CN105024076A - Anode material for lithium-ion battery and preparation method and application of anode material - Google Patents

Anode material for lithium-ion battery and preparation method and application of anode material Download PDF

Info

Publication number
CN105024076A
CN105024076A CN201410182508.8A CN201410182508A CN105024076A CN 105024076 A CN105024076 A CN 105024076A CN 201410182508 A CN201410182508 A CN 201410182508A CN 105024076 A CN105024076 A CN 105024076A
Authority
CN
China
Prior art keywords
silicon
carbon
material
negative electrode
ion battery
Prior art date
Application number
CN201410182508.8A
Other languages
Chinese (zh)
Inventor
丁显波
慈立杰
夏进阳
杨杰
Original Assignee
深圳市国创新能源研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市国创新能源研究院 filed Critical 深圳市国创新能源研究院
Priority to CN201410182508.8A priority Critical patent/CN105024076A/en
Publication of CN105024076A publication Critical patent/CN105024076A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

The invention discloses an anode material for a lithium-ion battery. The anode material comprises a carbon core layer and a silicon wrapping layer. The silicon wrapping layer wraps the carbon core layer to form a silicon/carbon composite material. The anode material further comprises a metallic oxide wrapping layer serving as the outer wrapping layer of the silicon/carbon composite material. The anode material solves the problem that due to the fact that a silicon-contained anode material is prone to expansion, the battery capacity is rapidly reduced. The invention further discloses a preparation and application of the anode material for the lithium-ion battery. The preparation method includes the step of conducting high-temperature annealing to form the anode material after the silicon/carbon composite material is fluidified and wrapped by a metal salt solution. The lithium-ion battery more excellent in performance can be obtained when the anode material is applied.

Description

一种锂离子电池负极材料及其制备方法和应用 A lithium ion battery negative electrode material and its preparation method and application

技术领域 FIELD

[0001] 本发明涉及锂离子电池,特别涉及一种锂离子电池负极材料及其制备方法和应用。 [0001] The present invention relates to a lithium ion battery, and particularly relates to a negative electrode material for a lithium ion battery and its preparation method and application.

背景技术 Background technique

[0002] 随着社会和科技的发展,锂离子电池负极材料也在不断更新换代。 [0002] With the development of society and technology, lithium-ion battery anode materials are also constantly upgrading.

[0003] 起初,商品化锂离子电池主要采用石墨类碳材料作为负极活性物质。 [0003] At first, a lithium ion battery mainly commercialized graphite as a negative electrode active material a carbon material. 然而,碳类负极材料因其比容量较低(372mAh/g),不能满足电子设备小型化和车用锂离子电池大功率、 高容量等要求,因而需要研发可替代碳材料的具有高能量密度、高安全性能、长循环寿命的新型锂离子电池负极材料。 However, carbon-based negative electrode material due to its low specific capacity (372mAh / g), can not meet the miniaturization of electronic devices and a vehicle lithium ion battery power, high capacity, etc., and thus a need to develop an alternative carbon material having a high energy density , high safety, long cycle life of the new lithium-ion battery anode material.

[0004] 于是,人们将传统金属硅作为锂离子电池负极材料,其理论比容量可达4200mAh/g,实现了高容量。 [0004] Accordingly, it is traditional metal silicon as a negative electrode material of lithium ion batteries, the theoretical specific capacity of up to 4200mAh / g, to achieve a high capacity. 但其在充放电过程中存在体积膨胀(约300%),会引起活性颗粒粉化, 进而失去电接触而导致容量快速衰减。 However, its presence in the volume expansion during charge and discharge (about 300%), the active particles will cause powdering, the consequent loss of electrical contact caused by the rapid capacity decay.

[0005] 而后,人们发现了新材料石墨烯一石墨烯作为一种二维碳质材料,是由单层sp2 碳原子组成的具有蜂窝结构的二维晶体,其具有优异的电子传输特性,具有大的比表面积、 优异的力学特性。 [0005] Then, it was found that the new material is a graphene graphene as a two-dimensional carbon material, the monolayer is a two-dimensional sp2 carbon atoms crystal having a honeycomb structure, which has excellent electron transport characteristics, having large specific surface area, excellent mechanical properties. 石墨烯通过与其他材料的复合可以制备出具有各种优良性能的材料。 Graphene can be prepared by a variety of materials having excellent properties with other composite materials. 例如,石墨烯作为锂离子电池负极材料,首次放电容量可达650mAh/g,100次循环之后,容量仍然保持在460mAh/g。 For example, graphene is used as the negative electrode material of lithium ion battery, the first discharge capacity of up to 650mAh / g, after 100 cycles, the capacity remains at 460mAh / g. 若将石墨烯与Si制备形成复合材料,可缓解纳米硅粉在充放电过程中的体积效应,提高材料的循环稳定性。 If graphene Si preparing a composite material, can alleviate the effect of nanometer silica fume volume during charging and discharging, and improve the cycle stability of the material. 其所采用的包覆方法包括液相包覆法、化学气相沉积法(CVD)。 Their use of coating methods include liquid coating method, a chemical vapor deposition (CVD). 但由于石墨烯与硅粉的复合材料只是利用了石墨的延展性对硅粉的体积膨胀起到延展作用,并未从结构上改变其体积膨胀性,因此单纯的复合材料在使用过程中仍然会面临结构的粉化而使得容量的快速衰减。 However, since the graphene composite silicon powder just use graphite ductile ductility effect of the volume expansion of the silicon powder functions, does not change its volume expansion from the structure, the composite material will still be simple in use face powder structure such that decay rapidly capacity.

[0006] 目前的改进方案是通过化学气相沉积或有机碳源湿法包覆碳膜层来生产石墨烯\硅\碳膜复合结构材料。 [0006] It is the development of production of graphene \ Si \ carbon composite structure by chemical vapor deposition or wet coating organic carbon carbon layer. 其不仅发挥了硅的高比容量特性,同时也达到了一定程度的硅包覆的目的,使得硅材料在膨胀或收缩后能够与碳层达到很好的电化学接触,保证了材料的循环稳定性,但是,碳膜的包覆只能保证硅在结构变化后的良好的电化学接触,而不能从结构上根本抑制硅材料的体积膨胀,因此对材料循环稳定性能的改善程度有限。 Play not only a high capacity properties of silicon ratio while achieving the goal of a degree of the silicon-coated, so that the silicon material upon expansion or contraction can achieve good electrochemical contact with the carbon layer, to ensure the circulation of the stabilizing material resistance, however, only the carbon film coated to ensure good electrochemical contact with the silicon in the structural changes, not from the underlying structure to suppress the volume expansion of the silicon material, and therefore a limited degree of improvement of cycle stability of the material. 若要使碳/硅复合材料达到进一步商业化运用的目的,必须在结构稳定性上得到进一步的改善,使循环性能得到大幅度提升。 To the carbon / silicon composite material to achieve the purpose of further commercial use, must be further improved in structural stability, the circulation performance improved significantly.

