WO2011148660A1 - Dispersant and dispersion composition - Google Patents

Dispersant and dispersion composition Download PDF

Info

Publication number
WO2011148660A1
WO2011148660A1 PCT/JP2011/050895 JP2011050895W WO2011148660A1 WO 2011148660 A1 WO2011148660 A1 WO 2011148660A1 JP 2011050895 W JP2011050895 W JP 2011050895W WO 2011148660 A1 WO2011148660 A1 WO 2011148660A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersant
group
dispersion
formula
dispersion medium
Prior art date
Application number
PCT/JP2011/050895
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 賀之
昭充 利根川
和幸 加藤
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2010/063749 external-priority patent/WO2011148520A1/en
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Priority to KR1020127030911A priority Critical patent/KR101472651B1/en
Priority to CN201180025934.5A priority patent/CN102906060B/en
Publication of WO2011148660A1 publication Critical patent/WO2011148660A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/42Ethers, e.g. polyglycol ethers of alcohols or phenols
    • C09K23/44Ether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/125Saturated compounds having only one carboxyl group and containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/21Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/708Ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Definitions

  • the present invention relates to a dispersant and a dispersion composition using the dispersant.
  • Isotropic materials and / or anisotropic materials derived from inorganic or organic materials include hybrid materials, surface protective agents, conductive pastes, conductive inks, sensors, precision analysis elements, optical memories, liquid crystal display elements, nanomagnets, heat transfer materials.
  • hybrid materials surface protective agents, conductive pastes, conductive inks, sensors, precision analysis elements, optical memories, liquid crystal display elements, nanomagnets, heat transfer materials.
  • As a main material in application fields such as media, high-performance catalysts for fuel cells, organic solar cells, nano glass devices, abrasives, drug carriers, environmental catalysts, paints, printing inks, inkjet inks, resists for color filters, inks for writing instruments, etc. in use.
  • the isotropic material and / or anisotropic material derived from the inorganic or organic material can be processed efficiently by preparing a dispersion as fine particles in an aqueous dispersion medium or non-aqueous dispersion medium. It is used industrially as a substance that improves product characteristics and material properties, contributes to quality stabilization and yield improvement during production.
  • organic compound having a carboxyl group as the proposed low molecular weight dispersant, for example, formic acid, acetic acid, propionic acid, butanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, lauric acid
  • carboxylic acids having 1 to 20 carbon atoms such as myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid
  • hydroxycarboxylic acids alicyclic groups having 6 to 34 carbon atoms
  • aromatic carboxylic acids for example, formic acid, acetic acid, propionic acid, butanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, lauric acid
  • alkenyl succinic anhydrides include octenyl succinic anhydride, dodecenyl succinic anhydride, hexadecenyl succinic anhydride, and the like.
  • organic compounds having a thiol group include mercaptoethanol, mercapto-2-propanol, 1-mercapto-2, 3-propanediol, 3-mercaptopropyltrimethoxysilane, mercaptosuccinic acid, hexanethiol, pentanedithiol, and dodecanethiol.
  • alkanethiols such as undecanethiol and decanethiol.
  • Examples of the organic compound having a phenol ring include triphenylphosphine, tributylphosphine, trioctylphosphine, and tributylphosphine.
  • Examples of the organic compound having an amino group include propylamine, butylamine, hexylamine, heptylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, dodecylamine, hexadecylamine, and oleylamine.
  • a polymer type dispersion having a skeleton such as a carboxyl group, an amino group, a hydroxyl group, an ester bond, an amide bond, an aromatic ring, and a heterocyclic ring which was mainly developed as a dispersant for pigments and the like.
  • the agent has also been diverted to this application, DISPERBYK series by BYK Chemie (Byk Chemie), Ciba EFKA series, Lubrizol (Lublizol), Solspse by Fuka Additives (EFKA Additives)
  • the Dispalon series manufactured by Enomoto Kasei is available on the market.
  • anionic surfactants include higher fatty acid salts, alkyl sulfonates, alpha olefin sulfonates, alkane sulfonates, and alkylbenzenes. Sulfonates, sulfosuccinates, alkyl sulfates, alkyl ether sulfates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha sulfo fatty acid methyl esters, methyl taurates and so on.
  • nonionic surfactant examples include glycerin fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, and polyoxyethylene.
  • examples include fatty acid esters, fatty acid alkanolamides, and alkyl glucosides.
  • amphoteric surfactants include alkyl betaines, fatty acid amidopropyl betaines, and alkylamine oxides.
  • cationic surfactant examples include alkyl trimethyl ammonium salt, dialkyl dimethyl ammonium salt, alkyl dimethyl benzyl ammonium salt, and alkyl pyridinium salt.
  • polymer surfactants such as fluorine-based surfactants, cellulose derivatives, polycarboxylates, and polystyrene sulfonates.
  • the interfacial adsorption action based on the hydrophobic interaction of the dispersant the electroadsorption action due to the ionic group, the ⁇ -electron interaction derived from the aromatic ring, and between the particles
  • Use of electrostatic repulsion between particles by formation of multi-layers, dispersion stabilization by formation of steric barriers, and addition of protective colloids and thickeners as stabilizers are also effective, stabilizing dispersion and suppressing aggregation. A variety of measures that can achieve this can be adopted.
  • the various ionic surfactants described above are extremely effective as aqueous dispersants, but many of them cannot be dissolved in a non-aqueous dispersion medium, and their application range is extremely limited.
  • the size of the dispersoid particles is a micrometer size
  • the size of the dispersoid particles is nanometer size or sub-nanometer size
  • the dispersion system design with a high molecular weight dispersant is considered due to the difference between the size of the dispersoid particles and the size of the dispersant molecules. Can be difficult or limited.
  • a nanometer-sized inorganic fine particle (particle size 1 to 100 nm) or a composite material in which organic fillers or pigments are finely dispersed in a resin is called a polymer nanocomposite, but nanometer-size particles easily aggregate and Due to the low affinity, it is very difficult to disperse uniformly in the resin.
  • a nanoparticle is uniformly dispersed in a non-aqueous dispersion medium using a dispersant. It is effective to prepare a dispersion, and dissolve and mix the resin in the dispersion, or mix and dissolve and disperse the dispersion in a solution in which the resin is dissolved in a solvent. .
  • the dispersoid particles are coated with a surface modifier or a surface protective agent or dispersed.
  • Technology is known to impregnate the surface particles with a surface modifier, etc., but in the prior art, the type of dispersion medium and the amount of dispersoid added are often limited, and the range of use is extremely limited. No dispersant, surface modifier or surface protective agent has been found that can solve this problem.
  • Dispersants that can solve the above problems, that is, without being limited by the type of dispersion medium and the amount of dispersoid added, find a dispersant that is versatile for a wide range of materials, and non-aqueous using the dispersant Using the dispersion or the dispersant as a surface modifier or surface protective agent for a dispersoid, a powdery, granular or pasty substance coated with or impregnated with the dispersant is obtained. If they are used, they are of great industrial utility in terms of solvent substitution, polarity change, mixing with resins and resin solutions.
  • Patent Document 1 discloses metal colloidal particles composed of metal nanoparticles (A) and protective colloids (B) covering the metal nanoparticles (A), Metal colloidal particles in which the protective colloid (B) is composed of an organic compound (B1) having a carboxyl group and a polymer dispersant (B2) are disclosed.
  • Patent Document 1 discloses a dispersant having a carboxyl group. This dispersant is useful when the dispersion medium is water, but dispersibility is poor in a non-aqueous dispersion medium.
  • the present invention has been made in view of such problems of the prior art, and its purpose is applicable to a wide range of dispersoids, and exhibits excellent dispersion stability with a small amount of addition.
  • An object of the present invention is to provide a dispersant for a non-aqueous dispersion medium that can be used.
  • Another object of the present invention is to provide a dispersion composition using the dispersant.
  • an object of the present invention is to provide organic particles or inorganic particles coated with or impregnated with the dispersant.
  • the dispersant for a non-aqueous dispersion medium of the present invention comprises a compound represented by the following formula (1).
  • R represents an alkyl group and / or alkenyl group having 1 to 24 carbon atoms containing a branched alkyl group and / or alkenyl group.
  • AO represents an oxyalkylene group having 1 to 4 carbon atoms, n represents the average number of moles of alkylene oxide added and is in the range of 1 to 30.
  • X is a linking group consisting of a carbon atom, a hydrogen atom and / or an oxygen atom.
  • X in the formula (1) is preferably an alkylene group having 1 to 15 carbon atoms. Further, X in the formula (1) is preferably a substance represented by the following formula (2).
  • Y is any one selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
  • Those which are organic particles and / or inorganic particles which are coated with the dispersant or impregnated with the dispersant are preferred.
  • What is a dispersion composition formed by dispersing organic particles or inorganic particles in a non-aqueous dispersion medium using the dispersant is preferred.
  • a member obtained by applying a coating composition containing the dispersion composition using a resin as a non-aqueous dispersion medium on a substrate and then reacting physically or chemically is preferable.
  • a member obtained by physically or chemically reacting after coating a coating composition containing a mixture of the above dispersion composition using a solvent as a non-aqueous dispersion medium with a resin is preferable. .
  • the present invention it is possible to provide a dispersant for a non-aqueous dispersion medium that can be applied to a wide range of dispersoids and can exhibit excellent dispersion stability with a small amount of addition.
  • the dispersion composition which uses the dispersing agent, and the film which consists of the dispersion composition can be provided.
  • organic particles or inorganic particles that are coated with or impregnated with the dispersant can be provided.
  • the dispersant for non-aqueous dispersion medium of the present invention comprises a compound represented by the following formula (1).
  • the dispersant for a non-aqueous dispersion medium of the present invention is composed of a dispersion medium affinity part containing an alkylene oxide chain and a dispersoid affinity part consisting of a carboxyl group.
  • the affinity parts are linked by a linking group X.
  • symbol of Formula (1) is as follows.
  • R represents an alkyl group and / or alkenyl group having 1 to 24 carbon atoms containing a branched alkyl group and / or alkenyl group.
  • AO represents an oxyalkylene group having 1 to 4 carbon atoms, n represents the average number of moles of alkylene oxide added and is in the range of 1 to 30.
  • X is a linking group consisting of a carbon atom, a hydrogen atom and / or an oxygen atom.
  • R is a hydrocarbon group derived from alcohol, and R is a C1-C24 group, and is a branched alkyl group and / or alkenyl group.
  • the raw material alcohol that can be used may have a single carbon number or a mixture of alcohols having different carbon numbers.
  • the raw material alcohol may be synthetically or naturally derived, and the chemical structure may be a single composition or a mixture of a plurality of isomers.
  • known alcohols can be selected.
  • Octanol and / or its isomer 3,5,5-trimethyl-1-hexanol, isononanol, isodecanol, isoform produced by the oxo process via higher olefins derived from propylene or butene, or mixtures thereof
  • Undecanol, isododecanol, isotridecanol, Neodol 23, 25, 45 manufactured by Shell Chemicals, SAFOL23 manufactured by Sasol, EXXAL7, EXXAL8N, EXXAL9, EXXAL10, EXXAL11 and EXXXA manufactured by Exxon Mobil 13 illustrates another example of a higher alcohol which can be suitably used.
  • octyl alcohol decyl alcohol, lauryl alcohol (1-dodecanol), myristyl alcohol (1-tetradecanol), cetyl alcohol (1-hexadecanol), stearyl alcohol (1-octadecanol), oleyl alcohol (Cis-9-octadecene-1-ol) and the like are also examples of higher alcohols that can be used.
  • a single composition of Guerbet Alcohol having a 2-alkyl-1-alkanol type chemical structure, or a mixture thereof is also an example of a higher alcohol that can be suitably used.
  • the hydrophobic group (R) that is suitably selected is an alcohol-derived hydrocarbon group having 3 to 24 carbon atoms, and a branched alkyl group and / or alkenyl group.
  • the content of the group is 70% by weight or more, it can be suitably used to achieve the object of the present invention.
  • the hydrophobic group (R) is hydrogen or a hydrocarbon group having 1 to 2 carbon atoms, or when the carbon number exceeds 25, the hydrophobic group (R) has a carbon number in the range of 3 to 24. Even in some cases, when the content of the linear alkyl group and / or alkenyl group exceeds 30% by weight, the dispersoid cannot be stably dispersed in the non-aqueous dispersion medium or can be used.
  • the selection range of the medium may be limited, or substitution or mixing with a different type of dispersion medium may occur in the dispersion preparation process.
  • the hydrophobic group (R) is more preferably a branched alkyl group having 8 to 18 carbon atoms. .
  • Oxyalkylene group (AO) n For the alkylene oxide species suitably selected for the dispersant of the present invention, in formula (1), AO represents an oxyalkylene group having 1 to 4 carbon atoms, specifically, the alkylene oxide having 2 carbon atoms is ethylene oxide. The alkylene oxide having 3 carbon atoms is propylene oxide. The alkylene oxide having 4 carbon atoms is tetrahydrofuran or butylene oxide, and is preferably 1,2-butylene oxide or 2,3-butylene oxide.
  • the oxyalkylene chain (-(AO) n-) is a random polymerization of two or more alkylene oxides even if the alkylene oxide is a homopolymer chain for the purpose of adjusting the dispersion medium affinity of the dispersant. It may be a chain, a block polymer chain, or a combination thereof.
  • N which shows the average added mole number of the alkylene oxide of Formula (1) is in the range of 1 to 30, but is preferably in the range of 3 to 20.
  • the linking group (X) can be selected from a known structure consisting of a carbon atom, a hydrogen atom, and an oxygen atom, preferably a saturated hydrocarbon group, an unsaturated hydrocarbon group, an ether group, a carbonyl group, or an ester group. It may have an alicyclic structure or an aromatic ring structure, and may have a repeating unit.
  • the linking group X contains a nitrogen atom and / or a sulfur atom and / or a phosphorus atom, the linking group X is not suitable as a structural factor of the dispersant of the present invention because it has an action of weakening the affinity effect of the carboxyl group on the dispersoid. .
  • X in the formula (1) is preferably an alkylene group having 1 to 15 carbon atoms, and more preferably an alkylene group having 1 to 8 carbon atoms.
  • X in the formula (1) is preferably a substance represented by the following formula (2).
  • Y is any one selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
  • dispersant described in the following formula (3) can be more preferably used.
  • R is preferably a branched alkyl group having 8 to 18 carbon atoms
  • n is the average number of moles of ethylene oxide added, preferably in the range of 3 to 20.
  • the dispersant of the present invention can be produced by a known method. For example, using a general nonionic surfactant compound obtained by adding an alkylene oxide to an alcohol, amine, or thiol by a known method as a raw material, a monohalogenated lower carboxylic acid or a salt thereof is used. Although it can manufacture by the method of making it react with a hydroxyl group, or the method of ring-opening reaction with the hydroxyl group of the alkylene oxide terminal using an acid anhydride, it is not limited to these methods.
  • Dispersoid particles The dispersoid particles dispersed by the dispersant of the present invention can be selected from inorganic particles and / or organic particles.
  • the inorganic substance-derived particles include iron, aluminum, chromium, nickel, cobalt, zinc, tungsten, indium, tin, palladium, zirconium, titanium, copper, silver, gold, platinum, and alloys thereof, or a mixture thereof. Can be used.
  • alkanoic acids and fatty acids alkanoic acids and fatty acids, hydroxycarboxylic acids, alicyclic, aromatic carboxylic acids, alkenyl succinic anhydrides, thiols, phenol derivatives
  • protective agents such as amines, an amphiphilic polymer, a high molecular surfactant, and a low molecular surfactant.
  • organic particles azo, diazo, condensed azo, thioindigo, indanthrone, quinacridone, anthraquinone, benzimidazolone, perylene, phthalocyanine, anthrapyridine, dioxazine, etc.
  • Organic pigment polyethylene resin, polypropylene resin, polyester resin, nylon resin, polyamide resin, aramid resin, acrylic resin, vinylon resin, urethane resin, melamine resin, polystyrene resin, polylactic acid, acetate fiber, cellulose, hemicellulose, lignin, chitin , Chitosan, starch, polyacetal, aramid resin, polycarbonate, polyphenylene ether, polyether ether ketone, polyether ketone polybutylene terephthalate, polyethylene naphthalate, poly Chi naphthalate, polysulfone, polyphenylene sulfide, polyimides or the like.
  • the dispersoid particles dispersed by the dispersant of the present invention may be crystalline or amorphous. Further, the dispersoid particles dispersed by the dispersant of the present invention may be isotropic particles, anisotropic particles, or may be fibrous.
  • the dispersoid particles to be dispersed in the present invention those obtained by a known method can be used.
  • a method for preparing fine particles a top-down method in which coarse particles are mechanically pulverized and refined, and a bottom in which particles are formed through a cluster state in which several unit particles are generated and aggregated.
  • any one prepared by any method can be suitably used. Further, they may be either a wet method or a dry method.
  • the bottom-up method includes a physical method and a chemical method, and any method may be used.
  • the dispersant of the present invention may be used in a top-down process in which coarse particles are mechanically pulverized and refined to form a number of unit particles that pass through the agglomerated cluster state. May be used in a bottom-up process in which particles are formed, or after preparing fine particles in advance by the above-described method, a surface modifier or surface protection is used to stably remove the dispersoid particles from the medium. It is also possible to use particles taken out after being coated or impregnated with a known protective agent called an agent. As the protective agent, the above-mentioned known dispersants can be substituted.
  • a method for preparing metal nanoparticles among the dispersoid particles will be exemplified.
  • a representative example of a physical method is an in-gas evaporation method in which bulk metal is evaporated in an inert gas and cooled and condensed by collision with the gas to generate nanoparticles.
  • Chemical methods include a liquid phase reduction method in which metal ions are reduced in the liquid phase in the presence of a protective agent, and the generated zero-valent metal is stabilized at the nanosize, and a metal complex thermal decomposition method. is there.
  • a chemical reduction method an electrochemical reduction method, a photoreduction method, a method combining a chemical reduction method and a light irradiation method, or the like can be used.
  • the dispersoid particles that can be suitably used in the present invention may be those obtained by any of the top-down method and the bottom-up method, and they are aqueous, non-aqueous, and in the gas phase. It may be prepared in any environment.
  • Dispersion medium which can be used in the present invention includes toluene, xylene, aromatic hydrocarbon solvents, hydrocarbon solvents such as n-hexane, cyclohexane and n-heptane, and halogenated carbonization such as methylene chloride, chloroform and dichloroethane.
  • Ether solvents such as hydrogen solvents, ethyl ether, isopropyl ether, dioxane, tetrahydrofuran, dibutyl ether, butyl ethyl ether, methyl-t-butyl ether, terpinyl methyl ether, dihydroterpinyl methyl ether, diglyme 1,3-dioxolane Solvent, acetone, acetophenone, methyl ethyl ketone, methyl propyl ketone, diethyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, aceto Ketone solvents such as nilacetone, isophorone, cyclohexanone, methylcyclohexanone, 2- (1-cyclohexenyl) cyclohexanone methyl iso
  • glycol ether solvents of these monoethers and dialkyl ether solvents such as acetate solvents of diethers, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl isobutyl ether, dipropylene glycol dimethyl ether, and dipropylene glycol diethyl ether.
  • Alcohol solvents such as 80N, fine oxocol 2000, glycol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-butylene glycol, hexylene glycol, polyethylene glycol, and polypropylene glycol Can be mentioned.
  • Other examples include amide solvents such as dimethylacetamide and dimethylformamide.
  • (meth) acrylic acid having a reactive group as a dispersion medium, (meth) acrylic acid esters, vinyl monomers such as vinyl acetate, vinyl ether derivatives, and ethylenically unsaturated monomers such as polyallyl derivatives Can also be used.
  • various resins, oligomers, and monomers used for ordinary paints, adhesives, and moldings can be used without any particular limitation.
  • Specific examples include acrylic resins, polyester resins, alkyd resins, urethane resins, silicone resins, fluororesins, epoxy resins, polycarbonate resins, polyvinyl chloride resins, and polypinyl alcohols.
  • the said dispersion medium can be used suitably individually or in mixture of 2 or more types.
  • the dispersant of the present invention is intended to provide a fine particle dispersion in a non-aqueous environment, whether intentionally or accidentally with respect to the dispersion medium, during the production process of the fine particle dispersion, Or, for the purpose of use or in the final product design, mixing or mixing of water is not denied.
  • the dispersant of the present invention can be produced by a known method, and the composition is optimally selected by specifically limiting the type of the hydrophobic group, the alkylene oxide type and its addition form, the added molar amount, the linking group, etc. within the above range. By doing so, a wider variety of dispersoids can be dispersed than in known dispersants, and the industrial utility value is great in that the dispersoids can be dispersed and stabilized in a wider variety of dispersion media.
  • the dispersant of the present invention can be used by reducing the content of ionic species, particularly alkali metal ions, alkaline earth metal ions, heavy metal ions, and halogen ions contained by a known purification method.
  • the ionic species in the dispersant is greatly affected by the dispersion stability, touch resistance, oxidation resistance, electrical properties (conductive properties, insulation properties), aging stability, heat resistance, low humidity, and weather resistance of the dispersion.
  • it is desirable that the content of the ions is less than 10 ppm in the dispersant.
  • the content of the dispersoid particles suitably used in the present invention in the dispersion medium is not particularly limited as long as it can be uniformly dispersed in the non-aqueous dispersion medium, and varies depending on the application.
  • the content is preferably in the range of 0.5 to 70% by mass.
  • the average particle diameter of the dispersoid particles is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 100 nm. Further, the preferred use condition of the dispersant of the present invention is preferably in the range of 1 to 300% by weight with respect to the dispersoid particles.
  • the dispersion composition of the present invention can be prepared using known stirring means, homogenizing means, and dispersing means.
  • dispersers that can be used include roll mills such as two rolls and three rolls, ball mills such as ball mills and vibration ball mills, paint shakers, continuous disk type bead mills, bead mills such as continuous annular type bead mills, sand mills, and jets. Mill etc. are mentioned.
  • the dispersion treatment can be performed in an ultrasonic wave generation bath.
  • the dispersant of the present invention not only exhibits an excellent dispersion stabilization effect compared to known techniques for the dispersion stabilization of dispersoid particles in a non-aqueous dispersion medium, but also disperses the dispersoid particles as a medium. It can be used as a protective agent for taking out from inside stably.
  • Functions of the protective agent for stably taking out the dispersoid particles from the medium include suppression of aggregation of the generated particles, suppression of adsorption to the container wall surface and prevention of contamination, provision of easy redispersibility, oxidation of metal particles, prevention of particle surface Examples include surface modification, prevention of functional surface deterioration, solvent replacement and shock mitigation during polarity change, powder flowability improvement, and powder solidification prevention.
  • the dispersant of the present invention is superior to the known protective agents in terms of the above functions, and is more suitable than the known protective agents by optimally selecting the addition form of alkylene oxide and the addition molar amount thereof, the type of hydrophobic group, the linking group, and the like. A desired dispersoid can be dispersed and stabilized in a wide range of dispersion media.
  • Coating composition containing the dispersion composition of the present invention using a resin as a non-aqueous dispersion medium or coating composition containing a mixture of the dispersion composition of the present invention and a resin using a solvent as a non-aqueous dispersion medium As a base material on which the coating is applied, for example, glass, resin film, glass composite, ceramics, metal / steel plate and the like can be used.
  • Dispersant 1 (R: isodecyl group, AO: ethylene oxide, n: 10, X: CH 2 ).
  • Dispersant 9 (R: isobutyl group, AO: ethylene oxide, n: 20, X) by reacting 954 g (1 mol) of isobutyl alcohol ethylene oxide 20 mol adduct and 156 g (1 mol) of suberic acid anhydride at 120 ° C. for 2 hours. : CO (CH 2 ) 6 ) was obtained.
  • Dispersant 14 (R: isobutyl group, AO: ethylene oxide, n: 20, by reacting 954 g (1 mol) of isobutyl alcohol ethylene oxide 20 mol adduct and 192 g (1 mol) of trimellitic anhydride at 120 ° C. for 2 hours.
  • X COC 6 H 3 ).
  • Example 1 The dispersion of the present invention comprising a compound represented by the formula (1) containing a hydrophobic group (R), an oxyalkylene group (-(AO) n-) and a linking group (X) having the composition shown in Table 1 below.
  • Formula (1) containing 1.5 parts of the agent (in terms of solid content) or a hydrophobic group (R) having the composition shown in Table 2 below, an oxyalkylene group (— (AO) n—), and a linking group (X) ) Is dissolved in 68.5 parts of a solvent (isopropanol or diethylene glycol monobutyl ether acetate) as a dispersion medium, and further dispersed as a dispersoid.
  • a solvent isopropanol or diethylene glycol monobutyl ether acetate
  • a refinement process was carried out for 24 hours with a ball mill to 30 parts of magnesium oxide (MgO) and 100 milliliters of zirconia balls having a diameter of 10 mm.
  • MgO magnesium oxide
  • the obtained treatment liquid was transferred to a transparent container, and the dispersibility of the treatment liquid in the container was evaluated by visually observing the treatment liquid based on the following criteria.
  • the results are shown in Tables 1 and 2.
  • Most of the dispersoid is dispersed in the liquid, but a slight amount of sediment is observed at the bottom of the container.
  • X Dispersoids are observed in the liquid, or the liquid is cloudy.
  • Example 2 The dispersion of the present invention comprising a compound represented by the formula (1) containing a hydrophobic group (R), an oxyalkylene group (-(AO) n-) and a linking group (R) having the composition shown in Table 3 below.
  • a predetermined amount of the agent (numbers shown at the left end of Table 3, 1, 2, 3, 4, 7, 10, 12, 13) or a hydrophobic group (R) having the composition shown in Table 3 below, and an oxyalkylene group Comparative dispersants (Comparative Examples 1, 2, 3, 5, 11 shown in Table 3) comprising (-(AO) n-) and a compound represented by formula (1) containing a linking group (R) Is dissolved in a predetermined amount of methyl ethyl ketone as a dispersion medium, and 5 parts of zirconium oxide (ZrO2) as a dispersoid is further added to the product name Ultra Apex Mill UAM-005 (by Kotobuki Kogyo Co., Ltd.).
  • the particle diameter of zirconium oxide immediately after the refinement treatment was measured using Microtrac UPA MODEL 9230.
  • the compounding quantity of the methyl ethyl ketone with respect to a dispersing agent is 94.5 parts, 94.75 parts, 94.75 parts of methyl ethyl ketone with respect to 0.5 parts, 0.25 parts, 0.15 parts, and 0.05 parts of dispersing agents, respectively. 85 parts and 94.95 parts.
  • Table 3 shows the visual evaluation of the dispersibility and dispersion stability and the particle diameter measurement results of zirconium oxide.
  • the dispersion of the comparative example which consists of the dispersing agent of this invention which consists of a compound shown by the formula (1) which has a composition shown in the following Table 3, or the compound shown by the formula (1) which has a composition shown in the following Table 3 70 parts of a dispersion in which the ratio of the agent, methyl ethyl ketone as the dispersion medium, and zirconium oxide as the dispersoid is 0.25 parts to 94.75 parts to 5 parts, is made of acrylic resin (trade name, manufactured by Mitsubishi Rayon Co., Ltd.).
  • a dispersion obtained by mixing 70 parts of methyl ethyl ketone solution in which 25 parts of ACRYPET VH) was dissolved was used as a trade name Ultra Apex Mill UAM-005 (50 ⁇ m diameter zirconia beads manufactured by Kotobuki Kogyo Co., Ltd.). Second) for 2 hours. As a result, the obtained treatment liquid was transferred to a transparent container, and the dispersibility of the treatment liquid in the container was evaluated by visually observing the treatment liquid according to the above criteria. The results are shown in Table 3.
  • Example 3 The dispersion of the present invention comprising a compound represented by the formula (1) containing a hydrophobic group (R), an oxyalkylene group (— (AO) n—), and a linking group (R) having the composition shown in Table 4 below.
  • the obtained treatment liquid is transferred to a transparent container, and the treatment liquid is dispersed with respect to the dispersibility of the treatment liquid in the container immediately after the miniaturization treatment and the dispersion stability of the treatment liquid in the container after 24 hours.
  • evaluation was performed based on the same as above. The results are shown in Table 4.
  • the dispersion of the comparative example which consists of the dispersing agent of this invention which consists of a compound shown by the formula (1) which has a composition shown in the following Table 4, or the compound shown by the formula (1) which has a composition shown in the following Table 4 Dispersion 10 in which the ratio of the agent, diethylene glycol monobutyl ether acetate as a dispersion medium, and multi-wall carbon nanotubes (trade name VGCF-X, manufactured by Showa Denko KK) as a dispersoid is 1 part to 70 parts to 1 part 30 parts of diethylene glycol monobutyl ether acetate was added to the part, and refinement treatment was carried out for 1 hour using the paint shaker.
  • the dispersion stability of the treatment liquid after dilution with diethylene glycol monobutyl ether acetate was defined as dilution stability, and this dilution stability was evaluated on the same basis as the dispersibility. The results are shown in Table 4.
  • the dispersion of the comparative example which consists of the dispersing agent of this invention which consists of a compound shown by the formula (1) which has a composition shown in the following Table 4, or the compound shown by the formula (1) which has a composition shown in the following Table 4 The above-mentioned paint shaker was used for 12 hours of refinement for the ratio of the agent, diethylene glycol monobutyl ether acetate as the dispersion medium, and multi-wall carbon nanotubes as the dispersoid to 1 part to 70 parts to 1 part.
  • a dispersion obtained by mixing 70 parts of the dispersion obtained above with 70 parts of a methyl ethyl ketone solution in which 25 parts of acrylic resin (trade name Acrypet VH manufactured by Mitsubishi Rayon Co., Ltd.) was dissolved was prepared on a clean glass plate having a thickness of 10 mm. Then, it was dried at 120 ° C. for 1 hour with a dryer to obtain a coating film. Next, a paper on which the alphabet printed at 12 points is placed under the glass plate, and the transparency of the coating film obtained on the glass plate, whether the alphabet can be distinguished over the coating film, Evaluation was based on the same criteria. The results are shown in Table 4.
  • Example 4 Preparation of Zirconium Oxide Acrylate Monomer Dispersion (1) >> Hydrophobic groups (R) having the composition shown in Table 5 below and oxyalkylene mixed with 100 parts of zirconium oxide powder (trade name PCS manufactured by NIPPON DENKO CO., LTD., Having a primary particle diameter of 30 nm) and 400 parts of methyl ethyl ketone.
  • R Hydrophobic groups
  • the dispersant of the present invention comprising a compound represented by the formula (1) containing a group (— (AO) n—) and a linking group (X) (numbers shown at the left end of Table 5 are (1) -1 to ( 1) -6))
  • Formula (1) containing 10 parts or a hydrophobic group (R) having the composition shown in Table 5 below, an oxyalkylene group (— (AO) n—), and a linking group (X)
  • R hydrophobic group having the composition shown in Table 5 below, an oxyalkylene group (— (AO) n—)
  • a linking group (X) A product name Ultra Apex manufactured by Kotobuki Kogyo Co., Ltd., to which 10 parts of a dispersant of the comparative example ((1) -Comparative Example 1, (1) -Comparative Example 1 ′ shown in Table 5) was added.
  • Mill UAM-005 (using zirconia beads with a diameter of 50 ⁇ m, peripheral speed 10 m / s In was performed for 4 hours pulverizing treatment, to prepare a zirconium oxide dispersion.
  • 10 parts of phenoxyethyl acrylate (trade name New Frontier PHE manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and pentaerythritol triacrylate (trade name New Frontier PET-made by Daiichi Kogyo Seiyaku Co., Ltd.) 3)
  • the solvent methyl ethyl ketone was removed under reduced pressure using a rotary evaporator to obtain an acrylate monomer dispersion (1) of zirconium oxide.
  • Viscosity Measurement The viscosity of the acrylate monomer dispersion of zirconium oxide was measured at 25 ° C. using an E-type viscometer (trade name RE-80R manufactured by Toki Sangyo Co., Ltd.). The results are shown in Table 5.
  • ⁇ Preparation of photopolymerized cured film of zirconium oxide One part of a photopolymerization initiator (IGACURE184) was added to and mixed with 100 parts of the acrylate monomer dispersion (1) or (2) of zirconium oxide to obtain a zirconium oxide paste.
  • the zirconium oxide paste was applied on a polyethylene terephthalate film with an applicator (YA type manufactured by Kodaira Seisakusho Co., Ltd.) with a film thickness of about 50 ⁇ m, and then with a high pressure mercury lamp at a strength of 80 W / cm, about 200 mJ / cm 2.
  • a photopolymerized cured film of an acrylate monomer dispersion of zirconium oxide was obtained by irradiating with ultraviolet rays having the energy of 1.
  • the dispersion of the present invention has excellent dispersibility (transparency of appearance) and a high refractive index
  • the photopolymerized cured film of the dispersion of the present invention has excellent transparency and a high refractive index. It can be seen that it has good pencil hardness.
  • the dispersions of the comparative examples were agglomerated, so viscosity and refraction The rate could not be measured and there was turbidity.
  • the photopolymerization cured film of the dispersion of the comparative example was turbid, and the refractive index and pencil hardness could not be measured.
  • EO represents ethylene oxide
  • PO represents propylene oxide
  • the refractive index of the dispersion composed of the dispersant of the comparative example could not be measured. Further, the refractive index and pencil hardness of the photopolymerized cured film of the dispersion composed of the dispersant of Comparative Example could not be measured.
  • the dispersion composition of the present invention includes a hybrid material, a surface protective agent, a conductive paste, a conductive ink, a sensor, a precision analysis element, an optical memory, a liquid crystal display element, a nanomagnet, a heat transfer medium, a high-performance catalyst for a fuel cell, Organic solar cells, nano glass devices, abrasives, drug carriers, environmental catalysts, paints, printing inks, inkjet inks, color filter resists, writing instrument inks, optical thin films, adhesives, antireflection films, hard coat films, etc.
  • the dispersant of the present invention stabilizes dispersion of the isotropic material and / or anisotropic material derived from the nano-sized inorganic or organic material, which is the main component in the product and its production process, in a non-aqueous dispersion medium. Therefore, it is effective to obtain desired product characteristics, processing characteristics, quality stabilization, and productivity improvement by suppressing dispersoid aggregation in the dispersion medium and achieving long-term dispersion stabilization.

