JP6092013B2 - Dispersant for non-aqueous dispersion media - Google Patents

Dispersant for non-aqueous dispersion media Download PDF

Info

Publication number
JP6092013B2
JP6092013B2 JP2013127603A JP2013127603A JP6092013B2 JP 6092013 B2 JP6092013 B2 JP 6092013B2 JP 2013127603 A JP2013127603 A JP 2013127603A JP 2013127603 A JP2013127603 A JP 2013127603A JP 6092013 B2 JP6092013 B2 JP 6092013B2
Authority
JP
Japan
Prior art keywords
group
dispersant
dispersion
aqueous dispersion
dispersion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013127603A
Other languages
Japanese (ja)
Other versions
JP2015000397A (en
Inventor
亜沙子 小笠原
亜沙子 小笠原
橋本 賀之
賀之 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS CO. LTD.
Original Assignee
DKS CO. LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKS CO. LTD. filed Critical DKS CO. LTD.
Priority to JP2013127603A priority Critical patent/JP6092013B2/en
Publication of JP2015000397A publication Critical patent/JP2015000397A/en
Application granted granted Critical
Publication of JP6092013B2 publication Critical patent/JP6092013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、重合性の炭素−炭素二重結合を分子内に有する反応性分散剤及びその分散剤を用いてなる分散体組成物及びその硬化物に関する。   The present invention relates to a reactive dispersant having a polymerizable carbon-carbon double bond in the molecule, a dispersion composition using the dispersant, and a cured product thereof.

無機又は有機材料からなる微細な固体粒子を、水性分散媒や非水性分散媒中に分散させた分散体が塗料その他の種々の用途で使用され、その分散性の向上のために種々の分散剤が使用されている(特許文献1、2)。   Dispersions in which fine solid particles made of inorganic or organic materials are dispersed in an aqueous dispersion medium or a non-aqueous dispersion medium are used in paints and other various applications, and various dispersants are used to improve the dispersibility. Are used (Patent Documents 1 and 2).

このような分散体は、分散質の素材変更や粒子サイズの微小化により分散安定性が低下し、分散質が分散媒中で凝集し易くなり、分散質の凝集は分散体の製造において、生産性低下、加工特性低下、ハンドリング性低下及び歩留低下を招くに留まらず、最終製品の製品特性、素材物性及び品質の低下を引き起こすため、分散性のより一層の向上が望まれている。   Such a dispersion has a low dispersion stability due to a change in the material of the dispersoid and a reduction in particle size, and the dispersoid is likely to aggregate in the dispersion medium. Aggregation of the dispersoid is produced in the production of the dispersion. Further, dispersibility is desired because it causes deterioration of product properties, material properties and quality of the final product as well as deterioration of processing properties, processing properties, handling properties and yield.

また、ナノメーターサイズの微粒子(粒子径1〜100nm)は凝集しやすく、樹脂に対する親和性が低いために樹脂中に均一に分散させるには、水性分散媒では極めて困難であり、通常は非水性分散媒中に分散剤を用いてナノ粒子を均一に分散させた分散体を調製し、この分散体に樹脂を溶解させて混合するか、又は樹脂を溶媒に溶解させた溶液状態のものと上記分散体とを混合し、溶解及び分散させる方法が用いられている。   In addition, nanometer-sized fine particles (particle diameter of 1 to 100 nm) are likely to aggregate and have a low affinity for the resin, so that it is extremely difficult to uniformly disperse in the resin with an aqueous dispersion medium. A dispersion in which nanoparticles are uniformly dispersed using a dispersant in a dispersion medium is prepared, and a resin is dissolved in this dispersion and mixed, or a solution in which a resin is dissolved in a solvent and the above A method of mixing, dissolving and dispersing the dispersion is used.

例えば、特許文献1にはカルボキシル基を有する無機粉末用分散剤が開示されている。また、特許文献2では無機系ナノ粒子の表面変性を目的とするカルボキシル基を有する分散剤が開示されている。しかし、これら従来の分散剤は、分散安定性が十分でないという問題を有する。   For example, Patent Document 1 discloses a dispersant for inorganic powder having a carboxyl group. Patent Document 2 discloses a dispersant having a carboxyl group for the purpose of surface modification of inorganic nanoparticles. However, these conventional dispersants have a problem that the dispersion stability is not sufficient.

また、非水性媒体中に微粒子を分散させるには多量の分散剤が必要であり、そのように多量の分散剤を使用して粒子を分散させた場合、それを硬化させて得られる樹脂は、分散剤のブリードアウトを生じ易く、ブリードアウトはさらに、耐水性や硬度、耐擦傷性等の樹脂物性の低下を引き起こす。   Further, in order to disperse the fine particles in the non-aqueous medium, a large amount of a dispersant is required. When the particles are dispersed using such a large amount of the dispersant, the resin obtained by curing the resin is The bleed-out of the dispersant tends to occur, and the bleed-out further causes a decrease in resin physical properties such as water resistance, hardness, and scratch resistance.

これらの問題を解決するために、モノマーと共重合可能な炭素−炭素二重結合を分子内に有する反応性分散剤が近年提案されている。   In order to solve these problems, a reactive dispersant having a carbon-carbon double bond copolymerizable with a monomer in the molecule has recently been proposed.

例えば、特許文献3には、オキシアルキレン鎖の末端に(メタ)アクリル基を有するフォトレジスト用反応性分散剤が開示されている。   For example, Patent Document 3 discloses a reactive dispersant for a photoresist having a (meth) acryl group at the end of an oxyalkylene chain.

また、特許文献4には、エポキシ基を有するビニル化合物重合体にカルボキシル基含有(メタ)アクリル化合物を付加反応させて得られる、金属酸化物微粒子用反応性分散剤が開示されている。   Patent Document 4 discloses a reactive dispersant for metal oxide fine particles obtained by addition reaction of a carboxyl group-containing (meth) acrylic compound with a vinyl compound polymer having an epoxy group.

しかしながら、これら従来の反応性乳化剤は、分散媒又は分散質の種類によっては分散性や分散安定性が低く、また樹脂物性の低下抑制効果もなお十分ではない。   However, these conventional reactive emulsifiers have low dispersibility and dispersion stability depending on the type of the dispersion medium or dispersoid, and the effect of suppressing the deterioration of the physical properties of the resin is still insufficient.

特開2000−262883号公報Japanese Patent Laid-Open No. 2000-262883 特表2005−519143号公報JP 2005-519143 A 特開2010−134014号公報JP 2010-134014 A 特開2007−289943号公報JP 2007-289943 A

本発明は上記のような従来技術の問題に鑑みてなされたものであり、分散性や分散安定性がより向上し、これを用いて得られる樹脂硬化物において、分散剤のブリードアウト等による樹脂物性低下がさらに抑制される、非水性分散媒用の反応性分散剤を提供することを目的とする。   The present invention has been made in view of the problems of the prior art as described above, and the dispersibility and dispersion stability are further improved. In a cured resin obtained by using the resin, a resin caused by bleeding out of the dispersant, etc. An object of the present invention is to provide a reactive dispersant for a non-aqueous dispersion medium, in which a decrease in physical properties is further suppressed.

上記目的を達成するために、本発明の非水性分散媒用分散剤は下記一般式(1)で示される化合物からなるものとする。

Figure 0006092013
In order to achieve the above object, the dispersant for a non-aqueous dispersion medium of the present invention is composed of a compound represented by the following general formula (1).
Figure 0006092013

但し、一般式(1)中、は以下に示す基から選択された基を表し、これらの式中、Rはメチル基を表し、m1は2〜10の数を表し、m2は0〜4の数を表し、m3は1〜2の数を表し、Dは下記化学式D−1、D−2及びD−3のうちのいずれかで表される重合性の不飽和基を表し、これらの式中、Rは水素原子又はメチル基を表し、Aは炭素数3〜のアルキレン基を表し、n1はアルキレンオキシドの平均付加モル数を表し、2〜30の範囲にある数を表し、Aは炭素数2のアルキレン基を表し、n2はアルキレンオキシドの平均付加モル数を表し、3〜30の範囲にある数を表し、Xは、−CH −、−CO(CH −、又は−COCH=CH−である連結基を表し、pは0又は1の数を表し、Zは、カルボキシル基、スルホ基、リン酸エステル基、又はそれらの塩を表す。

Figure 0006092013
Figure 0006092013
However, in general formula (1), R 1 represents a group selected from the following groups, in which R 2 represents a methyl group, m 1 represents a number of 2 to 10 , and m 2 represents 0. Represents a number of -4, m3 represents a number of 1-2, D represents a polymerizable unsaturated group represented by any one of the following chemical formulas D-1, D-2 and D-3, In these formulas, R 3 represents a hydrogen atom or a methyl group, A 1 represents an alkylene group having 3 to 4 carbon atoms, n1 represents an average addition mole number of alkylene oxide, and a number in the range of 2 to 30 A 2 represents an alkylene group having 2 carbon atoms, n 2 represents the average number of moles of alkylene oxide added, represents a number in the range of 3 to 30 , and X represents —CH 2 —, —CO (CH 2 ) represents a linking group that is 2- or —COCH═CH— , p represents a number of 0 or 1, and Z represents a A ruboxyl group, a sulfo group, a phosphate ester group, or a salt thereof is represented.
Figure 0006092013
Figure 0006092013

本発明の固体粒子は、上記本発明の分散剤による被覆及び/又は含浸の処理を行うことにより得ることができる。   The solid particles of the present invention can be obtained by performing the coating and / or impregnation treatment with the dispersant of the present invention.

本発明の分散体組成物は、上記本発明の分散剤を用いて、有機物粒子及び/又は無機物粒子を非水性分散媒中に分散することにより得られる。   The dispersion composition of the present invention can be obtained by dispersing organic particles and / or inorganic particles in a non-aqueous dispersion medium using the dispersant of the present invention.

上記分散体組成物において、非水性分散媒としては、溶剤、重合性不飽和モノマー又はオリゴマーのいずれも使用可能である。   In the above dispersion composition, any solvent, polymerizable unsaturated monomer, or oligomer can be used as the non-aqueous dispersion medium.

本発明のコーティング組成物は、上記本発明の分散体組成物を含有するものとする。   The coating composition of the present invention contains the dispersion composition of the present invention.

上記本発明のコーティング組成物を硬化させることにより本発明の硬化物が得られる。   The cured product of the present invention can be obtained by curing the coating composition of the present invention.

本発明の分散剤は、一般式(1)で表される構造を有することにより、従来の分散剤よりも分散性及び分散安定性がより優れ、少量の添加で優れた分散安定性を発揮するものとなる。また、この分散剤を用いてなる分散体組成物を硬化させる際に分散剤とモノマーを共重合させた場合、得られるフィルムその他の樹脂硬化物において、分散剤のブリードアウト等による樹脂物性への悪影響を従来の反応性分散剤よりも大きく低減し、硬度、引っ掻き強度、耐水性等がより向上した樹脂硬化物を得ることができる。   The dispersant of the present invention has a structure represented by the general formula (1), so that the dispersibility and dispersion stability are superior to those of conventional dispersants, and the dispersion stability is excellent with a small amount of addition. It will be a thing. Further, when the dispersant and the monomer are copolymerized when the dispersion composition using this dispersant is cured, in the obtained film or other resin cured product, the resin physical properties can be improved by bleeding out of the dispersant. An adverse effect can be greatly reduced as compared with a conventional reactive dispersant, and a cured resin product having improved hardness, scratch strength, water resistance and the like can be obtained.

