WO2011148661A1 - Dispersion composition - Google Patents

Dispersion composition Download PDF

Info

Publication number
WO2011148661A1
WO2011148661A1 PCT/JP2011/050896 JP2011050896W WO2011148661A1 WO 2011148661 A1 WO2011148661 A1 WO 2011148661A1 JP 2011050896 W JP2011050896 W JP 2011050896W WO 2011148661 A1 WO2011148661 A1 WO 2011148661A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dispersion
formula
alcohol
dispersant
Prior art date
Application number
PCT/JP2011/050896
Other languages
French (fr)
Japanese (ja)
Inventor
和幸 加藤
祥太 大成
橋本 賀之
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2010/063750 external-priority patent/WO2011148521A1/en
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Priority to CN201180026039.5A priority Critical patent/CN102918020B/en
Priority to KR1020127030912A priority patent/KR20130029402A/en
Publication of WO2011148661A1 publication Critical patent/WO2011148661A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/42Ethers, e.g. polyglycol ethers of alcohols or phenols
    • C09K23/44Ether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/002Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Definitions

  • the present invention relates to a dispersion composition, and more particularly to a dispersion composition that can be suitably used for a film having high reflection performance.
  • the brightness of the liquid crystal display can be increased without sacrificing the viewing angle or color reproducibility by selectively reflecting and recycling the backlight light.
  • a brightness enhancement film is used. Improving the brightness requires less power to illuminate the display, thus reducing power consumption and reducing the heat load on the electronic components, thus extending the life of the electronic components. Is also possible. Therefore, various proposals for the structure of the brightness enhancement film have been made. For example, trying to improve the brightness of a liquid crystal display by enclosing a large number of fine bubbles in the resin film constituting the brightness enhancement film, and by multiple reflection (high refractive index) at the interface between the gas phase and the solid phase in the resin film. The structure to be known is known.
  • fine particles that can be used industrially include titanium oxide particles, barium titanate particles, and zirconium oxide particles.
  • titanium oxide particles when titanium oxide is blended with an organic compound such as a resin, the deterioration of the resin may be promoted, so that its use is limited.
  • barium titanate may adversely affect the environment. Therefore, it is preferable to use zirconium oxide.
  • Patent Document 1 discloses that a first hydrothermal treatment is performed in an aqueous solvent to obtain a zirconia-containing intermediate and a by-product containing zirconia particles having a particle size of 50 nm or less, and Then, a part of this by-product is removed, and further, a second hot water is applied to obtain a zirconia sol, and then the surface of the zirconia particles is modified with a surface modifier to obtain a surface-modified zirconia.
  • a method is described in which particles are obtained, the surface modified zirconia particles and an organic matrix are mixed to obtain a coating composition, and the coating composition is polymerized to form an optical layer.
  • the brightness enhancement film is required to be transparent.
  • 2- [2- (2-methoxyethoxy) ethoxy] acetic acid (MEEAA) is used as the surface modifier, and the weight is about 1/4 of the weight of the zirconia particles. MEEAA is used. That is, MEEAA, which is a dispersant described in Patent Document 1, does not have sufficient dispersion performance. Therefore, it is necessary to add a large amount in order to disperse zirconia particles as a dispersoid well. As a result, there arises a disadvantage that the physical properties and transparency of the resin constituting the brightness enhancement film are lowered.
  • the method described in Patent Document 1 cannot be said that the size of applicable zirconia particles is sufficiently small, so there is a disadvantage that the range of usable zirconia particles is limited.
  • liquid crystal displays are required to have higher luminance and higher durability.
  • the present invention has been made in view of such problems of the prior art, and the purpose thereof is a dispersion having excellent dispersibility by adding a small amount of a dispersant to nano-sized zirconium oxide particles. It is to provide a body composition.
  • an object of the present invention is to provide a film using the above dispersion composition, which has good appearance transparency, a high refractive index, and excellent durability.
  • the dispersion composition of the present invention is a dispersion composition in which zirconium oxide particles are dispersed in a dispersion medium using a dispersant comprising a compound represented by the following formula (1). Consists of.
  • R represents an alkyl group and / or alkenyl group having 1 to 24 carbon atoms.
  • AO represents an oxyalkylene group having 2 to 4 carbon atoms, n represents the average number of added moles of alkylene oxide, and is in the range of 5 to 30.
  • X is a linking group consisting of a carbon atom, a hydrogen atom and / or an oxygen atom.
  • X in the formula (1) is preferably an alkylene group having 1 to 15 carbon atoms. Further, X in the formula (1) is preferably a substance represented by the following formula (2).
  • Y is any one selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group. It is preferable to use a double bond curable resin as the dispersion medium. It is preferable to use a solvent in which the resin is dissolved as the dispersion medium.
  • a member obtained by applying a coating composition containing the dispersion composition on a substrate and then reacting physically or chemically is preferable.
  • the present invention it is possible to provide a dispersion composition having excellent dispersibility by adding a small amount of a dispersant to nano-sized zirconium oxide particles. Moreover, the film formed using the dispersion composition of the present invention has good appearance transparency, a high refractive index, and excellent durability.
  • the dispersion composition of the present invention comprises a dispersion composition in which zirconium oxide particles are dispersed in a dispersion medium using a dispersant comprising a compound represented by the following formula (1).
  • the dispersant of the present invention comprises a dispersion medium affinity part containing an alkylene oxide chain and a dispersoid affinity part composed of a carboxyl group.
  • the dispersion medium affinity part and the dispersoid affinity part are They are connected by a linking group X.
  • R represents an alkyl group and / or alkenyl group having 1 to 24 carbon atoms.
  • AO represents an oxyalkylene group having 2 to 4 carbon atoms, n represents the average number of added moles of alkylene oxide, and is in the range of 5 to 30.
  • X is a linking group consisting of a carbon atom, a hydrogen atom and / or an oxygen atom.
  • R is a hydrocarbon group derived from alcohol, and is an alkyl group and / or alkenyl group having 1 to 24 carbon atoms. .
  • the raw material alcohol that can be used may have a single carbon number or a mixture of alcohols having different carbon numbers.
  • the raw material alcohol may be synthetically or naturally derived, and the chemical structure may be a single composition or a mixture of a plurality of isomers.
  • known alcohols can be selected.
  • Octanol and / or its isomer 3,5,5-trimethyl-1-hexanol, isononanol, isodecanol, isoform produced by the oxo process via higher olefins derived from propylene or butene, or mixtures thereof
  • Undecanol, isododecanol, isotridecanol, Neodol 23, 25, 45 manufactured by Shell Chemicals, SAFOL23 manufactured by Sasol, EXXAL7, EXXAL8N, EXXAL9, EXXAL10, EXXAL11 and EXXXA manufactured by Exxon Mobil 13 illustrates another example of a higher alcohol which can be suitably used.
  • octyl alcohol decyl alcohol, lauryl alcohol (1-dodecanol), myristyl alcohol (1-tetradecanol), cetyl alcohol (1-hexadecanol), stearyl alcohol (1-octadecanol), oleyl alcohol (Cis-9-octadecene-1-ol) and the like are also examples of higher alcohols that can be used.
  • a single composition of Guerbet Alcohol having a 2-alkyl-1-alkanol type chemical structure, or a mixture thereof is also an example of a higher alcohol that can be suitably used.
  • the hydrophobic group suitably selected is (R) is a hydrocarbon group derived from an alcohol, and is an alkyl group and / or alkenyl group having 1 to 24 carbon atoms. In this case, it can be suitably used to achieve the object of the present invention.
  • the hydrophobic group (R) is more preferably an alkyl group or alkenyl group having 8 to 18 carbon atoms.
  • Oxyalkylene group (AO) n represents an oxyalkylene group having 2 to 4 carbon atoms, specifically, the alkylene oxide having 2 carbon atoms is ethylene oxide.
  • the alkylene oxide having 3 carbon atoms is propylene oxide.
  • the alkylene oxide having 4 carbon atoms is tetrahydrofuran or butylene oxide, and is preferably 1,2-butylene oxide or 2,3-butylene oxide.
  • the oxyalkylene chain (-(AO) n-) is a random polymerization of two or more alkylene oxides even if the alkylene oxide is a homopolymer chain for the purpose of adjusting the dispersion medium affinity of the dispersant. It may be a chain, a block polymer chain, or a combination thereof. N representing the average number of added moles of the alkylene oxide of the formula (1) is preferably in the range of 5 to 30.
  • the linking group (X) can be selected from a known structure consisting of a carbon atom, a hydrogen atom, and an oxygen atom, preferably a saturated hydrocarbon group, an unsaturated hydrocarbon group, an ether group, a carbonyl group, or an ester group. It may have an alicyclic structure or an aromatic ring structure, and may have a repeating unit.
  • the linking group X contains a nitrogen atom and / or a sulfur atom and / or a phosphorus atom, the linking group X is not suitable as a structural factor of the dispersant of the present invention because it has an action of weakening the affinity effect of the carboxyl group on the dispersoid. .
  • X in the formula (1) is preferably an alkylene group having 1 to 15 carbon atoms, and more preferably an alkylene group having 1 to 8 carbon atoms.
  • X in the formula (1) is preferably a substance represented by the following formula (2).
  • Y is any one selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
  • the dispersant of the present invention can be produced by a known method. For example, using a general nonionic surfactant compound obtained by adding an alkylene oxide to an alcohol, amine, or thiol by a known method as a raw material, a monohalogenated lower carboxylic acid or a salt thereof is used. Although it can manufacture by the method of making it react with a hydroxyl group, or the method of ring-opening reaction with the hydroxyl group of the alkylene oxide terminal using an acid anhydride, it is not limited to these methods.
  • Dispersoid particles Dispersoid particles dispersed by the dispersant of the present invention are zirconium oxide particles.
  • zirconium oxide particles to be dispersed in the present invention those obtained by a known method can be used.
  • a method for preparing fine particles a top-down method in which coarse particles are mechanically pulverized and refined, and a bottom in which particles are formed through a cluster state in which several unit particles are generated and aggregated.
  • any one prepared by any method can be suitably used. Further, they may be either a wet method or a dry method.
  • the bottom-up method includes a physical method and a chemical method, and any method may be used.
  • the dispersant of the present invention may be used in a top-down process in which coarse particles are mechanically pulverized and refined to form a number of unit particles that pass through the agglomerated cluster state.
  • the particles may be used in a bottom-up process in which particles are formed, or after preparing zirconium oxide particles by the above-described method in advance, a surface modifier or the like may be used to stably remove the zirconium oxide particles from the medium. It is also possible to use particles taken out by being coated or impregnated with a known protective agent called a surface protective agent.
  • Example of preparation of nano-sized zirconium particles by bottom-up method a representative example of a physical method is a gas evaporation method in which bulk zirconium is evaporated in an inert gas and cooled and condensed by collision with the gas to generate nanoparticles.
  • chemical methods include a liquid phase reduction method in which zirconium ions are reduced in the liquid phase in the presence of a protective agent, and the generated zero-valent zirconium is stabilized at a nano size, and a thermal decomposition method of a metal complex. is there.
  • a chemical reduction method an electrochemical reduction method, a photoreduction method, a method combining a chemical reduction method and a light irradiation method, or the like can be used.
  • the zirconium particles that can be suitably used in the present invention may be those obtained by any of the top-down method and the bottom-up method, and they may be any of aqueous, non-aqueous, and gas phase. It may be prepared in the environment of
  • Dispersion medium which can be used in the present invention includes toluene, xylene, aromatic hydrocarbon solvents, hydrocarbon solvents such as n-hexane, cyclohexane and n-heptane, and halogenated carbonization such as methylene chloride, chloroform and dichloroethane.
  • Ether solvents such as hydrogen solvents, ethyl ether, isopropyl ether, dioxane, tetrahydrofuran, dibutyl ether, butyl ethyl ether, methyl-t-butyl ether, terpinyl methyl ether, dihydroterpinyl methyl ether, diglyme 1,3-dioxolane Solvent, acetone, acetophenone, methyl ethyl ketone, methyl propyl ketone, diethyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, aceto Ketone solvents such as nilacetone, isophorone, cyclohexanone, methylcyclohexanone, 2- (1-cyclohexenyl) cyclohexanone methyl iso
  • glycol ether solvents of these monoethers and dialkyl ether solvents such as acetate solvents of diethers, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl isobutyl ether, dipropylene glycol dimethyl ether, and dipropylene glycol diethyl ether.
  • Alcohol solvents such as 80N, fine oxocol 2000, glycol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-butylene glycol, hexylene glycol, polyethylene glycol, and polypropylene glycol Can be mentioned.
  • Other examples include amide solvents such as dimethylacetamide and dimethylformamide.
  • (meth) acrylic acid having a reactive group as a dispersion medium, (meth) acrylic acid esters, vinyl monomers such as vinyl acetate, vinyl ether derivatives, and ethylenically unsaturated monomers such as polyallyl derivatives Can also be used.
  • various resins, oligomers, and monomers used for ordinary paints, adhesives, and moldings can be used without any particular limitation.
  • Specific examples include acrylic resins, polyester resins, alkyd resins, urethane resins, silicone resins, fluororesins, epoxy resins, polycarbonate resins, polyvinyl chloride resins, and polypinyl alcohols.
  • the said dispersion medium can be used suitably individually or in mixture of 2 or more types.
  • the dispersant of the present invention can be produced by a known method, and the composition is optimally selected by specifically limiting the type of the hydrophobic group, the alkylene oxide type and its addition form, the added molar amount, the linking group, etc. within the above range. By doing so, the industrial utility value is great in that the zirconium oxide particles can be dispersed and stabilized in a wider variety of dispersion media than known dispersants.
  • the dispersant of the present invention can be used by reducing the content of ionic species, particularly alkali metal ions, alkaline earth metal ions, heavy metal ions, and halogen ions contained by a known purification method.
  • the ionic species in the dispersant is greatly affected by the dispersion stability, touch resistance, oxidation resistance, electrical properties (conductive properties, insulation properties), aging stability, heat resistance, low humidity, and weather resistance of the dispersion.
  • it is desirable that the content of the ions is less than 10 ppm in the dispersant.
  • the content of the zirconium oxide particles suitably employed in the present invention in the dispersion medium is not particularly limited as long as it can be uniformly dispersed in the non-aqueous dispersion medium, and varies depending on the application.
  • the content is preferably in the range of 0.5 to 70% by mass.
  • the average particle diameter of the zirconium oxide particles is preferably in the range of 1 to 500 nm, and more preferably in the range of 10 to 100 nm.
  • the preferred use condition of the dispersant of the present invention is preferably in the range of 1 to 300% by weight with respect to the zirconium oxide particles.
  • the dispersion composition of the present invention can be prepared using known stirring means, homogenizing means, and dispersing means.
  • dispersers that can be used include roll mills such as two rolls and three rolls, ball mills such as ball mills and vibration ball mills, paint shakers, continuous disk type bead mills, bead mills such as continuous annular type bead mills, sand mills, and jets. Mill etc. are mentioned.
  • the dispersion treatment can be performed in an ultrasonic wave generation bath.
  • the dispersant of the present invention not only exhibits an excellent dispersion stabilization effect compared to known techniques for the dispersion stabilization of zirconium oxide particles in a non-aqueous dispersion medium, but also uses zirconium oxide particles as a medium. It can be used as a protective agent for taking out from inside stably.
  • Functions of the protective agent to stably extract zirconium oxide particles from the medium include aggregation suppression of the generated particles, suppression of adsorption to the container wall surface and prevention of contamination, easy redispersibility, surface modification of the particle surface, functionality Examples include surface deterioration prevention, solvent relaxation and shock mitigation during polarity change, powder flowability improvement, and powder solidification prevention.
  • the dispersant of the present invention is superior to the known protective agents in terms of the above functions, and is more suitable than the known protective agents by optimally selecting the addition form of alkylene oxide and the addition molar amount thereof, the type of hydrophobic group, the linking group, and the like.
  • Zirconium oxide particles can be dispersed and stabilized in a wide range of dispersion media.
  • the substrate on which the coating composition containing the dispersion composition of the present invention is applied for example, glass, resin film, glass composite, ceramics, metal / steel plate and the like can be used.
  • this white suspension solution was washed with distilled water, and the solvent was distilled off under reduced pressure to obtain a dispersant (R: isodecyl group, AO: ethylene oxide, n: 5, X: CH 2 ).
  • ⁇ Preparation of Zirconium Oxide Acrylate Monomer Dispersion (2) >> 100 parts of a commercially available zirconium oxide dispersion (trade name SZR-M manufactured by Sakai Chemical Co., Ltd., a dispersion containing methanol having a primary particle diameter of 3 nm and 30% by weight) has the formula (1 Dispersant 1 to 3 (Examples 4 to 6) of the present invention comprising a compound represented by formula (1) or a comparative dispersant comprising a compound represented by formula (1) having the composition shown in Table 1 below ( Comparative Examples 3 and 4) 3 parts, 15 parts of phenoxyethyl acrylate (trade name New Frontier PHE manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and pentaerythritol triacrylate (trade name New Frontier PET-3 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) ) 15 parts was added and mixed, and then the solvent methanol was removed under reduced pressure using
  • Viscosity Measurement The viscosity of the acrylate monomer dispersion of zirconium oxide was measured at 25 ° C. using an E-type viscometer (trade name RE-80R manufactured by Toki Sangyo Co., Ltd.). The results are shown in Table 1.
  • ⁇ Preparation of photopolymerized cured film of zirconium oxide One part of a photopolymerization initiator (IGACURE184) was added to and mixed with 100 parts of the acrylate monomer dispersion (1) or (2) of zirconium oxide to obtain a zirconium oxide paste.
  • the zirconium oxide paste was applied on a polyethylene terephthalate film with an applicator (YA type manufactured by Kodaira Seisakusho Co., Ltd.) with a film thickness of about 50 ⁇ m, and then with a high pressure mercury lamp at a strength of 80 W / cm, about 200 mJ / cm 2.
  • a photopolymerized cured film of an acrylate monomer dispersion of zirconium oxide was obtained by irradiating with ultraviolet rays having the energy of 1.
  • the dispersion of the present invention has excellent dispersibility (transparency of appearance) and a high refractive index
  • the photopolymerized cured film of the dispersion of the present invention has excellent transparency and a high refractive index. It can be seen that it has good pencil hardness.
  • EO represents ethylene oxide
  • PO represents propylene oxide
  • the dispersion composition of the present invention includes a coating composition, a hybrid material, a sealant, a surface protective agent, a conductive paste, a conductive ink, a sensor, a precision analysis element, an optical memory, a liquid crystal display element, a nanomagnet, and a heat transfer medium.
  • a coating composition for fuel cells, organic solar cells, nanoglass devices, abrasives, drug carriers, environmental catalysts, paints, printing inks, ink-jet inks, resists for color filters, inks for writing instruments, optical thin films, adhesives, antireflection It can be used in the field of films, hard coat films and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided is a dispersion composition wherein nano-sized zirconium oxide particles are excellently dispersed by the addition of a small amount of a dispersant. The dispersion composition can be obtained by dispersing zirconium oxide particles in a dispersion medium using a dispersant consisting of a compound represented by formula (1). In formula (1), R is C1-24 alkyl and/or alkenyl; AO is C2-4 oxyalkylene; n represents the average number of alkylene oxide molecules added, and is 5 to 30; and X is a connecting group composed of carbon, hydrogen and/or oxygen.