Abstract

Provided is a dispersant for non-aqueous dispersion media that can be used for a broad range of substances to be dispersed and which can exhibit excellent dispersion stability with small amounts added. The dispersant for non-aqueous dispersion media comprises a compound represented by Formula (1). R in Formula (1) represents a C1 to C24 alkyl group and/or alkenyl group that comprises an alkyl group and/or alkenyl group with a branched chain. AO in Formula (1) represents a C1 to C4 oxyalkylene group. n represents the mean number of moles of alkylene oxide added and is in the range of 1 to 30. X in Formula (1) is a connecting group comprising carbon atoms, hydrogen atoms and/or oxygen atoms.

Description

分散剤および分散体組成物Dispersant and dispersion composition
 本発明は、分散剤及びその分散剤を用いてなる分散体組成物に関する。 The present invention relates to a dispersant and a dispersion composition using the dispersant.
 無機物由来或いは有機物由来の等方性材料及び/又は異方性材料は、ハイブリッド材料、表面保護剤、導電ペースト、導電性インク、センサー、精密分析素子、光メモリ、液晶表示素子、ナノ磁石、熱伝媒体、燃料電池用高機能触媒、有機太陽電池、ナノガラスデバイス、研磨剤、ドラッグキャリヤー、環境触媒、塗料、印刷インキ、インクジェット用インキ、カラーフィルター用レジスト、筆記具用インキ等の用途分野で主体材料として使用されている。この際、前記無機物由来或いは有機物由来の等方性材料及び/又は異方性材料は水性分散媒や非水性分散媒中で微小粒子として分散体を調製して利用することで、効率よく加工特性、製品特性および素材物性を向上し、品質安定化や製造時の歩留向上に寄与する物質として産業上利用されている。 Isotropic materials and / or anisotropic materials derived from inorganic or organic materials include hybrid materials, surface protective agents, conductive pastes, conductive inks, sensors, precision analysis elements, optical memories, liquid crystal display elements, nanomagnets, heat transfer materials. As a main material in application fields such as media, high-performance catalysts for fuel cells, organic solar cells, nano glass devices, abrasives, drug carriers, environmental catalysts, paints, printing inks, inkjet inks, resists for color filters, inks for writing instruments, etc. in use. In this case, the isotropic material and / or anisotropic material derived from the inorganic or organic material can be processed efficiently by preparing a dispersion as fine particles in an aqueous dispersion medium or non-aqueous dispersion medium. It is used industrially as a substance that improves product characteristics and material properties, contributes to quality stabilization and yield improvement during production.
 一方で分散質の素材変更や粒子サイズの微小化や形状制御を指向することで分散質の安定分散化が難しくなり、分散質が分散媒中で短時間で凝集を生じるという問題点がある。分散質の凝集は分散体の製造において、生産性低下、加工特性低下、ハンドリング性低下および歩留低下を招くに留まらず、最終製品の製品特性、素材物性および品質の低下を引き起こす。その他、外観上でも透明性、光沢、着色力の低下、色分かれ及びクラック発生など好ましくない現象を生じることが知られている。このような分散質の凝集を抑制し、分散安定化を達成するために分散剤が使用される。 On the other hand, there is a problem that stable dispersion of the dispersoid becomes difficult by changing the material of the dispersoid, reducing the particle size, and controlling the shape, and the dispersoid is agglomerated in the dispersion medium in a short time. Agglomeration of dispersoids not only causes a decrease in productivity, processing characteristics, handling characteristics, and yield in the production of the dispersion, but also causes deterioration in product characteristics, material properties and quality of the final product. In addition, it is known that undesired phenomena such as transparency, gloss, reduction in coloring power, color separation, and generation of cracks also occur in appearance. A dispersant is used to suppress such aggregation of the dispersoid and achieve dispersion stabilization.
 既提案の低分子量の分散剤として、カルボキシル基を有する有機化合物では、例えば、ギ酸、酢酸、プロピオン酸、ブタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、 パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸などの炭素数1~20の飽和、不飽和のカルボン酸類の他、ヒドロキシカルボン酸類、炭素数6~34の脂環族、芳香族カルボン酸類などがある。アルケニルコハク酸無水物類では、オクテニルコハク酸無水物、ドデセニルコハク酸無水物、ヘキサデセニルコハク酸無水物などがある。チオール基を有する有機化合物では、例えば、メルカプトエタノール、 メルカプト-2-プロパノール、1-メルカプト-2、3-プロパンジオール、3-メルカプトプロピルトリメトキシシラン、メルカプトコハク酸、ヘキサンチオール、ペンタンジチオール、ドデカンチオール、ウンデカンチオール、デカンチオールなどのアルカンチオールがある。フェノール環を有する有機化合物では、例えばトリフェニルホスフィン、トリブチルホスフィン、 トリオクチルホスフィン、トリブチルホスフィンなどがある。アミノ基を有する有機化合物では、例えば、プロピルアミン、ブチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ドデシルアミン、ヘキサデシルアミン、オレイルアミンなどがある。また、高分子量の分散剤としては、主に顔料などの分散剤として開発されたカルボキシル基、アミノ基、ヒドロキシル基、エステル結合、アミド結合、芳香環、複素環などの骨格を持つ高分子型分散剤が本用途にも転用されており、ビックケミー社(Byk Chemie社)製のDISPERBYKシリーズ、エフカアディティブズ社(EFKA Additives社)製のCiba EFKAシリーズ、ルブリツォル社(Lubrizol社)製のSolsperseシリーズ、楠本化成社製のディスパロンシリーズなどが市販されている。 As an organic compound having a carboxyl group as the proposed low molecular weight dispersant, for example, formic acid, acetic acid, propionic acid, butanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, lauric acid In addition to saturated and unsaturated carboxylic acids having 1 to 20 carbon atoms such as myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid, hydroxycarboxylic acids, alicyclic groups having 6 to 34 carbon atoms, There are aromatic carboxylic acids. Examples of alkenyl succinic anhydrides include octenyl succinic anhydride, dodecenyl succinic anhydride, hexadecenyl succinic anhydride, and the like. Examples of organic compounds having a thiol group include mercaptoethanol, mercapto-2-propanol, 1-mercapto-2, 3-propanediol, 3-mercaptopropyltrimethoxysilane, mercaptosuccinic acid, hexanethiol, pentanedithiol, and dodecanethiol. And alkanethiols such as undecanethiol and decanethiol. Examples of the organic compound having a phenol ring include triphenylphosphine, tributylphosphine, trioctylphosphine, and tributylphosphine. Examples of the organic compound having an amino group include propylamine, butylamine, hexylamine, heptylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, dodecylamine, hexadecylamine, and oleylamine. In addition, as a high molecular weight dispersant, a polymer type dispersion having a skeleton such as a carboxyl group, an amino group, a hydroxyl group, an ester bond, an amide bond, an aromatic ring, and a heterocyclic ring, which was mainly developed as a dispersant for pigments and the like. The agent has also been diverted to this application, DISPERBYK series by BYK Chemie (Byk Chemie), Ciba EFKA series, Lubrizol (Lublizol), Solspse by Fuka Additives (EFKA Additives) The Dispalon series manufactured by Enomoto Kasei is available on the market.
 その他、既存の界面活性剤の分散剤としての利用も提案されており、陰イオン界面活性剤としては、例えば、高級脂肪酸塩、アルキルスルホン酸塩、アルファオレフィンスルホン酸塩、アルカンスルホン酸塩、アルキルベンゼンスルホン酸塩、スルホコハク酸エステル塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、アルキルリン酸エステル塩、アルキルエーテルリン酸エステル塩、アルキルエーテルカルボン酸塩、アルファスルホ脂肪酸メチルエステル塩、メチルタウリン酸塩などがある。非イオン界面活性剤としては、例えば、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、しょ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、脂肪酸アルカノールアミド、アルキルグルコシドなどがある。両性界面活性剤としては、例えば、アルキルベタイン、脂肪酸アミドプロピルベタイン、アルキルアミンオキシドなどがある。陽イオン界面活性剤としては、例えば、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、アルキルピリジニウム塩などがある。その他、フッ素系界面活性剤やセルロース誘導体、ポリカルボン酸塩、ポリスチレンスルホン酸塩などの高分子界面活性剤がある。 In addition, the use of existing surfactants as dispersants has also been proposed. Examples of anionic surfactants include higher fatty acid salts, alkyl sulfonates, alpha olefin sulfonates, alkane sulfonates, and alkylbenzenes. Sulfonates, sulfosuccinates, alkyl sulfates, alkyl ether sulfates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha sulfo fatty acid methyl esters, methyl taurates and so on. Examples of the nonionic surfactant include glycerin fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, and polyoxyethylene. Examples include fatty acid esters, fatty acid alkanolamides, and alkyl glucosides. Examples of amphoteric surfactants include alkyl betaines, fatty acid amidopropyl betaines, and alkylamine oxides. Examples of the cationic surfactant include alkyl trimethyl ammonium salt, dialkyl dimethyl ammonium salt, alkyl dimethyl benzyl ammonium salt, and alkyl pyridinium salt. In addition, there are polymer surfactants such as fluorine-based surfactants, cellulose derivatives, polycarboxylates, and polystyrene sulfonates.
 上記の既存分散剤を用いて分散体の凝集を抑制して安定な分散体組成物を得るための検討が行われているが、分散媒、分散質の多様化、分散質の粒子サイズの微小化、形状の多様化、最終製品の高品質化、生産性向上、加工特性の高度要求などの点で、既提案の分散剤では要求特性を十分に満足するには至っていない。 Studies have been made to obtain a stable dispersion composition by suppressing the aggregation of the dispersion using the above existing dispersant, but the dispersion medium, diversification of the dispersoid, and the particle size of the dispersoid are very small. The proposed dispersants have not yet fully satisfied the required properties in terms of production, diversification of shapes, higher quality of the final product, improved productivity, and advanced processing characteristics.
 例えば、分散媒が水である場合には分散剤の疎水性相互作用に基づく界面吸着作用やイオン性基による電気的吸着作用や芳香環由来のπ電子相互作用、更に粒子間においては、電気二重層形成による粒子間の静電反発作用の利用、及び立体障壁形成による分散安定化作用、また、安定化剤として保護コロイド剤や増粘剤の添加も効果的であり、分散安定化および凝集抑制を達成し得る多様な方策を採用できる。 For example, when the dispersion medium is water, the interfacial adsorption action based on the hydrophobic interaction of the dispersant, the electroadsorption action due to the ionic group, the π-electron interaction derived from the aromatic ring, and between the particles, Use of electrostatic repulsion between particles by formation of multi-layers, dispersion stabilization by formation of steric barriers, and addition of protective colloids and thickeners as stabilizers are also effective, stabilizing dispersion and suppressing aggregation. A variety of measures that can achieve this can be adopted.
 一方、非水性分散媒中では疎水性相互作用、イオン性基による電気的界面吸着作用、静電反発作用の効果は極めて限定的であるために、分散剤の分散粒子への界面吸着は分散質粒子と分散剤の特定部位間の酸塩基相互作用に大きく依存することとなる。即ち、実際的には分散剤の選定は分散質の表面特性により個別最適化されることとなり、分散剤の用途は極めて限定化される状況にあり、また、合わせて分散媒に対する分散剤の親和性も使用する分散媒に合わせて個別に最適の分散剤を選択することが必要であるというのが実態である。 On the other hand, in non-aqueous dispersion media, the effects of hydrophobic interaction, electrical interface adsorption by ionic groups, and electrostatic repulsion are extremely limited. It depends greatly on the acid-base interaction between the specific sites of the particles and the dispersant. In other words, in practice, the selection of the dispersant is individually optimized depending on the surface characteristics of the dispersoid, and the use of the dispersant is extremely limited, and the affinity of the dispersant to the dispersion medium is also combined. In reality, it is necessary to select an optimum dispersant individually according to the dispersion medium to be used.
 前記の各種イオン性界面活性剤は、水系での分散剤として極めて有効であるが、非水系分散媒中で溶解し得ないものが多く、その適用範囲も極めて限定的である。 The various ionic surfactants described above are extremely effective as aqueous dispersants, but many of them cannot be dissolved in a non-aqueous dispersion medium, and their application range is extremely limited.
 また、分散質粒子の大きさがマイクロメーターサイズである場合には複数の吸着点による多点吸着採用や立体障壁の高密度且つ厚い保護層形成で分散系設計が可能であるため高分子量分散剤が好適に選択されるが、分散質粒子の大きさがナノメーターサイズやサブナノメーターサイズの場合には、分散質粒子の大きさと分散剤分子の大きさとの相違から高分子量分散剤による分散系設計は困難或いは限定的となる。即ち、分散質粒子の大きさに対して分子の大きさが著しく大きい高分子量分散剤を用いると、分散質粒子と分散剤の間や分散剤の分子と分散剤の分子の間での多点吸着や絡み合いや橋架けが生じて分散質粒子の凝集が促進されるため、分散安定化の点で本質的問題を抱えている。 In addition, when the size of the dispersoid particles is a micrometer size, it is possible to design a dispersion system by adopting multi-point adsorption by a plurality of adsorption points and forming a high density and thick protective layer of a three-dimensional barrier, so that a high molecular weight dispersant However, when the size of the dispersoid particles is nanometer size or sub-nanometer size, the dispersion system design with a high molecular weight dispersant is considered due to the difference between the size of the dispersoid particles and the size of the dispersant molecules. Can be difficult or limited. That is, when a high molecular weight dispersant having a remarkably large molecular size relative to the size of the dispersoid particles is used, there are many points between the dispersoid particles and the dispersant and between the dispersant molecule and the dispersant molecule. Adsorption, entanglement, and bridging occur, and aggregation of dispersoid particles is promoted, which has an essential problem in terms of dispersion stabilization.
 また更に、分散安定化を指向するために、分散質粒子と分散剤との間でより強い相互作用を利用して分散系の設計をするのが定法となるが、分散媒の置換や極性変更、分散体組成物の機械的および化学的安定性確保、分散質粒子の取り出し、成膜化(高光沢、低温且つ短時間での成膜性)に加えて、分散剤除去においては分散剤の界面からの易離脱性も要求性能として兼備することが求められ、これは最終製品の生産性向上、加工特性、品質安定化においては重要な因子となる。この点においても既存の分散剤は要求性能を十分に満足するものではない。 Furthermore, in order to direct dispersion stabilization, it is a regular method to design a dispersion system using stronger interaction between the dispersoid particles and the dispersant. In addition to ensuring the mechanical and chemical stability of the dispersion composition, taking out the dispersoid particles, and forming a film (high gloss, low temperature and short film-forming properties), in removing the dispersant, Easy separation from the interface is also required as a required performance, which is an important factor in improving the productivity of the final product, processing characteristics, and stabilizing the quality. In this respect as well, existing dispersants do not sufficiently satisfy the required performance.
 また、ナノメーターサイズの無機微粒子(粒子径1~100nm)或いは有機フィラーや顔料などを樹脂中に微分散した複合材料はポリマーナノコンポジットと呼ばれるが、ナノメーターサイズの粒子は凝集しやすく、樹脂に対する親和性が低いために樹脂中に均一に分散させるのは極めて困難である。ナノメーターサイズの粒子を樹脂中に均一に分散させるには、水性分散媒の利用は困難、或いは限定的であり、通常は非水性分散媒中に分散剤を用いてナノ粒子を均一に分散させた分散体を調製し、この分散体に樹脂を溶解させて混合するか、或いは樹脂を溶媒に溶解させた溶液状態のものと上記分散体とを混合し、溶解および分散させる方法が有効である。 A nanometer-sized inorganic fine particle (particle size 1 to 100 nm) or a composite material in which organic fillers or pigments are finely dispersed in a resin is called a polymer nanocomposite, but nanometer-size particles easily aggregate and Due to the low affinity, it is very difficult to disperse uniformly in the resin. In order to uniformly disperse nanometer-sized particles in a resin, it is difficult or limited to use an aqueous dispersion medium. Usually, a nanoparticle is uniformly dispersed in a non-aqueous dispersion medium using a dispersant. It is effective to prepare a dispersion, and dissolve and mix the resin in the dispersion, or mix and dissolve and disperse the dispersion in a solution in which the resin is dissolved in a solvent. .
 また、金属粒子、金属酸化物、顔料、各種フィラー類を分散媒や樹脂へ容易に再分散可能とするための前処理として、分散質粒子を表面修飾剤や表面保護剤で被覆するか又は分散質粒子に表面修飾剤等を含浸させて利用する技術が知られているが、先行技術では分散媒の種類や分散質の添加量に制限がある場合が多く、利用範囲が極めて限定的であり、この問題を解消し得る分散剤或いは表面修飾剤や表面保護剤は見出されていない。前記問題を解消し得る分散剤、即ち、分散媒の種類や分散質の添加量に制限を受けず、広範な素材に対して汎用性のある分散剤を見出し、当該分散剤を使用する非水性分散体や、当該分散剤を分散質の表面修飾剤或いは表面保護剤として用いて、当該分散剤で被覆されるか又は当該分散剤を含浸してなる粉状或いは粒状或いはペースト状の物質が得られたならば、それらは溶媒置換や極性変更、樹脂、樹脂溶液との混合の点で工業的利用価値は極めて大きい。 In addition, as a pretreatment for easily redispersing metal particles, metal oxides, pigments and various fillers in a dispersion medium or resin, the dispersoid particles are coated with a surface modifier or a surface protective agent or dispersed. Technology is known to impregnate the surface particles with a surface modifier, etc., but in the prior art, the type of dispersion medium and the amount of dispersoid added are often limited, and the range of use is extremely limited. No dispersant, surface modifier or surface protective agent has been found that can solve this problem. Dispersants that can solve the above problems, that is, without being limited by the type of dispersion medium and the amount of dispersoid added, find a dispersant that is versatile for a wide range of materials, and non-aqueous using the dispersant Using the dispersion or the dispersant as a surface modifier or surface protective agent for a dispersoid, a powdery, granular or pasty substance coated with or impregnated with the dispersant is obtained. If they are used, they are of great industrial utility in terms of solvent substitution, polarity change, mixing with resins and resin solutions.
 例えば、この種の先行技術として、特許文献1には、金属ナノ粒子(A)と、この金属ナノ粒子(A)を被覆する保護コロイド(B)とで構成された金属コロイド粒子であって、前記保護コロイド(B)が、カルボキシル基を有する有機化合物(B1)と、高分子分散剤(B2)とで構成されている金属コロイド粒子が開示されている。 For example, as this type of prior art, Patent Document 1 discloses metal colloidal particles composed of metal nanoparticles (A) and protective colloids (B) covering the metal nanoparticles (A), Metal colloidal particles in which the protective colloid (B) is composed of an organic compound (B1) having a carboxyl group and a polymer dispersant (B2) are disclosed.
特開2009-74171号公報JP 2009-74171 A
 特許文献1はカルボキシル基を有する分散剤が開示されている。この分散剤は分散媒が水である場合には有用であるが、非水性分散媒においは分散性が劣る。 Patent Document 1 discloses a dispersant having a carboxyl group. This dispersant is useful when the dispersion medium is water, but dispersibility is poor in a non-aqueous dispersion medium.
 本発明は従来の技術の有するこのような問題点に鑑みてなされたものであって、その目的は、広範囲の分散質に適用することが可能で、少量の添加で優れた分散安定性を発揮することができる非水性分散媒用分散剤を提供することにある。 The present invention has been made in view of such problems of the prior art, and its purpose is applicable to a wide range of dispersoids, and exhibits excellent dispersion stability with a small amount of addition. An object of the present invention is to provide a dispersant for a non-aqueous dispersion medium that can be used.
 また、本発明の目的は、その分散剤を用いてなる分散体組成物を提供することにある。 Another object of the present invention is to provide a dispersion composition using the dispersant.