以下、本発明の好ましい実施形態について、詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明の非水性分散媒用分散剤は一般式(1)で示された化合物からなり、本化合物は重合性の炭素−炭素二重結合を有し、アルキレンオキシド鎖を含む分散媒親和性部位と、Zで示される分散質親和性部位とを有し、これらの分散媒親和性部と分散質親和性部とが連結基Xで連結された構造を有する。

Figure 0006092013
The dispersant for a non-aqueous dispersion medium of the present invention comprises the compound represented by the general formula (1), and this compound has a polymerizable carbon-carbon double bond and contains an alkylene oxide chain. And a dispersoid affinity part represented by Z, and these dispersion medium affinity parts and dispersoid affinity parts have a structure linked by a linking group X.
Figure 0006092013

一般式(1)中の疎水基Rは以下の式で表されるいずれかであり、これらの式中、Rはメチル基を表し、m1は2〜16の数を表し、m2は0〜4の数を表し、m3は1〜2の数を表す。

Figure 0006092013
The hydrophobic group R 1 in the general formula (1) is any one of the following formulas, in which R 2 represents a methyl group, m1 represents a number of 2 to 16, and m2 represents 0. Represents a number of -4, and m3 represents a number of 1-2.
Figure 0006092013

本発明の分散剤に使用できる疎水基Rの具体例としては、3−ブテン−1−オール、4−ペンテン−1−オール、5−ヘキセン−1−オール、6−ヘプテン−1−オール、7−オクテン−1−オール、8−ノネン−1−オール、9−デセン−1−オール、10−ウンデセン−1−オール、11−ドデセン−1−オール、12−トリデセン−1−オール、13−テトラデセン−1−オール、14−ペンタデセン−1−オール、15−ヘキサデセン−1−オール等のアルケニル基、アリルフェニル基、プロペニルフェニル基、アリルクレジル基、プロペニルクレジル基等のアラルキル基が挙げられ、中でも5−ヘキセン−1−オール、6−ヘプテン−1−オール、7−オクテン−1−オール、8−ノネン−1−オール、9−デセン−1−オール、10−ウンデセン−1−オール、11−ドデセン−1−オール、12−トリデセン−1−オール、13−テトラデセン−1−オール、14−ペンタデセン−1−オールであることが好ましい。疎水基Rは1種のみでも2種以上が含まれていてもよい。 Specific examples of the hydrophobic group R 1 that can be used in the dispersant of the present invention include 3-buten-1-ol, 4-penten-1-ol, 5-hexen-1-ol, 6-hepten-1-ol, 7-octen-1-ol, 8-nonen-1-ol, 9-decene-1-ol, 10-undecen-1-ol, 11-dodecene-1-ol, 12-tridecene-1-ol, 13- Examples include alkenyl groups such as tetradecene-1-ol, 14-pentadecene-1-ol, and 15-hexadecene-1-ol, and aralkyl groups such as allylphenyl group, propenylphenyl group, allylcresyl group, and propenylcresyl group. 5-hexen-1-ol, 6-hepten-1-ol, 7-octen-1-ol, 8-nonen-1-ol, 9-decene-1-ol 10-Undecen-1-ol, 11-dodecene-1-ol, 12-tridecene-1-ol, 13-tetradecene-1-ol, and 14-pentadecene-1-ol are preferable. Hydrophobic groups R 1 may contain two or more types may be only one kind.

次に重合性の不飽和基Dは、下記化学式D−1、D−2及びD−3のいずれかで表され、式中のRは水素原子又はメチル基を表すので、Dは具体的には、1−プロペニル基、2−メチル−1−プロペニル基、(メタ)アリル基、又はビニル基を表し、1−プロペニル基であることが好ましい。Dとしては、これら1−プロペニル基、2−メチル−1−プロペニル基、(メタ)アリル基、又はビニル基のいずれか1種が単独で存在していてもよく、混合物として存在していてもよい。また、上記Dの置換基数を表すm3は1以上の数であり、好ましくは1〜2の数であり、Dの置換位置はオルト位(2位又は6位)であることが好ましい。

Figure 0006092013
Next, the polymerizable unsaturated group D is represented by any one of the following chemical formulas D-1, D-2, and D-3, and R 3 in the formula represents a hydrogen atom or a methyl group. Represents a 1-propenyl group, a 2-methyl-1-propenyl group, a (meth) allyl group, or a vinyl group, and is preferably a 1-propenyl group. As D, any one of these 1-propenyl group, 2-methyl-1-propenyl group, (meth) allyl group, and vinyl group may be present alone or as a mixture. Good. Further, m3 representing the number of substituents of D is a number of 1 or more, preferably 1 or 2, and the substitution position of D is preferably the ortho position (the 2nd or 6th position).
Figure 0006092013

次にオキシアルキレン基(AO)n1及び(AO)n2について、Aは炭素数3〜18のアルキレン基であり、Aは炭素数2〜4のアルキレン基である。これらのアルキレン基は、直鎖アルキレン基であっても分岐アルキレン基であってもよいが、好ましくはエチレンオキシドである。 Next, regarding the oxyalkylene groups (A 1 O) n1 and (A 2 O) n2 , A 1 is an alkylene group having 3 to 18 carbon atoms, and A 2 is an alkylene group having 2 to 4 carbon atoms. These alkylene groups may be linear alkylene groups or branched alkylene groups, but are preferably ethylene oxide.

炭素数3の場合、AOはプロピレンオキシドを表し、炭素数4の場合、AOはテトラヒドロフラン又はブチレンオキシドであるが、好ましくは、1,2−ブチレンオキシド又は2,3−ブチレンオキシドである。 In the case of 3 carbon atoms, A 1 O represents propylene oxide, and in the case of 4 carbon atoms, A 1 O is tetrahydrofuran or butylene oxide, preferably 1,2-butylene oxide or 2,3-butylene oxide. is there.

本発明の分散剤においてオキシアルキレン鎖(−(AO)n1−及び−(AO)n2−)は分散剤の分散媒親和性を調整する働きをし、1種のアルキレンオキサイドからなる単独重合鎖であってもよく、2種以上のアルキレンオキサイドのランダム重合鎖でもブロック重合鎖でも、又はそれらの組み合わせであってもよい。 In the dispersant of the present invention, the oxyalkylene chain (— (A 1 O) n1 — and — (A 2 O) n2 —) functions to adjust the dispersion medium affinity of the dispersant and is composed of one kind of alkylene oxide. It may be a homopolymer chain, or may be a random polymer chain or a block polymer chain of two or more alkylene oxides, or a combination thereof.

オキシアルキレン基(AO)の平均付加モル数を示すn1は、0より大きく1,000以下である。n1は、1以上であることが好ましく、2以上であることがより好ましく、3以上であることがさらに好ましい。また、100以下であることが好ましく、50以下であることがより好ましく、30以下であることがさらに好ましい。 N1 indicating the average addition mol number of oxyalkylene groups (A 1 O) is greater than 0 to 1,000 or less. n1 is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more. Further, it is preferably 100 or less, more preferably 50 or less, and further preferably 30 or less.

オキシアルキレン基(AO)の平均付加モル数を示すn2は、0より大きく1,000以下である。n2は、1以上であることが好ましく、2以上であることがより好ましく、3以上であることがさらに好ましい。また、100以下であることが好ましく、50以下であることがより好ましく、30以下であることがさらに好ましい。 N2 indicating the average addition mol number of oxyalkylene groups (A 2 O) is greater than 0 to 1,000 or less. n2 is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more. Further, it is preferably 100 or less, more preferably 50 or less, and further preferably 30 or less.

次に、連結基Xは少なくとも1個の炭素原子を有し、さらに少なくとも1個の水素原子及び/又は少なくとも1個の酸素原子とを有する公知の構造から選択可能であるが、好ましくは飽和炭化水素基、不飽和炭化水素基、エーテル基、カルボニル基、エステル基から選ばれるいずれかひとつの基又はこれらの2つ以上の組み合わせから形成される基であり、脂環構造、芳香環構造を有していてもよく、また、繰り返し単位を有していてもよい。2種以上の基の組み合わせの例としては、2個の飽和又は不飽和炭化水素基が、エーテル基、カルボニル基又はエステル基を介して連結された基が上げられる。   The linking group X can then be selected from known structures having at least one carbon atom and further having at least one hydrogen atom and / or at least one oxygen atom, but preferably saturated carbonization. A group formed from any one group selected from a hydrogen group, an unsaturated hydrocarbon group, an ether group, a carbonyl group, and an ester group, or a combination of two or more thereof, and has an alicyclic structure and an aromatic ring structure. It may have a repeating unit. Examples of combinations of two or more groups include groups in which two saturated or unsaturated hydrocarbon groups are linked via an ether group, a carbonyl group or an ester group.

また、Xは炭素数が1〜15のアルキレン基であることが好ましく、炭素数が1〜8のアルキレン基であることがより好ましい。   X is preferably an alkylene group having 1 to 15 carbon atoms, and more preferably an alkylene group having 1 to 8 carbon atoms.

また、Xは下記一般式(2)で表される基であることが好ましい。

Figure 0006092013
X is preferably a group represented by the following general formula (2).
Figure 0006092013

ただし、一般式(2)中、Yは炭素数が1〜15のアルキレン基、ビニレン基、フェニレン基及びカルボキシル基含有フェニレン基の中から選択されるいずれかである
次に分散質親和性部位Zは、カルボキシル基、スルホ基、硫酸エステル基、又はリン酸エステル基の酸型でも塩を形成していても良い。形成する塩としては、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アルカノールアミン塩が挙げられる。アルカリ金属塩の例としては、ナトリウム塩、カリウム塩、リチウム塩等が挙げられる。アルカリ土類金属塩の例としては、カルシウム塩及びマグネシウム塩等が挙げられる。アルカノールアミン塩の例としては、モノエタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩、トリイソプロパノールアミン塩等が挙げられる。
However, in the general formula (2), Y is any one selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group. May form a salt even in the acid form of a carboxyl group, a sulfo group, a sulfate ester group, or a phosphate ester group. Examples of the salt to be formed include alkali metal salts, alkaline earth metal salts, ammonium salts, and alkanolamine salts. Examples of the alkali metal salt include sodium salt, potassium salt, lithium salt and the like. Examples of alkaline earth metal salts include calcium salts and magnesium salts. Examples of alkanolamine salts include monoethanolamine salts, diethanolamine salts, triethanolamine salts, triisopropanolamine salts, and the like.

次に、本発明の分散剤の製造方法は特に限定されるものではなく、公知の方法を用いることができるが、例としては以下の方法が挙げられる。   Next, the method for producing the dispersant of the present invention is not particularly limited, and a known method can be used. Examples thereof include the following methods.

まず、一般式(III)で示される化合物に、公知の方法で所定量のアルキレンオキシドを付加した後、分散質親和性部位Zを導入する。

Figure 0006092013
First, after adding a predetermined amount of alkylene oxide to the compound represented by the general formula (III) by a known method, the dispersoid affinity site Z is introduced.
Figure 0006092013

但し、一般式(III)中、Rは以下に示す基から選択された1種又は2種の基を表し、これらの式中、Rは水素原子又はメチル基を表し、Dは下記化学式D−1又はD−2又はD−3のいずれかで表される重合性の不飽和基を表し、これらの式中、Rは水素原子又はメチル基を表し、m1は2〜16の数を表し、m2は0〜4の数を表し、m3は1〜2の数を表す。

Figure 0006092013
However, in the general formula (III), R 1 represents one or two groups selected from the groups shown below, in these formulas, R 2 represents a hydrogen atom or a methyl group, D represents the following formula D-1 or D-2 or D-3 represents a polymerizable unsaturated group, and in these formulas, R 3 represents a hydrogen atom or a methyl group, and m1 is a number from 2 to 16. M2 represents a number from 0 to 4, and m3 represents a number from 1 to 2.
Figure 0006092013

Figure 0006092013
Figure 0006092013

分散質親和性部位Zがカルボン酸である場合、モノハロゲン化低級カルボン酸又はその塩を用い、塩基存在下でアルキレンオキシド末端の水酸基と反応させる方法、又は、酸無水物を用いてアルキレンオキシド末端の水酸基との開環反応による方法により製造することができる。   When the dispersoid affinity site Z is a carboxylic acid, a method in which a monohalogenated lower carboxylic acid or a salt thereof is used and reacted with a hydroxyl group at the alkylene oxide terminal in the presence of a base, or an alkylene oxide terminal using an acid anhydride is used. It can manufacture by the method by a ring-opening reaction with the hydroxyl group.

