管式炉体积为0. 02立方米),将上述球形复合颗粒在管式炉中800°C热解(热解方法为:先用4小时从室温升到800°C,在800°C恒温3小时,再用2小时降到室温),得到本发明的用于二次锂离子电池的负极活性材料II,其各部分的重量比列于表1。 [0134] (4) in a mixed gas containing acetylene and high purity nitrogen (volume ratio of 1: 4, flow rate of 200ml / min, a tube furnace volume of 0.02 cubic meters), to the spherical composite particles in the tube 800 ° C furnace pyrolysis (pyrolysis process: first 4 hours from the room temperature to rise to 800 ° C, temperature at 800 ° C for 3 hours to room temperature then 2 hours), to give the present invention secondary lithium ion battery negative electrode active material II, the weight ratio of each portion thereof are shown in table 1.

[0135] 实验电池的负极的制备:将上述制备的活性材料II与10%聚酰胺(分子结构例如图2d)的NMP溶液在常温常压下混合形成浆料,作为负极涂层均勻涂敷于铜箔衬底上, 得到厚度约2〜20微米的薄膜;将此薄膜在150°C下烘干后,在20Kg/cm2下压紧,继续在150°C下烘干12小时,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 [0135] Preparation of negative electrode test battery: The active material II prepared above and 10% polyamide (e.g. molecular structure of FIG. 2d) in NMP was mixed at ambient temperature and pressure to form a slurry, coating a uniform coating on the negative electrode a copper foil substrate, to give a film thickness of about 2~20 microns; this film after drying at 150 ° C, at 20Kg / cm2 pressing, drying continued at 150 ° C 12 hours, then the film area was cut into a circular sheet Icm2 test cell as a negative electrode.

[0136] 实验电池的正极制备、组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,但是充放电电压限制在0. 12V-2V,其测试结果列于表1。 [0136] Preparation of a positive electrode test cell, assembly and testing method in Example 1, simulated cell assembly and testing as in Example 1, but the discharge voltage is limited to 0. 12V-2V, The test results are shown in Table 1. 材料结构特征图10所示,模拟电池的循环性曲线如图11所示,测试结果列于表1。 Wherein the material structure shown in FIG. 10, the analog cell cycle curve as shown, test results are shown in Table 111.

[0137] 实施例3使用喷雾法制备C/Cu/Si的负极活件材料III [0137] Example 3 was prepared using a spray-C / Cu / Si material of the negative electrode active member III

[0138] (1)将Si (平均粒径为1微米),醋酸铜,,酚醛树脂按10 : 2 : 3的比例加入到乙醇溶剂中混合制备浆料(也可以加入一定量的导电添加剂); [0138] (1) The Si (1 micron average particle size), copper acetate ,, phenolic resin of 10: 2: 3 ratio was added to the mixed solvent to prepare a slurry of ethanol (may also be a certain amount of conductive additive) ;

[0139] (2)将上述所制的浆料用喷雾干燥机在80°C下干燥得球形前驱体粉末,干燥气体的流量15L/min,压缩空气压力为Sbar,浆料的流量为400ml/h ; [0139] (2) The above slurry was made at 80 ° C for spray dried to obtain spherical precursor powder, drying gas flow rate of 15L / min, air pressure Sbar, slurry flow rate was 400ml / h;

[0140] (3)将步骤(¾得到的球形前驱体粉末,在高纯氮气下进行热处理,热处理的方法为:先用2小时从室温升温到700°C,在700°C恒温1小时后,再用2小时降到室温,得到含有Si,Cu复合颗粒; [0140] (3) The step (¾ spherical precursor powder obtained by heat treatment at high purity nitrogen, a heat treatment method: first 2 hours from room temperature to 700 ° C, temperature at 700 ° C for 1 hour , then two hours to room temperature, to obtain containing Si, Cu composite particles;

[0141] (4)在含有乙烯和高纯氮气的混合气体下(体积比为1 : 4,流量为200ml/分钟, 管式炉体积为0. 02立方米),将上述含有Si,Cu复合粒子在管式炉中700°C热解(热解方法为:先用3小时从室温升到700°C,在700°C恒温5小时,再用2小时降到室温),得到本发明的用于二次锂离子电池的负极活性材料III,该负极活性材料具有核壳结构,平均直径为15微米,其内部含有活性物质Si和Cu,最外层包覆了利用CVD从乙烯热解的碳层,其各部分的重量比列于表1。 [0141] (4) in a mixed gas containing ethylene and high purity nitrogen (volume ratio of 1: 4, flow rate of 200ml / min, a tube furnace volume of 0.02 cubic meters), the aforementioned containing Si, Cu complex particles in a tube furnace in the pyrolysis of 700 ° C (pyrolysis process: first 3 hours from room temperature to rise to 700 ° C, temperature at 700 ° C for 5 hours to room temperature then 2 hours), to give the present invention for a lithium ion secondary battery negative electrode active material III, the negative electrode active material having a core-shell structure, an average diameter of 15 m, an active material contained therein Si and Cu, coated with an outermost layer by CVD from ethylene pyrolysis a carbon layer, the weight ratio of each portion thereof are shown in table 1.

[0142] 实验电池的负极的制备:(1)将含有C/Cu/Si的用于二次锂离子电池的负极活性材料III与单体苯四甲酸二酐,苯二胺(单体摩尔比1 : 1,活性材料和单体的质量比为10 : 1)加入到N-甲基2-吡咯烷酮溶剂中混合制得浆料,涂覆于Cu集流体上,得到厚度为2-20微米的薄膜; [0142] Preparation of negative electrode test cell: (1) a negative electrode active material containing the monomer III with pyromellitic dianhydride used in secondary lithium ion batteries C / Cu / Si, the molar ratio of monomer-phenylenediamine ( 1: 1, mass ratio of the active material and the monomer was 10: 1) was added to N- methyl-2-pyrrolidone solvent to prepare a mixed slurry coated on a Cu current collector to a thickness of 20 microns film;

[0143] (2)将此薄膜在60-80°C下烘干后,在20Kg/cm2下压紧,继续在300°C惰性气氛或真空环境下热处理1小时,使其聚合交联完全,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 [0143] (2) The film was dried at 60-80 ° C, at 20Kg / cm2 compaction, continued heat treatment at 300 ° C in an inert atmosphere or vacuum for one hour to complete cross-linking, the film is then cut into a circular sheet Icm2 area as the negative electrode of the test cell.

[0144] 实验电池的正极制备、实验电池组装及测试方法同实施例1,模拟电池的组装及测试类同实施例1,其测试结果列于表1。 [0144] Preparation of positive electrode test cell, a test cell assembly and testing method in Example 1, the battery assembly and testing simulation similar to Example 1, the test results are shown in Table 1.

[0145] ^MM 4 雾干'燥法制各含有Si的命、极活t牛材料IV [0145] ^ MM 4 fog Dry 'drying each containing Si SYSTEM life, IV pole material of live cattle t

[0146] (1)将商品Si (平均径在1-2微米),与作为导电添加剂的多壁碳纳米管(长径比为100 : 1,长度为20微米,壁厚5纳米),醇溶性的浙青粉按比例9 : 1 : 2. 5加入到乙醇溶液中混得浆料; [0146] (1) The product Si (1-2 microns average diameter), multiwall carbon nanotubes as the conductive additive (aspect ratio of 100: 1, a length of 20 m, a wall thickness of 5 nm), an alcohol Zhejiang green powder soluble proportion 9: 1: 2.5 was added to the ethanol solution fared slurry;

[0147] (2)将上述得到的浆料用喷雾干燥机制备得到球形前驱体粉末,干燥参数类同于实施例1 ; [0147] (2) The slurry obtained above to give a spherical precursor powder prepared by spray drying parameters analogous to Example 1;

[0148] (3)将所得的球形前驱体粉末,在高纯氮气下热解,热解的方法为:先用3小时从室温升温到500°C,再用5小时从500°C升温到1000°C,然后在1000°C恒温10小时后,最后用2小时降到室温,得到包覆了热解碳层的球形颗粒; [0148] (3) The resulting spherical precursor powder pyrolysis under high purity nitrogen, pyrolysis is: first 3 hours from room temperature to 500 ° C, 5 hours and then heated from 500 ° C to 1000 ° C, and after 1000 ° C temperature for 10 hours and finally to room temperature over 2 hours, to obtain spherical particles coated with pyrolytic carbon layer;

[0149] (4)将该球形颗粒,在含有乙烯和高纯氮气的混合气体下(体积比为1 : 4,流量为200ml/分钟,管式炉体积为0. 02立方米),在管式炉中800°C热解(热解方法为:先用7 小时从室温升到800°C,在800°C恒温4小时,再用2小时降到室温),得到本发明的用于二次锂离子电池的负极活性材料IV,该负极活性材料具有核壳结构,其内部含有活性物质Si 和多壁碳纳米管组成的复合颗粒,其外部包覆了从浙青热解的碳颗粒层,最外层包覆了利用CVD从乙烯热解的碳层,外部直径为50微米,其各部分的重量比列于表1。 [0149] (4) The spherical particles in a mixed gas containing ethylene and high purity nitrogen (volume ratio of 1: 4, flow rate of 200ml / min, a tube furnace volume of 0.02 cubic meters), the tube 800 ° C furnace pyrolysis (pyrolysis process: first 7 hours from room temperature to rise to 800 ° C, temperature at 800 ° C for 4 hours to room temperature then 2 hours), to give the present invention IV negative active material for secondary lithium ion battery, the negative electrode active material having a core-shell structure, composite particles contained therein an active material composed of Si and multi-walled carbon nanotubes, which outer coating of carbon particles from the pyrolysis of the green Zhejiang layer, an outermost layer coated with a carbon layer by CVD from ethylene pyrolysis, the external diameter of 50 microns, the weight ratio of each portion thereof are shown in table 1.

[0150] 实验电池的负极的制备:将含有Si的用于二次锂电池的负极活性材料IV与10% 聚酰胺(分子结构如图2c)的NMP溶液在常温常压下混合形成浆料,作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜20微米的薄膜;将此薄膜在150°C下烘干后,在20Kg/cm2 下压紧,继续在150°C下烘干12小时,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 Preparation of negative electrode [0150] The experimental cells: The negative electrode active material containing Si IV for lithium secondary battery and 10% polyamide (molecular structure of FIG. 2c) in NMP was mixed at normal temperature and pressure to form a slurry, the negative electrode coating uniformly applied on a copper foil substrate, to give a film thickness of about 2~20 microns; this film after drying at 150 ° C, compression at 20Kg / cm2, with continued at 150 ° C drying 12 hours, and then the film was cut into a circular sheet Icm2 area as the negative electrode of the test cell.

[0151] 实验电池的正极制备、实验电池组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,限制电压(130mv-2V),其测试结果列于表1。 [0151] Preparation of positive electrode test cell, a test cell assembly and test procedure of Example 1, simulated cell assembly and testing as in Example 1 with the embodiment, the limit voltage (130mv-2V), the test results are shown in Table 1.

[0152] ^MM 5 干'燥法泡丨备含有硅的命、极活+牛材料V [0152] ^ MM 5 Dry 'drying method bulb life Shu prepared containing silicon electrode material live cattle + V

[0153] (1)将干燥的商品硅粉(粒度为300nm)与作为导电添加剂的炭黑(平均粒径为10纳米),超细石墨粉,蔗糖按10 : 0. 1 : 20 : 5比例溶于水混合制得浆料; [0153] (1) The dried product silicon powder (particle size of 300 nm) and the conductive carbon black as additive (average particle diameter of 10 nm), ultrafine graphite, sucrose 10: 0.1: 20: 5 ratio was dissolved in water were mixed to prepare a slurry;

[0154] (2)将浆料用喷雾干燥的方法制备球形前驱体粉末,干燥参数类同于实施例1 ; [0154] (2) A slurry of the spherical precursor powder prepared by spray drying, drying parameters analogous to Example 1;

15[0155] (3)将该球形前驱体粉末,在高纯氮气下热解,热解的步骤为:先用4小时从室温升温到400°C,再用10小时从400°C升温到900°C,然后在900°C恒温12小时后,最后用2 小时降到室温,得到包覆了热解碳层的内部复合颗粒; 15 [0155] (3) The spherical precursor powder pyrolysis under pure nitrogen, pyrolysis step: first heated from room temperature over 4 hours to 400 ° C, and then heated from 10 hours to 400 ° C 900 ° C, and after 900 ° C temperature for 12 hours and finally to room temperature over 2 hours, to obtain composite particles coated with an internal layer of pyrolytic carbon;

[0156] (4)在含有甲苯和高纯氮气的混合气体下(体积比为1 : 5,流量为IOOml/分钟, 管式炉体积为0. 02立方米),将上述复合颗粒在管式炉中900°C热解(先用2小时从室温升到900°C,在900°C恒温5小时,再用2小时降到室温),得到本发明的用于二次锂离子电池的负极活性材料V,该负极活性材料具有核壳结构,其内部含有活性物质硅和导电炭黑组成的复合颗粒,其外部包覆了从淀粉热解的碳颗粒层,最外层包覆了利用CVD从甲苯热解的碳层,外部直径为10微米,其各部分的重量比列于表1。 [0156] (4) in a mixed gas containing high purity nitrogen and toluene (volume ratio of 1: 5, flow rate IOOml / min, a tube furnace volume of 0.02 cubic meters), the above-mentioned composite particles in a tube 900 ° C the pyrolysis furnace (first 2 hours raised to 900 ° C from room temperature at 900 ° C for 5 hours to room temperature then 2 hours), to give the present invention, a secondary lithium ion battery the negative electrode active material V, the negative electrode active material having a core-shell structure, containing an active substance inside the silicon composite particles and conductive carbon black, which carbon particles coated with an external layer of the hot starch solution from the outermost coated using CVD pyrolytic carbon layer from toluene, an outer diameter of 10 microns, the weight ratio of each portion thereof are shown in table 1.