Description

分散体組成物Dispersion composition
 本発明は分散体組成物に関し、特に、高い反射性能を有するフィルムに好適に用いることができる分散体組成物に関する。 The present invention relates to a dispersion composition, and more particularly to a dispersion composition that can be suitably used for a film having high reflection performance.
 近年、液晶ディスプレーを中心とするバックライト付きフラットパネルディスプレーにおいて、バックライトの光を選択的に反射し、再生利用することによって、視野角や色再現性を犠牲にすることなく液晶ディスプレーの輝度を向上させるために、輝度向上フィルムが用いられている。輝度が改善されると、ディスプレーを照明するための電力がより少なくてすむので、電力消費量を低減することができるとともに、電子部品の熱負荷を減少させるので、電子部品の寿命を延長することも可能である。そのために、輝度向上フィルムの構造に対する様々な提案がされている。例えば、輝度向上フィルムを構成する樹脂フィルムに微細な気泡を多数内包させ、樹脂フィルム中での気相と固相の界面での多重反射(高い屈折率)により液晶ディスプレーの輝度を向上させようとする構造が知られている。 In recent years, in flat panel displays with backlights centering on liquid crystal displays, the brightness of the liquid crystal display can be increased without sacrificing the viewing angle or color reproducibility by selectively reflecting and recycling the backlight light. In order to improve, a brightness enhancement film is used. Improving the brightness requires less power to illuminate the display, thus reducing power consumption and reducing the heat load on the electronic components, thus extending the life of the electronic components. Is also possible. Therefore, various proposals for the structure of the brightness enhancement film have been made. For example, trying to improve the brightness of a liquid crystal display by enclosing a large number of fine bubbles in the resin film constituting the brightness enhancement film, and by multiple reflection (high refractive index) at the interface between the gas phase and the solid phase in the resin film. The structure to be known is known.
 すなわち、輝度を向上させるには、輝度向上フィルムを構成する樹脂の屈折率を高めることが必要である。そのための手段としては、樹脂中に微粒子を分散させる方法がある。例えば、工業的に使用可能な微粒子としては、酸化チタン粒子、チタン酸バリウム粒子、酸化ジルコニウム粒子などを挙げることができる。しかしながら、酸化チタンは樹脂などの有機化合物に配合した場合に樹脂の劣化を促進することがあるので、その用途が限定される。また、チタン酸バリウムは環境に悪影響を与える恐れがある。そこで、酸化ジルコニウムを用いることが好ましい。例えば、この種の先行技術として特許文献1には、水性溶媒中で第1の熱水処理を行って50nm以下の粒径のジルコニア粒子を含有するジルコニア含有中間体および副生成物を得、そして、この副生成物の一部を除去し、さらに、第2の熱水を行ってジルコニアゾルを得、次に、ジルコニア粒子の表面を表面改質剤を用いて改質して表面改質ジルコニア粒子を得、この表面改質ジルコニア粒子と有機マトリックスとを混合してコーティング組成物を得、このコーティング組成物を重合させて光学層を形成する方法が記載されている。 That is, in order to improve the brightness, it is necessary to increase the refractive index of the resin constituting the brightness enhancement film. As a means for that, there is a method of dispersing fine particles in a resin. For example, fine particles that can be used industrially include titanium oxide particles, barium titanate particles, and zirconium oxide particles. However, when titanium oxide is blended with an organic compound such as a resin, the deterioration of the resin may be promoted, so that its use is limited. In addition, barium titanate may adversely affect the environment. Therefore, it is preferable to use zirconium oxide. For example, in this type of prior art, Patent Document 1 discloses that a first hydrothermal treatment is performed in an aqueous solvent to obtain a zirconia-containing intermediate and a by-product containing zirconia particles having a particle size of 50 nm or less, and Then, a part of this by-product is removed, and further, a second hot water is applied to obtain a zirconia sol, and then the surface of the zirconia particles is modified with a surface modifier to obtain a surface-modified zirconia. A method is described in which particles are obtained, the surface modified zirconia particles and an organic matrix are mixed to obtain a coating composition, and the coating composition is polymerized to form an optical layer.
特表2008-533525号公報Special table 2008-533525 gazette
 当然のことながら、輝度向上フィルムには透明性が求められる。ところが、特許文献1の実施例では、表面改質剤として、2-[2-(2-メトキシエトキシ)エトキシ]酢酸(MEEAA)が用いられており、ジルコニア粒子の重量の約1/4の重量のMEEAAが使用されている。すなわち、特許文献1に記載された分散剤であるMEEAAは分散性能が十分でないから、分散質としてのジルコニア粒子を良好に分散させるために多量に添加することが必要である。その結果、輝度向上フィルムを構成する樹脂の物性や透明性が低下するという不都合が生じる。また、特許文献1記載の方法では、適用可能なジルコニア粒子の大きさが十分に小さいとは言えないので、使用できるジルコニア粒子の範囲が制限されるという不都合もある。 Of course, the brightness enhancement film is required to be transparent. However, in the example of Patent Document 1, 2- [2- (2-methoxyethoxy) ethoxy] acetic acid (MEEAA) is used as the surface modifier, and the weight is about 1/4 of the weight of the zirconia particles. MEEAA is used. That is, MEEAA, which is a dispersant described in Patent Document 1, does not have sufficient dispersion performance. Therefore, it is necessary to add a large amount in order to disperse zirconia particles as a dispersoid well. As a result, there arises a disadvantage that the physical properties and transparency of the resin constituting the brightness enhancement film are lowered. In addition, the method described in Patent Document 1 cannot be said that the size of applicable zirconia particles is sufficiently small, so there is a disadvantage that the range of usable zirconia particles is limited.
 また、液晶ディスプレーには、高輝度とともに、より耐久性に優れていることが求められている。本発明は従来の技術の有するこのような問題点に鑑みてなされたものであって、その目的は、ナノサイズの酸化ジルコニウム粒子に対して少量の分散剤の添加で優れた分散性を有する分散体組成物を提供することにある。 In addition, liquid crystal displays are required to have higher luminance and higher durability. The present invention has been made in view of such problems of the prior art, and the purpose thereof is a dispersion having excellent dispersibility by adding a small amount of a dispersant to nano-sized zirconium oxide particles. It is to provide a body composition.
 また、本発明の目的は、外観の透明性が良好で、屈折率が高く、耐久性に優れている、上記分散体組成物を用いてなるフィルムを提供することにある。 Also, an object of the present invention is to provide a film using the above dispersion composition, which has good appearance transparency, a high refractive index, and excellent durability.
 上記目的を達成するために、本発明の分散体組成物は、酸化ジルコニウム粒子を、下記式(1)で示される化合物からなる分散剤を用いて分散媒中に分散してなる分散体組成物からなる。 In order to achieve the above object, the dispersion composition of the present invention is a dispersion composition in which zirconium oxide particles are dispersed in a dispersion medium using a dispersant comprising a compound represented by the following formula (1). Consists of.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ただし、式(1)の符号の意味は以下のとおりである。 
 Rは炭素数が1ないし24であるアルキル基および/又はアルケニル基を示す。 
 AOは炭素数が2ないし4のオキシアルキレン基を示し、nはアルキレンオキシドの平均付加モル数を示し、5ないし30の範囲である。 
 Xは炭素原子、水素原子及び/又は酸素原子からなる連結基である。 
 また、式(1)のXは炭素数が1ないし15のアルキレン基であることが好ましい。 
 また、式(1)のXは下記式(2)で示される物質であることが好ましい。
However, the meaning of the code | symbol of Formula (1) is as follows.
R represents an alkyl group and / or alkenyl group having 1 to 24 carbon atoms.
AO represents an oxyalkylene group having 2 to 4 carbon atoms, n represents the average number of added moles of alkylene oxide, and is in the range of 5 to 30.
X is a linking group consisting of a carbon atom, a hydrogen atom and / or an oxygen atom.
X in the formula (1) is preferably an alkylene group having 1 to 15 carbon atoms.
Further, X in the formula (1) is preferably a substance represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ただし、式(2)の符号の意味は以下のとおりである。 
 Yは炭素数が1ないし15のアルキレン基、ビニレン基、フェニレン基およびカルボキシル基含有フェニレン基の中から選択されるいずれかである。 
 分散媒として二重結合硬化性樹脂を用いることが好ましい。 
 分散媒として樹脂が溶解した溶剤を用いることが好ましい。 
However, the meanings of the symbols in the formula (2) are as follows.
Y is any one selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
It is preferable to use a double bond curable resin as the dispersion medium.
It is preferable to use a solvent in which the resin is dissolved as the dispersion medium.
 上記分散体組成物を含有するコーティング組成物を基材上に塗布した後、物理的または化学的に反応することにより得られる部材が好ましい。 A member obtained by applying a coating composition containing the dispersion composition on a substrate and then reacting physically or chemically is preferable.
 本発明によれば、ナノサイズの酸化ジルコニウム粒子に対して少量の分散剤の添加で優れた分散性を有する分散体組成物を提供することができる。また、本発明の分散体組成物を用いてなるフィルムは、外観の透明性が良好で、屈折率が高く、耐久性に優れている。 According to the present invention, it is possible to provide a dispersion composition having excellent dispersibility by adding a small amount of a dispersant to nano-sized zirconium oxide particles. Moreover, the film formed using the dispersion composition of the present invention has good appearance transparency, a high refractive index, and excellent durability.
 本発明の分散体組成物は、酸化ジルコニウム粒子を、下記式(1)で示される化合物からなる分散剤を用いて分散媒中に分散してなる分散体組成物からなる。 The dispersion composition of the present invention comprises a dispersion composition in which zirconium oxide particles are dispersed in a dispersion medium using a dispersant comprising a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本発明の分散剤は式(1)に記載する通り、アルキレンオキシド鎖を含む分散媒親和性部位とカルボキシル基からなる分散質親和性部位からなり、分散媒親和性部と分散質親和性部は連結基Xで連結される。 As described in the formula (1), the dispersant of the present invention comprises a dispersion medium affinity part containing an alkylene oxide chain and a dispersoid affinity part composed of a carboxyl group. The dispersion medium affinity part and the dispersoid affinity part are They are connected by a linking group X.
 ただし、式(1)の符号の意味は以下のとおりである。 
 Rは炭素数が1ないし24であるアルキル基および/又はアルケニル基を示す。 
 AOは炭素数が2ないし4のオキシアルキレン基を示し、nはアルキレンオキシドの平均付加モル数を示し、5ないし30の範囲である。 
 Xは炭素原子、水素原子及び/又は酸素原子からなる連結基である。