分散質親和性部位Zがリン酸エステルである場合、無水リン酸、オルトリン酸、ポリリン酸、オキシ塩化リン酸等のリン酸化剤をアルキレンオキシド末端の水酸基と反応させる方法により製造することができる。製造方法によってはモノエステル型の化合物とジエステル型の化合物が混合体として得られるが、これらは分離してもよいし、そのまま混合物として使用してもよい。また、水の存在下で反応させ、モノエステル化合物の含有割合を高めて使用することもできる。   When the dispersoid affinity site Z is a phosphate ester, it can be produced by a method in which a phosphorylating agent such as phosphoric anhydride, orthophosphoric acid, polyphosphoric acid, phosphoric acid oxychloride is reacted with a hydroxyl group at the end of alkylene oxide. Depending on the production method, a monoester type compound and a diester type compound are obtained as a mixture, but these may be separated or used as they are as a mixture. Further, the reaction can be performed in the presence of water to increase the content ratio of the monoester compound.

本発明の非水性分散媒用分散剤は、本発明の効果を発現するために上記のように限定した範囲内で疎水基の種類、アルキレンオキシド種とその付加形態、付加モル量、連結基の構造などを最適化することにより、公知の分散剤よりも、より広範な種類の分散質を分散でき、より広範な種類の分散媒に分散質を分散安定化できる点で産業上の利用価値が大きい。   The dispersant for a non-aqueous dispersion medium of the present invention includes a hydrophobic group type, an alkylene oxide species and its addition form, an added molar amount, and a linking group within the range limited as described above in order to exhibit the effects of the present invention. By optimizing the structure and the like, it is possible to disperse a wider variety of dispersoids than known dispersants, and the industrial utility value in that the dispersoids can be dispersed and stabilized in a wider variety of dispersion media. large.

なお、本発明の分散剤は、含有するイオン量、特にアルカリ金属イオン、アルカリ土類金属イオン、重金属イオン、ハロゲンイオンの各イオンの含有量を公知の精製法により低減して用いることができる。分散剤中のイオンは、分散体の分散安定性、耐触性、耐酸化性、分散塗膜の電気特性(導電特性、絶縁特性)、経時安定性、耐熱性、低湿性、耐候性に大きく影響するため、上記イオンの含有量は適宜決定することができるが、好ましくは分散剤中で50ppm未満であることが望ましい。   In addition, the dispersing agent of the present invention can be used by reducing the amount of ions contained, in particular, the content of each of alkali metal ions, alkaline earth metal ions, heavy metal ions, and halogen ions by a known purification method. Ions in the dispersant greatly contribute to the dispersion stability, touch resistance, oxidation resistance, electrical properties (conductive properties, insulation properties), aging stability, heat resistance, low humidity, and weather resistance of the dispersion. However, it is desirable that the content of the ions is less than 50 ppm in the dispersant.

次に、本発明で使用できる分散質である固体粒子について説明する。本発明の分散剤により分散される固体粒子は任意に選択される1種又は2種以上の混合物であり、無機物由来粒子(無機物粒子)又は有機物由来粒子(有機物粒子)のいずれでもよい。   Next, solid particles that are dispersoids that can be used in the present invention will be described. The solid particles dispersed by the dispersant of the present invention are one or a mixture of two or more arbitrarily selected, and may be either inorganic-derived particles (inorganic particles) or organic-derived particles (organic particles).

無機物由来粒子の例としては、鉄、アルミニウム、クロム、ニッケル、コバルト、亜鉛、タングステン、インジウム、スズ、パラジウム、ジルコニウム、チタン、銅、銀、金、白金等の金属又はそれらの合金からなる金属粒子、又はそれらの混合物が挙げられる。これらの金属粒子は、媒体中から安定に取り出す為に、アルカン酸類や脂肪酸類、ヒドロキシカルボン酸類、脂環族、芳香族カルボン酸類、アルケニルコハク酸無水物類、チオール類、フェノール誘導体類、アミン類、両親媒性ポリマー、高分子界面活性剤、低分子界面活性剤などの保護剤で被覆されていてもよい。その他の例としては、カオリン、クレー、タルク、マイカ、ベントナイト、ドロマイト、ケイ酸カルシウム、ケイ酸マグネシウム、アスベスト、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、硫酸アルミニウム、水酸化アルミニウム、水酸化鉄、ケイ酸アルミニウム、酸化ジルコニウム、酸化マグネシウム、酸化アルミニウム、酸化チタン、酸化鉄、酸化亜鉛、三酸化アンチモン、酸化インジウム、酸化インジウムスズ、炭化ケイ素、窒化ケイ素、窒化ホウ素、チタン酸バリウム、珪藻土、カーボンブラック、黒鉛、ロックウール、グラスウール、ガラス繊維、炭素繊維、カーボンナノファイバー、カーボンナノチューブ(シングルウォールナノチューブ、ダブルウォールナノチューブ、マルチウォールナノチューブ)等が挙げられる。   Examples of inorganic-derived particles include metal particles made of metals such as iron, aluminum, chromium, nickel, cobalt, zinc, tungsten, indium, tin, palladium, zirconium, titanium, copper, silver, gold, platinum, or alloys thereof. Or mixtures thereof. In order to stably remove these metal particles from the medium, alkanoic acids, fatty acids, hydroxycarboxylic acids, alicyclic, aromatic carboxylic acids, alkenyl succinic anhydrides, thiols, phenol derivatives, amines , And may be coated with a protective agent such as an amphiphilic polymer, a high molecular surfactant, and a low molecular surfactant. Other examples include kaolin, clay, talc, mica, bentonite, dolomite, calcium silicate, magnesium silicate, asbestos, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, aluminum sulfate, aluminum hydroxide, Iron hydroxide, aluminum silicate, zirconium oxide, magnesium oxide, aluminum oxide, titanium oxide, iron oxide, zinc oxide, antimony trioxide, indium oxide, indium tin oxide, silicon carbide, silicon nitride, boron nitride, barium titanate, Diatomaceous earth, carbon black, graphite, rock wool, glass wool, glass fiber, carbon fiber, carbon nanofiber, carbon nanotube (single wall nanotube, double wall nanotube, multiwar Nanotubes), and the like.

有機物由来粒子の例としては、アゾ系、ジアゾ系、縮合アゾ系、チオインジゴ系、インダンスロン系、キナクリドン系、アントラキノン系、ベンゾイミダゾロン系、ペリレン系、フタロシアニン系、アントラピリジン系、ジオキサジン系等の有機顔料、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ナイロン樹脂、ポリアミド樹脂、アラミド樹脂、アクリル樹脂、ビニロン樹脂、ウレタン樹脂、メラミン樹脂、ポリスチレン樹脂、ポリ乳酸、アセテート繊維、セルロース、ヘミセルロース、リグニン、キチン、キトサン、澱粉、ポリアセタール、アラミド樹脂、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリエーテルケトンポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスルホン、ポリフェニレンスルファイド、ポリイミド等が挙げられる。   Examples of organic-derived particles include azo, diazo, condensed azo, thioindigo, indanthrone, quinacridone, anthraquinone, benzimidazolone, perylene, phthalocyanine, anthrapyridine, dioxazine, etc. Organic pigment, polyethylene resin, polypropylene resin, polyester resin, nylon resin, polyamide resin, aramid resin, acrylic resin, vinylon resin, urethane resin, melamine resin, polystyrene resin, polylactic acid, acetate fiber, cellulose, hemicellulose, lignin, chitin , Chitosan, starch, polyacetal, aramid resin, polycarbonate, polyphenylene ether, polyether ether ketone, polyether ketone polybutylene terephthalate, polyethylene naphthalate, polyb Naphthalate, polysulfone, polyphenylene sulfide, polyimide, and the like.

本発明で分散質となる上記固体粒子は、結晶状であってもアモルファス状であってもよい。また、分散質となる固体粒子は等方性粒子であっても異方性粒子であってもよく、繊維状であってもよい。   The solid particles that become the dispersoid in the present invention may be crystalline or amorphous. Further, the solid particles that become the dispersoid may be isotropic particles, anisotropic particles, or fibrous particles.

上記固体粒子の大きさは特に限定されないが、通常は粒子径(繊維状であれば長さ)1〜500nm程度である。特に、凝集しやすく、従来は分散が困難であった粒子径1〜100nm程度のナノメータサイズの粒子でも、本発明の分散剤によれば分散安定化が可能となる。   Although the magnitude | size of the said solid particle is not specifically limited, Usually, it is a particle diameter (length if it is fibrous) about 1-500 nm. In particular, even a nanometer-sized particle having a particle diameter of about 1 to 100 nm, which is easily aggregated and difficult to disperse in the past, can be dispersed and stabilized by the dispersant of the present invention.

上記固体粒子としては、公知の方法で製造したものが使用できる。一般に微粒子の調製方法としては、粗大粒子を機械的に解砕、微細化していくトップダウン方式と、いくつかの単位粒子を生成させ、それが凝集したクラスター状態を経由して粒子を形成させるボトムアップ方式の2通りの方式があるが、いずれの方法で調製されたものも好適に使用できる。また、それらは湿式法、乾式法のいずれの方法によるものであってもよい。   As the solid particles, those produced by a known method can be used. In general, the fine particles are prepared by a top-down method in which coarse particles are mechanically pulverized and refined, and a bottom in which several unit particles are generated and formed through a clustered state. There are two types of up methods, but those prepared by either method can be suitably used. Further, they may be either a wet method or a dry method.

次に、本発明で使用できる非水性分散媒について説明する。   Next, the non-aqueous dispersion medium that can be used in the present invention will be described.