发明内容 SUMMARY

[0007] 本发明的目的在于提供一种锂离子电池负极材料,以解决现有技术中含硅负极材料易膨胀导致的电池容量快速衰减的问题。 [0007] The object of the present invention is to provide a negative electrode material for a lithium ion battery, the battery capacity to address the prior art silicon-containing anode material due to the rapid expansive attenuation. 本发明的另一目的在于提供一种锂离子电池负极材料的制备方法和应用,以实现具有高比容量、长循环寿命等优异性能的锂离子电池的工业化生产和广泛适用。 Another object of the present invention to provide a preparation method and uses a lithium ion battery negative electrode material for industrial production and widely used lithium ion battery having excellent performance high specific capacity, long cycle life and the like.

[0008] 为了实现上述发明目的,本发明的技术方案如下: [0008] In order to achieve the above object, the technical solution of the present invention is as follows:

[0009] -种锂离子电池负极材料,包括碳核心层和娃包覆层,所述娃包覆层包覆所述碳核心层,形成硅/碳复合材料。 [0009] - one lithium ion battery anode material comprising a core layer and a carbon layer covering the baby, the baby carbon coating layer covering the core layer, forming a silicon / carbon composite material. 所述负极材料还包括金属氧化物包覆层,所述金属氧化物包覆层为所述硅/碳复合材料的外包覆层; The negative electrode material coating layer further comprises a metal oxide, the metal oxide coating layer of the silicon / carbon composite outer cladding material;

[0010] 其中,所述碳核心层由石墨烯、天然石墨、碳纳米管、纳米碳纤维、膨胀石墨中的至少一种构成;所述金属氧化物包覆层为金属氧化物薄膜,所述金属氧化物薄膜由氧化铝、氧化钛、氧化硅、氧化镁、氧化锌、氧化锆中的至少一种构成。 [0010] wherein the core layer of graphene carbon, natural graphite, carbon nanotubes, carbon fiber, expanded graphite constituting at least one of; the metal oxide coating layer is a metal oxide thin film, the metal oxide thin film of aluminum oxide, titanium oxide, silicon oxide, magnesium oxide, zinc oxide, zirconium oxide, at least one configuration.

[0011] 以及,一种锂离子电池负极材料的制备方法,包括以下制备步骤: [0011] and a method for preparing a negative electrode material of lithium ion battery, comprising the steps of preparing:

[0012] 基础原料的准备:获得硅/碳复合材料,所述硅/碳复合材料包括碳核心层和硅包覆层,所述硅包覆层包覆所述碳核心层; [0012] The base stock prepared: obtain a silicon / carbon composite material, a silicon / carbon composite material comprising a core layer and a silicon carbon coating layer, a silicon carbon coating layer covering the core layer;

[0013] 第一负极材料的形成:将金属盐溶液雾化,将雾化的所述金属盐溶液包覆于经过流化处理的所述硅/碳复合材料上,得到前驱体薄膜;将所述前驱体薄膜高温烧结、退火后,得到包覆有金属氧化物包覆层的第一负极材料,其中,所述金属盐溶液经高温烧结、退火后可得到相应的金属氧化物。 [0013] forming a first negative electrode material: a metal salt solution is atomized, the atomized metal salt solution is coated on the flow through processing of the silicon / carbon composite material to obtain the precursor thin film; The precursor thin film described later, the high temperature sintering, annealing, to obtain a negative electrode material coated with a first metal oxide coating layer, wherein the metal salt solution is sintered at high temperature, can be obtained after annealing the corresponding metal oxide.

[0014] 再者,还有将上述锂离子电池负极材料使用于锂离子电池的应用。 [0014] Further, there is the lithium ion battery using the negative electrode material in lithium ion battery applications.

[0015] 上述锂离子电池负极材料将石墨烯、天然石墨、碳纳米管、纳米碳纤维、膨胀石墨中的至少一种作为碳核心层,使得负极材料具有优异的电子传输性能和力学性能,能保持高的比容量。 [0015] The lithium ion battery anode material graphene, natural graphite, carbon nanotubes, carbon fiber, expanded graphite as the carbon in at least one of the core layer, such that the negative electrode material having excellent electron transporting property and mechanical properties, can be maintained high specific capacity. 同时设置硅包覆层,将石墨烯与Si制备成复合材料,可缓解纳米硅粉在充放电过程中的体积效应并提高材料的循环稳定性,但是在充放电过程中,其不能抑制硅的体积变化,只是因为碳核心层的延展性较好,能与硅的膨胀或收缩保持一定的一致性而使得负极材料的稳定性有所提高,这样的结构仍然会导致后期电接触丧失而引起比容量衰减。 While the silicon coating layer is provided, the graphene Si composite material prepared, can alleviate the effect of nanometer silica fume volume during charge and discharge cycles and improve stability of the material, but the charge-discharge process, the silicon can not be suppressed volume change, simply because the ductility of the core layer is preferably carbon, silicon capable of expansion or contraction to maintain a certain stability of the negative electrode material so that consistency is improved, this configuration still results in the loss of electrical contact caused by late than capacity fade. 对此,本发明人在研究中发现,将上述金属氧化物包覆层作为所述硅/碳复合材料的外包覆层可以使得硅包覆层在充放电过程中的体积膨胀控制在最低限度,且能在充电过程中给膨胀的硅一个收缩的机械应力,达到颗粒自修复的目的,从而大大改善了材料的循环稳定性能,避免了后期电接触丧失而引起的比容量衰减的问题。 In this regard, the present inventors have found in the study, the cladding layer of the metal oxide as the silicon / carbon composite material of the outer cladding may be coated with the silicon layer is volume expansion during charge and discharge is controlled to a minimum , capable of mechanical stress during charging to a contraction of expansion of silicon, to achieve the purpose of self-repair particles, thereby greatly improving the stability of the loop material, to avoid the problem of electrical contact loss of specific capacity due late attenuation.

[0016] 上述锂离子电池负极材料的制备方法操作简单,不需要特殊设备,成本较低,利于工业化生产。 [0016] The method for preparing the negative electrode material of lithium ion battery is simple, does not require special equipment, low cost, industrially advantageous.

[0017] 将上述锂离子电池负极材料使用于锂离子电池,可以获得具有高能量密度、高安全性能、长循环寿命的锂离子电池。 [0017] The lithium ion battery using the negative electrode material in lithium ion batteries, having high energy density can be obtained, high safety, long cycle life of a lithium ion battery.