However, the meaning of the code | symbol of Formula (1) is as follows.
R represents an alkyl group and / or alkenyl group having 1 to 24 carbon atoms.
AO represents an oxyalkylene group having 2 to 4 carbon atoms, n represents the average number of added moles of alkylene oxide, and is in the range of 5 to 30.
X is a linking group consisting of a carbon atom, a hydrogen atom and / or an oxygen atom.
 以下、本発明の好ましい実施形態について、詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
 1.疎水基(R)について
 本発明の分散剤に使用できる疎水基(R)について、Rはアルコール由来の炭化水素基であって、炭素数が1ないし24であるアルキル基及び/又はアルケニル基である。Rがアルキル基及び/又はアルケニル基の場合、使用できる原料アルコールの炭素数は単一であっても、異なる炭素数のアルコールの混合物であってもよい。また、その原料アルコールは合成由来であっても天然由来であってもよく、また、その化学構造は単一組成であっても複数の異性体からなる混合物であってもよい。使用できる原料アルコールは公知のものが選択できるが、具体例としては、合成由来のブタノール、イソブタノール、ペンタノール及び/又はその異性体、ヘキサノール及び/又はその異性体、へプタノール及び/又はその異性体、オクタノール及び/又はその異性体、3,5,5-トリメチル-1-ヘキサノールの他、プロピレン或いはブテン、又はその混合物から誘導される高級オレフィンを経てオキソ法によって製造されるイソノナノール、イソデカノール、イソウンデカノール、イソドデカノール、イソトリデカノール、シェルケミカルズ社製のネオドール23、25、45、サソール社製のSAFOL23、エクソン・モービル社製のEXXAL7、EXXAL8N、EXXAL9、EXXAL10、EXXAL11及びEXXAL13も好適に使用できる高級アルコールの一例である。更に天然由来のオクチルアルコール、デシルアルコール、ラウリルアルコール(1-ドデカノール)、ミリスチルアルコール(1-テトラデカノール)、セチルアルコール(1-ヘキサデカノール)、ステアリルアルコール(1-オクタデカノール)、オレイルアルコール(cis-9-オクタデセン-1-オール)なども使用できる高級アルコールの一例である。また、2-アルキル-1-アルカノール型の化学構造をもつゲルベアルコール(Guerbet Alcohol)類の単一組成、或いはその混合物なども好適に使用できる高級アルコールの一例であり、2-エチル-1-ヘキサノール、2-プロピル-1-ヘキサノール、2-ブチル-1-ヘキサノール、2-エチル-1-ヘプタノール、2-プロピル-1-ヘプタノール、2-エチル-1-オクタノール、2-ヘキシル-1-デカノール、2-ヘプチル-1-ウンデカノール、2-オクチル-1-ドデカノール、2-デシル-1-テトラデカノールの他、分岐アルコールから誘導されるイソステアリルアルコールなどがある。また、上記各種アルコールを2種以上配合して使用することも可能である。但し、本発明の分散剤では前記の如く、好適に選択される疎水基は(R)はアルコール由来の炭化水素基であって、炭素数が1ないし24であるアルキル基及び/又はアルケニル基の場合、本発明の目的を達成するために好適に使用できる。
1. About Hydrophobic Group (R) With respect to the hydrophobic group (R) that can be used in the dispersant of the present invention, R is a hydrocarbon group derived from alcohol, and is an alkyl group and / or alkenyl group having 1 to 24 carbon atoms. . When R is an alkyl group and / or an alkenyl group, the raw material alcohol that can be used may have a single carbon number or a mixture of alcohols having different carbon numbers. The raw material alcohol may be synthetically or naturally derived, and the chemical structure may be a single composition or a mixture of a plurality of isomers. As the raw material alcohol that can be used, known alcohols can be selected. Specific examples include butanol, isobutanol, pentanol and / or its isomer, hexanol and / or its isomer, heptanol and / or its isomer derived from synthesis. , Octanol and / or its isomer, 3,5,5-trimethyl-1-hexanol, isononanol, isodecanol, isoform produced by the oxo process via higher olefins derived from propylene or butene, or mixtures thereof Undecanol, isododecanol, isotridecanol, Neodol 23, 25, 45 manufactured by Shell Chemicals, SAFOL23 manufactured by Sasol, EXXAL7, EXXAL8N, EXXAL9, EXXAL10, EXXAL11 and EXXXA manufactured by Exxon Mobil 13 illustrates another example of a higher alcohol which can be suitably used. Furthermore, natural octyl alcohol, decyl alcohol, lauryl alcohol (1-dodecanol), myristyl alcohol (1-tetradecanol), cetyl alcohol (1-hexadecanol), stearyl alcohol (1-octadecanol), oleyl alcohol (Cis-9-octadecene-1-ol) and the like are also examples of higher alcohols that can be used. A single composition of Guerbet Alcohol having a 2-alkyl-1-alkanol type chemical structure, or a mixture thereof is also an example of a higher alcohol that can be suitably used. 2-ethyl-1-hexanol 2-propyl-1-hexanol, 2-butyl-1-hexanol, 2-ethyl-1-heptanol, 2-propyl-1-heptanol, 2-ethyl-1-octanol, 2-hexyl-1-decanol, 2 In addition to heptyl-1-undecanol, 2-octyl-1-dodecanol, 2-decyl-1-tetradecanol, there are isostearyl alcohols derived from branched alcohols. Moreover, it is also possible to mix | blend and use 2 or more types of said various alcohol. However, in the dispersant of the present invention, as described above, the hydrophobic group suitably selected is (R) is a hydrocarbon group derived from an alcohol, and is an alkyl group and / or alkenyl group having 1 to 24 carbon atoms. In this case, it can be suitably used to achieve the object of the present invention.
 なお、分散体の安定性が著しく低下して直ちに沈降物を生じたり、経時安定性が著しく低下して最終製品の付加価値低下、生産性低下、加工特性低下および品質劣化などの問題を回避するためには、疎水基(R)は炭素数8~18のアルキル基またはアルケニル基であることがより好ましい。 It should be noted that the stability of the dispersion is significantly reduced and precipitates are formed immediately, or the stability over time is significantly reduced to avoid problems such as a decrease in added value, productivity, processing characteristics, and quality deterioration of the final product. For this purpose, the hydrophobic group (R) is more preferably an alkyl group or alkenyl group having 8 to 18 carbon atoms.
 2.オキシアルキレン基(AO)n
 本発明の分散剤に好適に選択されるアルキレンオキシド種について、式(1)においてAOは炭素数2ないし4のオキシアルキレン基を示し、具体的には炭素数2のアルキレンオキシドはエチレンオキシドである。炭素数3のアルキレンオキシドはプロピレンオキシドである。炭素数4のアルキレンオキシドは、テトラヒドロフラン或いはブチレンオキシドであるが、好ましくは、1,2-ブチレンオキシドまたは2,3-ブチレンオキシドである。本発明の分散剤においてオキシアルキレン鎖(-(AO)n-)は分散剤の分散媒親和性を調整する目的でアルキレンオキシドは単独重合鎖であっても、2種以上のアルキレンオキサイドのランダム重合鎖でもブロック重合鎖でもよく、また、その組み合わせであってもよい。式(1)のアルキレンオキシドの平均付加モル数を示すnは5ないし30の範囲であることが好ましい。
2. Oxyalkylene group (AO) n
With respect to the alkylene oxide species suitably selected for the dispersant of the present invention, in the formula (1), AO represents an oxyalkylene group having 2 to 4 carbon atoms, specifically, the alkylene oxide having 2 carbon atoms is ethylene oxide. The alkylene oxide having 3 carbon atoms is propylene oxide. The alkylene oxide having 4 carbon atoms is tetrahydrofuran or butylene oxide, and is preferably 1,2-butylene oxide or 2,3-butylene oxide. In the dispersant of the present invention, the oxyalkylene chain (-(AO) n-) is a random polymerization of two or more alkylene oxides even if the alkylene oxide is a homopolymer chain for the purpose of adjusting the dispersion medium affinity of the dispersant. It may be a chain, a block polymer chain, or a combination thereof. N representing the average number of added moles of the alkylene oxide of the formula (1) is preferably in the range of 5 to 30.
 3.連結基(X)
 連結基(X)は炭素原子、水素原子、酸素原子からなる公知の構造から選択可能であるが、好ましくは飽和炭化水素基、不飽和炭化水素基、エーテル基、カルボニル基、エステル基からなり、脂環構造、芳香環構造を有していてもよく、また、繰り返し単位を有していてもよい。連結基Xに窒素原子及び/又は硫黄原子及び/又はリン原子などを含む場合は、カルボキシル基の分散質への親和効果を弱める作用があるために本発明の分散剤の構造因子としては適さない。
3. Linking group (X)
The linking group (X) can be selected from a known structure consisting of a carbon atom, a hydrogen atom, and an oxygen atom, preferably a saturated hydrocarbon group, an unsaturated hydrocarbon group, an ether group, a carbonyl group, or an ester group. It may have an alicyclic structure or an aromatic ring structure, and may have a repeating unit. When the linking group X contains a nitrogen atom and / or a sulfur atom and / or a phosphorus atom, the linking group X is not suitable as a structural factor of the dispersant of the present invention because it has an action of weakening the affinity effect of the carboxyl group on the dispersoid. .
 また、式(1)のXは炭素数が1ないし15のアルキレン基であることが好ましく、炭素数が1ないし8のアルキレン基であることがより好ましい。 Further, X in the formula (1) is preferably an alkylene group having 1 to 15 carbon atoms, and more preferably an alkylene group having 1 to 8 carbon atoms.
 また、式(1)のXは下記式(2)で示される物質であることが好ましい。 Further, X in the formula (1) is preferably a substance represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ただし、式(2)の符号の意味は以下のとおりである。 
 Yは炭素数が1ないし15のアルキレン基、ビニレン基、フェニレン基およびカルボキシル基含有フェニレン基の中から選択されるいずれかである。
However, the meanings of the symbols in the formula (2) are as follows.
Y is any one selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
 5.分散剤の製造方法
 本発明の分散剤は公知の方法で製造することができる。例えば、アルコール、アミン、チオールに公知の方法でアルキレンオキシドを付加した一般的な非イオン界面活性剤化合物を原料として、モノハロゲン化低級カルボン酸またはその塩を用い、塩基存在下でアルキレンオキシド末端の水酸基と反応させる方法、または、酸無水物を用いてアルキレンオキシド末端の水酸基との開環反応による方法により製造することができるが、これらの方法に限定されるものではない。
5. Dispersant Production Method The dispersant of the present invention can be produced by a known method. For example, using a general nonionic surfactant compound obtained by adding an alkylene oxide to an alcohol, amine, or thiol by a known method as a raw material, a monohalogenated lower carboxylic acid or a salt thereof is used. Although it can manufacture by the method of making it react with a hydroxyl group, or the method of ring-opening reaction with the hydroxyl group of the alkylene oxide terminal using an acid anhydride, it is not limited to these methods.
 6.分散質粒子
 本発明の分散剤により分散される分散質粒子は酸化ジルコニウム粒子である。本発明で被分散質となる酸化ジルコニウム粒子は、公知の方法で得たものが使用できる。微粒子の調製方法としては、粗大粒子を機械的に解砕、微細化していくトップダウン方式と、いくつかの単位粒子を生成させ、それが凝集したクラスター状態を経由して粒子が形成されるボトムアップ方式の2通りの方式があるが、いずれの方法で調製されたものであっても好適に使用できる。また、それらは湿式法、乾式法のいずれの方法によるものであってもよい。また、ボトムアップ方式には、物理的方法と化学的方法があるが、いずれの方法によるものであってもよい。本発明の分散剤は粗大粒子を機械的に解砕、微細化していくトップダウン方式の工程中で使用してもよく、いくつかの単位粒子を生成させ、それが凝集したクラスター状態を経由して粒子が形成されるボトムアップ方式の工程中で使用してもよく、或いは、事前に前記方法で酸化ジルコニウム粒子を調製後、この酸化ジルコニウム粒子を媒体中から安定に取り出すために表面修飾剤や表面保護剤と称する公知の保護剤で被覆或いは含浸させて取り出された粒子を使用することもできる。