[0157] 实验电池的负极的制备:将含有硅的用于二次锂电池的负极活性材料V与5%导电碳黑,10%聚酰胺酰亚胺(分子结构如图2c)的NMP溶液在常温常压下混合形成浆料(三者烘干后的重量比为85 : 5 : 10),作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜 20微米的薄膜;将此薄膜在150°C下烘干后,在20Kg/cm2下压紧,继续在250°C惰性气氛中热处理2小时,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极 Preparation of negative electrode [0157] The experimental cells: The negative electrode active material containing silicon V for a secondary lithium battery with 5% conductive carbon black, 10% polyamide-imide (molecular structure of FIG. 2c) in NMP solution mixed to form a slurry at normal temperature and pressure (weight ratio after drying is three 85: 5: 10) as the negative electrode coating uniformly applied on a copper foil substrate, to give a film thickness of about 2 ~ 20 microns; and this film after baking at 150 ° C, at 20Kg / cm2 compaction, continued heat treatment at 250 ° C in an inert atmosphere for 2 hours, and then the film was cut into a circular sheet Icm2 area experimental cells as a negative electrode

[0158] 实验电池的正极制备、实验电池组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,其测试结果列于表1。 [0158] Preparation of positive electrode test cell, a test cell assembly and testing method in Example 1, simulated cell assembly and testing as in Example 1, the test results are shown in Table 1.

[0159] ^MM 6 雾干'燥法制各含有C/Cu/Si的命、极活t牛材料VI [0159] ^ MM 6 dry fog 'each containing drying SYSTEM C / Cu / Si life, t live cattle electrode material VI

[0160] (1)将商品的Si(粒度为300nm),加入0.03mol/L含有稀的HF(浓度为0.5%)的CuCl2溶液中,搅拌40分钟过滤,其中,加入HF是为了出去Si表面的SiO2,加入CuCl2是为了在Si表面沉积籽晶,活化Si表面; [0160] (1) The product Si (300 nm particle size), was added 0.03mol / L of CuCl2 containing dilute HF solution (0.5%) was stirred for 40 minutes filtered, wherein the HF is added to the surface of Si out in SiO2, CuCl2 was added to the seed deposited at the surface of Si, Si surface activation;

[0161] (2)将CuCl2,乙二胺四乙基二钠(EDTA)按摩尔比(1 : 2-4)配比加入到水中获得0. 03mol/L浓度的镀液; [0161] (2) CuCl2, tetraethyl ethylenediamine disodium (EDTA) molar ratio (1: 2-4) is added to water ratio obtained 0. 03mol L concentration bath /;

[0162] (3)在将步骤(1)得到的Si粉末加入到上述镀液中,硅粉和Cu配比的重量可以选取4份硅粉,2份CuCl2,镀液浓度为0. 03mol/L,甲醛浓度为15ml/L,调节pH值为7_13之间,优选12,搅拌10min-2h,过滤,可得到被Cu包覆的Si粉末; [0162] (3) In the step (1) was added to the above Si powder bath, silicon powder and Cu ratio of 4 parts by weight of the silicon powder may be selected, 2 parts of CuCl2, bath concentration of 0. 03mol / L, a formaldehyde concentration of 15ml / L, pH was adjusted to between 7_13, preferably 12, stirred for 10min-2h, filtered to give Si powder is coated with Cu;

[0163] (5)后续的方法与类同于实施例2,喷雾干燥,热处理,CVD包覆获得本发明的得到本发明的用于二次锂离子电池的负极活性材料VI,该负极活性材料具有核壳结构,(外部直径为30微米)其内部含有活性物质Si和Cu,其外部包覆了从树脂热解的碳颗粒层,其各部分的重量比列于表1。 [0163] (5) a method similar to the subsequent 2, spray drying, heat treatment, the CVD coating to obtain a negative active material VI is obtained for a secondary lithium ion battery according to the present invention, the present invention, the negative electrode active material of Example shell structure, (the outer diameter of 30 [mu] m) active substances contained therein Si and Cu, which is coated with an external layer of carbon particles from the resin solution heat ratio of the weight of each portion shown in table 1.

[0164] 实验电池的负极的制备:将含有Si的用于二次锂电池的负极活性材料VI与10% 聚酰亚胺(分子结构如图lc)NMP溶液中在常温常压下混合形成浆料,作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜20微米的薄膜;将此薄膜在150°C下烘干后,在20Kg/cm2 下压紧,继续在300°C下烘干1小时,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 Preparation of negative electrode [0164] The experimental cells: The negative electrode active material containing Si VI 10% for a secondary lithium battery polyimide (molecular structure shown in Figure lc) NMP solution are mixed at room temperature and pressure to form a slurry material, as the negative electrode coating uniformly applied on a copper foil substrate, to give a film thickness of about 2~20 microns; this film after drying at 150 ° C, compression at 20Kg / cm2, at 300 ° continued dried for 1 hour at C, and then the film was cut into a circular sheet Icm2 area as a negative electrode test cell.

[0165] 实验电池的正极制备,、实验电池组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,其测试结果列于表1。 [0165] Preparation of positive electrode test cell of a test cell assembly and testing ,, the same way as in Example 1, simulated cell assembly and testing as in Example 1, the test results are shown in Table 1.

[0166] 实施例7使用喷雾干燥法制备含有Si的负极活件材料VII [0166] Example 7 Preparation of a negative electrode material containing Si VII job Spray Drying Method

[0167] (1)将商品的Si (平均粒度为500nm),加入含有稀的HF (浓度为0. 5% )的水和乙醇溶液中,水和乙醇的比例为1 : 1,搅拌40分钟过滤。 [0167] (1) The product of Si (500 nm average particle size), was added (concentration 0.5%) in water and dilute ethanol solution containing HF, the ratio of water to ethanol is 1: 1, stirred for 40 minutes filter. 加入HF是为了出去Si表面的SiO2,乙醇的加入是为了使Si粉更好的分散,当然也可以加入一些表面活性添加剂促进Si 粉末在水溶液的分散; HF out of SiO2 is added to the surface of the Si ethanol was added to the Si powder is dispersed better, of course, a number of surface-active additives can be added to facilitate the dispersion of Si powder in an aqueous solution;

[0168] (2)将上述溶液过滤,把取得的粉末加入到含有钛酸四丁脂的乙醇溶液中(用量按Ig硅粉加入20ml钛酸四丁脂的比例),搅拌30分钟,滴加30ml含有冰醋酸的水溶液,其中水溶液和冰醋酸体积比为1 : 1。 [0168] (2) The above solution was filtered, the obtained powder was added to an ethanol solution containing tetra-butyl ester of (the amount of tetrabutyl titanate was added 20ml fat ratio of the silicon powder according Ig), stirred for 30 minutes, a solution of 30ml of glacial acetic acid containing aqueous solution, wherein an aqueous solution of acetic acid and a volume ratio of 1: 1. 加入冰醋酸一方面促进钛酸四丁脂的水解,另一方面不会因为酸度过强导致反应过激烈,导致包覆不均勻,最后过滤得到前驱体粉末。 In one aspect of glacial acetic acid was added tetrabutyl titanate, to promote the hydrolysis of the fat, on the other hand will not be too strong acidity cause intense reacted, leading to uneven coating, and finally filtered to obtain the precursor powder.

[0169] (3)将上述所得前驱体粉末,后续的处理过程同实施例2,喷雾干燥,热处理,CVD 包覆获得本发明的得到本发明的用于二次锂离子电池的负极活性材料VII,该负极活性材料具有核壳结构,(外部直径为50微米)其内部含有TiO2包覆的活性物质Si,其外部包覆了从树脂热解的碳颗粒层,其各部分的重量比列于表1。 [0169] (3) The resulting precursor powder, the subsequent process is similar to Example 2, spray drying, heat treatment, the CVD coating to obtain a negative active material VII is obtained for a secondary lithium ion battery according to the present invention, the present invention the negative electrode active material having a core-shell structure, (the outer diameter of 50 microns) contained therein Si TiO2 coated with an active material whose outer layer is coated with carbon particles from the resin solution heat ratio of the weight of each portion shown in Table 1.

[0170] 实验电池的负极的制备:将含有Si的用于二次锂电池的负极活性材料IV与10% 聚酰亚胺(分子结构如图lb)NMP溶液中在常温常压下混合形成浆料,作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜20微米的薄膜;将此薄膜在80°C下烘干后,在20Kg/cm2 下压紧,继续在250°C下烘干1. 5小时,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 Preparation of negative electrode [0170] The experimental cells: IV containing a negative active material for a secondary lithium battery with a 10% polyimide (molecular structure shown in Figure lb) NMP solution of Si in mixed form a slurry at ambient temperature and pressure material, as the negative electrode coating uniformly applied on a copper foil substrate, to give a film thickness of about 2~20 microns; this film after drying at 80 ° C, pressed at 20Kg / cm2, at 250 ° continued 1.5 hours drying at C, and then the film was cut into a circular sheet Icm2 area as a negative electrode test cell.

[0171] 实验电池的正极制备、实验电池组装及测试方法同实施例1,模拟电池的组装及测试与实施例1相同,其中限制电压80mv-2V,其充放电结果见附表1。 [0171] Preparation of positive electrode test cell, a test cell assembly and testing process, and the assembled battery simulation test in Example same as in Example 1, wherein the limit voltage 80mv-2V, charging and discharging results are shown in Table 1.

[0172] ^MM 8 雾干'燥法泡丨各含有硅的命、极活t牛材料VIII [0172] ^ MM 8 dry fog 'each containing a drying process bubble life Shu silicon electrode material live cattle VIII t

[0173] 制备方法类同于实施例1,只是将硅/商品碳材料含量改为1 : 1,制得本发明球形核壳结构用于二次电池的锂离子电池负极VIII,各部分的重量比列于表1。 [0173] Preparation analogous to Example 1, except that the silicon content of the carbon material / product to 1: 1, to obtain a spherical shell structure of the present invention for a secondary battery negative electrode of a lithium ion battery VIII, the weight of each portion ratios shown in table 1. 电极制备和电池测试类似于实施例1。 Preparation of electrode and battery test similar to Example 1.

[0174] ^MM 9 干'燥法泡丨备含有硅的命、极活+牛材料IX [0174] ^ MM 9 Dry 'drying method bulb life Shu prepared containing silicon, very live cattle material IX +

[0175] 制备方法类同于实施例1,只是将硅/商品碳材料含量改为2 : 1,制得本发明球形核壳结构用于二次电池的锂离子电池负极IX,其各部分的重量比列和测试结果见表1。 [0175] Preparation analogous to Example 1, except that the content of silicon / carbon material goods to 2: 1, to obtain a spherical shell structure of the present invention for a secondary battery negative electrode of a lithium ion battery IX, its parts Table 1 column and the weight ratio of the test results. 电极制备和电池测试类似于实施例1. Preparation of electrode and battery test similar to Example 1.

[0176] ^MM 10 干'燥法泡丨备含有硅的命、极活+牛材料X [0176] ^ MM 10 Dry 'drying method bulb life Shu prepared containing silicon electrode material live cattle + X

[0177] 制备方法类同于实施例1,只是将Si/商品碳材料含量改为3 : 1,制得本发明球形核壳结构用于二次电池的锂离子电池负极X,各部分的重量比列和测试结果见表1。 Preparation [0177] A method similar to Example 1, except that the content of the carbon material Si / goods to 3: 1, to obtain a spherical shell structure of the present invention for a secondary battery is a lithium ion battery anode X, the weight of each portion than the column and the test results are shown in Table 1. 电极制备和电池测试类似于实施例1. Preparation of electrode and battery test similar to Example 1.

