JP6091590B2 - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
JP6091590B2
JP6091590B2 JP2015240721A JP2015240721A JP6091590B2 JP 6091590 B2 JP6091590 B2 JP 6091590B2 JP 2015240721 A JP2015240721 A JP 2015240721A JP 2015240721 A JP2015240721 A JP 2015240721A JP 6091590 B2 JP6091590 B2 JP 6091590B2
Authority
JP
Japan
Prior art keywords
film
film forming
crystal resonator
calibration
film formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015240721A
Other languages
English (en)
Other versions
JP2016040415A (ja
Inventor
善之 中川
善之 中川
真吾 中野
真吾 中野
直人 福田
直人 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015240721A priority Critical patent/JP6091590B2/ja
Publication of JP2016040415A publication Critical patent/JP2016040415A/ja
Application granted granted Critical
Publication of JP6091590B2 publication Critical patent/JP6091590B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、成膜装置に関する。
従来、蒸着やスパッタリング等で基板等の成膜対象物に薄膜を形成する際には、形成される薄膜の膜厚を制御するために、成膜室内に水晶振動子を配置している。成膜室内に水晶振動子を配置すると、薄膜を形成する際に、水晶振動子と成膜対象物とに薄膜を構成する成膜材料が堆積される。ここで水晶振動子に成膜材料が堆積すると、堆積される成膜材料の量に応じて水晶振動子の共振周波数が変化する。この現象を利用して、共振周波数の変化量から水晶振動子に堆積した膜厚を算出し、予め成膜対象物との膜厚比を求めておくことで、成膜対象物に堆積する成膜材料の膜厚を知ることができる。
しかし、水晶振動子に成膜材料が堆積するにつれて、共振周波数の変化量と成膜対象物に堆積する膜厚値との関係にズレが生じてくる。このため、長期間にわたって成膜対象物の膜厚を正確に管理することは困難であった。
そこで、特許文献1には、成膜対象物の膜厚管理において問題となる膜厚値の誤差を小さくする方法が開示されている。即ち、特許文献1では、成膜室内に従来通りの測定用の水晶振動子とは別に校正用の水晶振動子を設ける方法を採用している。
ところで通常の成膜工程では、先ず成膜対象物を成膜室に搬入し、成膜対象物に成膜を行う。ここで成膜対象物に成膜を行う際は、測定用の水晶振動子に成膜材料を堆積させて、成膜対象物の膜厚を管理している。そして成膜が終了すると成膜対象物を成膜室から搬出して成膜工程を終える。しかし、成膜工程を複数回繰り返すと測定用の水晶振動子に成膜材料が堆積してくるので、成膜工程を繰り返すたびに膜厚管理の精度が低下してくる。そこで、校正用の水晶振動子を用いて校正工程を行う。
特許文献1にて開示される成膜方法によれば、校正工程は成膜工程間、即ち、成膜工程が完了してから次の成膜工程が開始するまでに行う。この校正工程では、まず校正用の水晶振動子及び測定用の水晶振動子にそれぞれ成膜材料を堆積させる。そして、校正用の水晶振動子から求まった成膜対象物上に成膜される薄膜の膜厚(膜厚値P0)と、測定用の水晶振動子から求まった成膜対象物上に成膜される薄膜の膜厚(膜厚値M0)とをそれぞれ測定してから校正係数P0/M0を求める。そして校正工程後に行われる成膜工程では、測定用の水晶振動子が算出される成膜対象物の膜厚値M1に、先に求めた校正係数P0/M0を乗算することで成膜対象物の膜厚を正確に管理している。
一方、特許文献2には、成膜対象物の面内に均一な膜厚で成膜する装置及び成膜方法が開示されている。特許文献2にて開示されている薄膜形成装置は、移動可能な成膜源が、固定された成膜対象物の下方を等速運動している。この薄膜形成装置を用いて薄膜を形成することにより、面積が広い成膜対象物においてもこの成膜対象物の面内に均一な膜厚で成膜を行うことができる。