本発明で使用できる非水性分散媒は特に限定されないが、例としては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、sec−ブチルアルコール、t−ブチルアルコール、アミルアルコール、シクロペンタノール、ヘキシルアルコール、シクロヘキサノール、ヘプチルアルコール、n−オクチルアルコール、2−エチルヘキシルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ドデシルアルコール、ラウリルアルコール、トリデシルアルコール、オクチルドデカノール、オレイルアルコール、フルフリルアルコール、アリルアルコール、エチレンクロロヒドリン、ベンジルアルコール、α−テルピネオール、ターピネオール類、3−メトキシブタノール、ジアセトンアルコールなどのアルコール系溶剤、トルエン、キシレンなどの芳香族炭化水素系溶剤、n−ヘキサン、シクロヘキサン、n−ヘプタンなどの炭化水素系溶剤、エチルエーテル、イソプロピルエーテル、ジオキサン、テトラヒドロフラン、ジブチルエーテル、ブチルエチルエーテル、メチル−t−ブチルエーテル、ターピニルメチルエーテル、ジヒドロターピニルメチルエーテル、ジグライムなどのエーテル系溶剤、アセトン、メチルエチルケトン、メチルプロピルケトン、ジエチルケトン、メチル−n−ブチルケトン、メチルイソブチルケトン、ジプロピルケトン、ジイソブチルケトン、アセトニルアセトン、イソホロン、シクロヘキサノン、メチルシクロヘキサノンなどのケトン系溶剤、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸ペンチル、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸アミル、酢酸シクロヘキシル、乳酸エチル、酢酸−3−メトキシブチル、酢酸ヘキシル、酢酸−2−エチルヘキシル、酢酸ベンジル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、プロピオン酸イソアミル、アセト酢酸メチル、アセト酢酸エチル、γ−ブチロラクトンなどのエステル系溶剤、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル、プロピレングリコールモノ−n−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ−n−プロピルエーテル、ジプロピレングリコールモノ−n−ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノ−n−プロピルエーテル、トリエチレングリコールモノ−n−ブチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノ−n−プロピルエーテル、トリプロピレングリコールモノ−n−ブチルエーテルなどのグリコールエーテル系溶剤、及び、それらモノエーテル類の酢酸エステル系溶剤、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルイソブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテルなどのジアルキルエーテル系溶剤が挙げられる。エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブチレングリコール、1,4−ブタンジオール、へキシレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどのアルキレングリコール系溶剤が挙げられる。その他、ハロゲン化炭化水素系溶剤、ジメチルアセトアミド等のアミド系溶剤などが挙げられる。なお、上記例示した溶剤において、アルキル組成は直鎖構造であっても分岐構造であってもそれらの混合物であってもよい。   The non-aqueous dispersion medium that can be used in the present invention is not particularly limited. Examples thereof include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, and amyl. Alcohol, cyclopentanol, hexyl alcohol, cyclohexanol, heptyl alcohol, n-octyl alcohol, 2-ethylhexyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, lauryl alcohol, tridecyl alcohol, octyldodecanol, oleyl Alcohol, furfuryl alcohol, allyl alcohol, ethylene chlorohydrin, benzyl alcohol, α-terpineol, terpineols, 3 Alcohol solvents such as methoxybutanol and diacetone alcohol, aromatic hydrocarbon solvents such as toluene and xylene, hydrocarbon solvents such as n-hexane, cyclohexane and n-heptane, ethyl ether, isopropyl ether, dioxane, tetrahydrofuran, Ether solvents such as dibutyl ether, butyl ethyl ether, methyl-t-butyl ether, terpinyl methyl ether, dihydroterpinyl methyl ether, diglyme, acetone, methyl ethyl ketone, methyl propyl ketone, diethyl ketone, methyl-n-butyl ketone, Ketone solvents such as methyl isobutyl ketone, dipropyl ketone, diisobutyl ketone, acetonyl acetone, isophorone, cyclohexanone, methylcyclohexanone, ethyl formate, Propyl acid, butyl formate, isobutyl formate, pentyl formate, methyl acetate, ethyl acetate, acetic acid-n-propyl, isopropyl acetate, acetic acid-n-butyl, isobutyl acetate, amyl acetate, cyclohexyl acetate, ethyl lactate, 3-methoxyacetate Butyl, hexyl acetate, 2-ethylhexyl acetate, benzyl acetate, methyl propionate, ethyl propionate, butyl propionate, isoamyl propionate, methyl acetoacetate, ethyl acetoacetate, γ-butyrolactone, ethylene glycol mono Ethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, propylene glycol monome Ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene Glycol mono-n-butyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol mono-n-propyl ether, triethylene glycol mono-n-butyl ether, tripropylene glycol monoethyl ether, tripropylene glycol mono -Glyco such as n-propyl ether, tripropylene glycol mono-n-butyl ether And ether ether solvents and monoalkyl ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl isobutyl ether, dipropylene glycol dimethyl ether, and dipropylene glycol diethyl ether. Examples include alkylene glycol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-butylene glycol, 1,4-butanediol, hexylene glycol, polyethylene glycol, and polypropylene glycol. Other examples include halogenated hydrocarbon solvents and amide solvents such as dimethylacetamide. In the solvent exemplified above, the alkyl composition may have a linear structure, a branched structure, or a mixture thereof.

また、非水性分散媒としては、通常の塗料用や粘着用、接着用、成型用に利用されている各種樹脂類も特に制限なく使用できる。具体的には、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン系樹脂、フッ素系樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコールなどが挙げられる。   Further, as the non-aqueous dispersion medium, various resins used for ordinary paints, adhesives, adhesives, and moldings can be used without any particular limitation. Specific examples include acrylic resins, polyester resins, alkyd resins, urethane resins, silicone resins, fluorine resins, epoxy resins, polycarbonate resins, polyvinyl chloride resins, and polyvinyl alcohol.

次に、非水性分散媒としては、炭素−炭素二重結合を分子中に少なくとも1個有する重合性不飽和モノマー及びオリゴマー類も使用できる。以下にその一例を示す。単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシプロピル(メタ)アクリレート、ポリオキシエチレンフェニルエーテル(メタ)アクリレート、2−[2−(エトキシ)エトキシ]エチル(メタ)アクリレート、ポリオキシエチレン−2−エチルヘキシルエーテル(メタ)アクリレート、フェニルグリセリルエーテル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、等が挙げられる。また、ヒドロキシル基を有する(メタ)アクリレートとしては、ヒドロキシメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等が挙げられる。また、ビニルモノマーとしては、N−ビニルピロリドン、N−ビニルカプロラクトン、スチレン等が使用できる。その他、マレイン酸ジエチル、フマル酸ジブチル等も使用できる。   Next, as the non-aqueous dispersion medium, polymerizable unsaturated monomers and oligomers having at least one carbon-carbon double bond in the molecule can also be used. An example is shown below. Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and tetrahydrofurfuryl. (Meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxypropyl (meth) acrylate, polyoxyethylene phenyl ether (meth) acrylate, 2- [2- (ethoxy) ethoxy ] Ethyl (meth) acrylate, polyoxyethylene-2-ethylhexyl ether (meth) acrylate, phenylglyceryl ether (meth) acrylate, cyclohexyl (meth) acrylate DOO, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyl oxyethyl (meth) acrylate. Examples of the (meth) acrylate having a hydroxyl group include hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and the like. Moreover, as a vinyl monomer, N-vinyl pyrrolidone, N-vinyl caprolactone, styrene etc. can be used. In addition, diethyl maleate, dibutyl fumarate, and the like can be used.

また、二官能(メタ)アクリレートとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、その他のアルキレンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクアリレート、ポリオキシアルキレンビスフェノールAジ(メタ)アクリレート等が挙げられる。   Bifunctional (meth) acrylates include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and propylene glycol di (meth) acrylate. , Dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate 1,6-hexanediol di (meth) acrylate, other alkylene diol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tricyclodecane dimethyl Roruji (meth) Aqua Li rate, polyoxyalkylene bisphenol A di (meth) acrylate.

また、三官能(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパンアルコキシレートトリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレートなどが挙げられる。その他、四官能以上のモノマーとしては、ペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート等が挙げられる。   Examples of the trifunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane alkoxylate tri (meth) acrylate, and tris (acryloxyethyl) isocyanurate. It is done. In addition, examples of the tetrafunctional or higher monomer include pentaerythritol (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol poly (meth) acrylate.

また、(メタ)アクリレート系オリゴマーとしては、分子内にウレタン構造を有するウレタン(メタ)アクリレート、エポキシ化合物と(メタ)アクリル酸との反応によってエポキシ基が開環してできるエポキシ(メタ)アクリレート、分子内にポリエステル構造を有するポリエステル(メタ)アクリレート、ポリブタジエン(メタ)アクリレート等が挙げられる。   In addition, (meth) acrylate oligomers include urethane (meth) acrylate having a urethane structure in the molecule, epoxy (meth) acrylate formed by ring opening of an epoxy group by reaction of an epoxy compound and (meth) acrylic acid, Examples thereof include polyester (meth) acrylate having a polyester structure in the molecule and polybutadiene (meth) acrylate.

以上例示した分散媒は本発明で使用できる分散媒の一例であり、分散媒はこれらに限定されるものではない。なお、分散媒は1種単独で使用することも、2種以上を混合して使用することもできる。また、本発明は非水性環境下で微粒子分散体が得られる分散剤を提供することを目的としているが、上記分散媒に対して意図的か偶発的かを問わず、微粒子分散体の製造工程中又は最終製品設計段階のいずれにおいても、水が混入又は混合した場合を除外するものではない。   The dispersion media exemplified above are examples of the dispersion medium that can be used in the present invention, and the dispersion medium is not limited to these. In addition, a dispersion medium can be used individually by 1 type, or can mix and use 2 or more types. In addition, the present invention aims to provide a dispersant that can obtain a fine particle dispersion in a non-aqueous environment, regardless of whether the dispersion medium is intentional or accidental. It does not exclude cases where water is mixed or mixed in either the middle or final product design stage.

本発明の分散剤は重合性の炭素−炭素二重結合を分子内に有することから、上記非水性分散媒として重合性不飽和モノマー及びオリゴマー類を選択した場合には、ラジカル重合触媒又はカチオン重合触媒の存在下で、紫外線や電子線等のエネルギー線、又は熱により、本発明の分散剤を重合性不飽和モノマーと共重合させて樹脂成分として固定化することにより、非反応性分散剤使用の際に問題となっていた分散剤のブリードアウトによる樹脂物性への悪影響を低減できる。   Since the dispersant of the present invention has a polymerizable carbon-carbon double bond in the molecule, when a polymerizable unsaturated monomer and oligomer are selected as the non-aqueous dispersion medium, a radical polymerization catalyst or cationic polymerization is performed. Use of a non-reactive dispersant by copolymerizing the dispersant of the present invention with a polymerizable unsaturated monomer and immobilizing it as a resin component with energy rays such as ultraviolet rays and electron beams or heat in the presence of a catalyst. In this case, the adverse effect on the resin physical properties due to the bleeding out of the dispersant, which has been a problem at the time, can be reduced.

上記のようにエネルギー線照射や加熱により本発明の分散体組成物を硬化させるに際しては、重合開始剤を併用することが望ましい。この重合開始剤種としては、ラジカル重合触媒、又はカチオン重合触媒があり、重合開始の手段によって光(エネルギー線)重合用、又は熱重合用に区分することができる。本発明の分散剤は、そのいずれにも適用可能である。   When the dispersion composition of the present invention is cured by energy ray irradiation or heating as described above, it is desirable to use a polymerization initiator in combination. The polymerization initiator species includes a radical polymerization catalyst or a cationic polymerization catalyst, and can be classified into photo (energy ray) polymerization or thermal polymerization depending on the means of polymerization initiation. The dispersant of the present invention can be applied to any of them.

重合開始剤としては、公知の重合開始剤を適宜選択して利用できる。例えば、ラジカル光重合開始剤として、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、メチルフェニルグリオキシレート、アセトフェノン、ベンゾフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2−メチル[4−(メチルチオ)フェニル]モルフォリノ−1−プロパノン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、2−クロロチオキサントン、イソプロピルチオキサントン、2,4,6−トリメチルベンゾイルジフェニル−フォスフィンオキサイド、ビス−(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチル−フォスフィンオキサイド等が挙げられる。また、ラジカル熱重合開始剤としては、過硫酸アンモニウム、過酸化ベンゾイル、アゾビスイソブチロニトリル等が挙げられる。カチオン光重合開始剤としては、トリフェニルスルホニウムヘキサクロロホスフェートのようなオニウム塩やアリールジアゾニウム塩など、カチオン熱重合開始剤としては、三フッ化ホウ素エーテル錯塩等のルイス酸等が挙げられる。これら重合開始剤は1種使用しても、2種以上を併用してもよい。   As the polymerization initiator, a known polymerization initiator can be appropriately selected and used. For example, as a radical photopolymerization initiator, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, methylphenylglyoxylate, acetophenone, benzophenone, 2,2-dimethoxy-2 -Phenylacetophenone, 2-methyl [4- (methylthio) phenyl] morpholino-1-propanone, benzoin methyl ether, benzoin ethyl ether, 2-chlorothioxanthone, isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenyl-phosphine oxide And bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentyl-phosphine oxide. Examples of the radical thermal polymerization initiator include ammonium persulfate, benzoyl peroxide, azobisisobutyronitrile, and the like. Examples of the cationic photopolymerization initiator include onium salts such as triphenylsulfonium hexachlorophosphate and aryldiazonium salts. Examples of the cationic thermal polymerization initiator include Lewis acids such as boron trifluoride ether complex salts. These polymerization initiators may be used alone or in combination of two or more.

本発明で好適に採用される分散質粒子の分散媒中の含有量は、上記非水性分散媒中で均一に分散することができれば特に限定されるものではなく、用途などによって異なるものであるが、0.5〜70質量%の範囲内であることが好ましい。また、本発明の分散剤の好適な使用濃度は、分散質粒子に対して1〜5,000質量%の範囲内であり、1〜1,000質量%の範囲がより好適である。   The content of the dispersoid particles suitably used in the present invention in the dispersion medium is not particularly limited as long as it can be uniformly dispersed in the non-aqueous dispersion medium, and varies depending on the application. , Preferably in the range of 0.5 to 70% by mass. Moreover, the suitable use density | concentration of the dispersing agent of this invention exists in the range of 1-5,000 mass% with respect to a dispersoid particle, and the range of 1-1,000 mass% is more suitable.