6). Dispersoid particles Dispersoid particles dispersed by the dispersant of the present invention are zirconium oxide particles. As the zirconium oxide particles to be dispersed in the present invention, those obtained by a known method can be used. As a method for preparing fine particles, a top-down method in which coarse particles are mechanically pulverized and refined, and a bottom in which particles are formed through a cluster state in which several unit particles are generated and aggregated. Although there are two types of up systems, any one prepared by any method can be suitably used. Further, they may be either a wet method or a dry method. The bottom-up method includes a physical method and a chemical method, and any method may be used. The dispersant of the present invention may be used in a top-down process in which coarse particles are mechanically pulverized and refined to form a number of unit particles that pass through the agglomerated cluster state. The particles may be used in a bottom-up process in which particles are formed, or after preparing zirconium oxide particles by the above-described method in advance, a surface modifier or the like may be used to stably remove the zirconium oxide particles from the medium. It is also possible to use particles taken out by being coated or impregnated with a known protective agent called a surface protective agent.
 ボトムアップ方式によるナノサイズのジルコニウム粒子の調製法を例示する。ボトムアップ方式の内、物理的方法の代表例としてはバルクのジルコニウムを不活性ガス中で蒸発させ、ガスとの衝突により冷却凝縮させてナノ粒子を生成するガス中蒸発法がある。また、化学的方法には、液相中で保護剤の存在下でジルコニウムイオンを還元し、生成した0価のジルコニウムをナノサイズで安定化させる液相還元法や金属錯体の熱分解法などがある。液相還元法としては、化学的還元法、電気化学的還元法、光還元法、または化学的還元法と光照射法を組み合わせた方法などを利用することができる。 Example of preparation of nano-sized zirconium particles by bottom-up method. Among the bottom-up methods, a representative example of a physical method is a gas evaporation method in which bulk zirconium is evaporated in an inert gas and cooled and condensed by collision with the gas to generate nanoparticles. In addition, chemical methods include a liquid phase reduction method in which zirconium ions are reduced in the liquid phase in the presence of a protective agent, and the generated zero-valent zirconium is stabilized at a nano size, and a thermal decomposition method of a metal complex. is there. As the liquid phase reduction method, a chemical reduction method, an electrochemical reduction method, a photoreduction method, a method combining a chemical reduction method and a light irradiation method, or the like can be used.
 また、本発明で好適に使用できるジルコニウム粒子は、前記の如く、トップダウン方式、ボトムアップ方式のいずれも手法で得たものであってもよく、それらは水系、非水系、気相中のいずれの環境下で調製されたものであってもよい。 Further, as described above, the zirconium particles that can be suitably used in the present invention may be those obtained by any of the top-down method and the bottom-up method, and they may be any of aqueous, non-aqueous, and gas phase. It may be prepared in the environment of
 7.分散媒
 本発明で使用できる分散媒としては、トルエン、キシレン、芳香族炭化水素系溶剤、n-ヘキサン、シクロヘキサン、n-ヘプタンなどの炭化水素系溶剤、塩化メチレン、クロロホルム、ジクロロエタンなどのハロゲン化炭化水素系溶剤、エチルエーテル、イソプロピルエーテル、ジオキサン、テトラヒドロフラン、ジブチルエーテル、ブチルエチルエーテル、メチル-t-ブチルエーテル、ターピニルメチルエーテル、ジヒドロターピニルメチルエーテル、ジグライム 1,3-ジオキソランなどのエーテル系溶媒、アセトン、アセトフェノン、メチルエチルケトン、メチルプロピルケトン、ジエチルケトン、メチルn-ブチルケトン、メチルイソブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、アセトニルアセトン、イソホロン、シクロヘキサノン、メチルシクロヘキサノン、2-(1-シクロヘキセニル)シクロヘキサノンメチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶媒、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸ペンチル、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸(イソ)アミル、酢酸シクロヘキシル、乳酸エチル、酢酸3-メトキシブチル、酢酸sec-ヘキシル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、プロピオン酸メチル、プロピオン酸エチル、モノクロロ酢酸メチル、モノクロロ酢酸エチル、モノクロロ酢酸ブチル、アセト酢酸メチル、アセト酢酸エチル、プロピオン酸ブチル、プロピオン酸イソアミル、γ-ブチロラクトンなどのエステル系溶剤、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-プロピルエーテル、プロピレングリコールモノn-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノn-プロピルエーテル、ジプロピレングリコールモノn-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノn-プロピルエーテル、トリエチレングリコールモノn-ブチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノn-プロピルエーテル、トリプロピレングリコールモノn-ブチルエーテルなどのグリコールエーテル系溶剤、及び、それらモノエーテル類の酢酸エステル系溶剤、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルイソブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテルなどのジアルキルエーテル系溶剤が挙げられる。メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、ヘプタノール、n-アミルアルコール、sec-アミルアルコール、n-ヘキシルアルコール、テトラヒドロフルフリルアルコール、フルフリルアルコール、アリルアルコール、エチレンクロロヒドリン、オクチルドデカノール、1-エチル-1-プロパノール、2-メチル-1-ブタノール、イソアミルアルコール、t-アミルアルコール、sec-イソアミルアルコール、ネオアミルアルコール、ヘキシルアルコール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、ヘプチルアルコール、n-オクチルアルコール、2-エチルヘキシルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ラウリルアルコール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール、α-テルピネオール、ターピネオールC、L-α-ターピネオール、ジヒドロターピネオール、ターピニルオキシエタノール、ジヒドロターピニルオキシエタノール、日本テルペン化学株式会社製のテルソルブMTPH、テルソルブDTO-210、テルソルブTHA-90、テルソルブTHA-70や、シクロヘキサノール、3-メトキシブタノール、ジアセトンアルコール、1,4-ブタンジオール、オクタンジオール等や、日産化学工業株式会社製のファインオキソコール140N、ファインオキソコール1600、ファインオキソコール180、ファインオキソコール180N、ファインオキソコール2000などのアルコール系溶媒、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブチレングリコール、へキシレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどのグリコール系溶剤が挙げられる。その他、ジメチルアセトアミド、ジメチルホルムアミドなどのアミド系溶媒などが挙げられる。また、分散媒として反応性基を有する(メタ)アクリル酸、(メタ)アクリル酸エステル類、酢酸ビニルなどのビニル系単量体、ビニルエーテル誘導体類、ポリアリル誘導体などのエチレン系不飽和単量体類も使用することができる。その他、通常の塗料用や粘接着用、成型用に利用されている各種樹脂類、オリゴマー類、単量体類も特に制限無く使用できる。具体的には、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリピニルアルコールなどが挙げられる。なお、前記分散媒は単独または2種以上を混合して適宜使用することができる。
7). Dispersion medium The dispersion medium which can be used in the present invention includes toluene, xylene, aromatic hydrocarbon solvents, hydrocarbon solvents such as n-hexane, cyclohexane and n-heptane, and halogenated carbonization such as methylene chloride, chloroform and dichloroethane. Ether solvents such as hydrogen solvents, ethyl ether, isopropyl ether, dioxane, tetrahydrofuran, dibutyl ether, butyl ethyl ether, methyl-t-butyl ether, terpinyl methyl ether, dihydroterpinyl methyl ether, diglyme 1,3-dioxolane Solvent, acetone, acetophenone, methyl ethyl ketone, methyl propyl ketone, diethyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, aceto Ketone solvents such as nilacetone, isophorone, cyclohexanone, methylcyclohexanone, 2- (1-cyclohexenyl) cyclohexanone methyl isobutyl ketone, cyclohexanone, isophorone, ethyl formate, propyl formate, butyl formate, isobutyl formate, pentyl formate, methyl acetate, acetic acid Ethyl, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate, (iso) amyl acetate, cyclohexyl acetate, ethyl lactate, 3-methoxybutyl acetate, sec-hexyl acetate, 2-ethylbutyl acetate 2-ethylhexyl acetate, benzyl acetate, methyl propionate, ethyl propionate, methyl monochloroacetate, ethyl monochloroacetate, butyl monochloroacetate, methyl acetoacetate, ethyl acetoacetate, Ester solvents such as butyl lopionate, isoamyl propionate, γ-butyrolactone, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol mono n-butyl ether, propylene glycol monomethyl ether, Propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono n-propyl ether, dipropylene glycol mono n-butyl ether , Triethylene glycol monomethyl Ether, triethylene glycol monoethyl ether, triethylene glycol mono n-propyl ether, triethylene glycol mono n-butyl ether, tripropylene glycol monoethyl ether, tripropylene glycol mono n-propyl ether, tripropylene glycol mono n-butyl ether, etc. And glycol ether solvents of these monoethers, and dialkyl ether solvents such as acetate solvents of diethers, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl isobutyl ether, dipropylene glycol dimethyl ether, and dipropylene glycol diethyl ether. Methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, heptanol, n-amyl alcohol, sec-amyl alcohol, n-hexyl alcohol, tetrahydrofurfuryl Alcohol, furfuryl alcohol, allyl alcohol, ethylene chlorohydrin, octyldodecanol, 1-ethyl-1-propanol, 2-methyl-1-butanol, isoamyl alcohol, t-amyl alcohol, sec-isoamyl alcohol, neoamyl alcohol Hexyl alcohol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, heptyl alcohol, n-octyl alcohol, 2-ethylhexyl Lucol, nonyl alcohol, decyl alcohol, undecyl alcohol, lauryl alcohol, cyclopentanol, cyclohexanol, benzyl alcohol, α-terpineol, terpineol C, L-α-terpineol, dihydroterpineol, terpinyloxyethanol, dihydroterpi Nyloxyethanol, Tersolve MTPH, Tersolve DTO-210, Tersolve THA-90, Tersolve THA-70 manufactured by Nippon Terpene Chemical Co., Ltd., cyclohexanol, 3-methoxybutanol, diacetone alcohol, 1,4-butanediol, octane Diol, etc., Fine Oxocol 140N, Fine Oxocol 1600, Fine Oxocol 180, Fine Oxocol manufactured by Nissan Chemical Industries, Ltd. Alcohol solvents such as 80N, fine oxocol 2000, glycol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-butylene glycol, hexylene glycol, polyethylene glycol, and polypropylene glycol Can be mentioned. Other examples include amide solvents such as dimethylacetamide and dimethylformamide. In addition, (meth) acrylic acid having a reactive group as a dispersion medium, (meth) acrylic acid esters, vinyl monomers such as vinyl acetate, vinyl ether derivatives, and ethylenically unsaturated monomers such as polyallyl derivatives Can also be used. In addition, various resins, oligomers, and monomers used for ordinary paints, adhesives, and moldings can be used without any particular limitation. Specific examples include acrylic resins, polyester resins, alkyd resins, urethane resins, silicone resins, fluororesins, epoxy resins, polycarbonate resins, polyvinyl chloride resins, and polypinyl alcohols. In addition, the said dispersion medium can be used suitably individually or in mixture of 2 or more types.