附图说明 BRIEF DESCRIPTION

[0018] 下面将结合附图及实施例对本发明作进一步说明,附图中: [0018] The accompanying drawings and the following embodiments of the present invention is further illustrated drawings in which:

[0019] 图1为制备碳/硅/金属氧化物复合材料的设备结构图。 [0019] FIG. 1 is preparing a carbon / silicon / metal oxide composite device structure of FIG.

具体实施方式 Detailed ways

[0020] 为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例与附图,对本发明进行进一步详细说明。 [0020] In order that the present invention is to solve the technical problem, technical solutions and beneficial effects more clearly understood, the following Examples in conjunction with the accompanying drawings embodiments of the present invention will be further described in detail. 应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。 It should be understood that the specific embodiments described herein are only intended to illustrate the present invention and are not intended to limit the present invention.

[0021] 本发明实施例提供了一种锂离子电池负极材料,其包括碳核心层和硅包覆层,所述硅包覆层包覆所述碳核心层(即所述硅包覆层包覆于所述碳核心层上),形成硅/碳复合材料。 [0021] The present invention provides a negative electrode material for a lithium ion battery, comprising a core layer and a silicon carbon coating layer, a silicon carbon coating layer covering the core layer (i.e. the silicon coating layer packet carbon overlying the upper core layer), a silicon / carbon composite material. 所述负极材料还包括金属氧化物包覆层,所述金属氧化物包覆层为所述硅/碳复合材料的外包覆层; The negative electrode material coating layer further comprises a metal oxide, the metal oxide coating layer of the silicon / carbon composite outer cladding material;

[0022] 具体地,上述碳核心层由石墨烯、天然石墨、碳纳米管、纳米碳纤维、膨胀石墨中的至少一种构成。 [0022] Specifically, the carbon core layer of graphene, natural graphite, carbon nanotubes, carbon fiber, expanded graphite, at least one configuration. 上述金属氧化物包覆层为金属氧化物薄膜,所述金属氧化物薄膜由氧化铝、 氧化钛、氧化硅、氧化镁、氧化锌、氧化锆中的至少一种构成,而且所述金属氧化物薄膜优选为纳米级别的薄膜,以实现其更强的机械强度和延展性,从而更好地控制硅的体积变化。 The metal oxide coating layer is a metal oxide thin film, the metal oxide thin film of aluminum oxide, titanium oxide, silicon oxide, magnesium oxide, zinc oxide, zirconium oxide, at least one configuration, the metal oxide and film is preferably a thin film nano level to achieve its greater mechanical strength and ductility, better control over the volume change of silicon.

[0023] 上述金属氧化物包覆层的质量可以是所制备负极材料质量的I. 0 %~2%,但并不限于此比例区间,其可以优选以下三种方式进行包覆:一:将所述金属氧化物包覆层直接包覆于所述硅/碳复合材料的外表面,形成碳/硅/金属氧化物复合材料,即一种锂离子电池负极材料;二:将所述硅/碳复合材料的外表面依次包覆碳膜和所述金属氧化物包覆层,即先在所述硅/碳复合材料的外表面包覆碳膜,再将所述金属氧化物包覆层包覆在碳膜上,形成多层包覆,制得碳/硅/碳膜/金属氧化物复合材料,即另一种锂离子电池负极材料;三:将所述硅/碳复合材料的外表面依次包覆所述金属氧化物包覆层和碳膜,即先在所述硅/碳复合材料的外表面包覆所述金属氧化物包覆层,再在金属氧化物包覆层上包覆碳膜,制得碳/硅/金属氧化物/碳膜复合材料,即再一种锂离子电池 [0023] by mass of the metal oxide coating layer may be a mass of negative electrode material I. prepared 0% to 2%, but is not limited to this ratio range, which may preferably be coated in three ways: one: the metal oxide coating layers coated directly on the outer surface of the silicon / carbon composite material, forming a carbon / silicon / metal oxide composite material, i.e., a negative electrode material for a lithium ion battery; two: the silicon / the outer surface of the carbon composite material coated with carbon film sequentially and the metal oxide coating layer, i.e., the first carbon film coated on the outer surface of the silicon / carbon composite material, and then the metal oxide coating layer packet in the carbon film coated to form a multilayer coating, prepared by the carbon / silicon / carbon / metal oxide composite material, i.e., the other negative electrode material for a lithium ion battery; three: an outer surface of the silicon / carbon composite material sequentially coating said metal oxide coating layer and the carbon film, i.e., the first metal oxide coating layer coated on the outer surface of the silicon / carbon composite material, and then coated on the metal oxide coating layer carbon, to obtain the carbon / silicon / metal oxide / carbon composite material, i.e. a lithium ion battery and then 极材料。 Electrode material. 上述三种优选方式都能实现金属氧化物的良好包覆,不仅能够保证负极材料具有优异的高比容量性能、循环性能等,还能抑制硅膨胀,使得负极材料在持续的充放电过程中保持良好的电接触性能和优异的循环稳定性。 The three preferred embodiments can achieve good coating metal oxide, a negative electrode material to ensure not only excellent in performance higher than the capacity, cycle characteristics, etc., can inhibit expansion of silicon, so that the negative electrode material is maintained at constant charge-discharge process good electrical contact performance and excellent cycle stability. 当然还可以采用其他的多层方式包覆,这个可以根据具体情况调节,只要实现硅包覆层被上述金属氧化物包覆层包覆即可,例如选择上述方式二或方式三可以在方式一的基础上进一步增强负极材料的电学和力学性能。 Can of course also be employed in other ways multilayer coating, this can be adjusted depending on the circumstances, to achieve as long as the silicon coating layer is coated with metal oxide coating layer can be, for example, selects the second approach or embodiment may be a three way and further enhance the mechanical properties of the electrical anode material basis.

[0024] 上述碳膜为现有技术中熟知的碳膜,可以通过现有制备工艺制备得到,例如将有机碳源包覆后于高温下裂解碳化形成的碳膜,所述有机碳源可以是浙青、柠檬酸、葡萄糖、 乙二醇、环氧树脂、酚醛树脂等中的一种或至少两种。 [0024] The carbon is well known in the prior art, the carbon film can be prepared by conventional manufacturing process, for example, carbon-coated organic carbon after pyrolysis under formation of carbonization, the carbon source may be organic Zhejiang one kind of cyan, citric acid, glucose, glycol, epoxy resin, phenol resin and the like or at least two.