また特許文献2の薄膜形成装置では、成膜源からの成膜材料の放出量をモニタするために、成膜源の待機位置の上方に固定された膜厚センサーを設けている。この膜厚センサーにより成膜材料の成膜速度を検出することができるので、所望の成膜速度になった時点で成膜源が成膜位置に移動して、成膜対象物に成膜を行っている。
特開2008−122200号公報 特開2004−091919号公報
しかし特許文献2の薄膜形成装置において、膜厚センサーに水晶振動子を用いた場合、水晶振動子に成膜材料が堆積してくると、共振周波数の変化量と堆積する膜厚値との関係にズレが生じてくる。その結果、長時間精度良く成膜を行うことができなかった。
また特許文献1にて開示される成膜方法を採用すると、測定用の水晶振動子は成膜工程を行っている間では成膜源から生じる輻射熱を浴び続けるので、測定用の水晶振動子自体の温度が上昇している。一方、校正用の水晶振動子は成膜工程を行っている間ではシャッターにより水晶振動子上における膜の堆積を防止しているので、成膜源から生じる輻射熱も同時に遮断されており校正用の水晶振動子自体の温度の上昇はほとんどない。ただし成膜工程を終え校正工程を行う際に、校正用の水晶振動子のシャッターを開くと、校正用の水晶振動子は成膜源から生じる輻射熱を浴びて、校正用水晶振動子自体の温度は上昇する。この時、常に輻射熱を浴びる測定用の水晶振動子と、間欠的に輻射熱を浴びる校正用の水晶振動子との温度差は非常に大きくなってしまう。
ここで水晶振動子は、水晶振動子上に膜が堆積することによって共振周波数が変化するが、水晶振動子自体の温度が変化した場合であっても共振周波数は変化する。
そこで発明者らは、成膜源から生じる輻射熱によって水晶振動子の共振周波数がどの程度変化するかを測定・評価した。図5は、成膜源から生じる輻射熱による水晶振動子の共振周波数の変化量を測定した際の装置の概略図である。図5の装置は、成膜源101の直上に一定の距離をおいて水晶振動子102を設置し、成膜源101と水晶振動子102との間にシャッター103を設置している。今回の実験では、成膜源101として、半径50mm、高さ150mmの円筒状の坩堝を使用し、水晶振動子102として、INFICON社製金電極の6MHz水晶振動子を使用して実験を行った。
実験は、まず成膜材料が無い状態の成膜源を300℃に加熱した後、シャッター103を開放し、シャッター103を解放した後の水晶振動子102の共振周波数の変化量を測定・評価した。図6は、上述した測定の結果を示すグラフである。図6は、成膜源の加熱時間を横軸に表し、水晶振動子の共振周波数及び温度を縦軸に表している。図6に示されるように、シャッター103を開いて水晶振動子102が輻射熱によって加熱され始めると、水晶振動子102の温度は徐々に上昇し、約2分後に温度が安定する。一方、水晶振動子102の共振周波数は、水晶振動子102の温度上昇と共に減少し、温度の安定に応じて安定する。
以上の実験結果を考慮すると、特許文献1の成膜方法では、測定用の水晶振動子は成膜工程中であっても校正工程中であっても成膜源から生じる輻射熱を浴び続けるので温度が安定して共振周波数は変化しない。しかし、校正用の水晶振動子は、ほんの数分で行われる校正工程においてのみ成膜源から生じる輻射熱にさらされるため、校正工程中に校正用の水晶振動子の温度は変化し、共振周波数も変化してしまう。その結果、校正用の水晶振動子が受ける熱輻射によってもたらされる共振周波数の変化によって膜厚校正精度が低下してしまうという問題があった。
本発明は、上記課題を解決するためになされるものであり、その目的は、精度よく、成膜対象物に均一な膜を成膜することができる成膜装置を提供することにある。
本発明に係る成膜装置は、成膜材料を加熱し、前記成膜材料の蒸気を放出させるための成膜源と、
前記成膜源を、所定の成膜待機位置と成膜位置との間で成膜対象物に対して相対的に移動させる移動手段と、
前記蒸着源から放出される前記成膜材料の蒸着量を測定するための測定用水晶振動子と、
前記測定用水晶振動子を校正するための校正用水晶振動子と、を備える成膜装置であって、
前記校正用水晶振動子の近傍に設けられたシャッターと、
前記測定用水晶振動子と前記校正用水晶振動子との温度を実質同一に制御するための温度制御手段を備えており、
前記温度制御手段が、前記測定用水晶振動子と前記校正用水晶振動子の少なくとも一方を加熱又は冷却する手段を含むことを特徴とする。
本発明によれば、精度よく、成膜対象物に均一な膜を成膜することができる成膜装置を提供することができる。
本発明の成膜装置における実施形態の例を示す概略図であり、(a)及び(b)は、成膜源が成膜待機位置にあるときの概略図であり、(c)及び(d)は、成膜源が成膜位置にあるときの概略図である。 図1の成膜装置の制御系を示す回路ブロック図である。 成膜対象物上に成膜される成膜材料の膜厚制御フローを示すフロー図である。 校正工程を行ったときと行わなかったときにおける成膜対象物上の薄膜の膜厚を比較したグラフである。 成膜源から生じる輻射熱による水晶振動子の共振周波数の変化を測定した際の装置の概略図である。 図5の装置を用いて実施した水晶振動子の共振周波数の変化の測定結果を示すグラフである。