 さらに、本発明の目的は、その分散剤で被覆されるか又はその分散剤を含浸してなる有機物粒子または無機物粒子を提供することにある。 Furthermore, an object of the present invention is to provide organic particles or inorganic particles coated with or impregnated with the dispersant.
 上記目的を達成するために、本発明の非水性分散媒用分散剤は下記式(1)で示される化合物からなる。 In order to achieve the above object, the dispersant for a non-aqueous dispersion medium of the present invention comprises a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ただし、式(1)の符号の意味は以下のとおりである。 
 Rは分岐鎖を有するアルキル基および/又はアルケニル基を含有する炭素数が1ないし24であるアルキル基および/又はアルケニル基を示す。 
 AOは炭素数が1ないし4のオキシアルキレン基を示し、nはアルキレンオキシドの平均付加モル数を示し、1ないし30の範囲である。 
 Xは炭素原子、水素原子及び/又は酸素原子からなる連結基である。 
 また、式(1)のXは炭素数が1ないし15のアルキレン基であることが好ましい。 
 また、式(1)のXは下記式(2)で示される物質であることが好ましい。
However, the meaning of the code | symbol of Formula (1) is as follows.
R represents an alkyl group and / or alkenyl group having 1 to 24 carbon atoms containing a branched alkyl group and / or alkenyl group.
AO represents an oxyalkylene group having 1 to 4 carbon atoms, n represents the average number of moles of alkylene oxide added and is in the range of 1 to 30.
X is a linking group consisting of a carbon atom, a hydrogen atom and / or an oxygen atom.
X in the formula (1) is preferably an alkylene group having 1 to 15 carbon atoms.
Further, X in the formula (1) is preferably a substance represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ただし、式(2)の符号の意味は以下のとおりである。 
 Yは炭素数が1ないし15のアルキレン基、ビニレン基、フェニレン基およびカルボキシル基含有フェニレン基の中から選択されるいずれかである。
 上記分散剤で被覆されるか又は上記分散剤を含浸してなる有機物粒子および/又は無機物粒子であるものが好ましい。
 上記分散剤を用いて有機物粒子または無機物粒子を非水性分散媒中に分散してなる分散体組成物であるものが好ましい。
 非水性分散媒として樹脂を用いた上記分散体組成物を含有するコーティング組成物を基材上に塗布した後、物理的または化学的に反応することにより得られる部材が好ましい。非水性分散媒として溶剤を用いた上記分散体組成物を樹脂と混合したものを含有するコーティング組成物を基材上に塗布した後、物理的または化学的に反応することにより得られる部材が好ましい。
However, the meanings of the symbols in the formula (2) are as follows.
Y is any one selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
Those which are organic particles and / or inorganic particles which are coated with the dispersant or impregnated with the dispersant are preferred.
What is a dispersion composition formed by dispersing organic particles or inorganic particles in a non-aqueous dispersion medium using the dispersant is preferred.
A member obtained by applying a coating composition containing the dispersion composition using a resin as a non-aqueous dispersion medium on a substrate and then reacting physically or chemically is preferable. A member obtained by physically or chemically reacting after coating a coating composition containing a mixture of the above dispersion composition using a solvent as a non-aqueous dispersion medium with a resin is preferable. .
 本発明によれば、広範囲の分散質に適用することが可能で、少量の添加で優れた分散安定性を発揮することができる非水性分散媒用分散剤を提供することができる。また、その分散剤を用いてなる分散体組成物およびその分散体組成物からなるフィルムを提供することができる。さらに、その分散剤で被覆されるか又はその分散剤を含浸してなる有機物粒子または無機物粒子を提供することができる。 According to the present invention, it is possible to provide a dispersant for a non-aqueous dispersion medium that can be applied to a wide range of dispersoids and can exhibit excellent dispersion stability with a small amount of addition. Moreover, the dispersion composition which uses the dispersing agent, and the film which consists of the dispersion composition can be provided. Furthermore, organic particles or inorganic particles that are coated with or impregnated with the dispersant can be provided.
 本発明の非水性分散媒用分散剤は以下の式(1)で示される化合物からなる。 The dispersant for non-aqueous dispersion medium of the present invention comprises a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本発明の非水性分散媒用分散剤は式(1)に記載する通り、アルキレンオキシド鎖を含む分散媒親和性部位とカルボキシル基からなる分散質親和性部位からなり、分散媒親和性部と分散質親和性部は連結基Xで連結される。
 ただし、式(1)の符号の意味は以下のとおりである。 
 Rは分岐鎖を有するアルキル基および/又はアルケニル基を含有する炭素数が1ないし24であるアルキル基および/又はアルケニル基を示す。 
 AOは炭素数が1ないし4のオキシアルキレン基を示し、nはアルキレンオキシドの平均付加モル数を示し、1ないし30の範囲である。 
 Xは炭素原子、水素原子及び/又は酸素原子からなる連結基である。
As described in the formula (1), the dispersant for a non-aqueous dispersion medium of the present invention is composed of a dispersion medium affinity part containing an alkylene oxide chain and a dispersoid affinity part consisting of a carboxyl group. The affinity parts are linked by a linking group X.
However, the meaning of the code | symbol of Formula (1) is as follows.
R represents an alkyl group and / or alkenyl group having 1 to 24 carbon atoms containing a branched alkyl group and / or alkenyl group.
AO represents an oxyalkylene group having 1 to 4 carbon atoms, n represents the average number of moles of alkylene oxide added and is in the range of 1 to 30.
X is a linking group consisting of a carbon atom, a hydrogen atom and / or an oxygen atom.
 以下、本発明の好ましい実施形態について、詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
 1.疎水基(R)について 
 本発明の分散剤に使用できる疎水基(R)について、Rはアルコール由来の炭化水素基であって、Rは炭素数1ないし24であり、分岐型のアルキル基及び/又はアルケニル基である。Rがアルキル基及び/又はアルケニル基の場合、使用できる原料アルコールの炭素数は単一であっても、異なる炭素数のアルコールの混合物であってもよい。また、その原料アルコールは合成由来であっても天然由来であってもよく、また、その化学構造は単一組成であっても複数の異性体からなる混合物であってもよい。使用できる原料アルコールは公知のものが選択できるが、具体例としては、合成由来のブタノール、イソブタノール、ペンタノール及び/又はその異性体、ヘキサノール及び/又はその異性体、へプタノール及び/又はその異性体、オクタノール及び/又はその異性体、3,5,5-トリメチル-1-ヘキサノールの他、プロピレン或いはブテン、又はその混合物から誘導される高級オレフィンを経てオキソ法によって製造されるイソノナノール、イソデカノール、イソウンデカノール、イソドデカノール、イソトリデカノール、シェルケミカルズ社製のネオドール23、25、45、サソール社製のSAFOL23、エクソン・モービル社製のEXXAL7、EXXAL8N、EXXAL9、EXXAL10、EXXAL11及びEXXAL13も好適に使用できる高級アルコールの一例である。更に天然由来のオクチルアルコール、デシルアルコール、ラウリルアルコール(1-ドデカノール)、ミリスチルアルコール(1-テトラデカノール)、セチルアルコール(1-ヘキサデカノール)、ステアリルアルコール(1-オクタデカノール)、オレイルアルコール(cis-9-オクタデセン-1-オール)なども使用できる高級アルコールの一例である。また、2-アルキル-1-アルカノール型の化学構造をもつゲルベアルコール(Guerbet Alcohol)類の単一組成、或いはその混合物なども好適に使用できる高級アルコールの一例であり、2-エチル-1-ヘキサノール、2-プロピル-1-ヘキサノール、2-ブチル-1-ヘキサノール、2-エチル-1-ヘプタノール、2-プロピル-1-ヘプタノール、2-エチル-1-オクタノール、2-ヘキシル-1-デカノール、2-ヘプチル-1-ウンデカノール、2-オクチル-1-ドデカノール、2-デシル-1-テトラデカノールの他、分岐アルコールから誘導されるイソステアリルアルコールなどがある。また、上記各種アルコールを2種以上配合して使用することも可能である。但し、本発明の分散剤では前記の如く、好適に選択される疎水基(R)はアルコール由来の炭化水素基であって、炭素数3~24であり、分岐型のアルキル基及び/又はアルケニル基の含有量が70重量%以上である場合、本発明の目的を達成する為に好適に使用できる。
1. About hydrophobic group (R)
Regarding the hydrophobic group (R) that can be used in the dispersant of the present invention, R is a hydrocarbon group derived from alcohol, and R is a C1-C24 group, and is a branched alkyl group and / or alkenyl group. When R is an alkyl group and / or an alkenyl group, the raw material alcohol that can be used may have a single carbon number or a mixture of alcohols having different carbon numbers. The raw material alcohol may be synthetically or naturally derived, and the chemical structure may be a single composition or a mixture of a plurality of isomers. As the raw material alcohol that can be used, known alcohols can be selected. Specific examples include butanol, isobutanol, pentanol and / or its isomer, hexanol and / or its isomer, heptanol and / or its isomer derived from synthesis. , Octanol and / or its isomer, 3,5,5-trimethyl-1-hexanol, isononanol, isodecanol, isoform produced by the oxo process via higher olefins derived from propylene or butene, or mixtures thereof Undecanol, isododecanol, isotridecanol, Neodol 23, 25, 45 manufactured by Shell Chemicals, SAFOL23 manufactured by Sasol, EXXAL7, EXXAL8N, EXXAL9, EXXAL10, EXXAL11 and EXXXA manufactured by Exxon Mobil 13 illustrates another example of a higher alcohol which can be suitably used. Furthermore, natural octyl alcohol, decyl alcohol, lauryl alcohol (1-dodecanol), myristyl alcohol (1-tetradecanol), cetyl alcohol (1-hexadecanol), stearyl alcohol (1-octadecanol), oleyl alcohol (Cis-9-octadecene-1-ol) and the like are also examples of higher alcohols that can be used. A single composition of Guerbet Alcohol having a 2-alkyl-1-alkanol type chemical structure, or a mixture thereof is also an example of a higher alcohol that can be suitably used. 2-ethyl-1-hexanol 2-propyl-1-hexanol, 2-butyl-1-hexanol, 2-ethyl-1-heptanol, 2-propyl-1-heptanol, 2-ethyl-1-octanol, 2-hexyl-1-decanol, 2 In addition to heptyl-1-undecanol, 2-octyl-1-dodecanol, 2-decyl-1-tetradecanol, there are isostearyl alcohols derived from branched alcohols. Moreover, it is also possible to mix | blend and use 2 or more types of said various alcohol. However, in the dispersant of the present invention, as described above, the hydrophobic group (R) that is suitably selected is an alcohol-derived hydrocarbon group having 3 to 24 carbon atoms, and a branched alkyl group and / or alkenyl group. When the content of the group is 70% by weight or more, it can be suitably used to achieve the object of the present invention.
 なお、疎水基(R)が水素或いは炭素数が1~2の炭化水素基である場合、或いは炭素数が25を超える場合、また、疎水基(R)の炭素数が3~24の範囲にある場合でも、直鎖型のアルキル基及び/又はアルケニル基の含有量が30重量%を超える場合には、非水性分散媒中で分散質を安定に分散させることができないか、又は使用できる分散媒の選択範囲が限定されたり、分散体の調製工程において異種の分散媒への置換や混合が生じることがある。その結果、分散体の安定性が著しく低下して直ちに沈降物を生じたり、経時安定性が著しく低下して最終製品の付加価値低下、生産性低下、加工特性低下および品質劣化などの問題を生じる。これらの問題を回避し、更に本発明の分散剤の作用を特に効果的なものにするためには、疎水基(R)は炭素数8~18の分岐型のアルキル基であることがより好ましい。 When the hydrophobic group (R) is hydrogen or a hydrocarbon group having 1 to 2 carbon atoms, or when the carbon number exceeds 25, the hydrophobic group (R) has a carbon number in the range of 3 to 24. Even in some cases, when the content of the linear alkyl group and / or alkenyl group exceeds 30% by weight, the dispersoid cannot be stably dispersed in the non-aqueous dispersion medium or can be used. The selection range of the medium may be limited, or substitution or mixing with a different type of dispersion medium may occur in the dispersion preparation process. As a result, the stability of the dispersion is significantly reduced, resulting in immediate sedimentation, and the stability over time is significantly reduced, resulting in problems such as a decrease in added value, productivity, processing characteristics, and quality deterioration of the final product. . In order to avoid these problems and make the action of the dispersant of the present invention particularly effective, the hydrophobic group (R) is more preferably a branched alkyl group having 8 to 18 carbon atoms. .
 2.オキシアルキレン基(AO)n
 本発明の分散剤に好適に選択されるアルキレンオキシド種について、式(1)においてAOは炭素数1ないし4のオキシアルキレン基を示し、具体的には炭素数2のアルキレンオキシドはエチレンオキシドである。炭素数3のアルキレンオキシドはプロピレンオキシドである。炭素数4のアルキレンオキシドは、テトラヒドロフラン或いはブチレンオキシドであるが、好ましくは、1,2-ブチレンオキシドまたは2,3-ブチレンオキシドである。本発明の分散剤においてオキシアルキレン鎖(-(AO)n-)は分散剤の分散媒親和性を調整する目的でアルキレンオキシドは単独重合鎖であっても、2種以上のアルキレンオキサイドのランダム重合鎖でもブロック重合鎖でもよく、また、その組み合わせであってもよい。式(1)のアルキレンオキシドの平均付加モル数を示すnは1ないし30の範囲であるが、3ないし20の範囲にあることが好ましい。
2. Oxyalkylene group (AO) n
For the alkylene oxide species suitably selected for the dispersant of the present invention, in formula (1), AO represents an oxyalkylene group having 1 to 4 carbon atoms, specifically, the alkylene oxide having 2 carbon atoms is ethylene oxide. The alkylene oxide having 3 carbon atoms is propylene oxide. The alkylene oxide having 4 carbon atoms is tetrahydrofuran or butylene oxide, and is preferably 1,2-butylene oxide or 2,3-butylene oxide. In the dispersant of the present invention, the oxyalkylene chain (-(AO) n-) is a random polymerization of two or more alkylene oxides even if the alkylene oxide is a homopolymer chain for the purpose of adjusting the dispersion medium affinity of the dispersant. It may be a chain, a block polymer chain, or a combination thereof. N which shows the average added mole number of the alkylene oxide of Formula (1) is in the range of 1 to 30, but is preferably in the range of 3 to 20.
 3.連結基(X)
 連結基(X)は炭素原子、水素原子、酸素原子からなる公知の構造から選択可能であるが、好ましくは飽和炭化水素基、不飽和炭化水素基、エーテル基、カルボニル基、エステル基からなり、脂環構造、芳香環構造を有していてもよく、また、繰り返し単位を有していてもよい。連結基Xに窒素原子及び/又は硫黄原子及び/又はリン原子などを含む場合は、カルボキシル基の分散質への親和効果を弱める作用があるために本発明の分散剤の構造因子としては適さない。
3. Linking group (X)
The linking group (X) can be selected from a known structure consisting of a carbon atom, a hydrogen atom, and an oxygen atom, preferably a saturated hydrocarbon group, an unsaturated hydrocarbon group, an ether group, a carbonyl group, or an ester group. It may have an alicyclic structure or an aromatic ring structure, and may have a repeating unit. When the linking group X contains a nitrogen atom and / or a sulfur atom and / or a phosphorus atom, the linking group X is not suitable as a structural factor of the dispersant of the present invention because it has an action of weakening the affinity effect of the carboxyl group on the dispersoid. .
 また、式(1)のXは炭素数が1ないし15のアルキレン基であることが好ましく、炭素数が1ないし8のアルキレン基であることがより好ましい。 Further, X in the formula (1) is preferably an alkylene group having 1 to 15 carbon atoms, and more preferably an alkylene group having 1 to 8 carbon atoms.
 また、式(1)のXは下記式(2)で示される物質であることが好ましい。 Further, X in the formula (1) is preferably a substance represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ただし、式(2)の符号の意味は以下のとおりである。 
 Yは炭素数が1ないし15のアルキレン基、ビニレン基、フェニレン基およびカルボキシル基含有フェニレン基の中から選択されるいずれかである。
However, the meanings of the symbols in the formula (2) are as follows.
Y is any one selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
 4.一層好ましい分散剤
 本発明においては、下記式(3)に記載の分散剤を一層好ましく使用することができる。
4). More preferable dispersant In the present invention, the dispersant described in the following formula (3) can be more preferably used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 但し、式(3)においてRは炭素数が8ないし18の分岐型のアルキル基が好適で、nはエチレンオキシドの平均付加モル数を示し、3ないし20の範囲が好適である。分散剤の組成をこの範囲に限定することで、分散体調製に使用できる非水性分散媒の選択範囲の拡大、異種の分散媒の混合、置換に対する適用性が向上する。このように、分散剤の組成範囲を限定することで、分散体の経時安定性に対して更に好適に作用し、その結果、最終製品の付加価値向上、生産性向上、加工特性向上および品質安定化などを達成できる。 However, in formula (3), R is preferably a branched alkyl group having 8 to 18 carbon atoms, and n is the average number of moles of ethylene oxide added, preferably in the range of 3 to 20. By limiting the composition of the dispersant to this range, the applicability to expansion of the selection range of non-aqueous dispersion media that can be used for dispersion preparation, mixing of different types of dispersion media, and substitution is improved. In this way, by limiting the composition range of the dispersant, it works more favorably with respect to the stability of the dispersion over time. Can be achieved.
 5.分散剤の製造方法
 本発明の分散剤は公知の方法で製造することができる。例えば、アルコール、アミン、チオールに公知の方法でアルキレンオキシドを付加した一般的な非イオン界面活性剤化合物を原料として、モノハロゲン化低級カルボン酸またはその塩を用い、塩基存在下でアルキレンオキシド末端の水酸基と反応させる方法、または、酸無水物を用いてアルキレンオキシド末端の水酸基との開環反応による方法により製造することができるが、これらの方法に限定されるものではない。
5. Dispersant Production Method The dispersant of the present invention can be produced by a known method. For example, using a general nonionic surfactant compound obtained by adding an alkylene oxide to an alcohol, amine, or thiol by a known method as a raw material, a monohalogenated lower carboxylic acid or a salt thereof is used. Although it can manufacture by the method of making it react with a hydroxyl group, or the method of ring-opening reaction with the hydroxyl group of the alkylene oxide terminal using an acid anhydride, it is not limited to these methods.
 6.分散質粒子
 本発明の分散剤により分散される分散質粒子は無機物由来粒子及び/又は有機物由来粒子から選択できる。例えば、無機物由来粒子としては、鉄、アルミニウム、クロム、ニッケル、コバルト、亜鉛、タングステン、インジウム、スズ、パラジウム、ジルコニウム、チタン、銅、銀、金、白金など、及びそれらの合金、又はそれらの混合物が使用できる。その際、前述の金属粒子を媒体中から安定に取り出す為に、アルカン酸類や脂肪酸類、ヒドロキシカルボン酸類、脂環族、芳香族カルボン酸類、アルケニルコハク酸無水物類、チオール類、フェノール誘導体類、アミン類、両親媒性ポリマー、高分子界面活性剤、低分子界面活性剤などの保護剤で被覆されていてもよい。その他、カオリン、クレー、タルク、マイカ、ベントナイト、ドロマイト、ケイ酸カルシウム、ケイ酸マグネシウム、アスベスト、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、硫酸アルミニウム、水酸化アルミニウム、水酸化鉄、ケイ酸アルミニウム、酸化ジルコニウム、酸化マグネシウム、酸化アルミニウム、酸化チタン、酸化鉄、酸化亜鉛、三酸化アンチモン、酸化インジウム、酸化インジウムスズ、炭化ケイ素、窒化ケイ素、窒化ホウ素、チタン酸バリウム、珪藻土、カーボンブラック、黒鉛、ロックウール、グラスウール、ガラス繊維、炭素繊維、カーボンナノファイバー、カーボンナノチューブ(シングルウォールナノチューブ 、ダブルウォールナノチューブ、マルチウォールナノチューブ )等がある。また、有機物由来粒子としては、アゾ系、ジアゾ系、縮合アゾ系、チオインジゴ系、インダンスロン系、キナクリドン系、アントラキノン系、ベンゾイミダゾロン系、ペリレン系、フタロシアニン系、アントラピリジン系、ジオキサジン系等の有機顔料、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ナイロン樹脂、ポリアミド樹脂、アラミド樹脂、アクリル樹脂、ビニロン樹脂、ウレタン樹脂、メラミン樹脂、ポリスチレン樹脂、ポリ乳酸、アセテート繊維、セルロース、ヘミセルロース、リグニン、キチン、キトサン、澱粉、ポリアセタール、アラミド樹脂、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリエーテルケトンポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスルホン、ポリフェニレンスルファイド、ポリイミド等がある。本発明の分散剤により分散される前記分散質粒子は結晶状であってもアモルファス状であってもよい。また、本発明の分散剤により分散される前記分散質粒子は等方性粒子であっても異方性粒子であってもよく、繊維状であってもよい。
6). Dispersoid particles The dispersoid particles dispersed by the dispersant of the present invention can be selected from inorganic particles and / or organic particles. For example, the inorganic substance-derived particles include iron, aluminum, chromium, nickel, cobalt, zinc, tungsten, indium, tin, palladium, zirconium, titanium, copper, silver, gold, platinum, and alloys thereof, or a mixture thereof. Can be used. At that time, in order to stably take out the aforementioned metal particles from the medium, alkanoic acids and fatty acids, hydroxycarboxylic acids, alicyclic, aromatic carboxylic acids, alkenyl succinic anhydrides, thiols, phenol derivatives, You may coat | cover with protective agents, such as amines, an amphiphilic polymer, a high molecular surfactant, and a low molecular surfactant. Others, kaolin, clay, talc, mica, bentonite, dolomite, calcium silicate, magnesium silicate, asbestos, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, aluminum sulfate, aluminum hydroxide, iron hydroxide, Aluminum silicate, zirconium oxide, magnesium oxide, aluminum oxide, titanium oxide, iron oxide, zinc oxide, antimony trioxide, indium oxide, indium tin oxide, silicon carbide, silicon nitride, boron nitride, barium titanate, diatomaceous earth, carbon black , Graphite, rock wool, glass wool, glass fiber, carbon fiber, carbon nanofiber, carbon nanotube (single wall nanotube, double wall nanotube, multiwall nanochu B) etc. In addition, as organic particles, azo, diazo, condensed azo, thioindigo, indanthrone, quinacridone, anthraquinone, benzimidazolone, perylene, phthalocyanine, anthrapyridine, dioxazine, etc. Organic pigment, polyethylene resin, polypropylene resin, polyester resin, nylon resin, polyamide resin, aramid resin, acrylic resin, vinylon resin, urethane resin, melamine resin, polystyrene resin, polylactic acid, acetate fiber, cellulose, hemicellulose, lignin, chitin , Chitosan, starch, polyacetal, aramid resin, polycarbonate, polyphenylene ether, polyether ether ketone, polyether ketone polybutylene terephthalate, polyethylene naphthalate, poly Chi naphthalate, polysulfone, polyphenylene sulfide, polyimides or the like. The dispersoid particles dispersed by the dispersant of the present invention may be crystalline or amorphous. Further, the dispersoid particles dispersed by the dispersant of the present invention may be isotropic particles, anisotropic particles, or may be fibrous.