[0178] ^MM 11 干'燥法泡丨备含有硅的命、极活+牛材料XI [0178] ^ MM 11 Dry 'drying method bulb life Shu prepared containing silicon electrode material live cattle XI +

[0179] 制备方法类同于实施例1,只是将Si/商品碳材料含量改为4 : 1,制得本发明球形核壳结构用于二次电池的锂离子电池负极XI,其各部分的重量比列和测试结果见表1。 [0179] Preparation analogous to Example 1, except that the content of Si / carbon material goods to 4: 1, to obtain a spherical shell structure of the present invention for a secondary battery negative electrode of a lithium ion battery XI, its parts Table 1 column and the weight ratio of the test results. 电极制备和电池测试类似于实施例1. Preparation of electrode and battery test similar to Example 1.

[0180] 需要提出的是,Si和商品碳材料的比例不局限于此。 [0180] need to be raised, the ratio of Si and merchandise carbon material is not limited thereto.

[0181] 实施例12使用化学还原沉积制备Cu/Si核壳结构的负极活性材料XII [0181] Example 12 was prepared using a chemical reduction deposited Cu / Si negative electrode active material of the core-shell structure XII

[0182] (1)将商品Si (粒度为1-4微米),用HF (浓度为0.5-5% )预先进行处理10分钟。 [0182] (1) The product Si (particle size 1-4 microns), with HF (at a concentration of 0.5 to 5%) for 10 minutes in advance. 也可以适当加入HNO3, HF : HNO3比例可以为2 : 1,HN03的加入可以促进Si的腐蚀, 使光滑的硅表面产生小台阶,有利于Cu颗粒的均勻包覆; May be appropriately added HNO3, HF: HNO3 ratio may be 2: 1, HN03 is added Si can promote corrosion of the silicon surface to produce a smooth small step to facilitate uniform coating of the Cu particles;

[0183] (2)将上述经过表面处理的Si粉加入到含有稀的HF (浓度为0. 5% ) CuCl2溶液中,CuCl2溶液浓度为0. 03mol/L,搅拌20分钟过滤,其中,加入HF是为了出去Si表面的SiO2,加入CuCl2是为了在Si表面沉积籽晶,活化Si表面,也可以采用PdCl2或SnCl2溶液活化Si颗粒表面; [0183] (2) After the above-mentioned surface-treated Si powder was added to a dilute HF (concentration 0. 5%) CuCl2 solution, solution concentration of CuCl2 0. 03mol / L, stirred for 20 minutes filtered, wherein the added HF out of SiO2 to Si surface, CuCl2 was added to the seed deposited at the surface of Si, Si surface activation, the surface of the particles, or SnCl2 solution of PdCl2 activation Si may be employed;

[0184] (3)将CuCl2,乙二胺四乙基二钠(EDTA)按摩尔比(1 : 2-4)配比加入到水中获得0. 03mol/L的浓度的镀液,将步骤(1)得到的硅粉加入到镀液中,硅粉和Cu配比的重量可以选取4份硅粉,4份CuCl2,甲醛浓度为15ml/L,调节pH值为7_13之间,优选12,搅拌10min-2h,过滤,可得到被Cu包覆的Si粉末; [0184] (3) of CuCl2, tetraethyl ethylenediamine disodium (EDTA) molar ratio (1: 2-4) is added to water to obtain a concentration ratio of 0. 03mol / L of plating solution, the step of ( 1) was added to the obtained silicon powder bath, silicon powder and Cu ratio 4 parts by weight of the silicon powder may be selected, 4 parts of CuCl2, a formaldehyde concentration of 15ml / L, pH was adjusted to between 7_13, preferably 12, stirring 10min-2h, filtered to give Si powder is coated with Cu;

[0185] (4)将上述获得的粉末在惰性气氛(如氩气,氮气,氩氢混合气)100-800°C进行热处理。 [0185] (4) The above-obtained powder was heat-treated in an inert atmosphere (e.g., argon, nitrogen, argon hydrogen gas mixture) 100-800 ° C. 获得本发明的用于二次锂离子电池的负极活性材料XII,该负极活性材料内核是Si, 外层是Cu,Cu层的厚度可以根据镀液的浓度和沉积时间控制在10纳米-100纳米之间,其结构特征如图12所示。 XII obtained anode active material for lithium ion secondary battery of the present invention, the negative electrode active material core is Si, Cu outer layer, thickness of the Cu layer can be controlled to 10 nm -100 nanometers The bath concentration and deposition time between the structural characteristics shown in Figure 12.

[0186] 实验电池的负极的制备:将含有Cu/Si的用于二次锂电池的负极活性材料VIII与导电碳黑,15%聚酰胺酰亚胺的NMP溶液在常温常压下混合形成浆料(三者烘干后的重量比为80 : 5 : 15),作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜20微米的薄膜; 将此薄膜在150°C下烘干后,在20Kg/cm2下压紧,继续在250°C惰性气氛下热处理1小时, 然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 Preparation of negative electrode [0186] The experimental cells: containing Cu / VIII anode active material and the conductive carbon black used for lithium secondary batteries of Si, NMP 15% solution of polyamide-imide are mixed to form slurry at normal temperature and pressure feed (weight ratio after drying is three 80: 5: 15) as the negative electrode coating uniformly applied on a copper foil substrate, to give a film thickness of about 2~20 microns; this film at 150 ° C after drying at 20Kg / cm2 compaction, continued heat treatment at 250 ° C in an inert atmosphere for 1 hour, and then the film was cut into a circular sheet Icm2 area as a negative electrode test cell.

[0187] 实验电池的正极制备、实验电池组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,其测试结果列于表1。 [0187] Preparation of positive electrode test cell, a test cell assembly and testing method in Example 1, simulated cell assembly and testing as in Example 1, the test results are shown in Table 1.

[0188] 需要指出的是化学溶液沉积Cu层的方法不局限于此,镀液的选择不局限于此。 [0188] It is noted that a chemical solution deposition method of Cu layers is not limited to this, the plating solution is not limited to this choice.

[0189] 实施例13使用化学还原沉积制备Ni/Si核壳结构的负极活性材料 [0189] Example 13 using the anode active material prepared by chemical reduction deposition of Ni / Si core-shell structure

[0190] (1)将商品的Si (粒度为1-4微米),用HF (浓度为0. 5-5% )预先进行处理15分钟。 [0190] (1) The product Si (particle size 1-4 microns), with HF (0. 5-5% concentration) for 15 minutes in advance. 也可以适当加入HNO3, HF : HNO3比例可以为1 : 1,HNO3的加入可以促进Si的腐蚀, 使光滑的硅表面产生小台阶,有利于Ni颗粒的均勻包覆; May be appropriately added HNO3, HF: HNO3 ratio may be 1: 1, HNO3 can be added to promote corrosion of Si, so that a smooth silicon surface to produce small steps, to facilitate uniform coated Ni particles;

[0191] (2)将上述经过表面处理的Si粉加入到含镍的酸性镀液中,镀液可以选取为硫酸镍(25g/L),次磷酸纳(25g/L),醋酸纳(12g/L),乳酸(28ml/L),调节pH值为4. 5,沉积温度为70°C,搅拌30min-ai。 [0191] (2) After the above-mentioned surface-treated Si powder was added to the acid bath containing nickel, the nickel sulfate bath can be selected (25g / L), sodium hypophosphite (25g / L), sodium acetate (12g / L), lactic acid (28ml / L), adjusted to pH 4.5, the deposition temperature is 70 ° C, stirred for 30min-ai. 过滤。 filter.

[0192] 后续的热处理类同于实施例12。 [0192] a subsequent heat treatment similar to the Example 12. 电极制作,电池组装,测试类同于实施例12。 Electrode fabrication, battery assembly, similar to the test of Example 12.

[0193] 实施例14使用化学还原沉积制备Cr/Si核壳结构的负极活性材料 [0193] The negative active material was prepared using a chemical reduction deposited Cr / Si core-shell structure Example 14

[0194] (I)Si表面的处理类同于实施例13。 [0194] (I) Si surface treatment similar to the Example 13.

[0195] (2)将表面经过处理的Si粉加入到PdCl2稀盐酸溶液中进行表面活化,PdCl2浓度为lg/Lo [0195] (2) A Si surface after treated powder was added to a solution of PdCl2 in dilute hydrochloric acid for surface activation, PdCl2 concentration of lg / Lo

[0196] (3)将经过上述处理的Si粉力Π入到有Cr2(SO4)3 · 6H20(0. Imo 1/L), NaH2PO2H2O(0. Imo 1/L),KCNS (0. 1-0. 2mol/L),调节pH 值为3. 0,沉积温度为50°C,搅拌为30min-2ho 过滤。 [0196] (3) through the force of Π Si powder into the above-described process there is Cr2 (SO4) 3 · 6H20 (0. Imo 1 / L), NaH2PO2H2O (0. Imo 1 / L), KCNS (0. 1- 0. 2mol / L), adjusted to pH 3.0, the deposition temperature is 50 ° C, filtration was stirred 30min-2ho.

[0197] 后续的热处理类同于实施例12。 [0197] a subsequent heat treatment similar to the Example 12. 电极制作,电池组装,测试类同于实施例12。 Electrode fabrication, battery assembly, similar to the test of Example 12.

[0198] 实施例15使用化学还原镀铁制备Fe/Si核壳结构的负极活性材料 The negative electrode active material 15 prepared using a chemical reduction plating Fe Fe / Si core-shell structure [0198] Example

[0199] (I)Si表面的处理类同于实施例13。 [0199] (I) Si surface treatment similar to the Example 13.

[0200] (2)将经过上述处理的Si粉加入到有含!^2+的镀液中,镀液的成分,沉积步骤类同实施例12,只是将CuCl2换为!^Cl2,可得被!^e均勻包覆的Si粉末。 [0200] (2) through the Si powder was added to the above-containing process! ^ 2 + in the bath, the bath composition, the deposition step similar to Example 12, except that the CuCl2 replaced! ^ Of Cl2, available is! ^ e Si powder is uniformly coated. [0201] 后续的热处理类同于实施例12。 [0201] a subsequent heat treatment similar to the Example 12. 电极制作,电池组装,测试类同于实施例12。 Electrode fabrication, battery assembly, similar to the test of Example 12.

[0202] 需要指出的是,实施例12-15中镀液的选择不局限于此。 [0202] It should be noted that the choice of the bath in 12-15 embodiment is not limited to this embodiment. 也可以选择混合镀液,选择多种金属沉积包覆,如下实施例16所述。 Mixing the plating solution can also choose to select various coated metal deposition, the following examples 16.

[0203] ^MM 16 #用化学i不]gj冗积制各Cu-Ni/Si核売结构的命、极活件材料 [0203] ^ MM 16 # i is not chemically] GJ product manufactured by the respective redundant Cu-Ni / Si structure bai core life, live pole piece of material

[0204] (I)Si表面的处理类同于实施例13。 [0204] (I) Si surface treatment similar to the Example 13.

[0205] (2)将经过上述处理的Si粉末加入到含有NiSO4 · 6H20(0. 6mol/L), CuSO4 · 5H20(0. 4mol/L),NaH2PO2 · H2O (0. 28mol/L),C6H5Na3O7 · 2H20(0. 2mol/l)禾口CH3COONH4 (0. 5mol/L)组成的镀液中,调节pH值为4. 5,沉积温度为50°C,搅拌10min-2h,过滤得到被Cu-Ni均勻包覆的Si粉末。 [0205] (2) through the Si powder was added to the above-described process contains NiSO4 · 6H20 (0. 6mol / L), CuSO4 · 5H20 (0. 4mol / L), NaH2PO2 · H2O (0. 28mol / L), C6H5Na3O7 · 2H20 (0. 2mol / l) Wo port CH3COONH4 (0. 5mol / L) of the bath composition, adjusted to pH 4.5, the deposition temperature is 50 ° C, stirred for 10min-2h, it was filtered to give Cu- Ni Si powder is uniformly coated.

[0206] 后续的热处理类同于实施例12.电极制作,电池组装,测试类同于实施例12。 [0206] a subsequent heat treatment analogous to Example 12. The produced electrode, battery assembly embodiment, a test similar to Example 12.

[0207] 需要指出,多种金属包覆方法不局限于此。 [0207] It is noted that a plurality of metal clad method is not limited thereto.