本発明の成膜装置は、成膜源と、この成膜源を移動させるための移動手段と、測定用水晶振動子と、校正用水晶振動子と、を有している。
本発明の成膜装置において、成膜対象物上に成膜材料の薄膜を形成する際に、成膜源にて成膜材料を加熱し、成膜材料の蒸気を放出させる。
また本発明の成膜装置は、成膜源を、所定の成膜待機位置と成膜位置との間で、前記成膜対象物に対して相対的に移動させる移動手段を有している。
本発明の成膜装置において、測定用水晶振動子は、成膜対象物上に形成される成膜材料の成膜量(成膜される薄膜の膜厚)を測定するために設けられている。
本発明の成膜装置において、校正用水晶振動子は、測定用水晶振動子を校正するために設けられている。尚、校正用水晶振動子が測定用水晶振動子を校正する校正工程を行うタイミングは任意である。
ところで本発明では、測定用水晶振動子の温度と、校正用水晶振動子の温度と、を実質同一にする温度制御手段を有しているのが好ましい。尚、測定用水晶振動子の温度と校正用水晶振動子の温度との間に多少の誤差があってもよい。即ち、実質同一とは、設定温度に±0.5℃の誤差を含めた範囲のことをいう。
以下、図面を参照しながら本発明の成膜装置について説明するが、本発明はこれに限定されるものではない。また本発明は、発明の主旨を変更しない範囲において、適宜変更することが可能である。
図1は、本発明の成膜装置における実施形態の例を示す概略図である。図1において、(a)及び(b)は、成膜源が成膜待機位置にあるときの概略図であり、(c)及び(d)は、成膜源が成膜位置にあるときの概略図である。尚、図1(a)、(c)及び(d)は、成膜装置を正面側(幅方向)から見たときの断面概略図であり、図1(b)は、図1(a)のAA’断面を左側面側(奥行方向)から見たときの概略図である。
図1の成膜装置1は、成膜室10内に、成膜源21の移動手段である成膜源ユニット20及び2種類の水晶振動子(測定用水晶振動子22、校正用水晶振動子23)がそれぞれ所定の位置に設けられている。尚、各水晶振動子を設ける位置については後述する。
以下、図1の成膜装置1の構成部材について説明する。尚、図1の成膜装置1は、例えば、有機EL(エレクトロルミネッセンス)素子の製造に用いられる。
図1の成膜装置1において、成膜室10は、真空排気系(不図示)と接続されている。この真空排気系により、成膜室10内の圧力が1.0×10-4Pa乃至1.0×10-6Paの範囲になるように真空排気できるようになっている。
図1の成膜装置1において、成膜源ユニット20は、成膜室10内に設けられるレール24に沿って、図1(a)の矢印の方向、具体的には、成膜待機位置と成膜位置との間を往復移動することができる。ここで成膜待機位置とは、成膜対象物30上に成膜材料の成膜を行っていないときの成膜源ユニット20の位置をいう。具体的には、図1(a)に示されるように、成膜源21から放出される成膜材料の蒸気が到達できる位置(成膜範囲)に成膜対象物30がないときの成膜源ユニット20の位置をいう。一方、成膜位置とは、成膜対象物30上に成膜材料の成膜を行っているときの成膜源ユニット20の位置をいう。具体的には、図1(c)及び(d)に示されるように、成膜源21から放出される成膜材料の蒸気が到達できる位置(成膜範囲)に成膜対象物30があるときの成膜源ユニット20の位置をいう。
尚、本発明において、成膜源ユニット20の形状は特に限定されるものではないが、成膜材料の蒸気を所定の位置から選択的に放出させるという観点で、上部に成膜材料の蒸気を放出するための開口部25を設けた筐体にするのが好ましい。成膜源ユニット20を筐体にすることにより、成膜源ユニット20から放出される成膜材料の蒸気の進行方向やその分布を開口部25の形状により制御することができる。また本発明において、成膜源ユニット20の大きさも特に限定されるものではない。尚、成膜源ユニット20の大きさは、成膜室10等の他の部材とのバランスを考慮して適宜設定される。
図1(a)に示されるように、成膜源ユニット20を、レール24に沿って成膜待機位置と成膜位置との間を往復移動する際には、成膜源ユニット20に移動制御手段(不図示)を設けてもよい。特に、この移動制御手段によって成膜源ユニット20を等速度で移動させることができると、成膜対象物30上に成膜材料が均一に成膜されるので、好ましい。
成膜源ユニット20内に設けられる成膜源21の形状は、成膜対象物30の大きさや成膜材料の蒸気の分布を考慮して適宜設定することができる。例えば、図1(a)、(b)に示されるように、成膜室10の幅方向よりも奥行方向が長い矩形形状とすることができるが、本発明はこれに限定されるものではない。また成膜源ユニット20内に設けられる成膜源21を複数設けてもよい。一方、成膜源ユニット20内に設けられる成膜源21の中には、成膜材料(不図示)が収容されている。成膜源21に備える加熱手段(不図示)で成膜材料を加熱することで、成膜源21から成膜材料の蒸気を放出することができる。 図1の成膜装置1において、成膜源ユニット20が成膜待機位置にあるときには、成膜源ユニット20の直上に2種類の水晶振動子(測定用水晶振動子22、校正用水晶振動子23)がそれぞれ設けられている。