 本発明で被分散質となる前記分散質粒子は、公知の方法で得たものが使用できる。微粒子の調製方法としては、粗大粒子を機械的に解砕、微細化していくトップダウン方式と、いくつかの単位粒子を生成させ、それが凝集したクラスター状態を経由して粒子が形成されるボトムアップ方式の2通りの方式があるが、いずれの方法で調製されたものであっても好適に使用できる。また、それらは湿式法、乾式法のいずれの方法によるものであってもよい。また、ボトムアップ方式には、物理的方法と化学的方法があるが、いずれの方法によるものであってもよい。本発明の分散剤は粗大粒子を機械的に解砕、微細化していくトップダウン方式の工程中で使用してもよく、いくつかの単位粒子を生成させ、それが凝集したクラスター状態を経由して粒子が形成されるボトムアップ方式の工程中で使用してもよく、或いは、事前に前記方法で微粒子を調製後、該分散質粒子を媒体中から安定に取り出すために表面修飾剤や表面保護剤と称する公知の保護剤で被覆或いは含浸させて取り出された粒子を使用することもできる。保護剤としては前記の公知分散剤で代用することができる。 As the dispersoid particles to be dispersed in the present invention, those obtained by a known method can be used. As a method for preparing fine particles, a top-down method in which coarse particles are mechanically pulverized and refined, and a bottom in which particles are formed through a cluster state in which several unit particles are generated and aggregated. Although there are two types of up systems, any one prepared by any method can be suitably used. Further, they may be either a wet method or a dry method. The bottom-up method includes a physical method and a chemical method, and any method may be used. The dispersant of the present invention may be used in a top-down process in which coarse particles are mechanically pulverized and refined to form a number of unit particles that pass through the agglomerated cluster state. May be used in a bottom-up process in which particles are formed, or after preparing fine particles in advance by the above-described method, a surface modifier or surface protection is used to stably remove the dispersoid particles from the medium. It is also possible to use particles taken out after being coated or impregnated with a known protective agent called an agent. As the protective agent, the above-mentioned known dispersants can be substituted.
 ボトムアップ方式をより具体的に説明するために、前記分散質粒子の内、金属ナノ粒子の調製法を例示する。ボトムアップ方式の内、物理的方法の代表例としてはバルク金属を不活性ガス中で蒸発させ、ガスとの衝突により冷却凝縮させてナノ粒子を生成するガス中蒸発法がある。また、化学的方法には、液相中で保護剤の存在下で金属イオンを還元し、生成した0価の金属をナノサイズで安定化させる液相還元法や金属錯体の熱分解法などがある。液相還元法としては、化学的還元法、電気化学的還元法、光還元法、または化学的還元法と光照射法を組み合わせた方法などを利用することができる。 In order to more specifically explain the bottom-up method, a method for preparing metal nanoparticles among the dispersoid particles will be exemplified. Among the bottom-up methods, a representative example of a physical method is an in-gas evaporation method in which bulk metal is evaporated in an inert gas and cooled and condensed by collision with the gas to generate nanoparticles. Chemical methods include a liquid phase reduction method in which metal ions are reduced in the liquid phase in the presence of a protective agent, and the generated zero-valent metal is stabilized at the nanosize, and a metal complex thermal decomposition method. is there. As the liquid phase reduction method, a chemical reduction method, an electrochemical reduction method, a photoreduction method, a method combining a chemical reduction method and a light irradiation method, or the like can be used.
 また、本発明で好適に使用できる分散質粒子は、前記の如く、トップダウン方式、ボトムアップ方式のいずれも手法で得たものであってもよく、それらは水系、非水系、気相中のいずれの環境下で調製されたものであってもよい。 Further, as described above, the dispersoid particles that can be suitably used in the present invention may be those obtained by any of the top-down method and the bottom-up method, and they are aqueous, non-aqueous, and in the gas phase. It may be prepared in any environment.
 7.分散媒
 本発明で使用できる分散媒としては、トルエン、キシレン、芳香族炭化水素系溶剤、n-ヘキサン、シクロヘキサン、n-ヘプタンなどの炭化水素系溶剤、塩化メチレン、クロロホルム、ジクロロエタンなどのハロゲン化炭化水素系溶剤、エチルエーテル、イソプロピルエーテル、ジオキサン、テトラヒドロフラン、ジブチルエーテル、ブチルエチルエーテル、メチル-t-ブチルエーテル、ターピニルメチルエーテル、ジヒドロターピニルメチルエーテル、ジグライム 1,3-ジオキソランなどのエーテル系溶媒、アセトン、アセトフェノン、メチルエチルケトン、メチルプロピルケトン、ジエチルケトン、メチルn-ブチルケトン、メチルイソブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、アセトニルアセトン、イソホロン、シクロヘキサノン、メチルシクロヘキサノン、2-(1-シクロヘキセニル)シクロヘキサノンメチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶媒、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸ペンチル、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸(イソ)アミル、酢酸シクロヘキシル、乳酸エチル、酢酸3-メトキシブチル、酢酸sec-ヘキシル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、プロピオン酸メチル、プロピオン酸エチル、モノクロロ酢酸メチル、モノクロロ酢酸エチル、モノクロロ酢酸ブチル、アセト酢酸メチル、アセト酢酸エチル、プロピオン酸ブチル、プロピオン酸イソアミル、γ-ブチロラクトンなどのエステル系溶剤、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-プロピルエーテル、プロピレングリコールモノn-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノn-プロピルエーテル、ジプロピレングリコールモノn-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノn-プロピルエーテル、トリエチレングリコールモノn-ブチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノn-プロピルエーテル、トリプロピレングリコールモノn-ブチルエーテルなどのグリコールエーテル系溶剤、及び、それらモノエーテル類の酢酸エステル系溶剤、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルイソブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテルなどのジアルキルエーテル系溶剤が挙げられる。メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、ヘプタノール、n-アミルアルコール、sec-アミルアルコール、n-ヘキシルアルコール、テトラヒドロフルフリルアルコール、フルフリルアルコール、アリルアルコール、エチレンクロロヒドリン、オクチルドデカノール、1-エチル-1-プロパノール、2-メチル-1-ブタノール、イソアミルアルコール、t-アミルアルコール、sec-イソアミルアルコール、ネオアミルアルコール、ヘキシルアルコール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、ヘプチルアルコール、n-オクチルアルコール、2-エチルヘキシルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ラウリルアルコール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール、α-テルピネオール、ターピネオールC、L-α-ターピネオール、ジヒドロターピネオール、ターピニルオキシエタノール、ジヒドロターピニルオキシエタノール、日本テルペン化学株式会社製のテルソルブMTPH、テルソルブDTO-210、テルソルブTHA-90、テルソルブTHA-70や、シクロヘキサノール、3-メトキシブタノール、ジアセトンアルコール、1,4-ブタンジオール、オクタンジオール等や、日産化学工業株式会社製のファインオキソコール140N、ファインオキソコール1600、ファインオキソコール180、ファインオキソコール180N、ファインオキソコール2000などのアルコール系溶媒、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブチレングリコール、へキシレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどのグリコール系溶剤が挙げられる。その他、ジメチルアセトアミド、ジメチルホルムアミドなどのアミド系溶媒などが挙げられる。また、分散媒として反応性基を有する(メタ)アクリル酸、(メタ)アクリル酸エステル類、酢酸ビニルなどのビニル系単量体、ビニルエーテル誘導体類、ポリアリル誘導体などのエチレン系不飽和単量体類も使用することができる。その他、通常の塗料用や粘接着用、成型用に利用されている各種樹脂類、オリゴマー類、単量体類も特に制限無く使用できる。具体的には、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリピニルアルコールなどが挙げられる。なお、前記分散媒は単独または2種以上を混合して適宜使用することができる。なお、本発明の分散剤は非水性環境下で微粒子分散体を提供することを目的としているが、上記分散媒に対して意図的或いは偶発的を問わず、微粒子分散体の製造工程中で、或いは目的用途の都合で、或いは最終製品設計において、水の混入、混合を否定するものではない。
7). Dispersion medium The dispersion medium which can be used in the present invention includes toluene, xylene, aromatic hydrocarbon solvents, hydrocarbon solvents such as n-hexane, cyclohexane and n-heptane, and halogenated carbonization such as methylene chloride, chloroform and dichloroethane. Ether solvents such as hydrogen solvents, ethyl ether, isopropyl ether, dioxane, tetrahydrofuran, dibutyl ether, butyl ethyl ether, methyl-t-butyl ether, terpinyl methyl ether, dihydroterpinyl methyl ether, diglyme 1,3-dioxolane Solvent, acetone, acetophenone, methyl ethyl ketone, methyl propyl ketone, diethyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, aceto Ketone solvents such as nilacetone, isophorone, cyclohexanone, methylcyclohexanone, 2- (1-cyclohexenyl) cyclohexanone methyl isobutyl ketone, cyclohexanone, isophorone, ethyl formate, propyl formate, butyl formate, isobutyl formate, pentyl formate, methyl acetate, acetic acid Ethyl, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate, (iso) amyl acetate, cyclohexyl acetate, ethyl lactate, 3-methoxybutyl acetate, sec-hexyl acetate, 2-ethylbutyl acetate 2-ethylhexyl acetate, benzyl acetate, methyl propionate, ethyl propionate, methyl monochloroacetate, ethyl monochloroacetate, butyl monochloroacetate, methyl acetoacetate, ethyl acetoacetate, Ester solvents such as butyl lopionate, isoamyl propionate, γ-butyrolactone, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol mono n-butyl ether, propylene glycol monomethyl ether, Propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono n-propyl ether, dipropylene glycol mono n-butyl ether , Triethylene glycol monomethyl Ether, triethylene glycol monoethyl ether, triethylene glycol mono n-propyl ether, triethylene glycol mono n-butyl ether, tripropylene glycol monoethyl ether, tripropylene glycol mono n-propyl ether, tripropylene glycol mono n-butyl ether, etc. And glycol ether solvents of these monoethers, and dialkyl ether solvents such as acetate solvents of diethers, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl isobutyl ether, dipropylene glycol dimethyl ether, and dipropylene glycol diethyl ether. Methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, heptanol, n-amyl alcohol, sec-amyl alcohol, n-hexyl alcohol, tetrahydrofurfuryl Alcohol, furfuryl alcohol, allyl alcohol, ethylene chlorohydrin, octyldodecanol, 1-ethyl-1-propanol, 2-methyl-1-butanol, isoamyl alcohol, t-amyl alcohol, sec-isoamyl alcohol, neoamyl alcohol Hexyl alcohol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, heptyl alcohol, n-octyl alcohol, 2-ethylhexyl Lucol, nonyl alcohol, decyl alcohol, undecyl alcohol, lauryl alcohol, cyclopentanol, cyclohexanol, benzyl alcohol, α-terpineol, terpineol C, L-α-terpineol, dihydroterpineol, terpinyloxyethanol, dihydroterpi Nyloxyethanol, Tersolve MTPH, Tersolve DTO-210, Tersolve THA-90, Tersolve THA-70 manufactured by Nippon Terpene Chemical Co., Ltd., cyclohexanol, 3-methoxybutanol, diacetone alcohol, 1,4-butanediol, octane Diol, etc., Fine Oxocol 140N, Fine Oxocol 1600, Fine Oxocol 180, Fine Oxocol manufactured by Nissan Chemical Industries, Ltd. Alcohol solvents such as 80N, fine oxocol 2000, glycol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-butylene glycol, hexylene glycol, polyethylene glycol, and polypropylene glycol Can be mentioned. Other examples include amide solvents such as dimethylacetamide and dimethylformamide. In addition, (meth) acrylic acid having a reactive group as a dispersion medium, (meth) acrylic acid esters, vinyl monomers such as vinyl acetate, vinyl ether derivatives, and ethylenically unsaturated monomers such as polyallyl derivatives Can also be used. In addition, various resins, oligomers, and monomers used for ordinary paints, adhesives, and moldings can be used without any particular limitation. Specific examples include acrylic resins, polyester resins, alkyd resins, urethane resins, silicone resins, fluororesins, epoxy resins, polycarbonate resins, polyvinyl chloride resins, and polypinyl alcohols. In addition, the said dispersion medium can be used suitably individually or in mixture of 2 or more types. The dispersant of the present invention is intended to provide a fine particle dispersion in a non-aqueous environment, whether intentionally or accidentally with respect to the dispersion medium, during the production process of the fine particle dispersion, Or, for the purpose of use or in the final product design, mixing or mixing of water is not denied.
 8.その他
 本発明の分散剤は公知の方法で製造することができ、上記の範囲で疎水基の種類、アルキレンオキシド種とその付加形態、付加モル量、連結基などを特に限定して組成を最適選定することにより、公知の分散剤よりも、より広範な種類の分散質を分散でき、より広範な種類の分散媒に分散質を分散安定化できる点で産業上の利用価値は大きい。
8). Others The dispersant of the present invention can be produced by a known method, and the composition is optimally selected by specifically limiting the type of the hydrophobic group, the alkylene oxide type and its addition form, the added molar amount, the linking group, etc. within the above range. By doing so, a wider variety of dispersoids can be dispersed than in known dispersants, and the industrial utility value is great in that the dispersoids can be dispersed and stabilized in a wider variety of dispersion media.
 また、本発明の分散剤は公知の精製法により含有するイオン種、特にアルカリ金属イオン、アルカリ土類金属イオン、重金属イオン、ハロゲンイオンの各イオンの含有量を低減して用いることができる。分散剤中のイオン種は分散体の分散安定性、耐触性、耐酸化性、分散塗膜の電気特性(導電特性、絶縁特性)、経時安定性、耐熱性、低湿性、耐候性に大きく影響するため、上記イオンの含有量は適宜決定することができるが、分散剤中で10ppm未満であることが望ましい。 In addition, the dispersant of the present invention can be used by reducing the content of ionic species, particularly alkali metal ions, alkaline earth metal ions, heavy metal ions, and halogen ions contained by a known purification method. The ionic species in the dispersant is greatly affected by the dispersion stability, touch resistance, oxidation resistance, electrical properties (conductive properties, insulation properties), aging stability, heat resistance, low humidity, and weather resistance of the dispersion. However, it is desirable that the content of the ions is less than 10 ppm in the dispersant.
 本発明で好適に採用される分散質粒子の分散媒中の含有量は、前記非水性分散媒中で均一に分散することができれば特に限定されるものではなく、用途などによって異なるものであるが、0.5~70質量%の範囲内であることが好ましい。また、分散質粒子の平均粒径は1~500nmの範囲内であることが好ましく、10~100nmの範囲内であることがより好ましい。また、本発明の分散剤の好適な使用条件は、分散質粒子に対して1~300重量%の範囲内が好適である。 The content of the dispersoid particles suitably used in the present invention in the dispersion medium is not particularly limited as long as it can be uniformly dispersed in the non-aqueous dispersion medium, and varies depending on the application. The content is preferably in the range of 0.5 to 70% by mass. The average particle diameter of the dispersoid particles is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 100 nm. Further, the preferred use condition of the dispersant of the present invention is preferably in the range of 1 to 300% by weight with respect to the dispersoid particles.
 また、本発明の分散体組成物は公知の撹拌手段、均一化手段、分散化手段を用いて調製することができる。採用することができる分散機の一例としては、2本ロール、3本ロールなどのロールミル、ボールミル、振動ボールミルなどのボールミル、ペイントシェーカー、連続ディスク型ビーズミル、連続アニュラー型ビーズミルなどのビーズミル、サンドミル、ジェットミルなどが挙げられる。また、超音波発生浴中において分散処理を行うことも出来る。 Also, the dispersion composition of the present invention can be prepared using known stirring means, homogenizing means, and dispersing means. Examples of dispersers that can be used include roll mills such as two rolls and three rolls, ball mills such as ball mills and vibration ball mills, paint shakers, continuous disk type bead mills, bead mills such as continuous annular type bead mills, sand mills, and jets. Mill etc. are mentioned. Further, the dispersion treatment can be performed in an ultrasonic wave generation bath.
 また、本発明の分散剤は、非水性分散媒中での分散質粒子の分散安定化に対して、公知技術に比べて優れた分散安定化効果を発揮するのみならず、分散質粒子を媒体中から安定に取り出すための保護剤として使用することができる。分散質粒子を媒体中から安定に取り出すための保護剤の機能としては、生成粒子の凝集抑制、容器壁面への吸着抑制及び汚染防止、易再分散性付与、金属粒子の酸化防止、粒子表面の表面改質、機能性表面の劣化防止、溶媒の置換や極性変更時のショック緩和、粉末の流動性改良、粉末の固化防止などが挙げられる。本発明の分散剤は公知の保護剤よりも前記機能に優れ、アルキレンオキシドの付加形態とその付加モル量、疎水基の種類や連結基などを最適選定することにより、公知の保護剤よりも一層広範な分散媒に所望の分散質を分散安定化できる。 Further, the dispersant of the present invention not only exhibits an excellent dispersion stabilization effect compared to known techniques for the dispersion stabilization of dispersoid particles in a non-aqueous dispersion medium, but also disperses the dispersoid particles as a medium. It can be used as a protective agent for taking out from inside stably. Functions of the protective agent for stably taking out the dispersoid particles from the medium include suppression of aggregation of the generated particles, suppression of adsorption to the container wall surface and prevention of contamination, provision of easy redispersibility, oxidation of metal particles, prevention of particle surface Examples include surface modification, prevention of functional surface deterioration, solvent replacement and shock mitigation during polarity change, powder flowability improvement, and powder solidification prevention. The dispersant of the present invention is superior to the known protective agents in terms of the above functions, and is more suitable than the known protective agents by optimally selecting the addition form of alkylene oxide and the addition molar amount thereof, the type of hydrophobic group, the linking group, and the like. A desired dispersoid can be dispersed and stabilized in a wide range of dispersion media.
 非水性分散媒として樹脂を用いた本発明の分散体組成物を含有するコーティング組成物または非水性分散媒として溶剤を用いた本発明の分散体組成物と樹脂との混合物を含有するコーティング組成物を塗布する基材としては、例えば、ガラス、樹脂フィルム、ガラスコンポジット、セラミックス、金属・鋼板などを使用することができる。 Coating composition containing the dispersion composition of the present invention using a resin as a non-aqueous dispersion medium or coating composition containing a mixture of the dispersion composition of the present invention and a resin using a solvent as a non-aqueous dispersion medium As a base material on which the coating is applied, for example, glass, resin film, glass composite, ceramics, metal / steel plate and the like can be used.