[0208] ^mm 17 #用原子冗积制各cu/si [0208] ^ mm 17 # each product system with redundant atoms cu / si

[0209] (1)将商品的Si(粒度为1-4微米)放入到反应腔体中,抽真空加热至200°C,腔体压力大约为10_2torr,利用氮气流对系统进行去气,目的是出去腔体和粉末表面的水气; [0209] (1) The product Si (particle size 1-4 microns) was put into the reaction chamber, evacuated and heated to 200 ° C, the chamber pressure of about 10_2torr, using a stream of nitrogen gas to the system, object is out of the cavity and the moisture of the surface of the powder;

[0210] (2)加热含铜前驱物源(如选取N,N-双-仲丁基乙酰脒基铜),使其温度稳定在80°c .加热反应腔体温度,使其维持在200°C ; [0210] (2) heating the copper-containing precursor source (e.g., selecting N, N- bis - acetyl sec-amidino copper)., So that the temperature stabilized at 80 ° c temperature of heating the reaction chamber to remain at 200 ° C;

[0211] (3)打开含铜前驱物和Ar/H2(8% )气体源,设置沉积程序,沉积程序主要包括以下几个参数,N,N-双-仲丁基乙酰脒基铜的脉冲剂量(可设0. 05s),Ar/H2的脉冲剂量(可设0. 05s),利用氮气为载气,将其依次送入反应腔体内,载气流量为20sCCm,反应源与粉体的接触时间即脉冲间隔(可设k),循环次数(可设置500次),每个循环沉积的膜厚为1. 5A° /cycle,沉积的Cu膜厚为75nm左右; [0211] (3) open copper precursor and Ar / H2 (8%) gas source, a deposition process is provided, including the following deposition process parameters, N, N- bis - sec Pulse copper acetyl amidino group dose (can be set 0. 05s), pulsed dose Ar / H2 (which may be provided 0. 05s), using nitrogen as a carrier gas, which in turn is fed into the reaction chamber, the carrier gas flow rate of 20 sccm, a reaction with a source of powder the contact time, i.e. the pulse interval Cu film thickness (K can be set), the number of cycles (times 500 may be provided), each cycle depositing a film thickness of 1. 5A ° / cycle, deposition is about 75nm;

[0212] (4)结束沉积取出样品,得到本发明的用于二次锂离子电池的负极活性材料,该负极活性材料具有核壳结构,其内部含有活性物质硅,其外部均勻包覆了75nm的连续Cu层 [0212] (4) end of the deposition sample was taken to give a negative electrode active material for a lithium ion secondary battery of the present invention, the negative electrode active material having a core-shell structure, a silicon active material contained therein, which is coated with a uniform external 75nm a continuous layer of Cu

[0213] 实验电池的负极的制备:将上述含有Cu/Si的用于二次锂离子电池的负极活性材与导电碳黑,10%未完全酰亚胺化的聚酰胺酰亚胺的NMP溶液在常温常压下混合形成浆料(三者烘干后的重量比为85 : 5 : 10),作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜20微米的薄膜;将此薄膜在150°C下烘干后,在20Kg/cm2下压紧,继续在20(TC下烘干2小时,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 Preparation of negative electrode [0213] of the test cell: The above containing Cu / Si negative electrode active material for a secondary lithium ion battery and the conductive carbon black, NMP solution of 10% is not fully imidized polyamide-imide at normal temperature and pressure to form a slurry mixture (weight ratio of 85 after three drying: 5: 10), as a negative electrode coating uniformly applied on a copper foil substrate, to give a film thickness of about 2~20 microns; after this film dried at 150 ° C, at 20Kg / cm2 pressing, drying continues in (the TC 20 2 hours and then the film is cut into a circular sheet Icm2 area as a negative electrode test cell.

[0214] 实验电池的正极制备、实验电池组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,其测试结果列于表1。 [0214] Preparation of positive electrode test cell, a test cell assembly and testing method in Example 1, simulated cell assembly and testing as in Example 1, the test results are shown in Table 1.

[0215] 本实例的含铜前驱物源不局限于N,N-双-仲丁基乙酰脒基铜,可以选取脒基亚铜配合物,一般通式可以表示为[(R' NC (R) NR") Cu] 2, (R'和R”可以为正丙基,异丙基,正丁基,异丁基,伯丁基,叔丁基等,R可以为甲基,丁基等),如N,N-双-异丙基乙酰脒基铜,N, N-双-仲丁基乙酰脒基铜等,也可以选取卤化亚铜(如Cu3Cl3),β - 二酮铜(II)配合物衍生物,如乙酰丙酮酸铜,双(2,2,6,6,-四甲基_3,5-庚二酮酸)铜,六氟乙酰丙酮酸铜等。 [0215] copper precursor source is not limited to the present example N, N- bis - acetyl sec-copper amidino group, can be selected amidine sulfoxide copper complexes, may be represented as the general formula [(R 'NC (R ) NR ") Cu] 2, (R 'and R" may be n-propyl, isopropyl, n-butyl, isobutyl, Bo Dingji, tert-butyl, R may be methyl, butyl ), such as N, N- bis - isopropyl copper acetyl amidino group, N, N- bis - acetyl sec-amidino copper and the like can also select a cuprous halide (e.g. Cu3Cl3), β - diketone copper (II ) complex derivatives, such as copper acetylacetonate, bis (2,2,6,6, - tetramethyl _3,5- heptanedionate) copper, such as copper-hexafluoro-acetylacetonate. 含铜前驱源的加热温度设置可根据化合物的物理特性进行选择。 Copper precursor source heating temperature setting can be selected according to the physical characteristics of the compound. 还原气体源不局限于H2, 也可以选择甲醛等。 Reducing gas source is not limited to H2, and the like can also select formaldehyde.

[0216] 实施例18制备含C/Cu/Si核壳结构的负极 Preparation Example 18 [0216] Embodiment containing C / Cu anode / Si core-shell structure

[0217] 其中Cu/Si核壳结构材料的制备类似于实施例12,随后可以采用类似于实施例1的CVD步骤,在Cu/Si材料颗粒表面包覆连续碳层,得到本发明的用于二次锂离子电池的C/ Cu/Si核壳复合材料。 [0217] which was prepared in analogy Cu / Si material of the core-shell structure in Example 12, followed by CVD may be employed similar to that described procedure of Example 1, the Cu / Si material particle surface coated with a continuous layer of carbon, the present invention is to obtain secondary lithium ion batteries C / Cu / Si core-shell composites. 各部分质量比例和测试结构见表1。 And the mass ratio of the various parts of the test structure are shown in Table 1.

[0218] 实施例19制备含C/Cu/Si核壳结构的负极 [0218] Example 19 Preparation of a negative electrode containing C / Cu / Si core-shell structure

[0219] Cu/Si核壳结构材料的制备可类似专利CN2005100^822. X所述的方法来制备,采用机械球磨法,采用硅粉,含碳有机物,含铜的前驱物或铜粉球磨,然后在惰性气氛中热解制备,也可以直接采用Cu粉制备。 [0219] Preparation of core-shell structure may be similar to the material Patent Cu / Si CN2005100 ^ 822 Method X above. Prepared by mechanical milling method, using the silicon powder, the carbonaceous organic substances, a copper-containing precursor or copper ball, is then prepared by pyrolysis in an inert atmosphere, was also prepared Cu powder can be directly used. 裂解的参数类似前面所述。 Similar cleavage of the foregoing parameters. 得到本发明的用于二次锂离子电池的C/Cu/Si核壳复合材料。 C to obtain a secondary lithium ion battery of the present invention / Cu / Si core-shell composites. 各部分质量比例和测试结构见表1。 And the mass ratio of the various parts of the test structure are shown in Table 1.

[0220] ^MM 20 雾干'燥法泡丨各含有Si的命、极活t牛材料 [0220] ^ MM 20 dry fog 'drying method bulb life Shu each containing Si, electrode material of live cattle t

[0221] 将干燥的商品Si (平均粒度200-300纳米),醋酸锂或硝酸锂,作为导电添加剂的炭黑(平均粒径为40纳米),酚醛树脂,按5 : 0.4 : 3. 4配比加入乙醇溶液中,均勻混合得到具有一定浓度的浆料。 [0221] The dried product Si (average particle size 200-300 nm), or lithium nitrate, lithium acetate, carbon black as a conductive additive (average particle size 40 nm), a phenol resin, 5: 0.4: 3.4 with ratio of ethanol solution was added, uniformly mixed to obtain a slurry having a concentration. 球形前驱体粉末制备,热裂解,CVD包覆碳层类似于实施例1。 Preparation of the spherical precursor powder pyrolysis, the CVD carbon coating layer is similar to Example 1. 加入醋酸锂或硝酸锂的目的是因为在高温下醋酸锂或硝酸锂分解产生的Li2O会和纳米Si 表面的SW2反应生成Li2Si2O5,Li2SiO3, Li4SiO4,或Li8SiO6,减少后续极片副反应的发生,从而提高首次库伦效率,产物与S^2和Li2O比例和反应温度有关,可以根据S^2和Li2O 二元相图确定反应比例和反应温度。 The purpose of adding lithium acetate or lithium nitrate because generated at a high temperature lithium acetate or lithium nitrate decomposition of Li2O will and SW2 of nanoscale Si surface Li2Si2O5, Li2SiO3, Li4SiO4, or Li8SiO6, reduce the incidence of subsequent pole piece side reactions, thereby improve initial coulombic efficiency, the product of S and Li2O ^ 2 ratio and the reaction temperature, the reaction can be determined ^ 2 according to the reaction temperature and the ratio of S and Li2O binary phase diagram.

[0222] 实验电池的负极的制备:将上述含有Si的用于二次锂电池的负极活性材料与导电碳黑,未完全酰亚胺化的聚酰胺酰亚胺的NMP溶液在常温常压下混合形成浆料(三者烘干后的重量比为85 : 5 : 10),作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜20 微米的薄膜;将此薄膜在150°C下烘干后,在20Kg/cm2下压紧,继续在270°C热处理1小时, 然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 [0222] Preparation of negative electrode test battery: NMP solution of the above-described negative electrode active material containing Si for a secondary lithium battery and the conductive carbon black, is not fully imidized polyamide-imide in the ambient temperature and pressure mixed to form a slurry (dry weight ratio of the three is 85: 5: 10) as the negative electrode coating uniformly applied on a copper foil substrate, to give a film thickness of about 2~20 microns; this film 150 after drying under ° C, at 20Kg / cm2 compaction, continued for 1 hour at 270 ° C heat treatment, and then the film was cut into a circular sheet Icm2 area as a negative electrode test cell.

[0223] 实验电池的正极制备、实验电池组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,其测试结果列于表1。 [0223] Preparation of positive electrode test cell, a test cell assembly and testing method in Example 1, simulated cell assembly and testing as in Example 1, the test results are shown in Table 1.

[0224] ^MM 21 Bty干'燥法泡丨备含有Si a^^M^t^MM [0224] ^ MM 21 Bty Dry 'drying process bubble Shu prepared containing Si a ^^ M ^ t ^ MM

[0225] (1)将干燥商品Si(50nm)与LiCl,柠檬酸按比例2 : 1. 6 : 2. 6溶于乙醇,将乙 [0225] (1) The product was dried Si (50nm) and LiCl, citric proportion 2: 1.6: 2.6 was dissolved in ethanol, acetate

醇蒸干,得到含有硅粉的溶胶凝胶; Alcohols evaporated to dryness to obtain a sol-gel containing the silicon powder;

[0226] (2)将所得溶胶凝胶在惰性气氛中(如氮气,氩气)热处理,热处理的步骤为:先用3小时从室温升温到300°C,恒温2小时,再用4小时从300°C升温到800°C,然后在800°C 恒温5小时后,最后用2小时降到室温,得到硅酸锂包覆的Si纳米颗粒。 [0226] (2) The obtained sol-gel (e.g. nitrogen, argon) in an inert atmosphere for the heat treatment, the heat treatment steps of: first 3 hours from room temperature to 300 ° C, kept constant for 2 hours, then four hours from 300 ° C was heated to 800 ° C, and after 800 ° C temperature for 5 hours and finally to room temperature over 2 hours, to obtain lithium silicate coated Si nanoparticles. 随后的步骤类同于实施例2,喷雾干燥制备球形前驱体粉末,热裂解,CVD包覆碳层。 Subsequent steps analogous to Example 2, the spherical spray dried precursor powder pyrolysis, the CVD carbon coating layer was prepared. 最后得到本发明的用于二次锂离子电池的负极活性材料,该负极活性材料具有核壳结构,其内部含有被硅酸锂包覆的活性物质Si和乙炔黑组成的复合颗粒,其外部包覆了从浙青热解的碳颗粒层,最外层包覆了利用CVD从甲苯热解的碳层,外部直径为1微米,其各部分的重量比列于表1。 Finally obtained negative electrode active material for a lithium ion secondary battery of the present invention, the negative electrode active material having a core-shell structure, composite particles contained therein and Si active material composed of acetylene black coated lithium silicate, which outer cladding coating the carbon particle layer from the pyrolysis of the green Zhejiang, coated with an outermost layer by the CVD carbon layer from the pyrolysis of toluene, the outer diameter of 1 micron, the weight ratio of each portion thereof are shown in table 1.