測定用水晶振動子22は、成膜源ユニット20が成膜待機位置にあるときに、成膜源21から放出される成膜材料の放出量がモニタできる位置に配置されているのが好ましい。測定用水晶振動子22上に成膜材料が所定時間堆積することにより、測定用水晶振動子22の共振周波数が変化する。図2は、図1の成膜装置の制御系を示す回路ブロック図である。図2に示されるように、測定用水晶振動子22の共振周波数の変化量は、膜厚測定器41が感知する。そして膜厚測定器41から出力される電気信号(測定用水晶振動子22の共振周波数の変化量の情報に関する電気信号)を制御系40が備える温度調節器(不図示)に送信して成膜源21の加熱手段の制御、例えば、成膜材料への加熱温度の調整を行う。こうすることで、成膜源21から放出される成膜材料の放出量が一定になるように制御されている。
図1に示されるように、校正用水晶振動子23も、成膜源ユニット20が成膜待機位置にあるときに、成膜源21から放出される成膜材料の放出量がモニタできる位置に配置されているのが好ましい。校正工程において、成膜材料が校正用水晶振動子23に所定時間堆積することにより、校正用水晶振動子23の共振周波数が変化する。図2に示されるように、成膜材料の付着に伴う校正用水晶振動子23の共振周波数の変化量は、膜厚測定器42が感知する。そして膜厚測定器42から出力される電気信号(校正用水晶振動子23の共振周波数の変化量の情報に関する電気信号)は、制御系40に送信された後、測定用水晶振動子22へ送信され適宜測定用水晶振動子22の校正を行う。
図1の成膜装置において、校正用水晶振動子23の近傍には、センサーシャッター26が設けられている。センサーシャッター26を設けることにより、所定のタイミングで各水晶振動子に成膜材料を付着させたり成膜材料の蒸気を遮断したりすることができる。このセンサーシャッター26によって、成膜源21から生じ校正用水晶振動子23が受ける輻射熱が遮蔽されるため、膜厚測定時にも校正用水晶振動子23の温度上昇は抑制される。
図1の成膜装置において、測定用水晶振動子22は、成膜源ユニット20の成膜待機位置に固定されている。このため、成膜源ユニット20が成膜待機位置にあるときにのみ蒸着源から輻射熱を受け、成膜源ユニット20が成膜位置にあるときは蒸着源からの輻射熱を受けない。従って、測定用水晶振動子22の温度は、成膜源ユニット20が成膜待機位置にある時に上昇する。一方で成膜源ユニット20が成膜位置に移動すると、測定用水晶振動子22の熱は測定用水晶振動子22を支持する部材を介して放熱され、校正用水晶振動子23とほぼ同じ温度まで低下する。従って、測定用水晶振動子22が成膜源と共に移動する構成に比べて、測定用水晶振動子22と校正用水晶振動子23との温度差を小さくすることができる。
また、各水晶振動子(測定用水晶振動子22、校正用水晶振動子23)がそれぞれが熱を受ける環境を極力そろえておくのがより好ましい。ここで各水晶振動子のそれぞれが熱を受ける環境をそろえることで、各水晶振動子が受ける成膜源21からの輻射熱による温度上昇量をより近づけることができる。そうすると、測定用水晶振動子22と校正用水晶振動子23との熱による共振周波数の変化をそろえることができ、測定用水晶振動子22で測定される膜厚値の校正を行うことができるので、高精度での膜厚管理が可能となる。熱を受ける環境をそろえるためには、測定用水晶振動子22と校正用水晶振動子23を、各水晶振動子と成膜源21の中心との距離及び角度が等しい位置に固定するのが好ましい。例えば、図1(a)及び(b)に示されるように、成膜待機位置の上方であって、成膜源21の中心からの距離及び角度が等しい位置に測定用水晶振動子22と校正用水晶振動子23を固定する。
さらに、水晶振動子の共振周波数の温度依存性を考慮して、各水晶振動子の温度を積極的に揃えて測定用水晶振動子22と校正用水晶振動子23との温度を実質同一に制御するための温度制御手段を設けるとより好ましい。温度制御手段としては、例えば、校正用水晶振動子23の近傍に加熱手段(不図示)又は冷却手段(不図示)を設けるとよい。あるいは、測定用水晶振動子22の近傍にも同様に加熱手段(不図示)又は冷却手段(不図示)を設けてもよい。
図1の成膜装置1において、基板等の成膜対象物30は、搬送機構(不図示)によって成膜室10へ搬入したり、成膜室10から搬出されたりしている。また成膜対象物30を成膜室10へ搬入する際には、支持部材(不図示)を用いて成膜対象物30を所定の位置で支持する。
次に、本発明の成膜装置を利用した成膜方法の具体例について説明する。