 8.その他
 本発明の分散剤は公知の方法で製造することができ、上記の範囲で疎水基の種類、アルキレンオキシド種とその付加形態、付加モル量、連結基などを特に限定して組成を最適選定することにより、公知の分散剤よりも、より広範な種類の分散媒に酸化ジルコニウム粒子を分散安定化できる点で産業上の利用価値は大きい。
8). Others The dispersant of the present invention can be produced by a known method, and the composition is optimally selected by specifically limiting the type of the hydrophobic group, the alkylene oxide type and its addition form, the added molar amount, the linking group, etc. within the above range. By doing so, the industrial utility value is great in that the zirconium oxide particles can be dispersed and stabilized in a wider variety of dispersion media than known dispersants.
 また、本発明の分散剤は公知の精製法により含有するイオン種、特にアルカリ金属イオン、アルカリ土類金属イオン、重金属イオン、ハロゲンイオンの各イオンの含有量を低減して用いることができる。分散剤中のイオン種は分散体の分散安定性、耐触性、耐酸化性、分散塗膜の電気特性(導電特性、絶縁特性)、経時安定性、耐熱性、低湿性、耐候性に大きく影響するため、上記イオンの含有量は適宜決定することができるが、分散剤中で10ppm未満であることが望ましい。 In addition, the dispersant of the present invention can be used by reducing the content of ionic species, particularly alkali metal ions, alkaline earth metal ions, heavy metal ions, and halogen ions contained by a known purification method. The ionic species in the dispersant is greatly affected by the dispersion stability, touch resistance, oxidation resistance, electrical properties (conductive properties, insulation properties), aging stability, heat resistance, low humidity, and weather resistance of the dispersion. However, it is desirable that the content of the ions is less than 10 ppm in the dispersant.
 本発明で好適に採用される酸化ジルコニウム粒子の分散媒中の含有量は、前記非水性分散媒中で均一に分散することができれば特に限定されるものではなく、用途などによって異なるものであるが、0.5~70質量%の範囲内であることが好ましい。また、酸化ジルコニウム粒子の平均粒径は1~500nmの範囲内であることが好ましく、10~100nmの範囲内であることがより好ましい。また、本発明の分散剤の好適な使用条件は、酸化ジルコニウム粒子に対して1~300重量%の範囲内が好適である。 The content of the zirconium oxide particles suitably employed in the present invention in the dispersion medium is not particularly limited as long as it can be uniformly dispersed in the non-aqueous dispersion medium, and varies depending on the application. The content is preferably in the range of 0.5 to 70% by mass. Further, the average particle diameter of the zirconium oxide particles is preferably in the range of 1 to 500 nm, and more preferably in the range of 10 to 100 nm. In addition, the preferred use condition of the dispersant of the present invention is preferably in the range of 1 to 300% by weight with respect to the zirconium oxide particles.
 また、本発明の分散体組成物は公知の撹拌手段、均一化手段、分散化手段を用いて調製することができる。採用することができる分散機の一例としては、2本ロール、3本ロールなどのロールミル、ボールミル、振動ボールミルなどのボールミル、ペイントシェーカー、連続ディスク型ビーズミル、連続アニュラー型ビーズミルなどのビーズミル、サンドミル、ジェットミルなどが挙げられる。また、超音波発生浴中において分散処理を行うことも出来る。 Also, the dispersion composition of the present invention can be prepared using known stirring means, homogenizing means, and dispersing means. Examples of dispersers that can be used include roll mills such as two rolls and three rolls, ball mills such as ball mills and vibration ball mills, paint shakers, continuous disk type bead mills, bead mills such as continuous annular type bead mills, sand mills, and jets. Mill etc. are mentioned. Further, the dispersion treatment can be performed in an ultrasonic wave generation bath.
 また、本発明の分散剤は、非水性分散媒中での酸化ジルコニウム粒子の分散安定化に対して、公知技術に比べて優れた分散安定化効果を発揮するのみならず、酸化ジルコニウム粒子を媒体中から安定に取り出すための保護剤として使用することができる。酸化ジルコニウム粒子を媒体中から安定に取り出すための保護剤の機能としては、生成粒子の凝集抑制、容器壁面への吸着抑制及び汚染防止、易再分散性付与、粒子表面の表面改質、機能性表面の劣化防止、溶媒の置換や極性変更時のショック緩和、粉末の流動性改良、粉末の固化防止などが挙げられる。本発明の分散剤は公知の保護剤よりも前記機能に優れ、アルキレンオキシドの付加形態とその付加モル量、疎水基の種類や連結基などを最適選定することにより、公知の保護剤よりも一層広範な分散媒に酸化ジルコニウム粒子を分散安定化できる。 Further, the dispersant of the present invention not only exhibits an excellent dispersion stabilization effect compared to known techniques for the dispersion stabilization of zirconium oxide particles in a non-aqueous dispersion medium, but also uses zirconium oxide particles as a medium. It can be used as a protective agent for taking out from inside stably. Functions of the protective agent to stably extract zirconium oxide particles from the medium include aggregation suppression of the generated particles, suppression of adsorption to the container wall surface and prevention of contamination, easy redispersibility, surface modification of the particle surface, functionality Examples include surface deterioration prevention, solvent relaxation and shock mitigation during polarity change, powder flowability improvement, and powder solidification prevention. The dispersant of the present invention is superior to the known protective agents in terms of the above functions, and is more suitable than the known protective agents by optimally selecting the addition form of alkylene oxide and the addition molar amount thereof, the type of hydrophobic group, the linking group, and the like. Zirconium oxide particles can be dispersed and stabilized in a wide range of dispersion media.
 本発明の分散体組成物を含有するコーティング組成物を塗布する基材としては、例えば、ガラス、樹脂フィルム、ガラスコンポジット、セラミックス、金属・鋼板などを使用することができる。 As the substrate on which the coating composition containing the dispersion composition of the present invention is applied, for example, glass, resin film, glass composite, ceramics, metal / steel plate and the like can be used.
 以下に本発明の実施例および比較例について説明する。なお、以下において、配合量を示す「部」は「重量部」を示し、「%」は「重量%」を示す。言うまでもないが、本発明は下記実施例に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲において適宜変更や修正が可能である。 Hereinafter, examples and comparative examples of the present invention will be described. In the following, “part” indicating the blending amount indicates “part by weight” and “%” indicates “% by weight”. Needless to say, the present invention is not limited to the following examples, and appropriate changes and modifications can be made without departing from the technical scope of the present invention.
 <分散剤の合成>
〔製造例1(分散剤1の合成)〕
 トルエン溶媒中に、ラウリルアルコールエチレンオキシド5モル付加物406g(1モル)およびモノクロロ酢酸ナトリウム151g(1.3モル)を反応器にとり、均一になるよう撹拌した。その後、反応系の温度が60℃の条件で、水酸化ナトリウム52g(1.3モル)を添加した後、反応系の温度を80℃に昇温させ、3時間反応させた。反応後、98%硫酸120g(1.2モル)を滴下することにより、白色懸濁溶液を得た。次いで、この白色懸濁溶液を蒸留水で洗浄し、溶媒を減圧留去することにより、分散剤(R:イソデシル基、AO:エチレンオキシド、n:5、X:CH)を得た。
<Synthesis of dispersant>
[Production Example 1 (Synthesis of Dispersant 1)]
In a toluene solvent, 406 g (1 mol) of lauryl alcohol ethylene oxide 5 mol adduct and 151 g (1.3 mol) of sodium monochloroacetate were placed in a reactor and stirred uniformly. Thereafter, 52 g (1.3 mol) of sodium hydroxide was added under the condition that the temperature of the reaction system was 60 ° C., and then the temperature of the reaction system was raised to 80 ° C. and reacted for 3 hours. After the reaction, 120 g (1.2 mol) of 98% sulfuric acid was added dropwise to obtain a white suspension. Subsequently, this white suspension solution was washed with distilled water, and the solvent was distilled off under reduced pressure to obtain a dispersant (R: isodecyl group, AO: ethylene oxide, n: 5, X: CH 2 ).
 〔製造例2(分散剤2の合成)〕
 ラウリルアルコールエチレンオキシド5モル付加物406g(1モル)に代えて、ラウリルアルコールエチレンオキシド10モル付加物626g(1モル)を用いた以外は、製造例1と同様の操作を行い、分散剤(R:ラウリル基、AO:エチレンオキシド、n:10、X:CH)を得た。
[Production Example 2 (Synthesis of Dispersant 2)]
Instead of 406 g (1 mol) of lauryl alcohol ethylene oxide 5 mol adduct, 626 g (1 mol) of lauryl alcohol ethylene oxide 10 mol adduct was used, and the same operation as in Production Example 1 was carried out, and a dispersant (R: lauryl) Group, AO: ethylene oxide, n: 10, X: CH 2 ).
 〔製造例3(分散剤3の合成)〕
 ラウリルアルコールのエチレンオキシド5モル/プロピレンオキシド5モルランダム付加物696g(1モル)に置き換えた以外は、製造例1と同様に行い、分散剤(R:ラウリル基、AO:エチレンオキシドおよびプロピレンオキシド、n:10、X:CH)を得た。
[Production Example 3 (Synthesis of Dispersant 3)]
Except for replacing with 696 g (1 mol) of lauryl alcohol ethylene oxide 5 mol / propylene oxide 5 mol random adduct, the same procedure as in Production Example 1 was carried out, and the dispersant (R: lauryl group, AO: ethylene oxide and propylene oxide, n: 10, X: CH 2 ).
 《酸化ジルコニウムのアクリレートモノマー分散体(1)の作製》
 酸化ジルコニウム粉末(日本電工社製の商品名PCS、一次粒子径30nmのもの)100部とメチルエチルケトン400部とを混合したものに、以下の表1に示す組成の疎水基(R)と、オキシアルキレン基(-(AO)n-)と、連結基(X)を含有する式(1)で示される化合物からなる本発明の分散剤1ないし3(実施例1ないし3)を10部、または以下の表1に示す組成の疎水基(R)と、オキシアルキレン基(-(AO)n-)と、連結基(X)を含有する式(1)で示される化合物からなる比較例の分散剤(比較例1、2)10部を添加したものに、寿工業社製の商品名ウルトラアペックスミルUAM-005(直径50μmのジルコニアのビーズを用い、周速10m/秒)で4時間微細化処理を実施して、酸化ジルコニウム分散体を作製した。得られた酸化ジルコニウム分散体100部に、フェノキシエチルアクリレート(第一工業製薬社製の商品名ニューフロンティアPHE)10部と、ペンタエリスリトールトリアクリレート(第一工業製薬社製の商品名ニューフロンティアPET-3)10部とを添加して混合した後、溶媒のメチルエチルケトンをロータリーエバポレーターを用いて減圧除去し、酸化ジルコニウムのアクリレートモノマー分散体(1)を得た。
<< Preparation of Zirconium Oxide Acrylate Monomer Dispersion (1) >>