 以下に本発明の実施例および比較例について説明する。なお、以下において、配合量を示す「部」は「重量部」を示し、「%」は「重量%」を示す。言うまでもないが、本発明は下記実施例に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲において適宜変更や修正が可能である。 Hereinafter, examples and comparative examples of the present invention will be described. In the following, “part” indicating the blending amount indicates “part by weight” and “%” indicates “% by weight”. Needless to say, the present invention is not limited to the following examples, and appropriate changes and modifications can be made without departing from the technical scope of the present invention.
 <分散剤の合成>
〔製造例1(分散剤1の合成)〕
 トルエン溶媒中に、イソデシルアルコールエチレンオキシド10モル付加物598g(1モル)およびモノクロロ酢酸ナトリウム151g(1.3モル)を反応器にとり、均一になるよう撹拌した。その後、反応系の温度が60℃の条件で、水酸化ナトリウム52g(1.3モル)を添加した後、反応系の温度を80℃に昇温させ、3時間反応させた。反応後、98%硫酸120g(1.2モル)を滴下することにより、白色懸濁溶液を得た。次いで、この白色懸濁溶液を蒸留水で洗浄し、溶媒を減圧留去することにより、分散剤1(R:イソデシル基、AO:エチレンオキシド、n:10、X:CH)を得た。
<Synthesis of dispersant>
[Production Example 1 (Synthesis of Dispersant 1)]
In a toluene solvent, 598 g (1 mol) of an isodecyl alcohol ethylene oxide 10 mol adduct and 151 g (1.3 mol) of sodium monochloroacetate were placed in a reactor and stirred uniformly. Thereafter, 52 g (1.3 mol) of sodium hydroxide was added under the condition that the temperature of the reaction system was 60 ° C., and then the temperature of the reaction system was raised to 80 ° C. and reacted for 3 hours. After the reaction, 120 g (1.2 mol) of 98% sulfuric acid was added dropwise to obtain a white suspension. Subsequently, this white suspension solution was washed with distilled water, and the solvent was distilled off under reduced pressure to obtain Dispersant 1 (R: isodecyl group, AO: ethylene oxide, n: 10, X: CH 2 ).
 〔製造例2(分散剤2の合成)〕
 イソデシルアルコールエチレンオキシド10モル付加物598g(1モル)に代えて、2-プロピル-1-ヘプチルアルコールエチレンオキシド10モル付加物598g(1モル)を用いた以外は製造例1と同様の操作を行い、分散剤2(R:2-プロピル-1-ヘプチル基、AO:エチレンオキシド、n:10、X:CH)を得た。
[Production Example 2 (Synthesis of Dispersant 2)]
The same procedure as in Production Example 1 was carried out except that 598 g (1 mol) of 2-propyl-1-heptyl alcohol ethylene oxide 10 mol adduct was used instead of 598 g (1 mol) of isodecyl alcohol ethylene oxide 10 mol adduct, Dispersant 2 (R: 2-propyl-1-heptyl group, AO: ethylene oxide, n: 10, X: CH 2 ) was obtained.
 〔製造例3(分散剤3の合成)〕
 イソデシルアルコールエチレンオキシド10モル付加物598g(1モル)に代えて、イソトリデシルアルコールエチレンオキシド10モル付加物640g(1モル)を用いた以外は製造例1と同様の操作を行い、分散剤3(R:イソトリデシル基、AO:エチレンオキシド、n:10、X:CH)を得た。
[Production Example 3 (Synthesis of Dispersant 3)]
The same procedure as in Production Example 1 was conducted, except that 640 g (1 mol) of isotridecyl alcohol ethylene oxide 10 mol adduct was used instead of 598 g (1 mol) of isodecyl alcohol ethylene oxide 10 mol adduct, and dispersant 3 ( R: isotridecyl group, AO: ethylene oxide, n: 10, X: CH 2 ) was obtained.
 〔製造例4(分散剤4の合成)〕
 イソデシルアルコールエチレンオキシド10モル付加物598g(1モル)に代えて、イソトリデシルアルコールエチレンオキシド20モル付加物1080g(1モル)を用いた以外は製造例1と同様の操作を行い、分散剤4(R:イソトリデシル基、AO:エチレンオキシド、n:20、X:CH)を得た。
[Production Example 4 (Synthesis of Dispersant 4)]
In place of 598 g (1 mol) of isodecyl alcohol ethylene oxide 10 mol adduct, 1080 g (1 mol) of isotridecyl alcohol ethylene oxide 20 mol adduct was used, and the same operation as in Production Example 1 was carried out. R: isotridecyl group, AO: ethylene oxide, n: 20, X: CH 2 ) was obtained.
 〔製造例5(分散剤5の合成)〕
 イソデシルアルコールエチレンオキシド10モル付加物598g(1モル)に代えて、分岐C11~14アルコール(製品名:EXXAL13、エクソン・モービル社製)のエチレンオキシド5モル/プロピレンオキシド5モルランダム付加物710g(1モル)を用いた以外は製造例1と同様の操作を行い、分散剤5(R:分岐C11~14アルキル基、AO:エチレンオキシドおよびプロピレンオキシド、n:10、X:CH)を得た。
[Production Example 5 (Synthesis of Dispersant 5)]
Instead of 598 g (1 mol) of isodecyl alcohol ethylene oxide 10 mol adduct, 710 g (1 mol) of ethylene oxide 5 mol / propylene oxide 5 mol random adduct of branched C11-14 alcohol (product name: EXXAL13, manufactured by Exxon Mobil) ) Was used in the same manner as in Production Example 1 to obtain Dispersant 5 (R: branched C11-14 alkyl group, AO: ethylene oxide and propylene oxide, n: 10, X: CH 2 ).
 〔製造例6(分散剤6の合成)〕
 イソデシルアルコールエチレンオキシド10モル付加物598g(1モル)に代えて、分岐C11~14アルコール(製品名:EXXAL13、エクソン・モービル社製)のプロピレンオキシド2モル/エチレンオキシド8モルブロック付加物668g(1モル)を用いた以外は製造例1と同様の操作を行い、分散剤6(R:分岐C11~14アルキル基、AO:プロピレンオキシドおよびエチレンオキシド、n:10、X:CH)を得た。
[Production Example 6 (Synthesis of Dispersant 6)]
Instead of 598 g (1 mol) of isodecyl alcohol ethylene oxide 10 mol adduct, 668 g (1 mol) of propylene oxide 2 mol / ethylene oxide 8 mol block adduct of branched C11-14 alcohol (product name: EXXAL13, manufactured by ExxonMobil) ) Was used in the same manner as in Production Example 1 to obtain a dispersant 6 (R: branched C11-14 alkyl group, AO: propylene oxide and ethylene oxide, n: 10, X: CH 2 ).
 〔製造例7(分散剤7の合成)〕
 イソデシルアルコールエチレンオキシド10モル付加物598g(1モル)に代えて、イソブチルアルコールエチレンオキシド20モル付加物954g(1モル)を用いた以外は製造例1と同様の操作を行い、分散剤7(R:イソブチル基、AO:エチレンオキシド、n:20、X:CH)を得た。
[Production Example 7 (Synthesis of Dispersant 7)]
Instead of 598 g (1 mol) of isodecyl alcohol ethylene oxide 10-mole adduct, 954 g (1 mol) of isobutyl alcohol ethylene oxide 20-mole adduct was used, and the same operation as in Production Example 1 was carried out, and dispersant 7 (R: An isobutyl group, AO: ethylene oxide, n: 20, X: CH 2 ) was obtained.
 〔製造例8(分散剤8の合成)〕
 イソデシルアルコールエチレンオキシド10モル付加物598g(1モル)に代えて、イソブチルアルコールプロピレンオキシド4モル付加物306g(1モル)を用いた以外は製造例1と同様の操作を行い、分散剤8(R:イソブチル基、AO:プロピレンオキシド、n:4、X:CH)を得た。
[Production Example 8 (Synthesis of Dispersant 8)]
Instead of 598 g (1 mol) of isodecyl alcohol ethylene oxide 10 mol adduct, 306 g (1 mol) of isobutyl alcohol propylene oxide 4 mol adduct was used, and the same operation as in Production Example 1 was carried out, and dispersant 8 (R : Isobutyl group, AO: propylene oxide, n: 4, X: CH 2 ).
 〔製造例9(分散剤9の分散剤合成)〕
 イソブチルアルコールエチレンオキシド20モル付加物954g(1モル)およびスベリン酸無水物156g(1モル)を120℃で2時間反応させることで分散剤9(R:イソブチル基、AO:エチレンオキシド、n:20、X:CO(CH)を得た。
[Production Example 9 (Synthesis of Dispersant 9)]
Dispersant 9 (R: isobutyl group, AO: ethylene oxide, n: 20, X) by reacting 954 g (1 mol) of isobutyl alcohol ethylene oxide 20 mol adduct and 156 g (1 mol) of suberic acid anhydride at 120 ° C. for 2 hours. : CO (CH 2 ) 6 ) was obtained.
 〔製造例10(分散剤10の分散剤合成)〕
 2-プロピル-1-ヘプチルアルコールエチレンオキシド8モル付加物510g(1モル)およびコハク酸無水物100g(1モル)を120℃で2時間反応させることで分散剤10(R:2-プロピル-1-ヘプチル基、AO:エチレンオキシド、n:8、X:COCHCH)を得た。
[Production Example 10 (Dispersant Synthesis of Dispersant 10)]
By reacting 510 g (1 mol) of 2-propyl-1-heptyl alcohol ethylene oxide 8 mol adduct and 100 g (1 mol) of succinic anhydride at 120 ° C. for 2 hours, dispersant 10 (R: 2-propyl-1- A heptyl group, AO: ethylene oxide, n: 8, X: COCH 2 CH 2 ) was obtained.
  〔製造例11(分散剤11の分散剤合成)〕
 イソデシルアルコールエチレンオキシド10モル付加物598g(1モル)および無水マレイン酸98g(1モル)を120℃で2時間反応させることで分散剤11(R:イソデシル基、AO:エチレンオキシド、n:10、X:COCH=CH)を得た。
[Production Example 11 (Synthesis of Dispersant 11)]
Dispersant 11 (R: isodecyl group, AO: ethylene oxide, n: 10, X by reacting 598 g (1 mol) of isodecyl alcohol ethylene oxide adduct and 98 g (1 mol) of maleic anhydride at 120 ° C. for 2 hours. : COCH = CH) was obtained.
  〔製造例12(分散剤12の分散剤合成)〕
 イソトリデシルアルコールエチレンオキシド10モル付加物640g(1モル)および無水マレイン酸98g(1モル)を120℃で2時間反応させることで分散剤12(R:イソトリデシル基、AO:エチレンオキシド、n:10、X:COCH=CH)を得た。
[Production Example 12 (Dispersant Synthesis of Dispersant 12)]
By dispersing 640 g (1 mol) of isotridecyl alcohol ethylene oxide adduct and 98 g (1 mol) of maleic anhydride at 120 ° C. for 2 hours, dispersant 12 (R: isotridecyl group, AO: ethylene oxide, n: 10, X: COCH = CH) was obtained.
 〔製造例13(分散剤13の合成)〕
 イソデシルアルコールエチレンオキシド10モル付加物598g(1モル)に代えて、イソトリデシルアルコール(80重量%)/ラウリルアルコール(20重量%)混合物のエチレンオキシド10モル付加物637g(1モル)を用いた以外は製造例1と同様の操作を行い、分散剤13(R:イソトリデシル基およびラウリル基、AO:エチレンオキシド、n:10、X:CH)を得た。
[Production Example 13 (Synthesis of Dispersant 13)]
Instead of 598 g (1 mol) of isodecyl alcohol ethylene oxide 10 mol adduct, 637 g (1 mol) of ethylene oxide 10 mol adduct of a mixture of isotridecyl alcohol (80 wt%) / lauryl alcohol (20 wt%) was used. The same operation as in Production Example 1 was performed to obtain a dispersant 13 (R: isotridecyl group and lauryl group, AO: ethylene oxide, n: 10, X: CH 2 ).
 〔製造例14(分散剤14の分散剤合成)〕
 イソブチルアルコールエチレンオキシド20モル付加物954g(1モル)およびトリメリット酸無水物192g(1モル)を120℃で2時間反応させることで分散剤14(R:イソブチル基、AO:エチレンオキシド、n:20、X:COC)を得た。
[Production Example 14 (Dispersant Synthesis of Dispersant 14)]
Dispersant 14 (R: isobutyl group, AO: ethylene oxide, n: 20, by reacting 954 g (1 mol) of isobutyl alcohol ethylene oxide 20 mol adduct and 192 g (1 mol) of trimellitic anhydride at 120 ° C. for 2 hours. X: COC 6 H 3 ).
 〔実施例1〕
 以下の表1に示す組成の疎水基(R)と、オキシアルキレン基(-(AO)n-)と、連結基(X)を含有する式(1)で示される化合物からなる本発明の分散剤1.5部(固形分換算)または以下の表2に示す組成の疎水基(R)と、オキシアルキレン基(-(AO)n-)と、連結基(X)を含有する式(1)で示される化合物からなる比較例の分散剤1.5部(固形分換算)を、分散媒としての溶剤(イソプロパノールまたはジエチレングリコールモノブチルエーテルアセテート)68.5部に溶解し、さらに、分散質としての酸化マグネシウム(MgO)30部および直径10mmのジルコニアのボール100milliliterを加えたものに、ボールミルで24時間微細化処理を実施した。その結果、得られた処理液を透明の容器に移して容器内の処理液の分散性について、その処理液を目視にて観察することによって、以下の基準で評価した。その結果を表1と表2に示す。 
 ◎:すべての分散質が液中に分散し、容器の底部に沈降物は見られない。 
 ○:ほとんどの分散質が液中に分散しているが、容器の底部にごくわずかの沈降物が見られる。 
 ×:液中に分散質の小塊が見られるか又は液が白濁している。
[Example 1]
The dispersion of the present invention comprising a compound represented by the formula (1) containing a hydrophobic group (R), an oxyalkylene group (-(AO) n-) and a linking group (X) having the composition shown in Table 1 below. Formula (1) containing 1.5 parts of the agent (in terms of solid content) or a hydrophobic group (R) having the composition shown in Table 2 below, an oxyalkylene group (— (AO) n—), and a linking group (X) ) Is dissolved in 68.5 parts of a solvent (isopropanol or diethylene glycol monobutyl ether acetate) as a dispersion medium, and further dispersed as a dispersoid. A refinement process was carried out for 24 hours with a ball mill to 30 parts of magnesium oxide (MgO) and 100 milliliters of zirconia balls having a diameter of 10 mm. As a result, the obtained treatment liquid was transferred to a transparent container, and the dispersibility of the treatment liquid in the container was evaluated by visually observing the treatment liquid based on the following criteria. The results are shown in Tables 1 and 2.
(Double-circle): All the dispersoids disperse | distribute in a liquid, and a sediment is not seen in the bottom part of a container.
○: Most of the dispersoid is dispersed in the liquid, but a slight amount of sediment is observed at the bottom of the container.
X: Dispersoids are observed in the liquid, or the liquid is cloudy.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1に示すように、本発明の分散剤を用いたものの分散性は優れていることが分かる。 As shown in Table 1, it can be seen that those using the dispersant of the present invention are excellent in dispersibility.
 〔実施例2〕
 以下の表3に示す組成の疎水基(R)と、オキシアルキレン基(-(AO)n-)と、連結基(R)を含有する式(1)で示される化合物からなる本発明の分散剤(表3の左端に示す番号が1、2、3、4、7、10、12、13のもの)の所定量または以下の表3に示す組成の疎水基(R)と、オキシアルキレン基(-(AO)n-)と、連結基(R)を含有する式(1)で示される化合物からなる比較例の分散剤(表3に示す比較例1、2、3、5、11)の所定量を、分散媒としてのメチルエチルケトンの所定量に溶解し、さらに、分散質としての酸化ジルコニウム(ZrO2)5部を加えたものに、寿工業社製の商品名ウルトラアペックスミルUAM-005(直径50μmのジルコニアのビーズを用い、周速10m/秒)で2時間微細化処理を実施した。その結果、得られた処理液を透明の容器に移して、微細化処理直後の容器内の処理液の分散性と、24時間後の容器内の処理液(分散剤が0.25部で分散質が5部の処理液)の分散安定性とについて、処理液を目視にて観察することによって、同上基準で評価した。また、一部の処理液(分散剤が0.25部で分散質が5部の処理液)について、マイクロトラックUPA MODEL 9230を使用し、微細化処理直後の酸化ジルコニウムの粒子径を測定した。なお、分散剤に対するメチルエチルケトンの配合量は、分散剤0.5部、0.25部、0.15部、0.05部に対して、それぞれメチルエチルケトン94.5部、94.75部、94.85部、94.95部である。上記分散性と分散安定性の目視評価と酸化ジルコニウムの粒子径測定結果を表3に示す。
[Example 2]
The dispersion of the present invention comprising a compound represented by the formula (1) containing a hydrophobic group (R), an oxyalkylene group (-(AO) n-) and a linking group (R) having the composition shown in Table 3 below. A predetermined amount of the agent (numbers shown at the left end of Table 3, 1, 2, 3, 4, 7, 10, 12, 13) or a hydrophobic group (R) having the composition shown in Table 3 below, and an oxyalkylene group Comparative dispersants (Comparative Examples 1, 2, 3, 5, 11 shown in Table 3) comprising (-(AO) n-) and a compound represented by formula (1) containing a linking group (R) Is dissolved in a predetermined amount of methyl ethyl ketone as a dispersion medium, and 5 parts of zirconium oxide (ZrO2) as a dispersoid is further added to the product name Ultra Apex Mill UAM-005 (by Kotobuki Kogyo Co., Ltd.). Using a zirconia bead with a diameter of 50 μm, refinement for 2 hours at a peripheral speed of 10 m / sec) Subjecting was. As a result, the obtained treatment liquid is transferred to a transparent container, and the dispersibility of the treatment liquid in the container immediately after the miniaturization treatment and the treatment liquid in the container after 24 hours (dispersing agent is dispersed at 0.25 parts). The dispersion stability of the processing solution having a quality of 5 parts) was evaluated based on the same criteria as above by observing the processing solution visually. Further, with respect to a part of the treatment liquid (treatment liquid having a dispersant of 0.25 part and a dispersoid of 5 parts), the particle diameter of zirconium oxide immediately after the refinement treatment was measured using Microtrac UPA MODEL 9230. In addition, the compounding quantity of the methyl ethyl ketone with respect to a dispersing agent is 94.5 parts, 94.75 parts, 94.75 parts of methyl ethyl ketone with respect to 0.5 parts, 0.25 parts, 0.15 parts, and 0.05 parts of dispersing agents, respectively. 85 parts and 94.95 parts. Table 3 shows the visual evaluation of the dispersibility and dispersion stability and the particle diameter measurement results of zirconium oxide.
 また、以下の表3に示す組成を有する式(1)で示される化合物からなる本発明の分散剤または以下の表3に示す組成を有する式(1)で示される化合物からなる比較例の分散剤と、分散媒としてのメチルエチルケトンと、分散質としての酸化ジルコニウムとの比率を0.25部対94.75部対5部とする分散体70部を、アクリル樹脂(三菱レイヨン社製の商品名アクリペットVH)25部を溶解させたメチルエチルケトン溶液70部に混合してなる分散液について、寿工業社製の商品名ウルトラアペックスミルUAM-005(直径50μmのジルコニアのビーズを用い、周速10m/秒)で2時間微細化処理を実施した。その結果、得られた処理液を透明の容器に移して容器内の処理液の分散性について、処理液を目視にて観察することによって、同上基準で評価した。その結果を表3に示す。 Moreover, the dispersion of the comparative example which consists of the dispersing agent of this invention which consists of a compound shown by the formula (1) which has a composition shown in the following Table 3, or the compound shown by the formula (1) which has a composition shown in the following Table 3 70 parts of a dispersion in which the ratio of the agent, methyl ethyl ketone as the dispersion medium, and zirconium oxide as the dispersoid is 0.25 parts to 94.75 parts to 5 parts, is made of acrylic resin (trade name, manufactured by Mitsubishi Rayon Co., Ltd.). A dispersion obtained by mixing 70 parts of methyl ethyl ketone solution in which 25 parts of ACRYPET VH) was dissolved was used as a trade name Ultra Apex Mill UAM-005 (50 μm diameter zirconia beads manufactured by Kotobuki Kogyo Co., Ltd.). Second) for 2 hours. As a result, the obtained treatment liquid was transferred to a transparent container, and the dispersibility of the treatment liquid in the container was evaluated by visually observing the treatment liquid according to the above criteria. The results are shown in Table 3.
 また、上記分散液(2時間の微細化処理後のもの)を清浄な厚さ10mmのガラス板上に塗布した後、乾燥機で120℃で1時間乾燥して塗膜を得た。次いで、上記ガラス板の下に12ポイントで印字したアルファベットを記した紙を置き、ガラス板上に得られた塗膜の透明性について、その塗膜越しにアルファベットを判別できるかどうかの点から、以下の基準で評価した。その結果を表3に示す。 
 ◎:12ポイントのアルファベット文字を鮮明に判別することができる。 
 ○:塗膜にごく僅かの濁りを生じているが、12ポイントのアルファベット文字を判別することができる。 
 ×:塗膜に濁りがあり、12ポイントのアルファベット文字を判別することができない。
Moreover, after apply | coating the said dispersion liquid (after 2 hours refinement | miniaturization process) on a clean 10 mm thick glass plate, it dried at 120 degreeC with the dryer for 1 hour, and obtained the coating film. Next, a paper on which the alphabet printed at 12 points is placed under the glass plate, and the transparency of the coating film obtained on the glass plate, whether the alphabet can be distinguished over the coating film, Evaluation was made according to the following criteria. The results are shown in Table 3.
A: 12-point alphabet characters can be clearly distinguished.
○: Although the coating film is slightly turbid, 12-point alphabet characters can be distinguished.
X: The coating film is turbid, and 12-point alphabet characters cannot be identified.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表3に示すように、本発明の分散剤を用いたものの分散性と分散安定性は優れていることが分かる。また、同表に示すように、本発明の分散剤を用いてなる分散体中の分散質の粒径は比較例の分散体中の分散質の粒径に比べてはるかに小さく、これは本発明の分散体が分散性に優れていることの証左である。さらに、同表に示すように、本発明の分散体からなる塗膜の透明性は優れており、本発明の分散体の優れた分散性が実証されている。 As shown in Table 3, it can be seen that those using the dispersant of the present invention are excellent in dispersibility and dispersion stability. Further, as shown in the table, the particle size of the dispersoid in the dispersion using the dispersant of the present invention is much smaller than the particle size of the dispersoid in the dispersion of the comparative example. This is evidence that the dispersion of the invention is excellent in dispersibility. Furthermore, as shown in the table, the transparency of the coating film made of the dispersion of the present invention is excellent, and the excellent dispersibility of the dispersion of the present invention has been demonstrated.