先ず、成膜の準備段階として、測定用水晶振動子22にある一定時間あたりに堆積する膜厚と、校正用水晶振動子23にある一定時間あたりに堆積する膜厚と、成膜対象物30に堆積する膜厚と、をそれぞれ測定しその測定値を元に膜厚比を求める準備工程を行う。 この準備工程では、まず成膜対象物30を搬送機構(不図示)で成膜室10内に搬入する。次に、成膜源21からの放出量が所望の放出量になった時点で成膜源ユニット20の移動を開始し、成膜対象物30に成膜材料の薄膜を形成する。そして所定の移動条件で所定の回数往復移動した後、搬送機構(不図示)を使用して成膜対象物30を成膜室10から搬出する。
ここで搬出した成膜対象物30上に形成される薄膜について、光学式や接触式の膜厚測定器で膜厚を測定し、その測定値(膜厚値)をtとする。一方で成膜対象物30上に成膜材料を成膜する際に、測定用水晶振動子22上に所定時間あたりに堆積する薄膜の膜厚は、測定用水晶振動子22の共振振動数の変化量より測定できる。ここで測定用水晶振動子22に所定時間あたりに堆積する薄膜の膜厚(膜厚値)をMとする。そうすると、tとMとの比(膜厚比)αが、α=t/Mと求まる。
また測定用水晶振動子22と同様に、校正用水晶振動子23の共振振動数の変化量より校正用の水晶振動子23上に所定時間あたりに堆積する薄膜の膜厚(膜厚値)をPとする。そうすると、tとPとの比(膜厚比)βが、β=t/Pと求まる。尚、βは、β(=t/P)=α×M/Pと表すことができる。
ここで、校正用水晶振動子23の近傍にセンサーシャッター26等のシャッターを設け、校正用水晶振動子23に成膜材料が必要以上に堆積するのを防止するのが好ましい。こうすることで、校正用水晶振動子23の膜厚測定精度を高いまま維持する時間を長くすることができる。
以上のようにして膜厚比α及びβを求めた後、成膜対象物30上に成膜材料の成膜を行う成膜工程を行う。
成膜工程では、まず成膜対象物30となる基板を成膜室10内に搬入する。次に、成膜源ユニット20を、所定の条件で成膜待機位置と成膜位置とを往復移動させて成膜対象物30上に成膜材料を成膜する。成膜が終了すると成膜室10内から成膜対象物30を搬出する。そしてこの成膜工程を繰り返すことで複数の成膜対象物30に成膜材料の成膜を行うことができる。
図3は、成膜対象物30上に成膜される成膜材料の膜厚制御フローを示すフロー図である。尚、図3のフロー図には、校正工程のフローも併せて示している。以下、図2の回路ブロック図と併せて説明する。
先ず、校正工程を行わないときは、校正用水晶振動子23の近傍にあるセンサーシャッター26が閉じられる一方で、測定用水晶振動子22に成膜材料が堆積される。このとき測定用水晶振動子22に電気的に接続された膜厚測定器41で水晶振動子の共振周波数の変化量を測定する。膜厚測定器41で測定された共振周波数の変化量から膜厚測定器41内で、測定用水晶振動子22上に所定時間あたりに堆積した薄膜の膜厚(膜厚値M0’)を算出する。そして膜厚測定器41は、電気的に接続され制御系40が備える温度調節器(不図示)に膜厚値M0’を送信すると共に、成膜対象物30に堆積する薄膜の膜厚、即ち、膜厚値t0(=α×M0’)を求める。ここでt0が所望の膜厚より厚い場合は、制御系40が備える温度調節器(不図示)によって成膜源21の温度を下げるように、膜厚測定器41から温度調節器へ電気信号が送信される。一方、t0が所望の膜厚が薄い場合は、温度調節器によって成膜源21の温度を上げるように、膜厚測定器41から温度調節器へ電気信号が送信される。他方、t0が所望の膜厚と等しい場合は、温度調節器によって成膜源21の温度を維持するように、膜厚測定器41から温度調節器へ電気信号が送信される。尚、図1の成膜装置1では、成膜源21からの放出量が所望の放出量で安定したのを確認した後、成膜源ユニット20の移動を開始する仕組みになっている。また成膜源ユニット20が成膜位置内を移動している間は成膜源21の温度が一定に保たれている。こうすることで、成膜源ユニット20が成膜位置内を移動している間において成膜源21から放出される成膜材料の放出量を一定にすることができる。
ところで、成膜源21が稼動している間、成膜源ユニット20が成膜待機位置にくる度に、測定用水晶振動子23に成膜材料が堆積していくので、徐々に膜厚の測定精度が低下していく。かかる場合には以下に説明する校正工程を行う。