また、本発明の分散体組成物は、公知の撹拌手段、均一化手段、分散化手段を用いて調製することができる。採用することができる分散機の一例としては、2本ロール、3本ロールなどのロールミル、ボールミル、振動ボールミルなどのボールミル、ペイントシェーカー、連続ディスク型ビーズミル、連続アニュラー型ビーズミルなどのビーズミル、サンドミル、ジェットミルなどが挙げられる。また、超音波発生浴中において分散処理を行うことも出来る。   In addition, the dispersion composition of the present invention can be prepared using known stirring means, homogenizing means, and dispersing means. Examples of dispersers that can be adopted include roll mills such as two rolls and three rolls, ball mills such as ball mills and vibration ball mills, paint shakers, continuous disk type bead mills, bead mills such as continuous annular type bead mills, sand mills, and jets. Mill etc. are mentioned. Further, the dispersion treatment can be performed in an ultrasonic wave generation bath.

また、本発明の分散剤は、非水性分散媒中での分散質粒子の分散安定化に対して、公知技術に比べて優れた分散安定化効果を発揮するのみならず、分散質粒子を媒体中から安定に取り出すための保護剤として使用することができる。分散剤を固体粒子の保護剤として使用するための具体的方法は特に限定されないが、例えば微粒子製造を分散剤の存在下で行う方法が挙げられる。   Further, the dispersant of the present invention not only exhibits an excellent dispersion stabilization effect compared to known techniques for the dispersion stabilization of dispersoid particles in a non-aqueous dispersion medium, but also disperses the dispersoid particles as a medium. It can be used as a protective agent for taking out from inside stably. Although the specific method for using a dispersing agent as a protective agent of a solid particle is not specifically limited, For example, the method of manufacturing microparticles | fine-particles in presence of a dispersing agent is mentioned.

分散質粒子を媒体中から安定に取り出す際の保護剤の機能としては、生成粒子の凝集抑制、容器壁面への吸着抑制及び汚染防止、易再分散性付与、金属粒子の酸化防止、粒子表面の表面改質、機能性表面の劣化防止、溶媒の置換や極性変更時のショック緩和、粉末の流動性改良、粉末の固化防止などが挙げられる。本発明の分散剤は従来の保護剤よりも上記機能に優れ、疎水基の組成、アルキレンオキシドの付加形態とその付加モル量、疎水基の種類や連結基などを最適選定することにより、公知の保護剤よりも一層広範な分散媒に所望の分散質を分散安定化できるという利点を有する。   The function of the protective agent when stably removing the dispersoid particles from the medium is to suppress aggregation of the generated particles, to suppress adsorption to the container wall surface and to prevent contamination, to impart easy redispersibility, to prevent oxidation of metal particles, Examples include surface modification, prevention of functional surface deterioration, solvent replacement and shock mitigation during polarity change, powder flowability improvement, and powder solidification prevention. The dispersant of the present invention is superior in function to conventional protective agents, and is known by optimizing the composition of the hydrophobic group, the addition form of the alkylene oxide and the molar amount of addition, the type of the hydrophobic group, the linking group, and the like. This has the advantage that the desired dispersoid can be dispersed and stabilized in a wider range of dispersion medium than the protective agent.

非水性分散媒として樹脂を用いた本発明の分散体組成物を含有するコーティング組成物又は非水性分散媒として溶剤を用いた本発明の分散体組成物と樹脂との混合物を含有するコーティング組成物を塗布する基材としては、例えば、ガラス、樹脂フィルム、ガラスコンポジット、セラミックス、金属・鋼板などを使用することができる。   Coating composition containing the dispersion composition of the present invention using a resin as a non-aqueous dispersion medium or coating composition containing a mixture of the dispersion composition of the present invention and a resin using a solvent as a non-aqueous dispersion medium As a base material on which the coating is applied, for example, glass, resin film, glass composite, ceramics, metal / steel plate and the like can be used.

以下に本発明の実施例及び比較例について説明する。なお、以下において、配合量を示す「部」は「質量部」を示し、「%」は「質量%」を示す。また、構造式中、EOはオキシエチレン基を表し、POはオキシプロピレン基を表し、BOはオキシブチレン基を表す。但し、本発明は下記実施例に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲において適宜変更や修正が可能である。   Examples of the present invention and comparative examples will be described below. In the following, “part” indicating the blending amount indicates “part by mass”, and “%” indicates “mass%”. In the structural formula, EO represents an oxyethylene group, PO represents an oxypropylene group, and BO represents an oxybutylene group. However, the present invention is not limited to the following examples, and can be appropriately changed or modified without departing from the technical scope of the present invention.

<分散剤の合成>
[製造例1(本発明品1)]
3−ブテン−1−オール72g(1モル)をオートクレーブに入れ、水酸化カリウムを触媒とし、圧力1.5kg/cm、温度130℃の条件にて、ブチレンオキサイド504g(7モル)を付加させた後、エチレンオキサイド440g(10モル)を付加させ、中間体Aを得た。次に、この中間体A1016g(1モル)及びモノクロロ酢酸ナトリウム151g(1.3モル)を反応器にとり、トルエンを溶媒とし、均一になるよう撹拌した。その後、反応系の温度が60℃の条件で、水酸化ナトリウム52g(1.3モル)を添加した後、反応系の温度を80℃に昇温させ、3時間反応させた。反応後、98%硫酸120g(1.2モル)を滴下することにより、白色懸濁溶液を得た。次いで、この白色懸濁溶液を蒸留水で洗浄し、溶媒を減圧留去することにより、次の一般式(1)で表される化合物本(発明品1)を得た。

Figure 0006092013
<Synthesis of dispersant>
[Production Example 1 (Invention Product 1)]
72 g (1 mol) of 3-buten-1-ol was put in an autoclave, and 504 g (7 mol) of butylene oxide was added under the conditions of a pressure of 1.5 kg / cm 3 and a temperature of 130 ° C. using potassium hydroxide as a catalyst. Thereafter, 440 g (10 mol) of ethylene oxide was added to obtain Intermediate A. Next, 1016 g (1 mol) of this intermediate A and 151 g (1.3 mol) of sodium monochloroacetate were placed in a reactor and stirred uniformly using toluene as a solvent. Thereafter, 52 g (1.3 mol) of sodium hydroxide was added under the condition that the temperature of the reaction system was 60 ° C., and then the temperature of the reaction system was raised to 80 ° C. and reacted for 3 hours. After the reaction, 120 g (1.2 mol) of 98% sulfuric acid was added dropwise to obtain a white suspension. Next, this white suspension was washed with distilled water, and the solvent was distilled off under reduced pressure to obtain a compound represented by the following general formula (1) (Invention 1).
Figure 0006092013

[製造例2(本発明品2)]
3−ブテン−1−オール72g(1モル)の代わりに7−オクテン−1−オール128g(1モル)を用い、ブチレンオキサイドの量を504g(7モル)から360g(5モル)に減らした他は、製造例1に準じて次の一般式(1)で表される化合物(本発明品2)を得た。

Figure 0006092013
[Production Example 2 (Product 2 of the present invention)]
Other than using 72 g (1 mol) of 7-octen-1-ol instead of 72 g (1 mol) of 3-buten-1-ol, the amount of butylene oxide was reduced from 504 g (7 mol) to 360 g (5 mol) Obtained the compound represented by the following general formula (1) according to Production Example 1 (Product 2 of the present invention).
Figure 0006092013

[製造例3(本発明品3)]
3−ブテン−1−オール72g(1モル)の代わりに11−ドデセン−1−オール184g(1モル)を用い、ブチレンオキサイド504g(7モル)の代わりにプロピレンオキサイド174g(3モル)を用いた他は、製造例1に準じて次の一般式(1)で表される化合物(本発明品3)を得た。

Figure 0006092013
[Production Example 3 (Invention product 3)]
184 g (1 mol) of 11-dodecene-1-ol was used instead of 72 g (1 mol) of 3-buten-1-ol, and 174 g (3 mol) of propylene oxide was used instead of 504 g (7 mol) of butylene oxide. Others obtained the compound represented by the following general formula (1) according to Production Example 1 (Product 3 of the present invention).
Figure 0006092013

[製造例4(本発明品4)]
ブチレンオキサイドの量を504g(7モル)から144g(2モル)に減らした他は、製造例1に準じて次の一般式(1)で表される化合物(本発明品4)を得た。

Figure 0006092013
[Production Example 4 (Invention Product 4)]
A compound (present invention product 4) represented by the following general formula (1) was obtained according to Production Example 1 except that the amount of butylene oxide was reduced from 504 g (7 mol) to 144 g (2 mol).
Figure 0006092013

[製造例5(本発明品5)]
プロピレンオキサイド174g(3モル)の代わりにブチレンオキサイド504g(7モル)を用いた他は、製造例3に準じて次の一般式(1)で表される化合物(本発明品5)を得た。

Figure 0006092013
[Production Example 5 (Product 5 of the present invention)]
A compound represented by the following general formula (1) (Product 5 of the present invention) was obtained according to Production Example 3 except that 504 g (7 mol) of butylene oxide was used instead of 174 g (3 mol) of propylene oxide. .
Figure 0006092013

[製造例7(本発明品7)]
7−オクテン−1−オール128g(1モル)の代わりに2−プロペニルフェノール134g(1モル)を用いた他は、製造例2に準じて次の一般式(1)で表される化合物(本発明品7)を得た。

Figure 0006092013
[Production Example 7 (Invention Product 7)]
The compound represented by the following general formula (1) according to Preparation Example 2 except that 134 g (1 mol) of 2-propenylphenol was used instead of 128 g (1 mol) of 7-octen-1-ol Invention 7) was obtained.
Figure 0006092013

[製造例8(本発明品8)]
2−プロペニルフェノール134g(1モル)の代わりに2,6−ジプロペニルフェノール174g(1モル)を用いた他は、製造例2に準じて次の一般式(1)で表される化合物(本発明品8)を得た。

Figure 0006092013
[Production Example 8 (Invention Product 8)]
A compound represented by the following general formula (1) according to Production Example 2 except that 174 g (1 mol) of 2,6-dipropenylphenol was used instead of 134 g (1 mol) of 2-propenylphenol Invention 8) was obtained.
Figure 0006092013

[製造例9(本発明品9)]
2−プロペニルフェノール134g(1モル)の代わりに4−ビニルフェノール120g(1モル)を用いた他は、製造例2に準じて次の一般式(1)で表される化合物(本発明品8)を得た。

Figure 0006092013
[Production Example 9 (Product 9 of the present invention)]
A compound represented by the following general formula (1) according to Preparation Example 2 (Product 8 of the present invention), except that 120 g (1 mol) of 4-vinylphenol was used instead of 134 g (1 mol) of 2-propenylphenol. )
Figure 0006092013

[製造例10(本発明品10)]
中間体A1016g(1モル)にコハク酸無水物100g(1モル)を120℃で2時間反応させることで次の一般式(1)で表される化合物(本発明品10)を得た。

Figure 0006092013
[Production Example 10 (Invention Product 10)]
By reacting 1016 g (1 mol) of Intermediate A with 100 g (1 mol) of succinic anhydride at 120 ° C. for 2 hours, a compound represented by the following general formula (1) (Product 10 of the present invention) was obtained.
Figure 0006092013

[製造例11(本発明品11)]
中間体A1016g(1モル)に無水マレイン酸198g(1モル)を120℃で2時間反応させることで次の一般式(1)で表される化合物(本発明品11)を得た。

Figure 0006092013
[Production Example 11 (Invention Product 11)]
By reacting 1016 g (1 mol) of Intermediate A with 198 g (1 mol) of maleic anhydride at 120 ° C. for 2 hours, a compound represented by the following general formula (1) (Product 11 of the present invention) was obtained.
Figure 0006092013

[製造例12(本発明品12)]
中間体A1016g(1モル)に無水リン酸47g(0.33モル)を80℃で5時間反応させることで次の一般式(1)で表される化合物(本発明品12)を得た。本組成物をNMRにて確認したところ、モノエステル/ジエステルの比率は56/44であった。

Figure 0006092013
[Production Example 12 (Invention Product 12)]
By reacting 1016 g (1 mol) of Intermediate A with 47 g (0.33 mol) of phosphoric anhydride at 80 ° C. for 5 hours, a compound represented by the following general formula (1) (Product 12 of the present invention) was obtained. When this composition was confirmed by NMR, the ratio of monoester / diester was 56/44.
Figure 0006092013

[製造例13(本発明品13)]
中間体A1016g(1モル)にスルファミン酸97g(1モル)を110℃で2時間反応させた後、精製して次の一般式(1)で表される化合物(本発明品13)を得た。

Figure 0006092013
[Production Example 13 (Invention Product 13)]
After reacting 1016 g (1 mol) of intermediate A with 97 g (1 mol) of sulfamic acid at 110 ° C. for 2 hours, purification was performed to obtain a compound represented by the following general formula (1) (Product 13 of the present invention). .
Figure 0006092013

以下の比較例で用いた比較品は以下の通りである。   Comparative products used in the following comparative examples are as follows.