Hydrophobic groups (R) having the composition shown in Table 1 below and oxyalkylene mixed with 100 parts of zirconium oxide powder (trade name PCS manufactured by NIPPON Denko Co., Ltd., having a primary particle diameter of 30 nm) and 400 parts of methyl ethyl ketone 10 parts of the dispersants 1 to 3 (Examples 1 to 3) of the present invention comprising the group (-(AO) n-) and the compound represented by the formula (1) containing the linking group (X), or A dispersant for a comparative example comprising a compound represented by the formula (1) containing a hydrophobic group (R), an oxyalkylene group (-(AO) n-) and a linking group (X) having the composition shown in Table 1 (Comparative Examples 1 and 2) To which 10 parts were added, refinement treatment was carried out for 4 hours with the trade name Ultra Apex Mill UAM-005 (peripheral speed 10 m / second using 50 μm diameter zirconia beads) manufactured by Kotobuki Industries To make a zirconium oxide dispersion. Made. To 100 parts of the resulting zirconium oxide dispersion, 10 parts of phenoxyethyl acrylate (trade name New Frontier PHE manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and pentaerythritol triacrylate (trade name New Frontier PET-made by Daiichi Kogyo Seiyaku Co., Ltd.) 3) After adding and mixing 10 parts, the solvent methyl ethyl ketone was removed under reduced pressure using a rotary evaporator to obtain an acrylate monomer dispersion (1) of zirconium oxide.
 《酸化ジルコニウムのアクリレートモノマー分散体(2)の作製》
 市販の酸化ジルコニウム分散体(堺化学社製の商品名SZR-M、一次粒子径3nm、30重量%のメタノールを含有する分散体)100部に、以下の表1に示す組成を有する式(1)で示される化合物からなる本発明の分散剤1ないし3(実施例4ないし6)3部または以下の表1に示す組成を有する式(1)で示される化合物からなる比較例の分散剤(比較例3、4)3部と、フェノキシエチルアクリレート(第一工業製薬社製の商品名ニューフロンティアPHE)15部と、ペンタエリスリトールトリアクリレート(第一工業製薬社製の商品名ニューフロンティアPET-3)15部とを添加して混合した後、溶媒のメタノールをロータリーエバポレーターを用いて減圧除去し、酸化ジルコニウムのアクリレートモノマー分散体(2)を得た。
<< Preparation of Zirconium Oxide Acrylate Monomer Dispersion (2) >>
100 parts of a commercially available zirconium oxide dispersion (trade name SZR-M manufactured by Sakai Chemical Co., Ltd., a dispersion containing methanol having a primary particle diameter of 3 nm and 30% by weight) has the formula (1 Dispersant 1 to 3 (Examples 4 to 6) of the present invention comprising a compound represented by formula (1) or a comparative dispersant comprising a compound represented by formula (1) having the composition shown in Table 1 below ( Comparative Examples 3 and 4) 3 parts, 15 parts of phenoxyethyl acrylate (trade name New Frontier PHE manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and pentaerythritol triacrylate (trade name New Frontier PET-3 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) ) 15 parts was added and mixed, and then the solvent methanol was removed under reduced pressure using a rotary evaporator to obtain a zirconium oxide acrylate monomer dispersion (2). Obtained.
 〈分散体の特性評価〉
 a.外観の透明性  酸化ジルコニウムのアクリレートモノマー分散体を透明のガラス容器に入れ、上記ガラス容器の下に12ポイントで印字したアルファベットを記した紙を置き、分散体の透明性について、その分散体越しにアルファベットを判別できるかどうかの点から、以下の基準で評価した。その結果を表1に示す。 
 ◎:分散体を5cm深さのガラス容器に入れたときに、12ポイントのアルファベット文字が見える。分散体が透明である。 
 ○:分散体を1cm深さのガラス容器に入れたときに、12ポイントのアルファベット文字がはっきり見える。分散体に僅かな濁りがある。 
 ×:分散体を1cm深さのガラス容器に入れたときに、12ポイントのアルファベット文字がはっきり見えない。分散体に濁りがある。
<Characteristic evaluation of dispersion>
a. Transparency of appearance Place the acrylate monomer dispersion of zirconium oxide in a transparent glass container, place a paper with alphabet printed at 12 points under the glass container, and check the transparency of the dispersion over the dispersion. The following criteria were used to evaluate whether the alphabet could be distinguished. The results are shown in Table 1.
A: When the dispersion is put into a glass container having a depth of 5 cm, 12-point alphabet characters can be seen. The dispersion is transparent.
○: When the dispersion is placed in a glass container having a depth of 1 cm, 12-point alphabet characters are clearly visible. There is a slight turbidity in the dispersion.
X: When the dispersion is put into a glass container having a depth of 1 cm, 12-point alphabet characters cannot be clearly seen. The dispersion is turbid.
 b.粘度測定  酸化ジルコニウムのアクリレートモノマー分散体の粘度について、E型粘度計(東機産業社製の商品名RE-80R)を用いて25℃で測定を行った。その結果を表1に示す。 B. Viscosity Measurement The viscosity of the acrylate monomer dispersion of zirconium oxide was measured at 25 ° C. using an E-type viscometer (trade name RE-80R manufactured by Toki Sangyo Co., Ltd.). The results are shown in Table 1.
 c.屈折率  酸化ジルコニウムのアクリレートモノマー分散体の屈折率について、アッベ屈折率計(アタゴ社製の商品名NAR-1T)を用いて25℃で測定を行った。その結果を表1に示す。 C. Refractive index The refractive index of the zirconium oxide acrylate monomer dispersion was measured at 25 ° C. using an Abbe refractometer (trade name NAR-1T manufactured by Atago Co., Ltd.). The results are shown in Table 1.
 《酸化ジルコニウムの光重合硬化膜の作製》
上記酸化ジルコニウムのアクリレートモノマー分散体(1)または(2)100部に、光重合開始剤(IGACURE184)1部を添加して混合し、酸化ジルコニウムペーストを得た。その酸化ジルコニウムペーストを、ポリエチレンテレフタレートフィルム上にアプリケーター(小平製作所製のYA型)を用いて約50μmの膜厚で塗布した後、高圧水銀灯を用いて80W/cmの強さで約200mJ/cm2のエネルギーの紫外線を照射することにより、酸化ジルコニウムのアクリレートモノマー分散体の光重合硬化膜を得た。
<< Preparation of photopolymerized cured film of zirconium oxide >>
One part of a photopolymerization initiator (IGACURE184) was added to and mixed with 100 parts of the acrylate monomer dispersion (1) or (2) of zirconium oxide to obtain a zirconium oxide paste. The zirconium oxide paste was applied on a polyethylene terephthalate film with an applicator (YA type manufactured by Kodaira Seisakusho Co., Ltd.) with a film thickness of about 50 μm, and then with a high pressure mercury lamp at a strength of 80 W / cm, about 200 mJ / cm 2. A photopolymerized cured film of an acrylate monomer dispersion of zirconium oxide was obtained by irradiating with ultraviolet rays having the energy of 1.
 〈光重合硬化膜の特性評価〉
 a.外観の透明性  上記ポリエチレンテレフタレートフィルムの下に12ポイントで印字したアルファベットを記した紙を置き、ポリエチレンテレフタレートフィルム上に得られた光重合硬化膜の透明性について、その硬化膜越しにアルファベットを判別できるかどうかの点から、以下の基準で評価した。その結果を表1に示す。 
 ◎:12ポイントのアルファベット文字を鮮明に判別することができる。 
 ○:硬化膜にごく僅かの濁りを生じているが、12ポイントのアルファベット文字を判別することができる。 
 ×:硬化膜に濁りがあり、12ポイントのアルファベット文字を判別することができない。
<Characteristic evaluation of photopolymerized cured film>
a. Transparency of appearance Place the paper with the alphabet printed at 12 points under the polyethylene terephthalate film, and the transparency of the photopolymerized cured film obtained on the polyethylene terephthalate film can be distinguished through the cured film In terms of whether or not it was evaluated according to the following criteria. The results are shown in Table 1.
A: 12-point alphabet characters can be clearly distinguished.
○: A slight turbidity occurs in the cured film, but 12-point alphabet characters can be identified.
X: The cured film has turbidity, and 12-point alphabet characters cannot be identified.
 b.屈折率  光重合硬化膜の屈折率について、セキテクノトロン社製のプリズムカプラ(MODEL 2010/M)を用いて25℃で測定を行った。その結果を表1に示す。 B. Refractive index The refractive index of the photopolymerized cured film was measured at 25 ° C. using a prism coupler (MODEL 2010 / M) manufactured by Seki Technotron. The results are shown in Table 1.
 c.鉛筆硬さ  光重合硬化膜の鉛筆硬さについては、JISK5400に準拠して所定硬さの鉛筆で光重合硬化膜の引っ掻き試験を行った。その結果を表1に示す。 C. Pencil hardness About the pencil hardness of the photopolymerization cured film, the photopolymerization cured film was scratched with a pencil having a predetermined hardness in accordance with JISK5400. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1に示すように、本発明の分散体は優れた分散性(外観の透明性)と高い屈折率を有し、本発明の分散体の光重合硬化膜は優れた透明性と高い屈折率と良好な鉛筆硬さを備えていることが分かる。 As shown in Table 1, the dispersion of the present invention has excellent dispersibility (transparency of appearance) and a high refractive index, and the photopolymerized cured film of the dispersion of the present invention has excellent transparency and a high refractive index. It can be seen that it has good pencil hardness.
 しかし、比較例1ないし4の分散体は凝集したために、粘度および屈折率の測定ができず、濁りがあった。また、比較例1ないし4の光重合硬化膜は濁りがあり、屈折率および鉛筆硬さの測定ができなかった。 However, since the dispersions of Comparative Examples 1 to 4 were agglomerated, the viscosity and refractive index could not be measured, and there was turbidity. Further, the photopolymerized cured films of Comparative Examples 1 to 4 were turbid, and the refractive index and pencil hardness could not be measured.
 表1において、EOはエチレンオキシドを示し、POはプロピレンオキシドを示す。 In Table 1, EO represents ethylene oxide and PO represents propylene oxide.
 本発明の分散体組成物は、コーティング組成物、ハイブリッド材料、封止剤、表面保護剤、導電性ペースト、導電性インク、センサー、精密分析素子、光メモリ、液晶表示素子、ナノ磁石、熱伝媒体、燃料電池用高機能触媒、有機太陽電池、ナノガラスデバイス、研磨剤、ドラッグキャリヤー、環境触媒、塗料、印刷インキ、インクジェット用インキ、カラーフィルター用レジスト、筆記具用インキ、光学薄膜、粘着剤、反射防止膜、ハードコート膜等の分野で使用できる。 The dispersion composition of the present invention includes a coating composition, a hybrid material, a sealant, a surface protective agent, a conductive paste, a conductive ink, a sensor, a precision analysis element, an optical memory, a liquid crystal display element, a nanomagnet, and a heat transfer medium. , High-performance catalysts for fuel cells, organic solar cells, nanoglass devices, abrasives, drug carriers, environmental catalysts, paints, printing inks, ink-jet inks, resists for color filters, inks for writing instruments, optical thin films, adhesives, antireflection It can be used in the field of films, hard coat films and the like.