校正工程に際しては、校正用水晶振動子23の近傍にあるセンサーシャッター26を、成膜工程中の所定のタイミングで開放状態にしておく。より具体的には、成膜源21が成膜位置を移動している間の所定のタイミングでシャッター26を開放状態にして待機しておくことにより、校正工程の際に測定用水晶振動子22と校正用水晶振動子23との温度差がより小さくなるように制御することができる。例えば、測定用水晶振動子22と校正用水晶振動子23とが蒸着源の成膜範囲に入る直前にシャッター26を開けば、各水晶振動子が蒸着源から受ける輻射熱をほぼ同一にし、各水晶振動子の温度を実質同一にすることができる。成膜源21が成膜位置から成膜待機領域に戻ってからさらに所定時間センサーシャッター26を開放状態にしておくと、校正用水晶振動子23上に一定量の成膜材料が堆積する。このため、所定時間あたりに校正用水晶振動子23上に成膜される薄膜の膜厚(膜厚値P1)を求めることができる。同時に、所定時間あたりに測定用水晶振動子22上に成膜される薄膜の膜厚(膜厚値M1)を求めることができる。膜厚値P1及びM1をそれぞれ求めるための所定時間が経過した後、センサーシャッター26を閉めておく。ここで、成膜対象物30上に成膜される薄膜の膜厚(膜厚値)は、膜厚値P1を用いてβP1と求まる一方で、膜厚値M1を用いてαM1とも求まる。
ところで、校正用水晶振動子23には、校正工程においてのみ成膜材料が堆積されるため、堆積されている成膜材料の膜の量は極端に少なく、膜厚測定誤差が小さい。その一方で、測定用水晶振動子22には成膜材料が充分堆積しており膜厚測定誤差が大きい。このため、必ずしもβP1=αM1とはならない。そこで、校正係数(βP1/αM1)を算出し、校正工程より後に測定用水晶振動子22から求められる膜厚値に乗算する。そうすると、測定用水晶振動子22から求められる膜厚値は、誤差が小さい校正用水晶振動子23から求めた膜厚値(βP1)と等しくなるように校正され、校正工程より後の成膜工程では誤差の少ない膜厚値を求めることができる。以上のことから、校正工程は、校正係数(βP1/αM1)を算出するための工程と言うことができる。
尚、本発明の成膜装置は、上述したように、各水晶振動子(測定用水晶振動子22、校正用水晶振動子23)の温度を実質同一になっている。このため、校正工程において、成膜源21から生じる輻射熱による水晶振動子の温度差を考慮した水晶振動子の共振振動数の補正を行う必要がない。
校正工程後は、測定用水晶振動子23に堆積した成膜材料の膜厚値M1’を求める。そして、制御系40にて、M1’に校正係数γ1(=(βP1)/(αM1))とαとを乗算した値αγ11’が、成膜対象物30に堆積させる所望の膜厚値となるよう、成膜源21の温度を制御系40が備える温度調節器(不図示)にて制御する。
以上のようにして適宜校正工程を実施して、n回目の校正工程後に行う成膜工程では、測定用水晶振動子22に成膜材料を堆積させ、膜厚測定器41にてある一定時間あたりに堆積する膜厚値Mn’を求める。次にMn’に校正係数(γ1×γ2×…×γn)とαを乗算した値α×(γ1×γ2×…×γn)×Mn’が、成膜対象物30に堆積させる所望の膜厚値となるように、成膜源21の温度を制御系40が備える温度調節器(不図示)にて制御する。
校正工程は成膜工程の最中に行うことを前提として任意のタイミングで行うことができるが、一定時間ごとに行ってもよいし、ある複数枚の成膜対象物ごとに行ってもよい。また測定用水晶振動子22の共振周波数の減衰量が所定の値になった時点で行ってもよいし、測定用水晶振動子22の共振周波数がある値になった時点に行ってもよい。
図4は、校正工程を行ったときと行わなかったときにおける成膜対象物30上の薄膜の膜厚を比較したグラフである。図4に示されるように、校正工程を適宜行うことで成膜対象物30上の膜厚の誤差を低減できているのがわかる。
[実施例1]
図1に示される成膜装置を用いて基板上に成膜材料を成膜した。
本実施例では、成膜源ユニット20を、搬送距離1000mm、搬送速度20mm/sで一回往復させることで成膜を行った。また、基板(成膜対象物30)の長手方向の長さは500mmである。
また本実施例においては、基板(成膜対象物30)上に成膜される成膜材料の薄膜の膜厚が100nmとなるように成膜源21の加熱温度を調整した。
また本実施例においては、測定用水晶振動子22及び校正用水晶振動子23には、INFICON社製金電極の6MHz水晶振動子を用いた。
一方、本実施例においては、成膜源21と基板(成膜対象物30)との距離を300mmとし、成膜源21と各水晶振動子(測定用水晶振動子22、校正用水晶振動子23)との距離を300mmとした。
先ず、成膜の準備工程を行った。
この準備工程では、始めに膜厚測定用の基板(成膜対象物30)を成膜室10内に搬入し、成膜源21から放出される成膜材料の蒸気量が所望の値で安定したことを確認して、成膜源ユニット20を搬送速度20mm/sで移動を開始した。次に,成膜源ユニット20が成膜待機位置から成膜位置へ移動したときにセンサーシャッター26を開いた。次に、成膜源ユニット20が所定の移動を終えて、成膜待機位置で停止してから30秒後から90秒後までに各水晶振動子(測定用水晶振動子22、校正用水晶振動子23)に成膜材料の薄膜を堆積させた。次に、測定用水晶振動子22上に堆積した成膜材料の薄膜の膜厚M(nm)、及び校正用水晶振動子23上に堆積した成膜材料の薄膜の膜厚P(nm)をそれぞれ求めた。次に、成膜源ユニット20が成膜待機位置で停止してから91秒後にセンサーシャッター26を閉じた。