(比較品1)

Figure 0006092013
(Comparative product 1)
Figure 0006092013

(比較品2)

Figure 0006092013
(Comparative product 2)
Figure 0006092013

(比較品3)

Figure 0006092013
(Comparative product 3)
Figure 0006092013

(比較品4)ポリオキシエチレン(10)イソデシルエーテル酢酸Na(20%水溶液)
(比較品5)オクチルアミン
(比較品6)ブタン酸
(比較品7)2−エチルへキサン酸
(比較品8)デカン酸
(比較品9)安息香酸
(比較品10)ポリエチレングリコール(600)二酢酸
(比較品11)ポリオキシエチレン(6)イソトリデシルエーテルリン酸エステル
(比較品12)ドデシルベンゼンスルホン酸
(比較品13)ドデシルベンゼンスルホン酸Ca塩
(比較品14)ポリビニルピロリドン(第一工業製薬(株)製、商品名ピッツコールK−30)
(比較品15)ポリビニルアルコール部分けん化物((株)クラレ製、商品名クラレポバールPVA403)
(比較品16)スチレンマレイン酸共重合体(ATOFINA社製、商品名SMA1000)
(比較品17)高分子系顔料分散剤(BYKChemie社製、商品名DISPERBYK−163)
(比較品18)高分子系顔料分散剤(BYKChemie社製、商品名DISPERBYK−2001)
(比較品19)高分子系顔料分散剤(味の素ファインテクノ(株)製、商品名アジスパーPB−822)
(Comparative product 4) Polyoxyethylene (10) Isodecyl ether acetate Na (20% aqueous solution)
(Comparative product 5) Octylamine (Comparative product 6) Butanoic acid (Comparative product 7) 2-Ethylhexanoic acid (Comparative product 8) Decanoic acid (Comparative product 9) Benzoic acid (Comparative product 10) Polyethylene glycol (600) Acetic acid (Comparative product 11) Polyoxyethylene (6) Isotridecyl ether phosphate ester (Comparative product 12) Dodecylbenzenesulfonic acid (Comparative product 13) Dodecylbenzenesulfonic acid Ca salt (Comparative product 14) Polyvinylpyrrolidone (Daiichi Kogyo) Product name, Pitzkor K-30, manufactured by Pharmaceutical Co., Ltd.
(Comparative product 15) Polyvinyl alcohol part saponified product (manufactured by Kuraray Co., Ltd., trade name Kuraray Poval PVA403)
(Comparative product 16) Styrene maleic acid copolymer (manufactured by ATOFINA, trade name SMA1000)
(Comparative product 17) Polymer pigment dispersant (manufactured by BYK Chemie, trade name DISPERBYK-163)
(Comparative Product 18) Polymeric pigment dispersant (manufactured by BYK Chemie, trade name DISPERBYK-2001)
(Comparative product 19) Polymeric pigment dispersant (Ajinomoto Fine Techno Co., Ltd., trade name Ajisper PB-822)

[分散試験1]
以下の表1に示す本発明品の分散剤1.5部(固形分換算)及び比較例の分散剤1.5部(固形分換算)を、分散媒として表1に示す溶剤68.5部に溶解し、さらに、分散質としての酸化マグネシウム(MgO)30部及び直径0.5mmのジルコニアビーズ100mlを加えたものに、ペイントシェーカーで12時間微細化処理を実施した。その結果、得られた処理液を透明の容器に移して容器内の処理液の分散性について、その処理液を目視にて観察することによって、以下の基準で評価した。その結果を表1に示す。
◎:すべての分散質が液中に分散し、容器の底部に沈降物は見られない
○:ほとんどの分散質が液中に分散しているが、容器の底部にごくわずかの沈降物が見られる
×:ほとんどの分散質が底部に沈降している
[Dispersion test 1]
68.5 parts of the solvent shown in Table 1 as a dispersion medium are 1.5 parts (in terms of solid content) of the dispersant of the present invention shown in Table 1 below and 1.5 parts of the dispersant in the comparative example (in terms of solid content). In addition, 30 parts of magnesium oxide (MgO) as a dispersoid and 100 ml of zirconia beads having a diameter of 0.5 mm were added, and a refinement process was carried out for 12 hours using a paint shaker. As a result, the obtained treatment liquid was transferred to a transparent container, and the dispersibility of the treatment liquid in the container was evaluated by visually observing the treatment liquid based on the following criteria. The results are shown in Table 1.
A: All dispersoids are dispersed in the liquid, and no sediment is observed at the bottom of the container. ○: Most of the dispersoids are dispersed in the liquid, but a very small amount of sediment is observed at the bottom of the container. ×: Most dispersoids settle to the bottom

Figure 0006092013
Figure 0006092013

表1に示した結果から、本発明の分散剤を用いた分散体は比較例のものと比較して分散性がより優れていることが分かる。   From the results shown in Table 1, it can be seen that the dispersion using the dispersant of the present invention is more excellent in dispersibility than the comparative example.

[分散試験2]
<酸化ジルコニウムの溶剤分散体の作製及び評価>
以下の表2に示す本発明分散剤の所定量又は比較例の分散剤の所定量を、分散媒としてのメチルエチルケトンに溶解し、さらに分散質としての酸化ジルコニウム(ZrO)5部を加えたものに、ビーズミル(寿工業(株)製、商品名ウルトラアペックスミルUAM−005、直径50μmのジルコニアビーズ使用、周速10m/秒)で2時間微細化処理を実施した。その結果、得られた処理液を透明の容器に移して、微細化処理直後の容器内の処理液の分散性と、24時間後の容器内の処理液(分散剤が0.25部で分散質が5部の処理液)の分散安定性とについて、処理液を目視にて観察することによって、同上基準で評価した。また、一部の処理液(分散剤が0.25部で分散質が5部の処理液)について、粒度分布計(日機装株式会社製、マイクロトラックUPA MODEL 9230)を使用し、微細化処理直後の酸化ジルコニウムの粒子径を測定した。なお、分散剤に対するメチルエチルケトンの配合量は、分散剤0.5部、0.25部、0.15部、0.05部に対して、それぞれメチルエチルケトン94.5部、94.75部、94.85部、94.95部である。また、表3における分散剤使用量(対酸化ジルコニウム)は、10%が分散剤0.5部、5%が分散剤0.25部、3%が分散剤0.15部、1%が分散剤0.05部にそれぞれ対応する。上記分散性と分散安定性の目視評価と酸化ジルコニウムの粒子径測定結果を表2に示す。
[Dispersion test 2]
<Production and Evaluation of Zirconium Oxide Solvent Dispersion>
That a predetermined amount of a predetermined amount or Comparative Examples of the dispersant of the present invention dispersing agents shown in Table 2 below, was dissolved in methyl ethyl ketone as a dispersion medium was added further zirconium oxide (ZrO 2) 5 parts of a dispersoid The bead mill (trade name Ultra Apex Mill UAM-005, using zirconia beads with a diameter of 50 μm, peripheral speed 10 m / sec) was used for 2 hours. As a result, the obtained treatment liquid was transferred to a transparent container, and the dispersibility of the treatment liquid in the container immediately after the miniaturization treatment and the treatment liquid in the container after 24 hours (dispersing agent was dispersed at 0.25 parts) The dispersion stability of the processing solution having a quality of 5 parts) was evaluated based on the same criteria as above by observing the processing solution visually. In addition, for a part of the processing liquid (processing liquid having a dispersant of 0.25 part and a dispersoid of 5 parts), a particle size distribution meter (manufactured by Nikkiso Co., Ltd., Microtrac UPA MODEL 9230) is used, The particle diameter of zirconium oxide was measured. In addition, the compounding quantity of the methyl ethyl ketone with respect to a dispersing agent is 94.5 parts, 94.75 parts, 94.75 parts of methyl ethyl ketone with respect to 0.5 parts, 0.25 parts, 0.15 parts, and 0.05 parts of dispersing agents, respectively. 85 parts and 94.95 parts. In Table 3, the amount of dispersant used (zirconium oxide) was 10% 0.5% dispersant, 5% 0.25 parts dispersant, 3% 0.15 parts dispersant, 1% dispersed. This corresponds to 0.05 parts of the agent. Table 2 shows the visual evaluation of the dispersibility and dispersion stability and the particle diameter measurement results of zirconium oxide.

<酸化ジルコニウムの溶剤分散体アクリル樹脂混合液の作製及び評価>
以下の表2に示す組成を有する本発明の分散剤又は比較例の分散剤と、酸化ジルコニウム、メチルエチルケトンからなる上記酸化ジルコニウム分散体(分散剤0.25部、酸化ジルコニウム5.00部、メチルエチルケトン94.75部)の70部を、アクリル樹脂(三菱レイヨン(株)製、商品名アクリペットVH)25部を溶解させたメチルエチルケトン溶液70部に混合してなる分散液について、ビーズミル(寿工業(株)製、商品名ウルトラアペックスミルUAM−005、直径50μmのジルコニアビーズ使用、周速10m/秒)で2時間微細化処理を実施した。その結果、得られた処理液を透明の容器に移して容器内の処理液の分散性について、処理液を目視にて観察することによって、同上基準で評価した。
<Production and Evaluation of Zirconium Oxide Solvent Dispersion Acrylic Resin Mixture>
The dispersant of the present invention or the comparative dispersant having the composition shown in Table 2 below, and the above zirconium oxide dispersion comprising zirconium oxide and methyl ethyl ketone (dispersant 0.25 part, zirconium oxide 5.00 parts, methyl ethyl ketone 94) .75 parts) is mixed with 70 parts of a methyl ethyl ketone solution in which 25 parts of acrylic resin (trade name Acrypet VH, manufactured by Mitsubishi Rayon Co., Ltd.) is dissolved. ), Trade name Ultra Apex Mill UAM-005, using zirconia beads having a diameter of 50 μm, peripheral speed 10 m / sec), and performing a fine processing for 2 hours. As a result, the obtained treatment liquid was transferred to a transparent container, and the dispersibility of the treatment liquid in the container was evaluated by visually observing the treatment liquid according to the above criteria.