 なお、比較例の分散剤については分散安定性は測定しなかった。また、比較例3、比較例5、比較例11の酸化ジルコニウムの粒子径は測定しなかった。 Note that the dispersion stability of the comparative dispersant was not measured. Moreover, the particle diameter of the zirconium oxide of Comparative Example 3, Comparative Example 5, and Comparative Example 11 was not measured.
 〔実施例3〕
 以下の表4に示す組成の疎水基(R)と、オキシアルキレン基(-(AO)n-)と、連結基(R)を含有する式(1)で示される化合物からなる本発明の分散剤(表4の左端に示す番号が1、2、3、4、12のもの)1部または以下の表4に示す組成の疎水基(R)と、オキシアルキレン基(-(AO)n-)と、連結基(R)を含有する式(1)で示される化合物からなる比較例(表4に示す比較例1、2、3、14)の分散剤1部を、分散媒としてのジエチレングリコールモノブチルエーテルアセテート70部に溶解し、さらに、分散質としてのマルチウォールカーボンナノチューブ(昭和電工社製の商品名VGCF-X)1部を加えたものに、ペイントシェーカー(セイワ技研製のロッキングミル、商品名RM-5、直径0.5mmのジルコニアビーズを用いたもの)で12時間微細化処理を実施した。その結果、得られた処理液を透明の容器に移して、微細化処理直後の容器内の処理液の分散性と、24時間後の容器内の処理液の分散安定性とについて、処理液を目視にて観察することによって、同上基準で評価した。その結果を表4に示す。
Example 3
The dispersion of the present invention comprising a compound represented by the formula (1) containing a hydrophobic group (R), an oxyalkylene group (— (AO) n—), and a linking group (R) having the composition shown in Table 4 below. 1 part of an agent (numbers 1, 2, 3, 4, and 12 shown at the left end of Table 4) or a hydrophobic group (R) having the composition shown in Table 4 below and an oxyalkylene group (-(AO) n- And 1 part of a dispersant of Comparative Examples (Comparative Examples 1, 2, 3, and 14 shown in Table 4) comprising a compound represented by the formula (1) containing a linking group (R) as diethylene glycol as a dispersion medium Dissolved in 70 parts of monobutyl ether acetate, plus 1 part of multi-wall carbon nanotubes (trade name VGCF-X, manufactured by Showa Denko KK) as a dispersoid, paint shaker (rocking mill manufactured by Seiwa Giken, product) Name RM-5, diameter 0.5mm (Using luconia beads) for 12 hours. As a result, the obtained treatment liquid is transferred to a transparent container, and the treatment liquid is dispersed with respect to the dispersibility of the treatment liquid in the container immediately after the miniaturization treatment and the dispersion stability of the treatment liquid in the container after 24 hours. By visual observation, evaluation was performed based on the same as above. The results are shown in Table 4.
 また、以下の表4に示す組成を有する式(1)で示される化合物からなる本発明の分散剤または以下の表4に示す組成を有する式(1)で示される化合物からなる比較例の分散剤と、分散媒としてのジエチレングリコールモノブチルエーテルアセテートと、分散質としてのマルチウォールカーボンナノチューブ(昭和電工社製の商品名VGCF-X)との比率を1部対70部対1部とする分散体10部に、30部のジエチレングリコールモノブチルエーテルアセテートを加え、上記ペイントシェーカーで1時間微細化処理を実施した。ジエチレングリコールモノブチルエーテルアセテートで希釈後の処理液の分散安定性を希釈安定性と定義し、この希釈安定性を分散性と同じ基準で評価した。その結果を表4に示す。 Moreover, the dispersion of the comparative example which consists of the dispersing agent of this invention which consists of a compound shown by the formula (1) which has a composition shown in the following Table 4, or the compound shown by the formula (1) which has a composition shown in the following Table 4 Dispersion 10 in which the ratio of the agent, diethylene glycol monobutyl ether acetate as a dispersion medium, and multi-wall carbon nanotubes (trade name VGCF-X, manufactured by Showa Denko KK) as a dispersoid is 1 part to 70 parts to 1 part 30 parts of diethylene glycol monobutyl ether acetate was added to the part, and refinement treatment was carried out for 1 hour using the paint shaker. The dispersion stability of the treatment liquid after dilution with diethylene glycol monobutyl ether acetate was defined as dilution stability, and this dilution stability was evaluated on the same basis as the dispersibility. The results are shown in Table 4.
 また、以下の表4に示す組成を有する式(1)で示される化合物からなる本発明の分散剤または以下の表4に示す組成を有する式(1)で示される化合物からなる比較例の分散剤と、分散媒としてのジエチレングリコールモノブチルエーテルアセテートと、分散質としての同上マルチウォールカーボンナノチューブとの比率を1部対70部対1部とするものに上記ペイントシェーカーで12時間微細化処理を実施して得た分散体70部を、アクリル樹脂(三菱レイヨン社製の商品名アクリペットVH)25部を溶解させたメチルエチルケトン溶液70部に混合してなる分散液を清浄な厚さ10mmのガラス板上に塗布した後、乾燥機で120℃で1時間乾燥して塗膜を得た。次いで、上記ガラス板の下に12ポイントで印字したアルファベットを記した紙を置き、ガラス板上に得られた塗膜の透明性について、その塗膜越しにアルファベットを判別できるかどうかの点から、同上基準で評価した。その結果を表4に示す。 Moreover, the dispersion of the comparative example which consists of the dispersing agent of this invention which consists of a compound shown by the formula (1) which has a composition shown in the following Table 4, or the compound shown by the formula (1) which has a composition shown in the following Table 4 The above-mentioned paint shaker was used for 12 hours of refinement for the ratio of the agent, diethylene glycol monobutyl ether acetate as the dispersion medium, and multi-wall carbon nanotubes as the dispersoid to 1 part to 70 parts to 1 part. A dispersion obtained by mixing 70 parts of the dispersion obtained above with 70 parts of a methyl ethyl ketone solution in which 25 parts of acrylic resin (trade name Acrypet VH manufactured by Mitsubishi Rayon Co., Ltd.) was dissolved was prepared on a clean glass plate having a thickness of 10 mm. Then, it was dried at 120 ° C. for 1 hour with a dryer to obtain a coating film. Next, a paper on which the alphabet printed at 12 points is placed under the glass plate, and the transparency of the coating film obtained on the glass plate, whether the alphabet can be distinguished over the coating film, Evaluation was based on the same criteria. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表4に示すように、本発明の分散剤を用いたものの分散性と分散安定性と希釈安定性は優れていることが分かる。また、同表に示すように、本発明の分散体からなる塗膜の透明性は優れており、本発明の分散体の優れた分散性が実証されている。なお、比較例の分散剤については塗膜の透明性は測定しなかった。 As shown in Table 4, it can be seen that those using the dispersant of the present invention are excellent in dispersibility, dispersion stability and dilution stability. Moreover, as shown in the table, the transparency of the coating film comprising the dispersion of the present invention is excellent, and the excellent dispersibility of the dispersion of the present invention has been demonstrated. In addition, the transparency of the coating film was not measured about the dispersing agent of the comparative example.
 〔実施例4〕
 《酸化ジルコニウムのアクリレートモノマー分散体(1)の作製》
 酸化ジルコニウム粉末(日本電工社製の商品名PCS、一次粒子径30nmのもの)100部とメチルエチルケトン400部とを混合したものに、以下の表5に示す組成の疎水基(R)と、オキシアルキレン基(-(AO)n-)と、連結基(X)を含有する式(1)で示される化合物からなる本発明の分散剤(表5の左端に示す番号が(1)-1ないし(1)-6のもの)10部または以下の表5に示す組成の疎水基(R)と、オキシアルキレン基(-(AO)n-)と、連結基(X)を含有する式(1)で示される化合物からなる比較例の分散剤(表5に示す(1)-比較例1、(1)-比較例1´)10部を添加したものに、寿工業社製の商品名ウルトラアペックスミルUAM-005(直径50μmのジルコニアのビーズを用い、周速10m/秒)で4時間微細化処理を実施して、酸化ジルコニウム分散体を作製した。得られた酸化ジルコニウム分散体100部に、フェノキシエチルアクリレート(第一工業製薬社製の商品名ニューフロンティアPHE)10部と、ペンタエリスリトールトリアクリレート(第一工業製薬社製の商品名ニューフロンティアPET-3)10部とを添加して混合した後、溶媒のメチルエチルケトンをロータリーエバポレーターを用いて減圧除去し、酸化ジルコニウムのアクリレートモノマー分散体(1)を得た。
Example 4
<< Preparation of Zirconium Oxide Acrylate Monomer Dispersion (1) >>
Hydrophobic groups (R) having the composition shown in Table 5 below and oxyalkylene mixed with 100 parts of zirconium oxide powder (trade name PCS manufactured by NIPPON DENKO CO., LTD., Having a primary particle diameter of 30 nm) and 400 parts of methyl ethyl ketone. The dispersant of the present invention comprising a compound represented by the formula (1) containing a group (— (AO) n—) and a linking group (X) (numbers shown at the left end of Table 5 are (1) -1 to ( 1) -6)) Formula (1) containing 10 parts or a hydrophobic group (R) having the composition shown in Table 5 below, an oxyalkylene group (— (AO) n—), and a linking group (X) A product name Ultra Apex manufactured by Kotobuki Kogyo Co., Ltd., to which 10 parts of a dispersant of the comparative example ((1) -Comparative Example 1, (1) -Comparative Example 1 ′ shown in Table 5) was added. Mill UAM-005 (using zirconia beads with a diameter of 50 μm, peripheral speed 10 m / s In was performed for 4 hours pulverizing treatment, to prepare a zirconium oxide dispersion. To 100 parts of the resulting zirconium oxide dispersion, 10 parts of phenoxyethyl acrylate (trade name New Frontier PHE manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and pentaerythritol triacrylate (trade name New Frontier PET-made by Daiichi Kogyo Seiyaku Co., Ltd.) 3) After adding and mixing 10 parts, the solvent methyl ethyl ketone was removed under reduced pressure using a rotary evaporator to obtain an acrylate monomer dispersion (1) of zirconium oxide.
 《酸化ジルコニウムのアクリレートモノマー分散体(2)の作製》
 市販の酸化ジルコニウム分散体(堺化学社製の商品名SZR-M、一次粒子径3nm、30重量%のメタノールを含有する分散体)100部に、以下の表5に示す組成を有する式(1)で示される化合物からなる本発明の分散剤(表5の左端に示す番号が(2)-1ないし(2)-13のもの)3部または以下の表5に示す組成を有する式(1)で示される化合物からなる比較例の分散剤(表5に示す(2)-比較例2、(2)-比較例2´)3部と、フェノキシエチルアクリレート(第一工業製薬社製の商品名ニューフロンティアPHE)15部と、ペンタエリスリトールトリアクリレート(第一工業製薬社製の商品名ニューフロンティアPET-3)15部とを添加して混合した後、溶媒のメタノールをロータリーエバポレーターを用いて減圧除去し、酸化ジルコニウムのアクリレートモノマー分散体(2)を得た。
<< Preparation of Zirconium Oxide Acrylate Monomer Dispersion (2) >>
100 parts of a commercially available zirconium oxide dispersion (trade name SZR-M manufactured by Sakai Chemical Co., Ltd., dispersion containing a primary particle size of 3 nm and 30% by weight of methanol) has the formula (1 3 parts of the dispersant of the present invention comprising the compound represented by the formula (the number shown at the left end of Table 5 is the number (2) -1 to (2) -13) or having the composition shown in Table 5 below (1 ) 3 parts of a dispersant of a comparative example ((2) -Comparative Example 2, (2) -Comparative Example 2 'shown in Table 5) and phenoxyethyl acrylate (commercial product of Daiichi Kogyo Seiyaku Co., Ltd.) 15 parts of New Frontier PHE) and 15 parts of pentaerythritol triacrylate (trade name New Frontier PET-3 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) were added and mixed, and then the solvent methanol was used using a rotary evaporator. Reduced pressure to remove to obtain acrylate monomer dispersion of zirconium oxide (2).
 〈分散体の特性評価〉
 a.外観の透明性  酸化ジルコニウムのアクリレートモノマー分散体を透明のガラス容器に入れ、上記ガラス容器の下に12ポイントで印字したアルファベットを記した紙を置き、分散体の透明性について、その分散体越しにアルファベットを判別できるかどうかの点から、以下の基準で評価した。その結果を表5に示す。 
 ◎:分散体を5cm深さのガラス容器に入れたときに、12ポイントのアルファベット文字が見える。分散体が透明である。 
 ○:分散体を1cm深さのガラス容器に入れたときに、12ポイントのアルファベット文字がはっきり見える。分散体に僅かな濁りがある。 
 ×:分散体を1cm深さのガラス容器に入れたときに、12ポイントのアルファベット文字がはっきり見えない。分散体に濁りがある。
<Characteristic evaluation of dispersion>
a. Transparency of appearance Place the acrylate monomer dispersion of zirconium oxide in a transparent glass container, place a paper with alphabet printed at 12 points under the glass container, and check the transparency of the dispersion over the dispersion. The following criteria were used to evaluate whether the alphabet could be distinguished. The results are shown in Table 5.
A: When the dispersion is put into a glass container having a depth of 5 cm, 12-point alphabet characters can be seen. The dispersion is transparent.
○: When the dispersion is placed in a glass container having a depth of 1 cm, 12-point alphabet characters are clearly visible. There is a slight turbidity in the dispersion.
X: When the dispersion is put into a glass container having a depth of 1 cm, 12-point alphabet characters cannot be clearly seen. The dispersion is turbid.
 b.粘度測定  酸化ジルコニウムのアクリレートモノマー分散体の粘度について、E型粘度計(東機産業社製の商品名RE-80R)を用いて25℃で測定を行った。その結果を表5に示す。 B. Viscosity Measurement The viscosity of the acrylate monomer dispersion of zirconium oxide was measured at 25 ° C. using an E-type viscometer (trade name RE-80R manufactured by Toki Sangyo Co., Ltd.). The results are shown in Table 5.
 c.屈折率  酸化ジルコニウムのアクリレートモノマー分散体の屈折率について、アッベ屈折率計(アタゴ社製の商品名NAR-1T)を用いて25℃で測定を行った。その結果を表5に示す。 C. Refractive index The refractive index of the zirconium oxide acrylate monomer dispersion was measured at 25 ° C. using an Abbe refractometer (trade name NAR-1T manufactured by Atago Co., Ltd.). The results are shown in Table 5.
 《酸化ジルコニウムの光重合硬化膜の作製》
 上記酸化ジルコニウムのアクリレートモノマー分散体(1)または(2)100部に、光重合開始剤(IGACURE184)1部を添加して混合し、酸化ジルコニウムペーストを得た。その酸化ジルコニウムペーストを、ポリエチレンテレフタレートフィルム上にアプリケーター(小平製作所製のYA型)を用いて約50μmの膜厚で塗布した後、高圧水銀灯を用いて80W/cmの強さで約200mJ/cm2のエネルギーの紫外線を照射することにより、酸化ジルコニウムのアクリレートモノマー分散体の光重合硬化膜を得た。
<< Preparation of photopolymerized cured film of zirconium oxide >>
One part of a photopolymerization initiator (IGACURE184) was added to and mixed with 100 parts of the acrylate monomer dispersion (1) or (2) of zirconium oxide to obtain a zirconium oxide paste. The zirconium oxide paste was applied on a polyethylene terephthalate film with an applicator (YA type manufactured by Kodaira Seisakusho Co., Ltd.) with a film thickness of about 50 μm, and then with a high pressure mercury lamp at a strength of 80 W / cm, about 200 mJ / cm 2. A photopolymerized cured film of an acrylate monomer dispersion of zirconium oxide was obtained by irradiating with ultraviolet rays having the energy of 1.
 〈光重合硬化膜の特性評価〉
 a.外観の透明性  上記ポリエチレンテレフタレートフィルムの下に12ポイントで印字したアルファベットを記した紙を置き、ポリエチレンテレフタレートフィルム上に得られた光重合硬化膜の透明性について、その硬化膜越しにアルファベットを判別できるかどうかの点から、以下の基準で評価した。その結果を表5に示す。 
 ◎:12ポイントのアルファベット文字を鮮明に判別することができる。 
 ○:硬化膜にごく僅かの濁りを生じているが、12ポイントのアルファベット文字を判別することができる。 
 ×:硬化膜に濁りがあり、12ポイントのアルファベット文字を判別することができない。
<Characteristic evaluation of photopolymerized cured film>
a. Transparency of appearance Place the paper with the alphabet printed at 12 points under the polyethylene terephthalate film, and the transparency of the photopolymerized cured film obtained on the polyethylene terephthalate film can be distinguished through the cured film In terms of whether or not it was evaluated according to the following criteria. The results are shown in Table 5.
A: 12-point alphabet characters can be clearly distinguished.
○: A slight turbidity occurs in the cured film, but 12-point alphabet characters can be identified.
X: The cured film has turbidity, and 12-point alphabet characters cannot be identified.
 b.屈折率  光重合硬化膜の屈折率について、セキテクノトロン社製のプリズムカプラ(MODEL 2010/M)を用いて25℃で測定を行った。その結果を表5に示す。 B. Refractive index The refractive index of the photopolymerized cured film was measured at 25 ° C. using a prism coupler (MODEL 2010 / M) manufactured by Seki Technotron. The results are shown in Table 5.
 c.鉛筆硬さ  光重合硬化膜の鉛筆硬さについては、JISK5400に準拠して所定硬さの鉛筆で光重合硬化膜の引っ掻き試験を行った。その結果を表5に示す。 C. Pencil hardness About the pencil hardness of the photopolymerization cured film, the photopolymerization cured film was scratched with a pencil having a predetermined hardness in accordance with JISK5400. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表5に示すように、本発明の分散体は優れた分散性(外観の透明性)と高い屈折率を有し、本発明の分散体の光重合硬化膜は優れた透明性と高い屈折率と良好な鉛筆硬さを備えていることが分かる。 As shown in Table 5, the dispersion of the present invention has excellent dispersibility (transparency of appearance) and a high refractive index, and the photopolymerized cured film of the dispersion of the present invention has excellent transparency and a high refractive index. It can be seen that it has good pencil hardness.
 しかし、比較例の分散体((1)-比較例1、(1)-比較例1´、(2)-比較例2、(2)-比較例2´)は凝集したために、粘度および屈折率の測定ができず、濁りがあった。また、比較例の分散体の光重合硬化膜は濁りがあり、屈折率および鉛筆硬さの測定ができなかった。 However, the dispersions of the comparative examples ((1) —Comparative Example 1, (1) —Comparative Example 1 ′, (2) —Comparative Example 2, (2) —Comparative Example 2 ′) were agglomerated, so viscosity and refraction The rate could not be measured and there was turbidity. Moreover, the photopolymerization cured film of the dispersion of the comparative example was turbid, and the refractive index and pencil hardness could not be measured.
 表1ないし表5において、EOはエチレンオキシドを示し、POはプロピレンオキシドを示す。 In Tables 1 to 5, EO represents ethylene oxide and PO represents propylene oxide.
 なお、比較例の分散剤からなる分散体の屈折率の測定はできなかった。また、比較例の分散剤からなる分散体の光重合硬化膜の屈折率および鉛筆硬さの測定はできなかった。 Note that the refractive index of the dispersion composed of the dispersant of the comparative example could not be measured. Further, the refractive index and pencil hardness of the photopolymerized cured film of the dispersion composed of the dispersant of Comparative Example could not be measured.
 本発明の分散体組成物は、ハイブリッド材料、表面保護剤、導電性ペースト、導電性インク、センサー、精密分析素子、光メモリ、液晶表示素子、ナノ磁石、熱伝媒体、燃料電池用高機能触媒、有機太陽電池、ナノガラスデバイス、研磨剤、ドラッグキャリヤー、環境触媒、塗料、印刷インキ、インクジェット用インキ、カラーフィルター用レジスト、筆記具用インキ、光学薄膜、粘着剤、反射防止膜、ハードコート膜等の分野で使用できる。本発明の分散剤は前記用途製品及びその製造工程で主体成分となるナノサイズの無機物由来或いは有機物由来の等方性材料及び/又は異方性材料材料を非水性分散媒中で分散安定化させて、分散媒中における分散質の凝集を抑制し、長期間分散安定化を達成することで所望する製品特性、加工特性、品質安定化、生産性向上を得るために有効である。 The dispersion composition of the present invention includes a hybrid material, a surface protective agent, a conductive paste, a conductive ink, a sensor, a precision analysis element, an optical memory, a liquid crystal display element, a nanomagnet, a heat transfer medium, a high-performance catalyst for a fuel cell, Organic solar cells, nano glass devices, abrasives, drug carriers, environmental catalysts, paints, printing inks, inkjet inks, color filter resists, writing instrument inks, optical thin films, adhesives, antireflection films, hard coat films, etc. Can be used in The dispersant of the present invention stabilizes dispersion of the isotropic material and / or anisotropic material derived from the nano-sized inorganic or organic material, which is the main component in the product and its production process, in a non-aqueous dispersion medium. Therefore, it is effective to obtain desired product characteristics, processing characteristics, quality stabilization, and productivity improvement by suppressing dispersoid aggregation in the dispersion medium and achieving long-term dispersion stabilization.