[0227] 实验电池的负极的制备:将上述含有Si的用于二次锂电池的负极活性材料与导电碳黑,未完全聚合的聚酰胺酰亚胺(分子结构如图加)NMP溶液,在常温常压下混合形成浆料(三者烘干后的重量比为85 : 10 : 5),作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜20微米的薄膜;将此薄膜在150°C下烘干后,在20Kg/cm2下压紧,继续在260°C下热处理2小时,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 [0227] Preparation of negative electrode test battery: The Si-containing negative electrode active material for a secondary lithium battery and the conductive carbon black, is not completely polymerized polyamideimide (FIG molecular structure plus) of NMP solution, mixed to form a slurry at normal temperature and pressure (the weight ratio of the three after drying was 85: 10: 5), as a negative electrode coating is uniformly applied on a copper foil substrate, to give a film thickness of about 2~20 microns; the this film after drying at 150 ° C, at 20Kg / cm2 compaction, continued heat treatment at 260 ° C 2 hours, and then the film was cut into a circular sheet Icm2 area as a negative electrode test cell.

[0228] 实验电池的正极制备、实验电池组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,其中电压限制为100mv-2V,其测试结果列于表1。 [0228] Preparation of positive electrode test cell, a test cell assembly and testing method in Example 1, simulated cell assembly and testing as in Example 1, wherein the voltage limit is 100mv-2V, The test results are shown in Table 1. [0229] ^MM 22 雾干'燥法制各含有Si-MnO的命、极活t牛材料活t牛材料 [0229] ^ MM 22 dry fog "SYSTEM drying each containing Si-MnO life, live pole t t live cattle cattle material material

[0230] (1)制备Si-MnO核壳复合粒子步骤类同于实施例1,将干燥的商品Si (平均粒度200-300纳米),MnO (粒度为500nm),作为导电添加剂的炭黑(平均粒径为40纳米),酚醛树脂,按1 : 2 : 0.4 : 1配比加入乙醇溶液中,均勻混合得到具有一定浓度的浆料(也可以不加入导电添加剂; [0230] (1) Preparation of core-shell composite particles Si-MnO step analogous to Example 1, the dried product Si (average particle size 200-300 nanometers), of MnO (particle size of 500 nm), a conductive carbon black as additive ( the average particle diameter of 40 nm), a phenol resin, 1: 2: 0.4: 1 ratio of ethanol solution was added, uniformly mixed to obtain a slurry having a concentration (conductive additive may not be added;

[0231] (2)将上述得到的浆料用喷雾干燥机得球形粉末,干燥参数类同实施例1,粒度控制在20微米; [0231] (2) The above-obtained slurry was spray drier to give spherical powder, drying parameters similar to Example 1, 20 microns in particle size control;

[0232] (3)将所得球形前驱体,在高纯氮气下热解,热解的步骤为:先用4小时从室温升温到400°C,再用5小时从400°C升温到600°C,然后在600°C恒温10小时后,最后用1小时降到室温,得到包覆了热解碳层的球形颗粒; [0232] (3) The resulting spherical precursor, pyrolysis under pure nitrogen, pyrolysis step: first heated from room temperature over 4 hours to 400 ° C, 5 hours and then heated from 400 ° C to 600 ° C, and after 600 ° C temperature for 10 hours and finally to room temperature over 1 hour, to obtain spherical particles coated with pyrolytic carbon layer;

[0233] (4)在含有甲苯和高纯氮气的混合气体下(体积比为1 : 4,流量为200ml/分钟, 管式炉体积为0. 02立方米),将此复合颗粒在管式炉中600°C热解(先用3小时从室温升到600°C,在600°C恒温4小时,再用2小时降到室温),得到本发明的用于二次锂离子电池的负极活性材料X VIII,其各部分的重量比列于表1。 [0233] (4) in a mixed gas containing high purity nitrogen and toluene (volume ratio of 1: 4, flow rate of 200ml / min, a tube furnace volume of 0.02 cubic meters), this tubular composite particles 600 ° C the pyrolysis furnace (first 3 hours from room temperature to 600 ° C, temperature at 600 ° C for 4 hours to room temperature then 2 hours), to give the present invention, a secondary lithium ion battery the negative electrode active material X VIII, the weight ratio of each portion thereof are shown in table 1.

[0234] 实验电池的负极的制备:将含有Si-MnO的用于二次锂离子电池的负极活性材料与导电碳黑,未完全聚合的聚酰胺酰亚胺(分子结构如图加)NMP溶液在常温常压下混合形成浆料(三者烘干后的重量比为85 : 5 : 10),作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜20微米的薄膜;将此薄膜在150°C下烘干后,在20Kg/cm2下压紧,继续在200°C 下热处理6小时,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 Preparation of negative electrode [0234] The experimental cells: The negative electrode active material and the conductive carbon black used in secondary lithium ion batteries Si-MnO is not completely polymerized polyamideimide (FIG molecular structure plus) of NMP solution at normal temperature and pressure to form a slurry mixture (weight ratio of 85 after three drying: 5: 10), as a negative electrode coating uniformly applied on a copper foil substrate, to give a film thickness of about 2~20 microns; after this film dried at 150 ° C, at 20Kg / cm2 compaction, continued heat treatment at 200 ° C 6 hours, and then the film was cut into a circular sheet Icm2 area as a negative electrode test cell.

[0235] 实验电池的正极制备,实验电池组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,其测试结果列于表1。 [0235] Preparation of positive electrode test cell, a test cell assembly and testing method in Example 1, simulated cell assembly and testing as in Example 1, the test results are shown in Table 1.

[0236] ^MM 23 Bty干'燥泡丨备含有硅/ m^a^^M^t^MM [0236] ^ MM 23 Bty dry 'bubble Shu drying apparatus containing a silicon / m ^ a ^^ M ^ t ^ MM

[0237] 含有硅/氧化铬的用于二次锂离子电池的负极活性材料X IX的制备方法类似于实施例18,该负极活性材料具有“元宵”结构,其内部含有活性物质硅和氧化铬,以及导电炭黑组成的复合颗粒,其外部包覆了从树脂热解的碳颗粒层,最外层包覆了利用CVD从甲苯热解的碳层,其各部分的重量比列于表1。 [0237] A method for the lithium ion secondary battery negative electrode active material containing silicon X IX / chromia analogy to example 18, the negative electrode active material having a "lantern" structure, containing an active substance inside a silicon and chromium oxide , and composite particles of the conductive carbon black, which carbon particles coated with an external layer of resin from the hot solution, the outermost layer coated with a carbon layer by CVD from the pyrolysis of toluene, the weight ratio of each portion thereof are shown in table 1 .

[0238] 实验电池的负极的制备:将含有硅/氧化铬的用于二次锂电池的负极活性材料与石墨化中间相碳小球以重量比50 : 45的比例机械混合,将该混合物与5%聚酰胺(分子结构如图2d)NMP溶液在常温常压下混合形成浆料(含有硅/氧化铬的用于二次锂电池的负极活性材料、石墨化中间相碳小球与聚酰胺的重量比为50 : 45 : 5),作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜20微米的薄膜;将此薄膜在150°C下烘干后,在20Kg/cm2 下压紧,继续在150°C下烘干12小时,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 Preparation of negative electrode [0238] Experiment cells: negative electrode active material and graphitized mesophase containing silicon oxide / chromium oxide for a lithium secondary battery with carbon pellets in a weight ratio of 50: 45 ratio of mechanical mixing of the mixture with 5% polyamide (molecular structure shown in Figure 2d) NMP solution was mixed at room temperature and pressure to form a slurry (negative electrode active material containing silicon oxide / chromium oxide for a secondary lithium battery, graphitized mesocarbon the polyamide pellets weight ratio of 50: 45: 5), as a negative electrode coating uniformly applied on a copper foil substrate, to give a film thickness of about 2~20 microns; this film after drying at 150 ° C, at 20Kg / cm2 pressing, to continue the drying at 150 ° C 12 hours, then the film was cut into a circular sheet Icm2 area as a negative electrode test cell.

[0239] 实验电池的正极制备、实验电池组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,其测试结果列于表1。 [0239] Preparation of positive electrode test cell, a test cell assembly and testing method in Example 1, simulated cell assembly and testing as in Example 1, the test results are shown in Table 1.

[0240] 实施例M包覆处理,采用TiO2包覆含硅核壳结构的复合粒子 [0240] Example M coated process embodiment, the silicon-containing composite particles are core-shell structure coated with TiO2

[0241] 将所制备的含硅的核壳结构复合粒子最外面包覆一层TW2 [0241] The silicon-containing core-shell composite particles prepared by covering the outermost layer TW2

[0242] (1)把复合粒子的粉末加入到含有钛酸四丁脂的乙醇溶液中(用量按Ig复合粒子加入IOml钛酸四丁脂的比例),搅拌30分钟,滴加30ml含有冰醋酸的水溶液,其中水溶液和冰醋酸体积比为2 : 1,混合搅拌4小时。 (The ratio of the amount of tetrabutyl titanate was added IOml lipid composite particles according Ig) [0242] (1) The powder of composite particles was added to an ethanol solution containing tetrabutyl titanate fat, stirred for 30 minutes, a solution containing 30ml of glacial acetic acid the aqueous acetic acid solution, and wherein the volume ratio of 2: 1, mixed and stirred for 4 hours. 加入冰醋酸一方面促进钛酸四丁脂的水解,另一方面不会因为酸度过强导致反应过激烈,导致包覆不均勻; In one aspect of glacial acetic acid was added tetrabutyl titanate, to promote the hydrolysis of the fat, on the other hand will not be too strong acidity cause intense reacted, leading to uneven coating;

[0243] (2)将溶液过滤,将所得的粉末蒸干,在惰性其中热处理,热处理的步骤为:4小时从室温升到400°C,恒温4小时,2小时降到室温。 [0243] (2) The solution was filtered, evaporated to dryness and the resulting powder in an inert heat treatment step wherein the heat treatment is: 4 hours rose to 400 ° C from room temperature 4 hours, 2 hours to room temperature. 得到本发明的用于二次锂离子电池的负极活性材料,该负极活性材料最外层包覆IOnm左右的Ti02。 To obtain a negative active material for a secondary lithium ion battery according to the present invention, the negative electrode active material of about Ti02 coated outermost IOnm.

[0244] 实验电池的负极的制备:将上述包覆TiO2用于二次锂电池的负极活性材料与中间相碳微球以重量比60 : 30的比例机械混合,将该混合物与10%聚酰胺(分子结构如图2d) NMP溶液在常温常压下混合形成浆料(含有硅的用于二次锂电池的负极活性材料、中间相碳微球与聚酰胺的重量比为60 : 30 : 10),作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜20微米的薄膜;将此薄膜在150°C下烘干后,在20Kg/cm2下压紧,继续在150°C下烘干12小时,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 The negative electrode active material and mesocarbon microspheres weight ratio of TiO2 coating 60 described above for a secondary lithium battery:: Preparation of negative electrode [0244] mechanical mixing ratio of the test cell 30, the mixture with 10% polyamide (molecular structure shown in Figure 2d) NMP solution was mixed at room temperature and pressure to form a slurry (containing silicon anode active material for a secondary lithium battery, the weight of mesophase carbon microbeads to polyamide ratio of 60: 30: 10 ), as a negative electrode coating uniformly applied on a copper foil substrate, to give a film thickness of about 2~20 microns; this film after drying at 150 ° C, compression at 20Kg / cm2, at 150 ° continued drying for 12 hours C, and then the film was cut into a circular sheet Icm2 area as a negative electrode test cell.

[0245] 实验电池的正极制备、实验电池组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,其测试结果列于表1。 [0245] Preparation of positive electrode test cell, a test cell assembly and testing method in Example 1, simulated cell assembly and testing as in Example 1, the test results are shown in Table 1.

[0246] TiO2包覆的方法不局限于此,例如可以采用化学气相包覆,如原子层沉积包覆(ALD)。 [0246] TiO2 coating method is not limited to this, for example, using a chemical vapor coated, clad atomic layer deposition (ALD).