[0025] 上述硅包覆层为现有的在锂离子电池负极材料领域中用于包覆的硅膜或硅纳米颗粒,当将硅膜作为硅包覆层时,优选纳米级厚度的硅膜,例如20-200nm。 [0025] The conventional silicon coating layer is for coating a silicon film or a silicon nanoparticles in the field of lithium ion battery negative electrode material, when a silicon film is used as the cladding layer of silicon, preferably silicon film nanoscale thickness such as 20-200nm. 这样,硅的纳米化可以降低硅包覆层作为负极活性材料在充放电过程中的体积膨胀。 Thus, a silicon nano silicon cladding layer can be reduced as a negative electrode active material, the volume expansion during charge and discharge process. 当采用硅纳米颗粒作为硅包覆层时,厚度优选为l〇-l〇〇nm。 When using silicon as the silicon nanoparticles cladding layer, the thickness is preferably l〇-l〇〇nm.

[0026] 上述锂离子电池负极材料可明显改善传统的碳/硅材料作为锂离子电池负极材料所存在的循环性能与倍率充放电性能差、首次库伦效率低、体积膨胀效应大等问题。 [0026] The negative electrode material for lithium ion batteries can significantly improve the conventional carbon / silicon material negative electrode material for lithium ion batteries present cyclability and rate charge-discharge performance difference, the first low coulombic efficiency, large volume expansion effect and so on. 此外,其可以采用下面的制备方法进行制备,但是不限于此。 Further, it may be prepared using the following preparation method, but is not limited thereto.

[0027] 相应地,本发明实施例还提供了一种锂离子电池负极材料的制备方法,包括以下制备步骤: [0027] Accordingly, embodiments of the present invention further provides a method for preparing a negative electrode material for a lithium ion battery, comprising the steps of preparing:

[0028] SOl、基础原料的准备:获得硅/碳复合材料; [0028] SOl, base stock preparation: to obtain a silicon / carbon composite;

[0029] S02、第一负极材料的形成:将金属盐溶液雾化,将雾化的所述金属盐溶液包覆在经过流化处理的所述硅/碳复合材料上,得到前驱体薄膜;将所述前驱体薄膜高温烧结、退火后,得到包覆有金属氧化物包覆层的第一负极材料,其中,所述金属盐溶液经高温烧结、 退火后可得到相应的金属氧化物。 [0029] S02, forming a first negative electrode material: a metal salt solution is atomized and the atomized coating the metal salt solution through the silicon in the process stream / carbon composite material, to obtain a precursor film; after the precursor film high temperature sintering, annealing, to obtain a negative electrode material coated with a first metal oxide coating layer, wherein the metal salt solution is sintered at high temperature, can be obtained after annealing the corresponding metal oxide. 所述的金属氧化物包括但不限于氧化铝、氧化硅、氧化钛、氧化镁、氧化锌、氧化锆中的至少一种。 The metal oxides include, but are not limited to, alumina, silica, titanium oxide, magnesium oxide, zinc oxide, at least one of zirconia.

[0030] 具体地,上述SOl步骤中,上述娃/碳复合材料的结构如下:包括碳核心层和娃包覆层,且所述硅包覆层包覆所述碳核心层。 [0030] Specifically, the above-described step SOl, the configuration of the baby / carbon composite as follows: a core layer comprising carbon and the baby cladding layer, and the silicon carbon coating layer covering the core layer. 获得上述硅/碳复合材料的方式有:通过市场购买或者采用现有的制备方法制备,例如可以采用如下现有制备方法制备:1.采用自制或购买的天然石墨、石墨烯、纳米碳纤维或膨胀石墨作为基础复合材料原料;2.将上述原料在烘箱中100-120摄氏度下烘烤12-24h以去除其中的水分;3.将上诉原材料放入CVD管式炉反应器或者流化床CVD反应器中,在300-800摄氏度条件下将硅烷气体通入进行热分解反应(硅烷气体的通入速率可为100 -200sccm),使得娃兀素沉积到碳核表面,形成一定厚度的金属硅膜或纳米级硅颗粒。 To obtain the silicon / carbon composite methods are: prepared by conventional market for later use or method of preparing, prepared, for example, can be prepared by conventional methods employed: a self-made or purchased natural graphite, graphene, carbon nanofibers or expansion graphite composite material as a base material; 2. 12-24h above raw materials baked at 100-120 ° C in an oven to remove moisture therein; 3 would appeal tubular furnace material placed in a CVD reactor or a fluidized bed CVD reaction vessel, at 300-800 degrees Celsius silane gas into the thermal decomposition reaction (silane gas flow speed to be 100 -200sccm), such that the deposited carbon baby Wu surface of the core element to form a metallic silicon film with a thickness or nanoscale silicon particles. 4.沉积时间为30-360min,而后得到厚度在20-200nm的金属硅膜或IO-IOOnm的金属硅颗粒;5.经上一部的CVD沉积反应得到了碳/硅复合材料,为颗粒状。 4. The deposition time is 30-360min, then 20-200nm at a thickness of a silicon film or a metal silicon metal particles in the IO-IOOnm;. 5 by a CVD deposition reaction on the obtained carbon / silicon composite material, a granular .

[0031] 上述S02步骤中,可根据所需的金属氧化物薄膜配置不同的金属盐溶液。 [0031] In the above-described step S02, may be configured differently depending on the desired metal salt solution of the metal oxide thin film. 所述金属盐溶液优选为异丙醇铝溶液、异丙醇锆溶液、硝酸铝溶液或硝酸镁溶液等。 The metal salt solution is preferably a solution of aluminum isopropoxide, zirconium isopropoxide solution, a solution of aluminum nitrate or magnesium nitrate solution or the like. 可采用现有的雾化喷射装置对所述金属盐溶液进行雾化处理,并经由喷射装置喷入流化床反应器,所述碳/硅复合材料也置于流化床反应器中,使得雾化的金属盐溶液与经过流化床流化后的所述碳/硅复合材料结合并包覆于所述碳/硅复合材料上,形成前驱体薄膜。 Employed conventional atomizing and injection means for atomizing the metal salt solution is treated, and sprayed into a fluidized bed reactor through injection means, the carbon / silicon composite material may be placed in a fluidized bed reactor, such that atomizing the metal salt solution through the fluidization carbon / silicon composite binding material and coated on the carbon / silicon composite material, a precursor thin film is formed. 再将所述前驱体薄膜进行高温烧结、退火处理后形成第一负极材料,即碳/硅/金属氧化物复合材料,所述高温烧结的温度优选为400-1000摄氏度。 The precursor film is then sintered at high temperature, forming a first negative electrode material after the annealing treatment, i.e., the carbon / silicon / metal oxide composite material, the high temperature sintering temperature is preferably 400-1000 ° C. 若在所述基础原料的准备步骤之后、所述第一负极材料的形成步骤之前,先将碳膜包覆于所述硅/碳复合材料上;或者在所述第一负极材料的形成步骤之后,再将碳膜包覆于所述金属氧化物包覆层上,可形成第二负极材料,即依次为碳/硅/碳膜/金属氧化物复合材料和碳/硅/金属氧化物/碳膜复合材料。 Or after the step of forming the first negative electrode material; if the base after the step of preparing the raw material, prior to the step of forming the first negative electrode material, the carbon film coated on the first silicon / carbon composite material and then the carbon film coated on the metal oxide coating layer, a second negative electrode material may be formed, which in turn is a carbon / silicon / carbon / carbon composite and metal oxide / silicon / metal oxide / carbon film composite. 第一负极材料和第二负极材料都为本发明的目标负极材料。 Target first and second negative electrode material negative electrode material of the present invention, both a negative electrode material.