Claims (7)

  1.  酸化ジルコニウム粒子を、下記式(1)で示される化合物からなる分散剤を用いて分散媒中に分散してなる分散体組成物。
    Figure JPOXMLDOC01-appb-C000001
     ただし、式(1)のRは炭素数が1ないし24であるアルキル基および/又はアルケニル基を示し、
     式(1)のAOは炭素数が2ないし4のオキシアルキレン基を示し、nはアルキレンオキシドの平均付加モル数を示し、5ないし30の範囲であり、
     式(1)のXは炭素原子、水素原子及び/又は酸素原子からなる連結基である。
    A dispersion composition obtained by dispersing zirconium oxide particles in a dispersion medium using a dispersant composed of a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), R represents an alkyl group and / or alkenyl group having 1 to 24 carbon atoms,
    AO in formula (1) represents an oxyalkylene group having 2 to 4 carbon atoms, n represents the average number of moles of alkylene oxide added, and ranges from 5 to 30;
    X in the formula (1) is a linking group composed of a carbon atom, a hydrogen atom and / or an oxygen atom.
  2.  式(1)のXは炭素数が1ないし15のアルキレン基であることを特徴とする請求項1記載の分散体組成物。 The dispersion composition according to claim 1, wherein X in the formula (1) is an alkylene group having 1 to 15 carbon atoms.
  3.  式(1)のXは下記式(2)で示される物質であることを特徴とする請求項1記載の分散体組成物。
    Figure JPOXMLDOC01-appb-C000002
     ただし、式(2)のYは炭素数が1ないし15のアルキレン基、ビニレン基、フェニレン基およびカルボキシル基含有フェニレン基の中から選択されるいずれかである。
    The dispersion composition according to claim 1, wherein X in the formula (1) is a substance represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    However, Y in Formula (2) is any selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
  4.  分散媒は二重結合硬化性樹脂であることを特徴とする請求項1、2または3記載の分散体組成物。 The dispersion composition according to claim 1, 2 or 3, wherein the dispersion medium is a double bond curable resin.
  5.  分散媒は、樹脂が溶解した溶剤であることを特徴とする請求項1、2または3記載の分散体組成物。 4. The dispersion composition according to claim 1, wherein the dispersion medium is a solvent in which a resin is dissolved.
  6.  請求項1、2、3、4または5記載の分散体組成物を含有するコーティング組成物。 A coating composition containing the dispersion composition according to claim 1, 2, 3, 4 or 5.
  7.  請求項6記載のコーティング組成物を基材上に塗布した後、物理的または化学的に反応することにより得られる部材。 A member obtained by physically or chemically reacting after applying the coating composition according to claim 6 on a substrate.
PCT/JP2011/050896 2010-05-26 2011-01-19 Dispersion composition WO2011148661A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180026039.5A CN102918020B (en) 2010-05-26 2011-01-19 Dispersion composite
KR1020127030912A KR20130029402A (en) 2010-05-26 2011-01-19 Dispersion composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010120123 2010-05-26
JP2010-120123 2010-05-26
JPPCT/JP2010/063750 2010-08-13
PCT/JP2010/063750 WO2011148521A1 (en) 2010-05-26 2010-08-13 Dispersion composition
JP2010-286490 2010-12-22
JP2010286490A JP5813949B2 (en) 2010-05-26 2010-12-22 Dispersion composition