[0247] ^MM 25 ^ffl ALO2句,覆含硅核売结构的复合粒子 [0247] ^ MM 25 ^ ffl ALO2 sentence, silicon-containing composite particles coated core structure bai

[0248] 将制备含硅的核壳结构复合粒子最外面包覆一层Al2O3 : [0248] The outermost coating shell structure prepared silicon layer composite particles Al2O3:

[0249] (1)把复合粒子的粉末加入到含有2- 丁醇铝的异丙醇溶液中(用量按Ig复合粒子加入20ml 2- 丁醇铝的比例),搅拌30分钟,乙酰丙酮为螯合剂,滴加去离子水使其水解, 其中2-丁醇铝,乙酰丙酮和水体积比为25 : 1 : 2,用HCl调节pH值为5,在50°C混合搅拌1小时; [0249] (1) The powder of composite particles was added to the isopropyl alcohol solution containing aluminum in 2-butanol (Ig composite particles are added by an amount ratio of aluminum 2-butanol 20ml), stirred for 30 minutes, acetylacetone chelate mixture, deionized water was added dropwise for hydrolysis, wherein the 2-butoxide, aluminum acetylacetonate and water volume ratio of 25: 1: 2, adjusted to pH 5 with HCl, 50 ° C and mixture stirred for 1 hour;

[0250] (2)将溶液过滤,将所得的粉末蒸干,在惰性其中热处理,热处理的步骤为:3小时从室温升到300°C,恒温4小时,2小时降到室温。 [0250] (2) The solution was filtered, evaporated to dryness and the resulting powder in an inert heat treatment step wherein the heat treatment is: 3 hours rose to 300 ° C from room temperature 4 hours, 2 hours to room temperature. 得到本发明的用于二次锂电池的负极活性材料,该负极活性材料最外层包覆10纳米左右的AI2O3。 To obtain a negative electrode active material for a secondary lithium battery of the present invention, the negative electrode active material of the outermost coating of about 10 nm AI2O3.

[0251] 实验电池的负极的制备:将包覆有Al2O3的用于二次锂电池的负极活性材料与10%聚酰胺的NMP溶液在常温常压下混合形成浆料(负极活性材料与尼龙的重量比为90 : 10),作为负极涂层均勻涂敷于铜箔衬底上,得到厚度约2〜20微米的薄膜;将此薄膜在150°C下烘干后,在20Kg/cm2下压紧,继续在150°C下烘干12小时,然后将薄膜裁剪为面积为Icm2的圆形薄片作为实验电池的负极。 [0251] Preparation of a test cell of the negative electrode: A negative electrode active material is coated with a secondary lithium battery for Al2O3 and 10% NMP solution of polyamide mixed to form a slurry at ambient temperature and pressure (negative electrode active material and nylon a weight ratio of 90: 10), as a negative electrode coating uniformly applied on a copper foil substrate, to give a film thickness of about 2~20 microns; the film was dried at 150 ° C under the pressure at 20Kg / cm2 tight, drying continued for 12 hours at 150 ° C, and then the film was cut into a circular sheet Icm2 area as a negative electrode test cell.

[0252] 实验电池的正极制备、实验电池组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,其测试结果列于表1。 [0252] Preparation of positive electrode test cell, a test cell assembly and testing method in Example 1, simulated cell assembly and testing as in Example 1, the test results are shown in Table 1.

[0253] 需要指出的是,Al2O3的包覆方法不局限于此,如可以采用原子层沉积(ALD包覆)。 [0253] It is noted that, Al2O3 coating method is not limited to this, as can be atomic layer deposition (ALD coating).

[0254] 实施例26极片的后续处理 [0254] Example 26 the subsequent processing of the pole pieces

[0255] 在上述实例中,负极极片制作完成后,可以采用原子沉积(ALD)对极片做相应的后续包覆处理。 [0255] In the above example, the negative electrode after the finished pole piece, may be employed atomic deposition (ALD) to a respective pole piece made subsequent coating process. 如图3所示,该包覆方法使无机材料均勻的包覆在导电网络上面,包覆的厚度可控,使其不会影响极片的电子电导和离子传输。 3, the coating method of the inorganic material uniformly coated on the conductive network above, the coated controlled thickness, so that electronic conductivity and ion transfer does not affect the pole piece.

[0256] 现就该方法以采用原子层沉积包覆Al2O3为一个实例进行详细说明。 [0256] In respect of an atomic layer deposition method to employ as a coated Al2O3 example described in detail. 如图4所示。 As shown in Figure 4. 系统采用的仪器型号为Savarmah-100 (仕嘉科技有限公司)。 Instrument model system used for the Savarmah-100 (Shi Jia Technology Co., Ltd.).

[0257] 极片包覆Al2O3的具体步骤如下: [0257] DETAILED pole pieces coated Al2O3 following steps:

22[0258] (1)系统抽真空,等待反应室真空达到10_2tOrr后,加热系统各部件温度,其中反应腔体的温度控制在250°C,三甲基铝源的温度为150°C,水气源的温度为150°C ; 22 [0258] (1) evacuating the system, wait for the reaction chamber to achieve vacuum 10_2tOrr, each of the heating system component temperature, wherein the temperature of the reaction chamber is controlled to 250 ° C, the temperature of the source of trimethylaluminum 150 ° C, the water gas supply temperature of 150 ° C;

[0259] (2)当系统各部分的测试温度达到目标温度时,对系统进行去气,去气采用的气体为氮气,去气的目的是除去腔体内的水汽; [0259] (2) when the test temperature of each part of the system reaches a target temperature, the system to gas, gas to gas used is nitrogen, degassing purpose is to remove water vapor in the body cavity;

[0260] (3)放置极片,打开系统盖子,将极片放入反应室后关盖,抽真空; [0260] (3) disposed pole piece, the system opens the lid, the pole pieces into the reaction chamber after the closing cover, vacuum;

[0261] (4)反应室真空达到10、οπ·,设置氮气流量为20sCCm,打开三甲基铝源和水蒸汽源,设置沉积程序,沉积程序主要包括以下几个参数,水汽的脉冲时间(可设置0. 015s), 等待时间(¾),三甲基铝脉冲时间(可设0.01¾),等待时间(¾),循环次数(可设置100 次),每个循环沉积的膜厚为0. 94A° /cycle,沉积的膜厚为IOnm左右; [0261] (4) a vacuum reaction chamber reaches 10, οπ ·, with a nitrogen flow rate of 20 sccm, open source trimethylaluminum and water vapor source, disposed deposition process, deposition process includes several parameters pulse time, water vapor ( may be provided 0. 015s), latency (¾), trimethylaluminum pulse time (can be set 0.01¾), latency (¾), the number of cycles (times 100 may be provided), the deposited film thickness per cycle 0 . 94A ° / cycle, deposited a thickness of about IONM;

[0262] (5)结束沉积取出样品; [0262] (5) end of the deposition samples were taken;

[0263] (6)系统去气,关闭系统。 [0263] (6) to the gas system, shut down the system. ALD系统可以根据自己的需要进行设计,以满足工业化生产的需求。 ALD system can be designed according to their needs, to meet the needs of industrial production.

[0264] 实验电池的正极制备、实验电池组装及测试方法同实施例1,模拟电池的组装及测试同实施例1,其测试结果列于表1,充放电曲线见附图13。 [0264] Preparation of positive electrode test cell, a test cell assembly and testing method in Example 1, simulated cell assembly and testing as in Example 1, the test results are shown in Table 1, see FIG. 13 charge-discharge curve.

[0265] 表1实施例1〜沈的负极活性材料的组成及其模拟电池的充放电数据 [0265] Table 1 Example 1 ~ Data discharge cell composition and the analog negative active material sink

[0266] [0266]

Figure CN102122708AD00241
Figure CN102122708AD00251

[0268] 实施例27本发明制各的C/Si负极活件材料(a-Ι)与现有的C/Si负极活件材料(b)的对比研究 Comparative study of the various C [0268] Example 27 disclosure braking / Si negative electrode active material member (a-Ι) with existing C / Si negative electrode active material element of (b)

[0269] 采用本发明实施例2中所述的方法来制备C/Si负极活性材料(a-Ι)和负极,采用专利申请200410030990. X中实施例5的方法来制备现有的C/Si负极活性材料(b)和负极,用于对比研究。 [0269] According to the present embodiment of the invention in Example 2 was used to prepare C / Si negative electrode active material (a-Ι) and a negative electrode prepared using conventional Patent Application No. 200410030990. X C method of Example 5 / Si The negative electrode active material (b) and the negative electrode, for comparative study.

[0270] 使用由复合负极与锂组装的模拟电池来研究上述负极活性材料的首次效率、充放电容量和容量保持率。 [0270] Use of a composite negative electrode and lithium battery assembled simulation to study the efficiency of the first negative electrode active material, the charge-discharge capacity and capacity retention ratio. 模拟电池的对电极为金属锂箔,充放电循环测试的电流密度为0.4mA/cm2,充电截止电压为2V,放电截止电压为0. 0V。 Simulation of the battery electrode of metal lithium foil, charging and discharging cycle test current density of 0.4mA / cm2, a charge-cutoff voltage of 2V, the discharge cutoff voltage was 0. 0V. 测试结果见表2。 The test results are shown in Table 2.

[0271] 从表2可以得出,本发明采用喷雾干燥技术制备的核壳结构的C/Si负极活性材料(a-Ι)较易成球,有较低的比表面,因此具有较高的首次库仑效率;另外本发明的负极活性材料(a-Ι)较现有的负极活性材料(b)具有更好的容量保持率。 [0271] can be derived from Table 2, the present invention uses the C core-shell structure prepared by spray drying techniques / Si negative electrode active material (a-Ι) into a ball easily, have lower specific surface, thus having a higher initial coulombic efficiency; additional anode active material (a-Ι) according to the present invention has better capacity retention rate than the conventional negative electrode active material (b).

[0272] ^MM 28本发明制各的Cu/Si命、极活t牛材料(a-2)与现丨有的命、极活t牛材料(b) 的对比研究 [0272] ^ MM invention is prepared for each of the 28 Cu / Si life, t live bovine electrode material (a-2) with some existing Shu life, t live bovine electrode material (b) Comparative study

[0273] 采用本发明实施例12中所述的方法来制备Cu/Si负极活性材料(a-幻和负极,采用专利申请200410030990. X中实施例5的方法来制备现有的负极活性材料(b)和负极,用于对比研究。 [0273] In the method described in Example 12 of the present invention are prepared Cu / Si negative electrode active material (negative electrode and A- magic, the method in Patent Application No. 200410030990. X of Example 5 was prepared in the conventional negative electrode active material ( b) a negative electrode and, for comparative study.

[0274] 电池测试类同于实施例27,测试结构见表2。 [0274] Test cells similar to Example 27, the test structure shown in Table 2.

[0275] 采用实施例12化学还原沉积法制备的核壳结构的Cu/Si负极活性材料(a_2),Cu 层包覆均勻,具体形貌参见附图12b和附图12c。 [0275] The Cu / Si Example 12 Chemical reduction embodiment of the core-shell structure prepared by deposition method of the anode active material (a_2), Cu layer is coated uniformly, see Figure 12b specific morphology and drawings 12c. 均勻包覆的Cu层有利于增加材料的导电性,Cu容易在Si颗粒中扩散,Cu-Si之间具有牢固的界面接触,另外Cu层还具有较好的延展性,即使Si颗粒发生体积膨胀,粉碎,仍然和Cu保持好的界面接触。 Cu layer uniformly coated with a conductive material help to increase, Cu easily diffuses in the Si particles having strong interfacial contact between the Cu-Si, Cu layer additionally also has a good ductility, even when the volume expansion of Si particles occur , pulverized, Cu, and still maintain a good interfacial contact. 因此,本发明的负极活性材料(a-幻与现有的负极活性材料(b)相比较,具有更高的首次效率,更好的容量保持率。 Thus, the negative electrode active material of the present invention (A- magic conventional negative electrode active material (b), compared with a higher first efficiency, better capacity retention.

[0276] 棚列29 ■■槁驢翻·耐说倾辅應扁氟Z魏翻吿丨丨备而成的负极的对比研究 Comparative study of the negative turn-rotten donkey secondary resistance to be poured, said flat-fluoro Z Gaoshu Shu Wei turn prepared from the 29 ■■ [0276] shed column

[0277] 负极活性材料采用实施例1的方法来制备。 [0277] The negative active material was prepared using the method of Example 1.

[0278] 电极1采用酰胺类耐高温粘结剂,制备方法同实施例1。 [0278] 1 using amides temperature electrode binder prepared in Example 1.

[0279] 电极2采用聚偏氟乙烯粘结剂,各部分配比同本发明实施例1,制备方法参考专利申请200410030990. X中实施例5所述的方法来制备。 [0279] 2 electrode was prepared using the method of polyvinylidene fluoride binder, departments distribution than Example 1 with the present invention, prepared in Reference Patent Application 200410030990. X in Example 5. 测试结构见表2。 Table 2 test structure.

[0280] 从表2可知,采用酰胺类耐高温粘结剂,对于材料容量保持率起着非常重要的作用,本发明采用酰胺类耐高温粘结剂能更好的改善Si负极的循环稳定性,包含该负极材料的电池具有更高的容量、首次库伦效率和更好的容量保持率。 [0280] apparent from Table 2, the use of high temperature resistant binder amides, the material of the capacity retention rate plays an important role, the present invention uses high temperature resistant binder amides can better improve the cycle stability of the Si negative electrode battery comprising the negative electrode material having a higher capacity, initial coulombic efficiency and better capacity retention rate.