[0032] 进一步地,我们还可以根据所需负极材料的复合结构的不同,进行碳膜、金属氧化物包覆层的不同数量和顺序地包覆。 [0032] Furthermore, we can also depending on the desired configuration of the composite negative electrode material, and a different number of carbon coated sequentially, the metal oxide coating layer. 例如包覆多层碳膜/金属氧化物结构等,可照搬上述各包覆层的包覆方法进行。 E.g. multilayer coated carbon / metal oxide structures, etc., can copy each of the coating methods is the coating layer. 各实施例只要实现硅包覆层被上述金属氧化物包覆层包覆即可实现本发明目的。 Embodiments implemented as long as the silicon coating layer is coated with metal oxide coating layer to achieve the object of the present invention.

[0033] 上述制备方法易于操作,而且各步骤可以依据现实所需负极材料的结构而选择不同的步骤进行组合,从而形成不同的复合材料,例如上述列举的多种负极复合材料结构。 [0033] The preparing method is easy to operate, and steps may be required depending on the structure reality and the negative electrode material to different steps are combined to form a different composite materials, such as various above-mentioned negative electrode composite structure. 操作简单易行,成本较低,易于实现工业化生产。 Operation is simple, low cost, easy to implement industrial production.

[0034] 为更好地理解制备方法的操作,可参见图1,制备碳/硅/金属氧化物复合材料的设备结构图(现有的),其中包括引风机1、旋风分离器2、收料桶3、流化腔4、液体雾化器5、气体送料管路6、高压流化气体管路7、下料仓8和计量下料机9。 [0034] For a better understanding of the operation method of preparation, see FIG. 1, preparing a carbon / silicon / metal oxide composite material structural drawing (conventional), wherein the fan includes a lead 1, a cyclone 2, close tank 3, the fluidization chamber 4, a liquid atomizer 5, the gas feed line 6, the high-pressure gas line 7, the cutting machine 8 and a metering hopper 9.

[0035] 将上述锂离子电池负极材料应用于锂离子电池领域,可以获得高性能电池,利于节能环保,保证安全。 [0035] The negative electrode material for lithium ion battery is applied to the field of lithium ion battery, the battery can obtain a high-performance, energy saving conducive to ensure safety.

[0036] 现以具体锂离子电池负极材料及其制备方法为例,对本发明进行进一步详细说明。 [0036] In particular a lithium ion battery is now negative electrode material and a preparation method of an example of the present invention will be further described in detail.

[0037] 实施例1 [0037] Example 1

[0038] 1.采用自制或购买的天然石墨、石墨烯、纳米碳纤维或膨胀石墨作为基础复合材料原料,即碳核心层原料; [0038] 1. Using make or buy natural graphite, graphene, carbon nanofibers, or a composite material of expanded graphite as a base material, i.e. the core layer, the carbon material;

[0039] 2.将上述原料在烘箱中于100-120摄氏度下烘烤12_24h以去除其中的水分; [0039] 2. The above materials 12_24h baking in an oven at 100-120 ° C to remove moisture therein;

[0040] 3.将经步骤2处理后的原材料放入CVD反应器中,在300-800摄氏度条件下将硅烷气体通入CVD反应器进行热分解反应,使得硅元素沉积到碳核心层表面,形成一定厚度的金属硅膜或纳米级硅颗粒,具体沉积时间为30-360min,得到厚度在20-200nm的金属硅膜或IO-IOOnm的金属娃颗粒; [0040] 3. The material was placed into the second treatment step CVD reactor, at 300-800 degrees Celsius silane gas into the CVD reactor for the thermal decomposition reaction, such that elemental silicon is deposited onto the surface of the core layer of carbon, a certain thickness of a metal film or a silicon nanoscale silicon particles, particularly the deposition time is 30-360min, 20-200nm at a thickness of the metal film or a metal silicon particles IO-IOOnm the baby;

[0041] 4.经上一步的CVD沉积反应后得到了碳/硅复合材料颗粒; [0041] 4. After the CVD deposition reaction step obtained carbon / silicon composite material particles;

[0042] 5.将步骤4中所得的碳/硅复合颗粒作为下一步的原料颗粒,其在流化床反应器内被金属氧化物薄膜包覆后得到碳/硅/氧化物复合材料; [0042] Step 5. The resultant carbon / silicon composite particle material particles 4 as the next step, which is obtained after the coated carbon / silicon / oxide composite material in a fluidized bed reactor, the metal oxide thin film;

[0043] 6.根据所需的金属氧化物薄膜配置不同的金属盐溶液,例如有机溶液:异丙醇铝溶液、异丙醇锆溶液等,或者配制成无机水溶液,例如硝酸铝溶液、硝酸镁溶液等。 [0043] The different metal oxide thin film of the desired metal ion solution such as an organic solution: a solution of aluminum isopropoxide, zirconium isopropoxide solution and the like, or formulated as aqueous mineral, such as aluminum nitrate solution, magnesium nitrate solutions and the like. 然后按包覆膜层氧化物物质的量比例设定包覆液的进料速率,通过液体雾化喷射装置喷入流化床反应器,经过流化床流化后包覆于前述碳/硅/金属氧化物复合材料表面形成前驱体薄膜。 Then the amount of the coating film layer proportion of oxide material set feed rate of the coating solution, by atomizing the liquid injection into the fluidized bed reactor means, after fluidization coated on the carbon / silicon / metal oxide surface film composite material precursor.

[0044] 7.将所述前驱体薄膜经过400-1000摄氏度高温烧结、退火处理后即制备成碳/硅/金属氧化物复合材料,即目的负极材料。 [0044] 7. The precursor film after sintering 400-1000 degrees Celsius, after the annealing treatment to prepare a carbon / silicon / metal oxide composite material, i.e. the purpose of the negative electrode material.

[0045] 8.同样,碳膜/氧化物/硅/碳、氧化物/碳膜/硅/碳复合材料的氧化物膜层也采用如上工艺制备得到,只是增加相应的工序而已。 [0045] 8. Similarly, carbon / oxide / silicon / carbon, oxides / carbon / silicon / oxide film layer of the carbon composite material prepared as above process has been also used, it only increased the corresponding step.