次に、膜厚測定用の基板(成膜対象物30)を、搬送手段(不図示)を用いて成膜室10から搬出した後、光学系や接触式の膜厚測定器で膜厚を測定した。これにより測定した膜厚測定用の基板上に形成される薄膜の膜厚(膜厚値:t(nm))が求まる。すると、基板と測定用水晶振動子22とそれぞれに1分間に堆積する膜厚値の比αは、α=t/Mとなり、基板と校正用水晶振動子23に1分間に堆積する膜厚値の比βはβ=t/Pとなる。従って、準備工程では、基板の膜厚値t(nm)はt=αM=βPという関係式を満す。
次に、成膜工程に移行した。成膜工程では先ず、成膜対象物30となる基板を成膜室10内に搬入して所定位置に設置した。基板の設置が完了した後、成膜源ユニット20の移動を開始した。成膜源ユニット20が移動を終了した後、基板を成膜室10から搬出し成膜工程を終えた。
成膜工程を複数回行う内に、測定用水晶振動子22に膜が堆積していくので、測定用水晶振動子22による膜厚の測定誤差が徐々に大きくなる。そこで、以下に説明する校正工程を行った。
1回目の校正工程は、20回目の成膜工程の最中に行った。具体的には、成膜源ユニット20が成膜待機位置から移動を開始してから50秒後にセンサーシャッター26を開放状態にした。そして成膜源ユニット20が移動を終え、成膜待機位置で停止してから30後から90秒後までに測定用水晶振動子22に堆積した成膜材料の膜厚(膜厚値:M1(nm))、校正用の水晶振動子23に堆積した(膜厚値:P1(nm))を求めた。ここでM1及びP1から、基板上に成膜される成膜材料の膜厚(膜厚値)は、αM1(nm)又はβP1(nm)と求まる。しかし膜厚値αM1(nm)は誤差が大きく、膜厚値βP1(nm)は誤差が小さい。そのため必ずしもαM1=βP1とはならない。そこで、校正係数γ1=(βP1)/(αM1)を求める。校正係数γ1を求めた後の成膜工程では、測定用水晶振動子22に1分間に堆積する膜厚値M1’に校正係数γ1と膜厚比αとを乗算した値(α×γ1×M1’)が基板に堆積する所望の膜厚100nmになるよう成膜源21の加熱温度の調整を行った。
ただし、成膜源ユニット20を移動する最中に成膜源21の加熱温度を変更すると、成膜源21からの噴出量がハンチングしたり、また、急に噴出量が変わって基板の面内に均一な膜が成膜されなかったりすることがある。このため、成膜源21の加熱温度の変更は、成膜源ユニット20の移動終了後に行った。こうすると、基板を搬出してから次の基板を搬入する間に、成膜源21からの噴出量のハンチングが終わるので、スムーズに次の成膜に移行できた。
以上のようにして、成膜工程と校正工程とを行い、回目の成膜工程の最中に行うn回目の校正工程において、各水晶振動子上に成膜される薄膜の膜厚を求めた。具体的には、1分間に校正用水晶振動子23上に成膜される成膜材料の膜厚(膜厚値:Pn(nm))、及び測定用水晶振動子22上に成膜される成膜材料の膜厚(膜厚値:Mn(nm))を求めた。そうすると、校正係数γnは、γn=(βPn)/(αMn)と求まる。校正係数γnを求めた後の成膜工程では、1分間に測定用水晶振動子22上に成膜される成膜材料の膜厚(膜厚値Mn’)に1回目乃至n回目の校正工程で求めた校正係数と膜厚比αを乗算した値となるよう成膜源21の加熱温度を調整する。即ち、α×(γ1×γ2×…×γn)×Mn’が100(nm)となるよう成膜源21の加熱温度を調整する。尚、上述したように、成膜源21の加熱温度の変更は成膜源ユニット20の移動が終了した後に行った。
このようにして成膜を行った結果、生産性を低下させることなく、基板(成膜対象物30)が成膜室10内に滞留することによって発生する膜純度の低下を防ぎ、かつ正確な膜厚精度で成膜を行うことができることがわかった。
1:成膜装置、10:成膜室、20:成膜源ユニット、21:成膜源、22:測定用水晶振動子、23:校正用水晶振動子、24:レール、25:開口部、26:センサーシャッター、30:成膜対象物、40:制御系、41(42):膜厚測定器

Claims (2)

  1. 成膜材料を加熱し、前記成膜材料の蒸気を放出させるための成膜源と、
    前記成膜源を、所定の成膜待機位置と成膜位置との間で成膜対象物に対して相対的に移動させる移動手段と、
    前記蒸着源から放出される前記成膜材料の放出量を測定するための測定用水晶振動子と、
    前記測定用水晶振動子を校正するための校正用水晶振動子と、を備える成膜装置であって、
    前記校正用水晶振動子の近傍に設けられたシャッターと、
    前記測定用水晶振動子と前記校正用水晶振動子との温度を実質同一に制御するための温度制御手段を備えており、
    前記温度制御手段が、前記測定用水晶振動子と前記校正用水晶振動子の少なくとも一方を加熱又は冷却する手段を含むことを特徴とする成膜装置。
  2. 前記測定用水晶振動子と前記校正用水晶振動子とが、前記成膜源の中心からの距離及び角度が互いに等しい位置に固定されていることを特徴とする請求項に記載の成膜装置。