[0281 ] 表2实施例27-29的测试结果[0282] [0281] Test results of Examples 27-29 in Table 2 [0282]

Figure CN102122708AD00261

[0283] 最后需要指出本发明提出的核壳结构用于二次锂电池的高容量的负极材料制备方法不限于上述方法,如还可以采用机械法,水热法等,可以参考专利申请CN200410030990. X和CN200510082822. X。 [0283] Finally, it should be noted core-shell structure prepared by the present invention for a high-capacity lithium secondary battery negative electrode material is not limited to the above method, may also be employed as a mechanical method, a hydrothermal method, reference may patent application CN200410030990. X and CN200510082822. X. 内核材料选取也不止硅单质,还可以选取硅氧化物,硅合金,也可以选择添加商品碳材料,锡单质,锡氧化物以及锡合金,氧化亚锰,氧化铬中的一种或多种等。 Also more than the core material selected silicon simple substance, a silicon oxide may also be selected, a silicon alloy, a carbon product may also choose to add material, simple substance of tin, tin alloys and tin oxide, manganous oxide, chromium oxide and the like, one or more . 酰胺类耐高温粘结剂也不局限于此。 Amides high temperature binder is not limited thereto.

Claims (13)

1. 一种用于锂离子二次电池的负极材料,该负极材料包括具有核壳结构的复合粒子、 导电添加剂和酰胺类耐高温粘结剂。 A negative electrode material for lithium ion secondary battery, the negative electrode material comprising composite particles having a core-shell structure, a conductive additive and a binder amides temperature.
2.根据权利要求1所述的负极材料,其特征在于,所述核壳结构的复合粒子包括:含有硅基活性材料的内核和含有无机包覆材料的外壳层。 2. The negative electrode material according to claim 1, wherein the core-shell structure composite particle comprising: a core containing an active material and a silicon-containing inorganic covering layer of the shell material.
3.根据权利要求1或2所述的负极材料,其特征在于,所述硅基活性材料为硅、硅氧化物、硅合金中的一种或多种;优选地,所述硅基活性材料还可以混合有碳材料、锡单质、锡氧化物、锡合金、氧化亚锰和氧化铬中的一种或多种。 The negative electrode material according to claim 1 or claim 2, wherein said silicon-based active material is silicon, a silicon oxide, a silicon alloy of one or more; preferably, the silicon-based active material carbon material may also be mixed with one or more of elemental tin, tin oxides, tin alloys, manganous oxide and chromium oxide.
4.根据权利要求1至3任一项所述的负极材料,其特征在于,所述无机包覆材料为C、 Cu、Fe、Ni、Cr、A1203、TiO2, Li2Si2O5^ Li2Si03、Li4SiO4, Li8SiO6, SiO2 和Li3PO4 中的一种或多种。 The negative electrode material according to any one of any one of claims 1-3, characterized in that the inorganic coating material C, Cu, Fe, Ni, Cr, A1203, TiO2, Li2Si2O5 ^ Li2Si03, Li4SiO4, Li8SiO6, one or more of SiO2 and Li3PO4.
5.根据权利要求1至4任一项所述的负极材料,其特征在于,所述内核的粒径为10纳米-4微米,优选为50纳米-4微米,更优选为500纳米-2微米。 The negative electrode material according to any one of claims 1 to 4, wherein said core particle size of 10 nanometers -4 microns, preferably 50 microns -4 nanometers, more preferably 500 nm to 2 microns .
6.根据权利要求1至5任一项所述的负极材料,其特征在于,所述外壳层厚度为1纳米-500纳米,优选为50纳米-100纳米,更优选为50纳米-80纳米。 The negative electrode material according to any one of claims 1 to 5, wherein the shell layer thickness is 1 nm -500 nm, preferably 50 nm -100 nm, more preferably 50 nm -80 nm.
7.根据权利要求1至6任一项所述的负极材料,其特征在于,所述核壳结构的复合粒子的粒径为100纳米〜100微米,优选为1微米〜20微米。 The negative electrode material according to any one of claims 1 to 6 claims, wherein the diameter of the composite particles of the core-shell structure of 100 nm ~ 100 [mu] m, preferably 1 [mu] m ~ 20 [mu] m.
8.根据权利要求1至7任一项所述的负极材料,其特征在于,所述导电添加剂为石墨粉,导电炭黑,乙炔黑,碳纳米管,例如单壁碳纳米管、多壁碳纳米管,碳纤维,金属粉和金属纤维中的一种或多种;优选地,所述石墨粉、导电炭黑、乙炔黑或金属粉的粒径为1纳米-20微米;更优选地,所述碳纳米管、碳纤维或金属纤维的长度为10纳米-20微米,直径为10纳米-500纳米。 The negative electrode material according to any one of any one of claims 1 to 7, wherein said electrically conductive additive is graphite powder, conductive carbon black, acetylene black, carbon nanotubes, single walled carbon nanotubes, multi-wall carbon one or more nanotubes, carbon fibers, metal fibers and metal powder; preferably, the graphite powder, conductive carbon black, acetylene black, metal powder or a particle diameter of 1 nm to 20 microns; more preferably, the said carbon nanotube, a carbon fiber or a metal fiber length is 10 nanometers to 20 micrometers, a diameter of 10 nm -500 nm.
9.根据权利要求1至8任一项所述的负极材料,其特征在于,所述酰胺类耐高温粘结剂为聚酰胺酰亚胺、聚酰胺、聚酰亚胺中的一种或多种;优选为芳香族聚酰胺酰亚胺、芳香族聚酰胺、芳香族聚酰亚胺中的一种或多种。 The negative electrode material according to claim any one of claims 1 8, characterized in that, said amides refractory binder is polyamide-imide, polyamide, polyimide is one or more species; preferably an aromatic polyamide-imide, aromatic polyamide, aromatic polyimide is one or more.
10.根据权利要求1至9任一项所述的负极材料,其特征在于,所述核壳结构的复合粒子占所述负极材料总重量的3〜98wt%,优选为20〜95wt%;所述导电添加剂占所述负极材料总重量的1〜35wt%,优选为5-10wt% ;所述酰胺类耐高温粘结剂占所述负极材料总重量的l_30wt%,优选为5-15wt%,更优选为IOwt%。 According to claim 1 to the anode material according to claims 9, wherein the composite particle core-shell structure account for 3~98wt% of the total weight of the negative electrode material, preferably 20~95wt%; the said conductive additive comprises from 1~35wt% of the total weight of the negative electrode material, preferably 5-10wt%; amides of the refractory binder comprises l_30wt% of the total weight of the negative electrode material, preferably 5-15wt%, more preferably IOwt%.
11. 一种用于锂离子二次电池的负极,所述负极包括权利要求1至10任一项所述的负极材料和集流体;优选地,所述集流体为各种导电的箔、网、多孔体、泡沫体或纤维体材料的载体,例如铜箔、镍网、泡沫镍和碳毡。 A negative electrode for a lithium ion secondary battery, the negative electrode comprises a current collector and a negative electrode material according to any one to claims 1 to 10; preferably, the current collector foils of various conductive fluid, the mesh , porous body, foam or fibrous carrier material, such as copper foil, nickel mesh, a nickel, and carbon felt.
12. —种权利要求11所述的负极的制备方法,该制备方法包括:将核壳结构的复合粒子、导电添加剂、粘结剂涂覆于集流体上,在真空或惰性气氛中,在80-450°C,优选为1200C _350°C,更优选为120°C _300°C进行热处理,热处理时间为10分钟-10小时。 12. - The method of preparing a negative electrode of the seed as claimed in claim 11, the production method comprising: the composite particles of the core-shell structure, a conductive additive, a binder coated onto a current collector, in vacuum or in an inert gas atmosphere, in 80 -450 ° C, preferably 1200C _350 ° C, more preferably 120 ° C _300 ° C heat treatment, the heat treatment time is 10 minutes to 10 hours.
13. 一种锂离子二次电池,该二次电池包含权利要求11所述的负极。 13. A lithium ion secondary battery, the secondary battery comprising a negative electrode as claimed in claim 11.
CN2010100340081A 2010-01-08 2010-01-08 Negative pole material for lithium-ion secondary battery, negative pole containing negative pole material, preparation method of negative pole and battery containing negative pole CN102122708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010100340081A CN102122708A (en) 2010-01-08 2010-01-08 Negative pole material for lithium-ion secondary battery, negative pole containing negative pole material, preparation method of negative pole and battery containing negative pole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010100340081A CN102122708A (en) 2010-01-08 2010-01-08 Negative pole material for lithium-ion secondary battery, negative pole containing negative pole material, preparation method of negative pole and battery containing negative pole

Publications (1)

Publication Number Publication Date
CN102122708A true CN102122708A (en) 2011-07-13

Family

ID=44251209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010100340081A CN102122708A (en) 2010-01-08 2010-01-08 Negative pole material for lithium-ion secondary battery, negative pole containing negative pole material, preparation method of negative pole and battery containing negative pole

Country Status (1)