[0046] 实施例2 [0046] Example 2

[0047] 1.采用自制的多层2-10层石墨烯作为碳核心层原料; [0047] 1. The self-made multi-layered graphene layer 2-10 carbon material of the core layer;

[0048] 2.将上述原料在烘箱中于120°C下烘烤24h以去除其中的水分; [0048] 2. The above materials were baked to remove moisture therein 24h at 120 ° C for an oven;

[0049] 3.将经过步骤2处理的原材料放入CVD反应器中,在550°C条件下将硅烷气体以lOOsccm的速率进入反应器中进行分解反应后沉积,沉积时间120min,硅烷分解形成厚度均匀(为40nm)的娃纳米颗粒。 [0049] 3. Step 2 materials after processing into the CVD reactor, at conditions of 550 ° C at a rate of lOOsccm silane gas into the reactor after the decomposition reaction in the deposition, the deposition time 120min, decomposition of silane having a thickness uniform (as 40nm) baby nanoparticles.

[0050] 4.经上一步的CVD沉积反应得到了石墨烯/硅复合材料颗粒。 [0050] 4. Upon the CVD deposition reaction step obtained graphene / silicon composite material particles.

[0051] 5.将步骤4所得的石墨烯/硅复合颗粒作为下一步的原料颗粒备用。 [0051] Step 5. 4 obtained graphene / silicon composite particles as a raw material grains next backup.

[0052] 6.以异丙醇铝作为原料,配置成0. 2g/ml的异丙醇铝溶液,按与上述石墨烯/硅复合材料质量比为1. 5%:1的包覆量(即异丙醇铝溶液与石墨烯/硅复合材料颗粒的质量比为1.5% :1,下同)在流化床反应器内包覆所述石墨烯/硅复合材料颗粒形成异丙醇铝包覆的石墨烯/硅复合材料,即前驱体薄膜; [0052] 6. The aluminum isopropoxide as a starting material, is configured to 0. 2g / ml solution of aluminum isopropoxide, according to the above-described graphene / silicon mass ratio of the composite was 1.5%: 1 coating amount ( i.e., aluminum isopropoxide solution and the mass ratio of the graphene / silicon composite material particles was 1.5%: 1, hereinafter the same) in the fluidized bed reactor the coated graphene / silicon composite material formed of particles of aluminum isopropoxide package cover graphene / silicon composite material, i.e., a precursor film;

[0053] 7.将上述前驱体薄膜在500°C下高温退火2h,得到Al2O3/硅/石墨烯复合材料, 即锂电池负极材料,记为负极F1。 [0053] 7. The above-described precursor film at 500 ° C annealing temperature 2h, to give Al2O3 / Si / graphene composite material, i.e. lithium anode material, referred to as the negative electrode F1.

[0054] 实施例3 [0054] Example 3

[0055] 1.采用自制的多层2-10层石墨烯作为碳核心层原料; [0055] 1. The self-made multi-layered graphene layer 2-10 carbon material of the core layer;

[0056] 2.将上述原料在烘箱中于120°C下烘烤24h以去除其中的水分; [0056] 2. The above materials were baked to remove moisture therein 24h at 120 ° C for an oven;

[0057] 3.将经过步骤2处理的原材料放入CVD反应器中,在600°C条件下将硅烷气体以12〇SCCm的速率进入反应器中进行分解反应后沉积,沉积时间180min,硅烷分解形成厚度均匀(为60nm)的娃纳米颗粒。 [0057] 3. Step 2 materials after processing into the CVD reactor, at conditions of 600 ° C at a rate of 12〇SCCm silane gas into the reactor after the decomposition reaction in the deposition, the deposition time 180min, silane decomposition forming a uniform thickness (of 60 nm) nanoparticles baby.

[0058] 4.经上一步的CVD沉积反应得到了石墨烯/硅复合材料颗粒。 [0058] 4. Upon the CVD deposition reaction step obtained graphene / silicon composite material particles.

[0059] 5.将步骤4所得的石墨烯/硅复合颗粒作为下一步的原料颗粒备用。 [0059] Step 5. 4 obtained graphene / silicon composite particles as a raw material grains next backup.

[0060] 6.以异丙醇锆作为原料,配置成0. 2g/ml的异丙醇锆溶液,按与上述石墨烯/硅复合材料质量比为1.25% :1的包覆量在流化床反应器内包覆所述石墨烯/娃复合材料颗粒形成异丙醇锆包覆的石墨烯/硅复合材料,即前驱体薄膜; [0060] 6. In zirconium isopropoxide as a starting material, is configured to 0. 2g / ml solution of zirconium isopropoxide, according to the above-described graphene / silicon composite material mass ratio of 1.25%: the amount of coating in a fluidized 1 the reactor bed coating the graphene / baby composite particles form a graphene-coated zirconium isopropoxide / silicon composite material, i.e., a precursor film;

[0061] 7.将上述前驱体薄膜在500°C下高温退火2h,得到ZrO2/硅/石墨复合材料; [0061] 7. The above-described precursor film at 500 ° C annealing temperature 2h, to give ZrO2 / silicon / graphite composite material;

[0062] 8.将ZrO2/硅/石墨复合材料与高温浙青在混料罐中均匀混合,浙青按固碳量占负极材料10 %的比例加入。 [0062] 8. Add ZrO2 silicon / graphite composite material and the temperature ratio Zhejiang green uniformly mixed in the mixing tank, according to Zhejiang green solid carbon anode material accounted for 10% /.

[0063] 9.将混合均匀后的物料在1200°C下高温碳化,得到碳膜/ZrO2/硅/石墨烯复合材料,即锂电池负极材料,记为F2。 [0063] 9. The mixed material even at high temperature carbonization of 1200 ° C, to give carbon / ZrO2 / Si / graphene composite material, i.e. lithium anode material, referred to as F2.

[0064] 实施例4 [0064] Example 4

[0065] 1.采用自制的多层2-10层石墨烯作为碳核心层原料; [0065] 1. The self-made multi-layered graphene layer 2-10 carbon material of the core layer;

[0066] 2.将上述原料在烘箱中于120°C下烘烤24h以去除其中的水分; [0066] 2. The above materials were baked to remove moisture therein 24h at 120 ° C for an oven;

[0067] 3.将经过步骤2处理的原材料放入CVD反应器中,在600°C条件下将硅烷气体以15〇SCCm的速率进入反应器中进行分解反应后沉积,沉积时间240min,硅烷分解形成厚度均匀(为80nm)的娃纳米颗粒。 [0067] 3. Step 2 materials after processing into the CVD reactor, at conditions of 600 ° C at a rate of 15〇SCCm silane gas into the reactor after the decomposition reaction in the deposition, the deposition time 240min, silane decomposition forming a uniform thickness (of 80nm) baby nanoparticles.