Publications (1)

Publication Number Publication Date
WO2011148661A1 true WO2011148661A1 (en) 2011-12-01

Family

ID=45003656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050896 WO2011148661A1 (en) 2010-05-26 2011-01-19 Dispersion composition

Country Status (1)

Country Link
WO (1) WO2011148661A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021424A (en) * 1988-02-08 1990-01-05 Skf Nova Ab Anionic compound derived from nonionic surface active agent, and composition containing said compound
JPH11153703A (en) * 1997-09-18 1999-06-08 Fuji Photo Film Co Ltd Antireflection film and image display device using that
JP2000262883A (en) * 1999-03-19 2000-09-26 Kao Corp In-oil dispersant for inorganic powder
JP2001276596A (en) * 2000-04-04 2001-10-09 Kao Corp Aqueous dispersant for inorganic powder
JP2008533525A (en) * 2005-03-11 2008-08-21 スリーエム イノベイティブ プロパティズ カンパニー Light control film having zirconia particles
JP2011011182A (en) * 2009-07-06 2011-01-20 Sanyo Chem Ind Ltd Dispersant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021424A (en) * 1988-02-08 1990-01-05 Skf Nova Ab Anionic compound derived from nonionic surface active agent, and composition containing said compound
JPH11153703A (en) * 1997-09-18 1999-06-08 Fuji Photo Film Co Ltd Antireflection film and image display device using that
JP2000262883A (en) * 1999-03-19 2000-09-26 Kao Corp In-oil dispersant for inorganic powder
JP2001276596A (en) * 2000-04-04 2001-10-09 Kao Corp Aqueous dispersant for inorganic powder
JP2008533525A (en) * 2005-03-11 2008-08-21 スリーエム イノベイティブ プロパティズ カンパニー Light control film having zirconia particles
JP2011011182A (en) * 2009-07-06 2011-01-20 Sanyo Chem Ind Ltd Dispersant

Similar Documents

Publication Publication Date Title
JP6046330B2 (en) Coating composition containing a dispersant composition
JP5813949B2 (en) Dispersion composition
JP5643155B2 (en) Hard coat dispersion composition, hard coat coating composition and hard coat coating
CN102015905A (en) Composition for transparent film formation and layered transparent film
JP5727215B2 (en) Dispersant and dispersion composition
WO2019017196A1 (en) Zirconium oxide particle dispersion composition and cured product thereof
JP2015000396A (en) Dispersant for non-aqueous dispersion medium
WO2011148661A1 (en) Dispersion composition
JP2015000970A (en) Dispersant for non-aqueous dispersion media
JP6305140B2 (en) Dispersant for non-aqueous dispersion media
WO2011148660A1 (en) Dispersant and dispersion composition
CN107428856B (en) Dispersion composition, cured product thereof, and laminate
JP4925935B2 (en) Composite rutile fine particles, composite rutile fine particle dispersion, high refractive index material, high refractive index member, and method for producing composite rutile fine particles
JP6072620B2 (en) Dispersant for non-aqueous dispersion media
JP6305141B2 (en) Dispersant for non-aqueous dispersion media
JP6092013B2 (en) Dispersant for non-aqueous dispersion media
JP4811980B2 (en) Dispersion having photocatalytic activity, and paint using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026039.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127030912

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786361

Country of ref document: EP

Kind code of ref document: A1