Claims (8)

  1.  下記式(1)で示される化合物からなる非水性分散媒用分散剤。
    Figure JPOXMLDOC01-appb-C000001
     ただし、式(1)のRは分岐鎖を有するアルキル基および/又はアルケニル基を含有する炭素数が1ないし24であるアルキル基および/又はアルケニル基を示し、
     式(1)のAOは炭素数が1ないし4のオキシアルキレン基を示し、nはアルキレンオキシドの平均付加モル数を示し、1ないし30の範囲であり、
     式(1)のXは炭素原子、水素原子及び/又は酸素原子からなる連結基である。
    The dispersing agent for non-aqueous dispersion media which consists of a compound shown by following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    However, R of Formula (1) shows the alkyl group and / or alkenyl group which are C1-C24 containing the alkyl group and / or alkenyl group which have a branched chain,
    AO in formula (1) represents an oxyalkylene group having 1 to 4 carbon atoms, n represents the average number of moles of alkylene oxide added, and ranges from 1 to 30;
    X in the formula (1) is a linking group composed of a carbon atom, a hydrogen atom and / or an oxygen atom.
  2.  式(1)のXは炭素数が1ないし15のアルキレン基であることを特徴とする請求項1記載の非水性分散媒用分散剤。 The dispersant for a non-aqueous dispersion medium according to claim 1, wherein X in the formula (1) is an alkylene group having 1 to 15 carbon atoms.
  3.  式(1)のXは下記式(2)で示される物質であることを特徴とする請求項1記載の非水性分散媒用分散剤。
    Figure JPOXMLDOC01-appb-C000002
     ただし、式(2)のYは炭素数が1ないし15のアルキレン基、ビニレン基、フェニレン基およびカルボキシル基含有フェニレン基の中から選択されるいずれかである。
    The dispersant for a non-aqueous dispersion medium according to claim 1, wherein X in the formula (1) is a substance represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    However, Y in Formula (2) is any selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
  4.  請求項1、2または3記載の非水性分散媒用分散剤で被覆されるか又は上記分散剤を含浸してなる有機物粒子および/又は無機物粒子。 Organic particles and / or inorganic particles which are coated with the dispersant for non-aqueous dispersion medium according to claim 1, 2 or 3 or impregnated with the dispersant.
  5.  請求項1、2または3記載の非水性分散媒用分散剤を用いて有機物粒子または無機物粒子を非水性分散媒中に分散してなる分散体組成物。 A dispersion composition obtained by dispersing organic particles or inorganic particles in a non-aqueous dispersion medium using the dispersant for a non-aqueous dispersion medium according to claim 1, 2 or 3.
  6. 非水性分散媒として樹脂を用いた請求項5記載の分散体組成物を含有するコーティング組成物。 A coating composition containing the dispersion composition according to claim 5, wherein a resin is used as the non-aqueous dispersion medium.
  7.  非水性分散媒として溶剤を用いた請求項5記載の分散体組成物と樹脂との混合物を含有するコーティング組成物。 A coating composition containing a mixture of the dispersion composition and the resin according to claim 5, wherein a solvent is used as the non-aqueous dispersion medium.
  8.  請求項6または7記載のコーティング組成物を基材上に塗布した後、物理的または化学的に反応することにより得られる部材。 A member obtained by applying a coating composition according to claim 6 or 7 on a substrate and then reacting physically or chemically.
PCT/JP2011/050895 2010-05-26 2011-01-19 Dispersant and dispersion composition WO2011148660A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127030911A KR101472651B1 (en) 2010-05-26 2011-01-19 Dispersant and dispersion composition
CN201180025934.5A CN102906060B (en) 2010-05-26 2011-01-19 Dispersant and dispersion composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010120122 2010-05-26
JP2010-120122 2010-05-26
PCT/JP2010/063749 WO2011148520A1 (en) 2010-05-26 2010-08-13 Dispersant and dispersion composition
JPPCT/JP2010/063749 2010-08-13
JP2010286489A JP6046330B2 (en) 2010-05-26 2010-12-22 Coating composition containing a dispersant composition
JP2010-286489 2010-12-22