また、上記分散液(2時間の微細化処理後のもの)を厚さ10mmの清浄なガラス板上に塗布した後、120℃の乾燥機で1時間乾燥して塗膜を得た。次いで、上記ガラス板の下に12ポイントで印字したアルファベットを記した紙を置き、ガラス板上に得られた塗膜の透明性について、その塗膜越しにアルファベットを判別できるかどうかの点から、以下の基準で評価した。
◎:12ポイントのアルファベット文字を鮮明に判別することができる
○:塗膜にごく僅かの濁りを生じているが、12ポイントのアルファベット文字を判別することができる
×:塗膜に濁りがあり、12ポイントのアルファベット文字を判別することができない
Moreover, after apply | coating the said dispersion liquid (after 2 hours refinement | miniaturization process) on a 10-mm-thick clean glass plate, it dried for 1 hour with a 120 degreeC dryer, and obtained the coating film. Next, a paper on which the alphabet printed at 12 points is placed under the glass plate, and the transparency of the coating film obtained on the glass plate, whether the alphabet can be distinguished over the coating film, Evaluation was made according to the following criteria.
◎: Alphabetic characters of 12 points can be clearly distinguished. ○: Slight turbidity is generated in the coating film, but alphabetic characters of 12 points can be determined. X: The coating film is turbid. Unable to distinguish 12 point alphabetic characters

Figure 0006092013
Figure 0006092013

表2に示された結果から、本発明の分散剤を用いたものの分散性と分散安定性は優れていることが分かる。また、同表に示すように、本発明の分散剤を用いてなる分散体中の分散質の粒径は比較例の分散体中の分散質の粒径に比べてはるかに小さく、これは本発明の分散剤の効果は明らかである。さらに、同表に示すように、本発明の分散体からなる塗膜の透明性は優れており、本発明の分散体の優れた分散性が実証されている。   From the results shown in Table 2, it can be seen that those using the dispersant of the present invention are excellent in dispersibility and dispersion stability. Further, as shown in the table, the particle size of the dispersoid in the dispersion using the dispersant of the present invention is much smaller than the particle size of the dispersoid in the dispersion of the comparative example. The effect of the inventive dispersant is obvious. Furthermore, as shown in the table, the transparency of the coating film made of the dispersion of the present invention is excellent, and the excellent dispersibility of the dispersion of the present invention has been demonstrated.

[分散試験3]
<酸化ジルコニウムのアクリレートモノマー分散体の作製>
酸化ジルコニウム粉末(日本電工(株)製、商品名PCS、一次粒子径30nmのもの)100部とメチルエチルケトン400部とを混合したものに、以下の表3に示す本発明の分散剤又は比較例の分散剤10部を添加したものに、ビーズミル(寿工業(株)製、商品名ウルトラアペックスミルUAM−005、直径50μmのジルコニアのビーズ使用、周速10m/秒)で4時間微細化処理を実施して、酸化ジルコニウム分散体を作製した。得られた酸化ジルコニウム分散体100部に、フェノキシエチルアクリレート(第一工業製薬(株)製、商品名ニューフロンティアPHE)10部と、ペンタエリスリトールトリアクリレート(第一工業製薬(株)製、商品名ニューフロンティアPET−3)10部とを添加して混合した後、溶媒のメチルエチルケトンはロータリーエバポレーターを用いて減圧除去し、酸化ジルコニウムのアクリレートモノマー分散体(1)を得た。得られた分散体について、外観の透明性、粘度、屈折率を評価した。評価結果を表3に示す。
[Dispersion test 3]
<Preparation of Zirconium Oxide Acrylate Monomer Dispersion>
A mixture of 100 parts of zirconium oxide powder (Nippon Denko Co., Ltd., trade name PCS, having a primary particle diameter of 30 nm) and 400 parts of methyl ethyl ketone is mixed with the dispersant or comparative example of the present invention shown in Table 3 below. A micronizing process was carried out for 4 hours in a bead mill (trade name Ultra Apex Mill UAM-005, using zirconia beads with a diameter of 50 μm, peripheral speed 10 m / second) manufactured by Kotobuki Kogyo Co., Ltd. Thus, a zirconium oxide dispersion was produced. To 100 parts of the resulting zirconium oxide dispersion, 10 parts of phenoxyethyl acrylate (Daiichi Kogyo Seiyaku Co., Ltd., trade name New Frontier PHE) and pentaerythritol triacrylate (Daiichi Kogyo Seiyaku Co., Ltd., trade name) After adding and mixing 10 parts of New Frontier PET-3), the solvent methyl ethyl ketone was removed under reduced pressure using a rotary evaporator to obtain an acrylate monomer dispersion (1) of zirconium oxide. The obtained dispersion was evaluated for appearance transparency, viscosity, and refractive index. The evaluation results are shown in Table 3.

<分散体評価>
a.外観の透明性 酸化ジルコニウムのアクリレートモノマー分散体を透明のガラス容器に入れ、上記ガラス容器の下に12ポイントで印字したアルファベットを記した紙を置き、分散体の透明性について、その分散体越しにアルファベットを判別できるかどうかの点から、以下の基準で評価した。
◎:分散体を5cm深さのガラス容器に入れたときに、12ポイントのアルファベット文字が見える(分散体が透明である)
○:分散体を1cm深さのガラス容器に入れたときに、12ポイントのアルファベット文字がはっきり見える(分散体に僅かな濁りがある)
×:分散体を1cm深さのガラス容器に入れたときに、12ポイントのアルファベット文字がはっきり見えない(分散体に濁りがある)
<Dispersion evaluation>
a. Transparency of appearance Place the acrylate monomer dispersion of zirconium oxide in a transparent glass container, place a paper with alphabet printed at 12 points under the glass container, and check the transparency of the dispersion over the dispersion. The following criteria were used to evaluate whether the alphabet could be distinguished.
A: When the dispersion is put in a glass container having a depth of 5 cm, 12-point alphabet characters can be seen (the dispersion is transparent).
○: When the dispersion is put into a glass container having a depth of 1 cm, 12-point alphabet characters are clearly visible (the dispersion has a slight turbidity).
X: When the dispersion is put in a glass container having a depth of 1 cm, 12-point alphabet characters cannot be clearly seen (the dispersion is cloudy).

b.粘度 酸化ジルコニウムのアクリレートモノマー分散体の粘度を、E型粘度計(東機産業(株)製、商品名RE−80R)を用いて25℃で測定した。 b. Viscosity The viscosity of the acrylate monomer dispersion of zirconium oxide was measured at 25 ° C. using an E-type viscometer (trade name RE-80R, manufactured by Toki Sangyo Co., Ltd.).

c.屈折率 酸化ジルコニウムのアクリレートモノマー分散体の屈折率を、アッベ屈折率計(アタゴ(株)製、商品名NAR−1T)を用いて25℃で測定した。 c. Refractive Index The refractive index of the zirconium oxide acrylate monomer dispersion was measured at 25 ° C. using an Abbe refractometer (trade name NAR-1T, manufactured by Atago Co., Ltd.).

<酸化ジルコニウムの光重合硬化膜の作製>
上記酸化ジルコニウムのアクリレートモノマー分散体100部に、光重合開始剤(BASF社製、商品名IRGACURE184)1部を添加して混合し、酸化ジルコニウムペーストを得た。その酸化ジルコニウムペーストを、ポリエチレンテレフタレートフィルム上にアプリケーター(小平製作所製 YA型)を用いて約50μmの膜厚で塗布した後、高圧水銀灯を用いて80W/cmの強さで約200mJ/cmのエネルギーの紫外線を照射することにより、酸化ジルコニウムのアクリレートモノマー分散体の光重合硬化膜を得た。得られた分散体について、外観の透明性、屈折率、鉛筆硬度、耐水性を評価した。評価結果を表3に示す。
<Production of photopolymerized cured film of zirconium oxide>
One part of a photopolymerization initiator (trade name: IRGACURE 184, manufactured by BASF) was added to and mixed with 100 parts of the acrylate monomer dispersion of zirconium oxide to obtain a zirconium oxide paste. The zirconium oxide paste was applied on a polyethylene terephthalate film with an applicator (YA type manufactured by Kodaira Seisakusho Co., Ltd.) with a film thickness of about 50 μm, and then with a high-pressure mercury lamp, the strength of 80 W / cm was about 200 mJ / cm 2 . By irradiating energy ultraviolet rays, a photopolymerized cured film of an acrylate monomer dispersion of zirconium oxide was obtained. The obtained dispersion was evaluated for transparency, refractive index, pencil hardness, and water resistance. The evaluation results are shown in Table 3.

<光重合硬化後の塗膜評価>
a.外観の透明性 上記ポリエチレンテレフタレートフィルムの下に12ポイントで印字したアルファベットを記した紙を置き、ポリエチレンテレフタレートフィルム上に得られた光重合硬化膜の透明性について、その硬化膜越しにアルファベットを判別できるかどうかの点から、以下の基準で評価した。
◎:12ポイントのアルファベット文字を鮮明に判別することができる
○:硬化膜にごく僅かの濁りを生じているが、12ポイントのアルファベット文字を判別することができる
×:硬化膜に濁りがあり、12ポイントのアルファベット文字を判別することができない
<Evaluation of coating film after photopolymerization>
a. Transparency of appearance Place the paper with the alphabet printed at 12 points under the polyethylene terephthalate film, and the transparency of the photopolymerized cured film obtained on the polyethylene terephthalate film can be distinguished through the cured film In terms of whether or not it was evaluated according to the following criteria.
◎: Alphabetic characters of 12 points can be clearly distinguished. ○: Slight turbidity is generated in the cured film, but alphabetic characters of 12 points can be distinguished. X: The cured film is turbid. Unable to distinguish 12 point alphabetic characters

b.屈折率 光重合硬化膜の屈折率を、プリズムカプラ(セキテクノトロン社製、MODEL 2010/M)を用いて25℃で測定した。 b. Refractive Index The refractive index of the photopolymerized cured film was measured at 25 ° C. using a prism coupler (manufactured by Seki Technotron, MODEL 2010 / M).

c.鉛筆硬度 光重合硬化膜の鉛筆硬度を、JIS K5400に準拠して所定硬さの鉛筆で引っ掻き試験により測定した。 c. Pencil hardness The pencil hardness of the photopolymerized cured film was measured by a scratch test with a pencil having a predetermined hardness in accordance with JIS K5400.

d.耐水性 光重合硬化膜を60℃の恒温水槽で3日間浸漬し、光重合硬化膜の透明性について、上記a.外観の透明性と同様の基準で評価した。 d. The water-resistant photopolymerized cured film was immersed in a constant-temperature water bath at 60 ° C. for 3 days, and the transparency of the photopolymerized cured film was determined as a. Evaluation was made based on the same criteria as the appearance transparency.

Figure 0006092013
Figure 0006092013

表3に示すように、本発明の分散体は優れた分散性(外観の透明性)と高い屈折率を有し、本発明の分散体の光重合硬化膜は優れた透明性と高い屈折率と良好な鉛筆硬度と高い耐水性を備えている。   As shown in Table 3, the dispersion of the present invention has excellent dispersibility (transparency of appearance) and high refractive index, and the photopolymerized cured film of the dispersion of the present invention has excellent transparency and high refractive index. With good pencil hardness and high water resistance.

[分散試験4]
<酸化ジルコニウムのアクリレートモノマー分散体の作製>
市販の酸化ジルコニウム分散体(堺化学(株)製、商品名SZR−M、一次粒子径3nm、30質量%のメタノールを含有する分散体)100部に、以下の表4に示す本発明の分散剤又は比較例の分散剤3部と、フェノキシエチルアクリレート(第一工業製薬(株)製、商品名ニューフロンティアPHE)15部と、ペンタエリスリトールトリアクリレート(第一工業製薬(株)製、商品名ニューフロンティアPET−3)15部とを添加して混合した後、溶媒のメタノールをロータリーエバポレーターを用いて減圧除去し、酸化ジルコニウムのアクリレートモノマー分散体(2)を得た。得られた分散体について、外観の透明性、粘度、屈折率を評価した。評価方法は上記分散試験3と同様である。評価結果を表4に示す。
[Dispersion test 4]
<Preparation of Zirconium Oxide Acrylate Monomer Dispersion>
100 parts of a commercially available zirconium oxide dispersion (manufactured by Sakai Chemical Co., Ltd., trade name SZR-M, dispersion containing a primary particle size of 3 nm and 30% by mass of methanol) is dispersed in the present invention shown in Table 4 below. 3 parts of a dispersant or comparative example, 15 parts of phenoxyethyl acrylate (Daiichi Kogyo Seiyaku Co., Ltd., trade name New Frontier PHE), and pentaerythritol triacrylate (Daiichi Kogyo Seiyaku Co., Ltd., trade name) After adding and mixing 15 parts of New Frontier PET-3), the solvent methanol was removed under reduced pressure using a rotary evaporator to obtain an acrylate monomer dispersion (2) of zirconium oxide. The obtained dispersion was evaluated for appearance transparency, viscosity, and refractive index. The evaluation method is the same as in the dispersion test 3. The evaluation results are shown in Table 4.