JP2015240721A 2010-11-04 2015-12-10 成膜装置 Active JP6091590B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015240721A JP6091590B2 (ja) 2010-11-04 2015-12-10 成膜装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010247819 2010-11-04
JP2010247819 2010-11-04
JP2015240721A JP6091590B2 (ja) 2010-11-04 2015-12-10 成膜装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011211801A Division JP5854731B2 (ja) 2010-11-04 2011-09-28 成膜装置及びこれを用いた成膜方法

Publications (2)

Publication Number Publication Date
JP2016040415A JP2016040415A (ja) 2016-03-24
JP6091590B2 true JP6091590B2 (ja) 2017-03-08

Family

ID=55540810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240721A Active JP6091590B2 (ja) 2010-11-04 2015-12-10 成膜装置

Country Status (1)

Country Link
JP (1) JP6091590B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7503481B2 (ja) 2020-11-17 2024-06-20 株式会社アルバック 膜厚モニタ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974858B2 (ja) * 2007-11-19 2012-07-11 株式会社アルバック 成膜装置、薄膜形成方法
JP2010196082A (ja) * 2009-02-23 2010-09-09 Canon Inc 真空蒸着装置

Also Published As

Publication number Publication date
JP2016040415A (ja) 2016-03-24

Similar Documents

Publication Publication Date Title
JP5854731B2 (ja) 成膜装置及びこれを用いた成膜方法
JP5888919B2 (ja) 成膜装置及び成膜方法
KR101488203B1 (ko) 성막 장치 및 성막 방법
JP4818073B2 (ja) 膜厚測定方法
KR102008046B1 (ko) 수정 발진식 막두께 모니터에 의한 막두께 제어 방법
US20120114839A1 (en) Vacuum vapor deposition system
JP2010196082A (ja) 真空蒸着装置
JP2012112034A (ja) 真空蒸着装置
JP6091590B2 (ja) 成膜装置
KR20230082660A (ko) 방사율-보정 고온측정을 위한 방법
JP2019099870A (ja) 蒸着装置及び蒸着方法
US10100410B2 (en) Film thickness monitoring system and method using the same
JP2019131859A (ja) 蒸着装置及び蒸着方法
JP2005325425A (ja) 有機蒸着方法及び有機蒸着装置
JP3926073B2 (ja) 薄膜形成方法及び装置
TW202346816A (zh) 發射率校正高溫測量法
JP2007221243A (ja) 圧電素子の周波数調整装置、及び周波数調整方法
JP2004320759A (ja) 層のスタック堆積方法、共振器の形成方法、圧電層の堆積方法、および、共振器
JPH10140350A (ja) 真空処理装置及びそれを用いた成膜装置と成膜方法
JPH10140349A (ja) 成膜方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170207

R151 Written notification of patent or utility model registration

Ref document number: 6091590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151