Publications (1)

Publication Number Publication Date
WO2011148660A1 true WO2011148660A1 (en) 2011-12-01

Family

ID=45003655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050895 WO2011148660A1 (en) 2010-05-26 2011-01-19 Dispersant and dispersion composition

Country Status (1)

Country Link
WO (1) WO2011148660A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189790A (en) * 2014-03-27 2015-11-02 第一工業製薬株式会社 Coating agent for film formation and the cured matter thereof
JP2016513157A (en) * 2013-02-20 2016-05-12 サソール パフォーマンス ケミカルズ ゲーエムベーハーSasol Performance Chemicals Gmbh Free-flowing dispersion system containing granular metal oxide, metal oxide hydrate and / or metal hydroxide, dispersant and organic dispersion medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021424A (en) * 1988-02-08 1990-01-05 Skf Nova Ab Anionic compound derived from nonionic surface active agent, and composition containing said compound
JP2000262883A (en) * 1999-03-19 2000-09-26 Kao Corp In-oil dispersant for inorganic powder
JP2011011182A (en) * 2009-07-06 2011-01-20 Sanyo Chem Ind Ltd Dispersant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021424A (en) * 1988-02-08 1990-01-05 Skf Nova Ab Anionic compound derived from nonionic surface active agent, and composition containing said compound
JP2000262883A (en) * 1999-03-19 2000-09-26 Kao Corp In-oil dispersant for inorganic powder
JP2011011182A (en) * 2009-07-06 2011-01-20 Sanyo Chem Ind Ltd Dispersant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513157A (en) * 2013-02-20 2016-05-12 サソール パフォーマンス ケミカルズ ゲーエムベーハーSasol Performance Chemicals Gmbh Free-flowing dispersion system containing granular metal oxide, metal oxide hydrate and / or metal hydroxide, dispersant and organic dispersion medium
JP2015189790A (en) * 2014-03-27 2015-11-02 第一工業製薬株式会社 Coating agent for film formation and the cured matter thereof

Similar Documents

Publication Publication Date Title
JP6046330B2 (en) Coating composition containing a dispersant composition
JP5643155B2 (en) Hard coat dispersion composition, hard coat coating composition and hard coat coating
JP5727215B2 (en) Dispersant and dispersion composition
JP5813949B2 (en) Dispersion composition
JP2014042870A (en) Dispersant for non-aqueous dispersion media, and dispersing element
CN105860054B (en) Non-aqueous dispersant and non-aqueous dispersion composition
WO2011148660A1 (en) Dispersant and dispersion composition
JP5936106B2 (en) Metal oxide semiconductor particle dispersion composition and method for producing semiconductor
JP2015000970A (en) Dispersant for non-aqueous dispersion media
JP6305140B2 (en) Dispersant for non-aqueous dispersion media
JP6893146B2 (en) Water-based dispersant of metal oxide fine particles and dispersion containing it
JP6876453B2 (en) Water-based dispersant of metal oxide fine particles and dispersion containing it
WO2011148661A1 (en) Dispersion composition
JP6092013B2 (en) Dispersant for non-aqueous dispersion media
JP2015000395A (en) Dispersant for non-aqueous dispersion medium
Pilotek et al. Liquid nanoparticle masterbatches for the deposition of solid inorganic materials

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025934.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127030911

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786360

Country of ref document: EP

Kind code of ref document: A1