[0068] 4.经上一步的CVD沉积反应得到了石墨烯/硅复合材料颗粒。 [0068] 4. Upon the CVD deposition reaction step obtained graphene / silicon composite material particles.

[0069] 5.将步骤4所得的石墨烯/硅复合颗粒作为下一步的原料颗粒备用。 [0069] Step 5. 4 obtained graphene / silicon composite particles as a raw material grains next backup.

[0070] 6.将上述石墨烯/硅复合颗粒与高温浙青在混料罐中均匀混合,浙青按固碳量占负极材料10 %的比例加入。 [0070] 6. The above-described graphene / silicon composite particles uniformly mixed with the high temperature in Zhejiang Green mixing tank, 10% of the amount of carbon sequestration by Zhejiang cyan negative electrode material added.

[0071] 7.将经步骤6混合均匀后的物料在1200°C下高温碳化,得到碳膜/硅/石墨烯复合材料; [0071] 7. The material after step 6 was mixed at high temperature carbonization at 1200 ° C, to obtain carbon film / Si / graphene composite material;

[0072] 8.以异丙醇铝作为原料,配置成0.2g/ml的异丙醇铝溶液,按与上述石墨烯/硅复合材料质量比为1. 5%: 1的包覆量在流化床反应器内包覆所述碳膜/娃/石墨烯复合材料颗粒形成异丙醇铝包覆的碳膜/硅/石墨烯复合材料,即前驱体薄膜; [0072] 8. The material as aluminum isopropoxide, aluminum isopropoxide solution configured to 0.2g / ml, according to the above-described graphene / silicon mass ratio of the composite was 1.5%: 1 in a flow coating amount the carbon-coated carbon / baby / graphene composite material particles in the fluidized bed reactor is formed of clad aluminum isopropoxide / Si / graphene composite material, i.e., a precursor film;

[0073] 9.将上述前驱体薄膜在500°C下高温退火2h,得到Al2O3/碳膜/硅/石墨烯复合材料,即锂电池负极材料,记为F3。 [0073] 9. The above-described precursor film at 500 ° C annealing temperature 2h, to give Al2O3 / carbon / silicon / graphene composite material, i.e. lithium anode material, referred to as F3.

[0074] 对比实例1 [0074] Comparative Example 1

[0075] 该对比实施例按实施例3的步骤实施,但减少金属氧化物包覆的步骤,得到复合负极材料,记为H)。 [0075] This embodiment according to the procedure of Comparative Example 3, but the step of reducing the metal oxide coating to obtain a composite negative electrode material, referred to as H).

[0076]性能测试条件: [0076] Performance Test Conditions:

[0077] [0077]

Figure CN105024076AD00081

[0078] 性能测试结果: [0078] Performance Test Results:

[0079] [0079]

Figure CN105024076AD00091

[0080] 由上述结果可知,本发明实施例所制得的负极材料具有较高比容量和良好的循环稳定性。 [0080] From these results, the negative electrode material obtained in Example embodiment of the present invention has a high specific capacity and good cycle stability.

[0081] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。 [0081] The foregoing is only preferred embodiments of the present invention but are not intended to limit the present invention, any modifications within the spirit and principle of the present invention, equivalent substitutions and improvements should be included in the present within the scope of the invention.

Claims (10)

1. 一种锂离子电池负极材料,包括碳核心层和硅包覆层,所述硅包覆层包覆所述碳核心层,形成硅/碳复合材料,其特征在于,所述负极材料还包括金属氧化物包覆层,所述金属氧化物包覆层为所述硅/碳复合材料的外包覆层; 其中,所述碳核心层由石墨烯、天然石墨、碳纳米管、纳米碳纤维、膨胀石墨中的至少一种构成;所述金属氧化物包覆层为金属氧化物薄膜,所述金属氧化物薄膜由氧化铝、氧化钛、氧化硅、氧化镁、氧化锌、氧化锆中的至少一种构成。 A negative electrode material for lithium ion battery, comprising a core layer and a silicon carbon coating layer, a silicon carbon coating layer covering the core layer, forming a silicon / carbon composite material, wherein said anode material further coating layer comprising a metal oxide, the metal oxide coating layer of the silicon / carbon composite outer cladding material; wherein the core layer of graphene carbon, natural graphite, carbon nanotubes, carbon nanofiber expanded graphite constituting at least one of; the metal oxide coating layer is a metal oxide thin film, the metal oxide thin film of aluminum oxide, titanium oxide, silicon oxide, magnesium oxide, zinc oxide, zirconia at least one constitutes.
2. 如权利要求1所述的锂离子电池负极材料,其特征在于,所述硅包覆层为硅膜或硅纳米颗粒。 2. The lithium ion battery negative electrode material according to claim 1, wherein the silicon coating layer is a silicon film or silicon nanoparticles.
3. 如权利要求1或2所述的锂离子电池负极材料,其特征在于,所述金属氧化物包覆层直接包覆于所述硅/碳复合材料的外表面。 A lithium ion battery or the negative electrode material as claimed in claim 12, wherein said metal oxide coating layers coated directly on the silicon / carbon composite outer surface.
4. 如权利要求1或2所述的锂离子电池负极材料,其特征在于,所述硅/碳复合材料的外表面依次包覆有碳膜和所述金属氧化物包覆层。 The lithium-ion battery or the negative electrode material as claimed in claim 1 or 2, characterized in that the outer surface of the silicon / carbon composite material are sequentially coated with carbon film and the metal oxide coating layer.
5. 如权利要求1或2所述的锂离子电池负极材料,其特征在于,所述硅/碳复合材料的外表面依次包覆有所述金属氧化物包覆层和碳膜。 The lithium-ion battery or the negative electrode material as claimed in claim 1 or 2, characterized in that the outer surface of the silicon / carbon composite material is sequentially coated with the metal oxide coating layer and the carbon film.
6. 如权利要求2所述的锂离子电池负极材料,其特征在于,所述硅膜的厚度为20-200nm,由所述娃纳米颗粒构成的所述娃包覆层的厚度为10-100nm。 The lithium ion battery of the negative electrode material as claimed in claim 2, wherein the thickness of the silicon film is 20 to 200 nm, the thickness of the baby cladding layer composed of the baby nanoparticles 10-100nm .
7. -种锂离子电池负极材料的制备方法,其特征在于,包括以下制备步骤: 基础原料的准备:获得硅/碳复合材料,所述硅/碳复合材料包括碳核心层和硅包覆层,所述硅包覆层包覆所述碳核心层; 第一负极材料的形成:将金属盐溶液雾化,将雾化的所述金属盐溶液包覆于经过流化处理的所述硅/碳复合材料上,得到前驱体薄膜;将所述前驱体薄膜高温烧结、退火后,得到包覆有金属氧化物包覆层的第一负极材料,其中,所述金属盐溶液经高温烧结、退火后可得到相应的金属氧化物。 7. - The method of preparing a lithium ion battery types negative electrode material, wherein the preparation comprising the steps of: preparing a raw material base: to obtain a silicon / carbon composite material, a silicon / carbon composite material comprising a core layer and a silicon carbon coating layer the silicon carbon coating layer covering the core layer; forming a first negative electrode material: a metal salt solution is atomized, the atomized metal salt solution through the flow coated on the silicon-treated / carbon composite material, to obtain a precursor film; precursor film after the high temperature sintering, annealing, to obtain a negative electrode material coated with a first metal oxide coating layer, wherein the metal salt solution of high temperature sintering, annealing obtained after the corresponding metal oxide.
8. 如权利要求7所述的锂离子电池负极材料的制备方法,其特征在于,在所述基础原料的准备步骤之后、所述第一负极材料的形成步骤之前,先将碳膜包覆于所述硅/碳复合材料上;或者在所述第一负极材料的形成步骤之后,再将碳膜包覆于所述金属氧化物包覆层上,形成第二负极材料。 8. A method for preparing a negative electrode material of a lithium ion battery according to claim 7, wherein, after the step of preparing the base material, prior to the step of forming the first negative electrode material, coated on the first carbon the silicon / carbon composite; or after the step of forming the first negative electrode material, and then coated on a carbon film on the metal oxide coating layer, forming a second anode material.
9. 如权利要求7所述的锂离子电池负极材料的制备方法,其特征在于,所述金属盐溶液为异丙醇铝溶液、异丙醇锆溶液、硝酸铝溶液或硝酸镁溶液。 The method of preparing anode materials for lithium-ion battery as claimed in claim 7, wherein the metal salt solution is a solution of aluminum isopropoxide, zirconium isopropoxide solution, a solution of aluminum nitrate or magnesium nitrate solution.
10. 将权利要求1-9任一项所述的负极材料使用于锂离子电池的应用。 The negative electrode material according to any one of claims 1-9 to claim 10. for use in lithium ion battery applications.
CN201410182508.8A 2014-04-30 2014-04-30 Anode material for lithium-ion battery and preparation method and application of anode material CN105024076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410182508.8A CN105024076A (en) 2014-04-30 2014-04-30 Anode material for lithium-ion battery and preparation method and application of anode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410182508.8A CN105024076A (en) 2014-04-30 2014-04-30 Anode material for lithium-ion battery and preparation method and application of anode material