Figure 0006092013
Figure 0006092013

表4に示すように、本発明の分散体は優れた分散性(外観の透明性)と高い屈折率を有し、本発明の分散体の光重合硬化膜は優れた透明性と高い屈折率と良好な鉛筆硬度と高い耐水性を備えている。   As shown in Table 4, the dispersion of the present invention has excellent dispersibility (transparency in appearance) and a high refractive index, and the photopolymerized cured film of the dispersion of the present invention has excellent transparency and a high refractive index. With good pencil hardness and high water resistance.

[分散試験5]
<酸化ジルコニウムのアクリレートモノマー分散体の作製>
市販の酸化ジルコニウム分散体(堺化学(株)製、商品名SZR−M、一次粒子径3nm、30質量%のメタノールを含有する分散体)100部に、以下の表5に示す本発明の分散剤又は比較例の分散剤3部と、o−フェニルフェノキシエチルアクリレート(第一工業製薬(株)製、商品名KAYARAD OPP−1)28.5部を添加して混合した後、溶媒のメタノールはロータリーエバポレーターを用いて減圧除去し、酸化ジルコニウムのアクリレートモノマー分散体(3)を得た。得られた分散体について、外観の透明性、粘度、屈折率を評価した。得られた分散体について、外観の透明性、粘度、屈折率を評価した。評価方法は上記分散試験3と同様である。評価結果を表5に示す。
[Dispersion test 5]
<Preparation of Zirconium Oxide Acrylate Monomer Dispersion>
Dispersions of the present invention shown in Table 5 below are added to 100 parts of a commercially available zirconium oxide dispersion (manufactured by Sakai Chemical Co., Ltd., trade name SZR-M, dispersion containing a primary particle diameter of 3 nm and 30% by mass of methanol). 3 parts of the dispersant or the comparative dispersant and 28.5 parts of o-phenylphenoxyethyl acrylate (Daiichi Kogyo Seiyaku Co., Ltd., trade name KAYARAD OPP-1) were added and mixed, and the solvent methanol was Removal under reduced pressure using a rotary evaporator gave an acrylate monomer dispersion (3) of zirconium oxide. The obtained dispersion was evaluated for appearance transparency, viscosity, and refractive index. The obtained dispersion was evaluated for appearance transparency, viscosity, and refractive index. The evaluation method is the same as in the dispersion test 3. The evaluation results are shown in Table 5.

Figure 0006092013
Figure 0006092013

表5に示すように、本発明の分散体は優れた分散性(外観の透明性)と高い屈折率を有し、本発明の分散体の光重合硬化膜は優れた透明性と高い屈折率と良好な鉛筆硬度と高い耐水性を備えていることが分かる。   As shown in Table 5, the dispersion of the present invention has excellent dispersibility (transparency of appearance) and a high refractive index, and the photopolymerized cured film of the dispersion of the present invention has excellent transparency and a high refractive index. It can be seen that it has good pencil hardness and high water resistance.

本発明の分散体組成物は、ハイブリッド材料、表面保護剤、導電性ペースト、導電性インク、センサー、精密分析素子、光メモリ、液晶表示素子、ナノ磁石、熱伝媒体、燃料電池用高機能触媒、有機太陽電池、ナノガラスデバイス、研磨剤、ドラッグキャリヤー、環境触媒、塗料、印刷インキ、インクジェット用インキ、カラーフィルター用レジスト、筆記具用インキ、光学薄膜、粘着剤、反射防止膜、ハードコート膜等の分野で使用できる。本発明の分散剤は上記用途製品及びその製造工程で主体成分となるナノサイズの無機物由来又は有機物由来の等方性材料及び/又は異方性材料を非水性分散媒中で分散安定化させて、分散媒中における分散質の凝集を抑制し、長期間分散安定化を達成することで所望する製品特性、加工特性、品質安定化、生産性向上を得るために有効である。   The dispersion composition of the present invention includes a hybrid material, a surface protective agent, a conductive paste, a conductive ink, a sensor, a precision analysis element, an optical memory, a liquid crystal display element, a nanomagnet, a heat transfer medium, a high-performance catalyst for a fuel cell, Organic solar cells, nano glass devices, abrasives, drug carriers, environmental catalysts, paints, printing inks, inkjet inks, color filter resists, writing instrument inks, optical thin films, adhesives, antireflection films, hard coat films, etc. Can be used in The dispersant of the present invention stabilizes dispersion of an isotropic material and / or an anisotropic material derived from a nano-sized inorganic substance or organic substance, which is a main component in the above-mentioned product and its production process, in a non-aqueous dispersion medium. It is effective for obtaining desired product characteristics, processing characteristics, quality stabilization, and productivity improvement by suppressing dispersoid aggregation in the dispersion medium and achieving long-term dispersion stabilization.

Claims (8)

下記一般式(1)で示される化合物からなる非水性分散媒用分散剤。
Figure 0006092013
但し、一般式(1)中、Rは以下に示す基から選択された基を表し、これらの式中、Rはメチル基を表し、m1は2〜10の数を表し、m2は0〜4の数を表し、m3は1〜2の数を表し、Dは下記化学式D−1、D−2及びD−3のうちのいずれかで表される重合性の不飽和基を表し、これらの式中、Rは水素原子又はメチル基を表し、Aは炭素数3〜のアルキレン基を表し、n1はアルキレンオキシドの平均付加モル数を表し、2〜30の範囲にある数を表し、Aは炭素数2のアルキレン基を表し、n2はアルキレンオキシドの平均付加モル数を表し、3〜30の範囲にある数を表し、Xは、−CH −、−CO(CH −、又は−COCH=CH−である連結基を表し、pは0又は1の数を表し、Zは、カルボキシル基、スルホ基、リン酸エステル基又はそれらの塩を表す。
Figure 0006092013
Figure 0006092013
The dispersing agent for non-aqueous dispersion media which consists of a compound shown by following General formula (1).
Figure 0006092013
However, in general formula (1), R 1 represents a group selected from the following groups, in which R 2 represents a methyl group, m 1 represents a number of 2 to 10 , and m 2 represents 0. Represents a number of -4, m3 represents a number of 1-2, D represents a polymerizable unsaturated group represented by any one of the following chemical formulas D-1, D-2 and D-3, In these formulas, R 3 represents a hydrogen atom or a methyl group, A 1 represents an alkylene group having 3 to 4 carbon atoms, n1 represents an average addition mole number of alkylene oxide, and a number in the range of 2 to 30 A 2 represents an alkylene group having 2 carbon atoms, n 2 represents the average number of moles of alkylene oxide added, represents a number in the range of 3 to 30 , and X represents —CH 2 —, —CO (CH 2) 2 -, or represents a -COCH = CH- and is a linking group, p is a number from 0 or 1, Z is Ca Bokishiru group, a sulfo group, a phosphoric acid ester group or salts thereof.
Figure 0006092013
Figure 0006092013
一般式(1)中のZがカルボキシル基又はリン酸エステル基であることを特徴とする、請求項1に記載の非水性分散媒用分散剤。   The dispersant for non-aqueous dispersion medium according to claim 1, wherein Z in the general formula (1) is a carboxyl group or a phosphate group. 請求項1又は2に記載の非水性分散媒用分散剤により被覆及び/又は含浸の処理がなされた固体粒子。   Solid particles coated and / or impregnated with the dispersant for a non-aqueous dispersion medium according to claim 1 or 2. 請求項1又は2に記載の非水性分散媒用分散剤を用いて有機物粒子及び/又は無機物粒子を非水性分散媒中に分散してなる分散体組成物。   A dispersion composition obtained by dispersing organic particles and / or inorganic particles in a non-aqueous dispersion medium using the dispersant for a non-aqueous dispersion medium according to claim 1. 前記非水性分散媒が溶剤であることを特徴とする、請求項4に記載の分散体組成物。   The dispersion composition according to claim 4, wherein the non-aqueous dispersion medium is a solvent. 前記非水性分散媒が重合性不飽和モノマー又はオリゴマーであることを特徴とする、請求項4に記載の分散体組成物。   The dispersion composition according to claim 4, wherein the non-aqueous dispersion medium is a polymerizable unsaturated monomer or oligomer. 請求項5又は6に記載の分散体組成物を含有することを特徴とする、コーティング組成物。   A coating composition comprising the dispersion composition according to claim 5 or 6. 請求項7に記載のコーティング組成物を硬化させてなる硬化物。   A cured product obtained by curing the coating composition according to claim 7.
JP2013127603A 2013-06-18 2013-06-18 Dispersant for non-aqueous dispersion media Active JP6092013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013127603A JP6092013B2 (en) 2013-06-18 2013-06-18 Dispersant for non-aqueous dispersion media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127603A JP6092013B2 (en) 2013-06-18 2013-06-18 Dispersant for non-aqueous dispersion media

Publications (2)

Publication Number Publication Date
JP2015000397A JP2015000397A (en) 2015-01-05
JP6092013B2 true JP6092013B2 (en) 2017-03-08

Family

ID=52295252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127603A Active JP6092013B2 (en) 2013-06-18 2013-06-18 Dispersant for non-aqueous dispersion media

Country Status (1)

Country Link
JP (1) JP6092013B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323725A (en) * 1986-03-18 1988-02-01 Dai Ichi Kogyo Seiyaku Co Ltd Novel surface active agent
JPS62227434A (en) * 1986-03-28 1987-10-06 Dai Ichi Kogyo Seiyaku Co Ltd Novel surface-active agent
JPS63240931A (en) * 1986-12-12 1988-10-06 Dai Ichi Kogyo Seiyaku Co Ltd Novel surfactant
JPH07228613A (en) * 1994-02-21 1995-08-29 Dai Ichi Kogyo Seiyaku Co Ltd Emulsifying dispersion agent for polymerization
JP3592408B2 (en) * 1995-07-25 2004-11-24 旭電化工業株式会社 Surfactant, emulsifier for emulsion polymerization, dispersant for suspension polymerization and resin modifier
JP2005220213A (en) * 2004-02-05 2005-08-18 Jsr Corp Crosslinked polymer particle powder and manufacturing method therefor
JP4679971B2 (en) * 2005-06-07 2011-05-11 花王株式会社 Dispersant for inorganic powder
WO2011148521A1 (en) * 2010-05-26 2011-12-01 第一工業製薬株式会社 Dispersion composition

Also Published As

Publication number Publication date
JP2015000397A (en) 2015-01-05

Similar Documents

Publication Publication Date Title
TWI616231B (en) Dispersant and dispersion composition
JP5643155B2 (en) Hard coat dispersion composition, hard coat coating composition and hard coat coating
JP5813949B2 (en) Dispersion composition
JP2012233148A (en) Pigment for aqueous ink
TWI461238B (en) Dispersants and dispersant compositions
JP2015000970A (en) Dispersant for non-aqueous dispersion media
JP2015000396A (en) Dispersant for non-aqueous dispersion medium
TWI682809B (en) Zirconium oxide particle dispersion composition and its hardened product
TWI488898B (en) Resin composition for optical materials
JP6072620B2 (en) Dispersant for non-aqueous dispersion media
JP6092013B2 (en) Dispersant for non-aqueous dispersion media
JP6305140B2 (en) Dispersant for non-aqueous dispersion media
JP5162734B2 (en) Reactive surfactant, resin composition and coating composition
JP6305141B2 (en) Dispersant for non-aqueous dispersion media
WO2011148660A1 (en) Dispersant and dispersion composition
JP6491495B2 (en) Dispersion composition, cured product thereof, and laminate
WO2011148661A1 (en) Dispersion composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R150 Certificate of patent or registration of utility model

Ref document number: 6092013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150