Country Link
CN (1) CN102122708A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637875A (en) * 2012-04-25 2012-08-15 东华大学 Anode material used for lithium ion battery and preparation methods thereof
CN102751472A (en) * 2012-06-29 2012-10-24 上海锦众信息科技有限公司 Cathode manufacturing method of lithium ion secondary battery
CN102956890A (en) * 2011-08-16 2013-03-06 中国科学院物理研究所 Low-temperature carbon-coated composite material, its preparation method and application
CN102956877A (en) * 2011-08-15 2013-03-06 三星Sdi株式会社 Negative electrode active material for rechargeable lithium battery, negative electrode including the same and method of preparing the same, and rechargeable lithium battery including the same
CN103199225A (en) * 2013-04-23 2013-07-10 上海乾视通信技术有限公司 Silicon carbon negative electrode material, preparation method of silicon carbon negative electrode material and lithium ion battery
CN103280552A (en) * 2013-05-09 2013-09-04 浙江金开来新能源科技有限公司 Silicon-carbon composite anode material for lithium ion battery and preparation method thereof
CN103367808A (en) * 2012-03-27 2013-10-23 Tdk株式会社 Lithium-ion secondary battery
CN103400971A (en) * 2013-07-29 2013-11-20 宁德新能源科技有限公司 Silicon-based composite material and preparation method and applications thereof
CN103545497A (en) * 2013-10-18 2014-01-29 中国第一汽车股份有限公司 Lithium ion battery cathode material with two-shell layer structure and preparation method thereof
CN103606660A (en) * 2013-11-06 2014-02-26 中国科学院化学研究所 Alumina-coated granules, as well as preparation method and application thereof
CN103891014A (en) * 2011-10-24 2014-06-25 株式会社Lg化学 Method for manufacturing cathode active material, cathode active material, and lithium secondary battery including same
CN103904306A (en) * 2014-02-19 2014-07-02 上海璞泰来新材料技术有限公司 Silicon negative electrode composite material and preparation method thereof
CN103904335A (en) * 2014-04-21 2014-07-02 哈尔滨工业大学 Lithium ion battery negative material structure and preparation method thereof
US8808901B2 (en) 2012-01-06 2014-08-19 National Taiwan University Of Science And Technology Anode protector of lithium-ion battery and method for fabricating the same
CN104247089A (en) * 2012-02-27 2014-12-24 罗纳德·罗杰斯基 Hybrid energy storage devices
CN104538609A (en) * 2014-12-23 2015-04-22 东莞市迈科科技有限公司 Negative electrode composite material for lithium ion battery and preparation method of negative electrode composite material
CN104603993A (en) * 2012-09-27 2015-05-06 三洋电机株式会社 Negative electrode active material for non-aqueous electrolyte rechargeable battery, and non-aqueous electrolyte rechargeable battery using negative electrode active material
CN104701501A (en) * 2013-12-06 2015-06-10 奇瑞汽车股份有限公司 Lithium ion battery cathode material and preparation method thereof, and lithium ion battery
CN104701512A (en) * 2013-12-09 2015-06-10 纳米及先进材料研发院有限公司 Sic core/shell nanomaterials for high performance anode of lithium ion batteries
CN105406050A (en) * 2015-12-31 2016-03-16 深圳市贝特瑞新能源材料股份有限公司 Composite silicon negative electrode material, and preparation method and application thereof
WO2016066024A1 (en) * 2014-10-29 2016-05-06 江苏华东锂电技术研究院有限公司 Negative electrode material and lithium ion battery using same
CN105845917A (en) * 2016-06-20 2016-08-10 广东电网有限责任公司电力科学研究院 Preparation method of silicon-metal composite
CN106099062A (en) * 2016-07-21 2016-11-09 中国科学院山西煤炭化学研究所 Silicon based composite material Si@C@TiO is covered in double-contracting<sub>2</sub>and preparation method thereof
CN104247089B (en) * 2012-02-27 2016-11-30 罗纳德·罗杰斯基 Hybrid energy storage device
CN106252638A (en) * 2016-10-11 2016-12-21 大连海事大学 A kind of silicon/oxide composite negative pole material with Lithium metasilicate boundary layer and preparation method
CN106960947A (en) * 2016-01-11 2017-07-18 中国科学院宁波材料技术与工程研究所 Composite, its preparation method and application
CN107078287A (en) * 2014-10-14 2017-08-18 新罗纳米技术有限公司 Nano-complex battery electrode particle with variation characteristic
CN107112504A (en) * 2014-12-29 2017-08-29 罗伯特·博世有限公司 Silicon-carbon compound, the method for preparing the compound and electrode material and battery comprising the compound
CN107431250A (en) * 2015-03-13 2017-12-01 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery
CN107507971A (en) * 2017-08-29 2017-12-22 湖南格兰博智能科技有限责任公司 A kind of silicon based anode material, preparation method and lithium ion battery
CN107863512A (en) * 2017-10-26 2018-03-30 合肥国轩高科动力能源有限公司 A kind of silicon-carbon cathode material of core shell structure and preparation method thereof
CN107887587A (en) * 2017-11-09 2018-04-06 中南大学 Composite cathode material for lithium ion cell and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1681145A (en) * 2004-04-05 2005-10-12 中国科学院物理研究所 Negative electrode active material and use of secondary lithium battery
CN1705148A (en) * 2004-05-26 2005-12-07 中国科学院金属研究所 Process for modifying negative electrode material of lithium ion cell
CN1891668A (en) * 2005-07-08 2007-01-10 中国科学院物理研究所 Carbon-silicon composite material with spherical nucleocapsid, and its preparing method and use
CN101373829A (en) * 2008-10-07 2009-02-25 深圳市贝特瑞新能源材料股份有限公司 Titanium-series cathode active material and preparation method thereof, titanium-series lithium ion power battery
CN101527357A (en) * 2009-04-24 2009-09-09 清华大学 Nano-silicon amorphous carbon composition lithium ion battery cathode material and preparation method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1681145A (en) * 2004-04-05 2005-10-12 中国科学院物理研究所 Negative electrode active material and use of secondary lithium battery
CN1705148A (en) * 2004-05-26 2005-12-07 中国科学院金属研究所 Process for modifying negative electrode material of lithium ion cell
CN1891668A (en) * 2005-07-08 2007-01-10 中国科学院物理研究所 Carbon-silicon composite material with spherical nucleocapsid, and its preparing method and use
CN101373829A (en) * 2008-10-07 2009-02-25 深圳市贝特瑞新能源材料股份有限公司 Titanium-series cathode active material and preparation method thereof, titanium-series lithium ion power battery
CN101527357A (en) * 2009-04-24 2009-09-09 清华大学 Nano-silicon amorphous carbon composition lithium ion battery cathode material and preparation method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
陈敬波等: "锂离子电池硅基复合物负极材料", 《化学进展》 *
陈立宝等: "粘结剂对锂离子电池硅/碳复合负极材料循环性能的影响", 《中国有色金属学报》 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956877A (en) * 2011-08-15 2013-03-06 三星Sdi株式会社 Negative electrode active material for rechargeable lithium battery, negative electrode including the same and method of preparing the same, and rechargeable lithium battery including the same
CN102956890B (en) * 2011-08-16 2015-06-24 中国科学院物理研究所 Low-temperature carbon-coated composite material, its preparation method and application
CN102956890A (en) * 2011-08-16 2013-03-06 中国科学院物理研究所 Low-temperature carbon-coated composite material, its preparation method and application
US9315882B2 (en) 2011-10-24 2016-04-19 Lg Chem, Ltd. Method for preparing anode active material, anode active material prepared therefrom and lithium secondary battery having the same
CN103891014B (en) * 2011-10-24 2017-02-15 株式会社Lg 化学 Method for manufacturing cathode active material, cathode active material, and lithium secondary battery including same
CN103891014A (en) * 2011-10-24 2014-06-25 株式会社Lg化学 Method for manufacturing cathode active material, cathode active material, and lithium secondary battery including same
TWI473320B (en) * 2012-01-06 2015-02-11 Univ Nat Taiwan Science Tech Anode protector of lithium-ion battery and method for fabricating the same
US8808901B2 (en) 2012-01-06 2014-08-19 National Taiwan University Of Science And Technology Anode protector of lithium-ion battery and method for fabricating the same
CN104247089B (en) * 2012-02-27 2016-11-30 罗纳德·罗杰斯基 Hybrid energy storage device
CN104247089A (en) * 2012-02-27 2014-12-24 罗纳德·罗杰斯基 Hybrid energy storage devices
CN103367808A (en) * 2012-03-27 2013-10-23 Tdk株式会社 Lithium-ion secondary battery
CN103367808B (en) * 2012-03-27 2016-09-21 Tdk株式会社 Lithium rechargeable battery
US9660258B2 (en) 2012-03-27 2017-05-23 Tdk Corporation Lithium-ion secondary battery
CN102637875B (en) * 2012-04-25 2014-10-22 东华大学 Anode material used for lithium ion battery and preparation methods thereof
CN102637875A (en) * 2012-04-25 2012-08-15 东华大学 Anode material used for lithium ion battery and preparation methods thereof
CN102751472A (en) * 2012-06-29 2012-10-24 上海锦众信息科技有限公司 Cathode manufacturing method of lithium ion secondary battery
CN104603993A (en) * 2012-09-27 2015-05-06 三洋电机株式会社 Negative electrode active material for non-aqueous electrolyte rechargeable battery, and non-aqueous electrolyte rechargeable battery using negative electrode active material
CN104603993B (en) * 2012-09-27 2017-09-01 三洋电机株式会社 Anode for nonaqueous electrolyte secondary battery active material and the rechargeable nonaqueous electrolytic battery using the negative electrode active material
CN103199225A (en) * 2013-04-23 2013-07-10 上海乾视通信技术有限公司 Silicon carbon negative electrode material, preparation method of silicon carbon negative electrode material and lithium ion battery
CN103199225B (en) * 2013-04-23 2018-02-09 上海乾视通信技术有限公司 Silicon-carbon cathode material, its preparation method and a kind of lithium ion battery
CN103280552A (en) * 2013-05-09 2013-09-04 浙江金开来新能源科技有限公司 Silicon-carbon composite anode material for lithium ion battery and preparation method thereof
CN103400971A (en) * 2013-07-29 2013-11-20 宁德新能源科技有限公司 Silicon-based composite material and preparation method and applications thereof
CN103400971B (en) * 2013-07-29 2016-07-06 宁德新能源科技有限公司 Silicon based composite material and preparation method thereof and its application
CN103545497A (en) * 2013-10-18 2014-01-29 中国第一汽车股份有限公司 Lithium ion battery cathode material with two-shell layer structure and preparation method thereof
CN103545497B (en) * 2013-10-18 2016-01-20 中国第一汽车股份有限公司 The lithium ion battery cathode material and its preparation method of a kind of bivalve Rotating fields
CN103606660A (en) * 2013-11-06 2014-02-26 中国科学院化学研究所 Alumina-coated granules, as well as preparation method and application thereof
CN104701501A (en) * 2013-12-06 2015-06-10 奇瑞汽车股份有限公司 Lithium ion battery cathode material and preparation method thereof, and lithium ion battery
CN104701512A (en) * 2013-12-09 2015-06-10 纳米及先进材料研发院有限公司 Sic core/shell nanomaterials for high performance anode of lithium ion batteries
CN104701512B (en) * 2013-12-09 2017-07-28 纳米及先进材料研发院有限公司 Si@C core shell nano materials for lithium ion high performance anode
CN103904306A (en) * 2014-02-19 2014-07-02 上海璞泰来新材料技术有限公司 Silicon negative electrode composite material and preparation method thereof
CN103904306B (en) * 2014-02-19 2017-02-08 上海璞泰来新能源科技股份有限公司 Silicon negative electrode composite material and preparation method thereof
CN103904335A (en) * 2014-04-21 2014-07-02 哈尔滨工业大学 Lithium ion battery negative material structure and preparation method thereof
CN107078287A (en) * 2014-10-14 2017-08-18 新罗纳米技术有限公司 Nano-complex battery electrode particle with variation characteristic
WO2016066024A1 (en) * 2014-10-29 2016-05-06 江苏华东锂电技术研究院有限公司 Negative electrode material and lithium ion battery using same
CN104538609A (en) * 2014-12-23 2015-04-22 东莞市迈科科技有限公司 Negative electrode composite material for lithium ion battery and preparation method of negative electrode composite material
CN107112504A (en) * 2014-12-29 2017-08-29 罗伯特·博世有限公司 Silicon-carbon compound, the method for preparing the compound and electrode material and battery comprising the compound
CN107431250A (en) * 2015-03-13 2017-12-01 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery
CN105406050A (en) * 2015-12-31 2016-03-16 深圳市贝特瑞新能源材料股份有限公司 Composite silicon negative electrode material, and preparation method and application thereof
CN105406050B (en) * 2015-12-31 2018-11-02 深圳市贝特瑞新能源材料股份有限公司 A kind of comprehensive silicon negative material, preparation method and purposes
CN106960947A (en) * 2016-01-11 2017-07-18 中国科学院宁波材料技术与工程研究所 Composite, its preparation method and application
CN105845917B (en) * 2016-06-20 2019-04-09 广东电网有限责任公司电力科学研究院 A kind of preparation method of silicon metallic composite
CN105845917A (en) * 2016-06-20 2016-08-10 广东电网有限责任公司电力科学研究院 Preparation method of silicon-metal composite
CN106099062A (en) * 2016-07-21 2016-11-09 中国科学院山西煤炭化学研究所 Silicon based composite material Si@C@TiO is covered in double-contracting<sub>2</sub>and preparation method thereof
CN106099062B (en) * 2016-07-21 2018-09-25 中国科学院山西煤炭化学研究所 Silicon based composite material Si@C@TiO are covered in double-contracting2And preparation method thereof
CN106252638B (en) * 2016-10-11 2019-02-05 大连海事大学 A kind of silicon/oxide composite negative pole material and preparation method with lithium metasilicate boundary layer
CN106252638A (en) * 2016-10-11 2016-12-21 大连海事大学 A kind of silicon/oxide composite negative pole material with Lithium metasilicate boundary layer and preparation method
CN107507971A (en) * 2017-08-29 2017-12-22 湖南格兰博智能科技有限责任公司 A kind of silicon based anode material, preparation method and lithium ion battery
CN107863512A (en) * 2017-10-26 2018-03-30 合肥国轩高科动力能源有限公司 A kind of silicon-carbon cathode material of core shell structure and preparation method thereof
CN107887587A (en) * 2017-11-09 2018-04-06 中南大学 Composite cathode material for lithium ion cell and preparation method thereof

Similar Documents

Publication Publication Date Title
Shen et al. In situ growth of Li 4 Ti 5 O 12 on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries
Kim et al. Spinel LiMn2O4 nanorods as lithium ion battery cathodes
Liu et al. V2O5 nano‐electrodes with high power and energy densities for thin film li‐ion batteries
Jia et al. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries
Deng et al. Recent advances in Mn-based oxides as anode materials for lithium ion batteries
US9663860B2 (en) Silicon-carbon composite anode material for lithium ion batteries and a preparation method thereof
Lai et al. Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries
CN101627494B (en) Nanocomposite electrodes and related devices
Cao et al. Ultra‐high capacity lithium‐ion batteries with hierarchical CoO nanowire clusters as binder free electrodes
Ji et al. Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries
CN101577323B (en) Sulfenyl anode of lithium-sulfur rechargeable battery and preparation method thereof
Liu et al. Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor
Xiang et al. Simple synthesis of surface-modified hierarchical copper oxide spheres with needle-like morphology as anode for lithium ion batteries
CN101573812B (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery comprising the same, and method for producing the same
Qi et al. Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives
CN100530780C (en) Composite lithium titanate electrode material and preparation method thereof
CN101710619A (en) Electrode plate for lithium ion battery and manufacturing method thereof
CN101388447B (en) Negative pole for lithium ionic cell and preparing method thereof
CN100422112C (en) Carbon-silicon composite material with spherical nucleocapsid, and its preparing method and use
CN102306757A (en) Silicon graphene composite anode material of lithium ion battery and preparation method of silicon graphene composite anode material
CN102244231A (en) Method for cladding surfaces of active material of anode and/or anode and methods manufacturing anode and battery
CN102612772A (en) Active material particles and use of same
CN101969113B (en) Preparation method of graphene-base tin dioxide composite anode material for lithium ion batteries
CN101140986A (en) A negative electrode active material for an electricity storage device and method for manufacturing the same
CN1328805C (en) Negative electrode active material and use of secondary lithium battery

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
RJ01