Publications (1)

Publication Number Publication Date
CN105024076A true CN105024076A (en) 2015-11-04

Family

ID=54413883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410182508.8A CN105024076A (en) 2014-04-30 2014-04-30 Anode material for lithium-ion battery and preparation method and application of anode material

Country Status (1)

Country Link
CN (1) CN105024076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932245A (en) * 2016-05-20 2016-09-07 中国科学院化学研究所 High-compaction density silicon-carbon negative electrode material and preparation method and application thereof
CN108940534A (en) * 2018-07-18 2018-12-07 赵佳丽 A kind of silicon metal composite negative pole material grinding device and its grinding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764209A (en) * 2010-01-04 2010-06-30 苏州星恒电源有限公司 Lithium titanate composite electrode material with surface coating layer
CN102576857A (en) * 2009-05-27 2012-07-11 安普雷斯股份有限公司 Core-shell high capacity nanowires for battery electrodes
CN103545497A (en) * 2013-10-18 2014-01-29 中国第一汽车股份有限公司 Lithium ion battery cathode material with two-shell layer structure and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576857A (en) * 2009-05-27 2012-07-11 安普雷斯股份有限公司 Core-shell high capacity nanowires for battery electrodes
CN101764209A (en) * 2010-01-04 2010-06-30 苏州星恒电源有限公司 Lithium titanate composite electrode material with surface coating layer
CN103545497A (en) * 2013-10-18 2014-01-29 中国第一汽车股份有限公司 Lithium ion battery cathode material with two-shell layer structure and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932245A (en) * 2016-05-20 2016-09-07 中国科学院化学研究所 High-compaction density silicon-carbon negative electrode material and preparation method and application thereof
CN105932245B (en) * 2016-05-20 2019-07-16 北京壹金新能源科技有限公司 A kind of high compacted density silicon-carbon cathode material and its preparation method and application
CN108940534A (en) * 2018-07-18 2018-12-07 赵佳丽 A kind of silicon metal composite negative pole material grinding device and its grinding method

Similar Documents

Publication Publication Date Title
Jung et al. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li‐ion batteries
Zhou et al. A self‐ordered, crystalline–glass, mesoporous nanocomposite for use as a lithium‐based storage device with both high power and high energy densities
Liu et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
Li et al. Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application
Bang et al. High‐Performance Macroporous Bulk Silicon Anodes Synthesized by Template‐Free Chemical Etching
Wu et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy‐storage devices
CN103107315B (en) Nano silicon carbon composite material and its preparation method
Song et al. Micro-sized silicon–carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries
Yoo et al. Scalable fabrication of silicon nanotubes and their application to energy storage
CN102917981B (en) Use of the method using the graphene encapsulated metal oxide and metal materials, and these
Wu et al. CNTs@ SnO2@ C coaxial nanocables with highly reversible lithium storage
CN102263265A (en) A lithium ion battery and its preparation method conductive additive
Baek et al. A one-pot microwave-assisted non-aqueous sol–gel approach to metal oxide/graphene nanocomposites for Li-ion batteries
CN102299326B (en) Graphene modified lithium iron phosphate/carbon composite material and its application
CN102122708A (en) Negative pole material for lithium-ion secondary battery, negative pole containing negative pole material, preparation method of negative pole and battery containing negative pole
Ko et al. Characteristics of Li3V2 (PO4) 3/C powders prepared by ultrasonic spray pyrolysis
CN101764209A (en) Lithium titanate composite electrode material with surface coating layer
Du et al. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials
Jiang et al. Non-sacrificial template synthesis of Cr 2 O 3–C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries
CN102208634A (en) Porous silicon/carbon composite material and preparation method thereof
CN102770993A (en) Cathode active material substance, cathode, secondary battery and manufacturing methods for same
Ma et al. High volumetric capacity of hollow structured SnO2@ Si nanospheres for lithium-ion batteries
Liang et al. A deep reduction and partial oxidation strategy for fabrication of mesoporous Si anode for lithium ion batteries
CN102376944A (en) Method for preparing silicon carbide alloy negative electrode material for lithium ion battery
CN103474667A (en) Silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
RJ01