JP6086582B2 - High frequency power amplifier and transmitter using high frequency power amplifier - Google Patents

High frequency power amplifier and transmitter using high frequency power amplifier Download PDF

Info

Publication number
JP6086582B2
JP6086582B2 JP2012210754A JP2012210754A JP6086582B2 JP 6086582 B2 JP6086582 B2 JP 6086582B2 JP 2012210754 A JP2012210754 A JP 2012210754A JP 2012210754 A JP2012210754 A JP 2012210754A JP 6086582 B2 JP6086582 B2 JP 6086582B2
Authority
JP
Japan
Prior art keywords
transient response
power amplifier
signal
turn
side signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012210754A
Other languages
Japanese (ja)
Other versions
JP2014068113A (en
Inventor
廣瀬 伸郎
伸郎 廣瀬
中村 和彦
和彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2012210754A priority Critical patent/JP6086582B2/en
Publication of JP2014068113A publication Critical patent/JP2014068113A/en
Application granted granted Critical
Publication of JP6086582B2 publication Critical patent/JP6086582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Transmitters (AREA)

Description

本発明は、電力増幅器により電力増幅された無線電波送信を行う送信装置から出力される非線形歪み成分を減少させる非線形歪み補償技術に関する。   The present invention relates to a non-linear distortion compensation technique for reducing a non-linear distortion component output from a transmission apparatus that performs wireless radio wave power amplification by a power amplifier.

従来の非線形歪み補償技術、特に、前置歪み補償方式の技術の例としては、特許文献1に記載のものがある。従来の技術では、電力増幅器で発生する周波数軸上で対称な歪である3次歪、5次歪、7次歪の補償は容易だが、周波数軸上で非対称な歪の補償は困難だった。   An example of a conventional nonlinear distortion compensation technique, in particular, a technique of a predistortion compensation system is disclosed in Patent Document 1. In the conventional technique, it is easy to compensate for third-order distortion, fifth-order distortion, and seventh-order distortion, which are symmetrical distortions on the frequency axis generated by the power amplifier, but it is difficult to compensate for asymmetric distortion on the frequency axis.

しかし、電力効率の高いMOS−FETのAB級増幅では、周波数軸上で非対称な歪が多く発生する(非特許文献1参照)。
ところで、MOS−FETはソース・ゲート間に電圧を印加するだけで導通するので、turn-on方向の過渡応答が速いが、ゲート電荷引き抜かれるまで導通し続けるので、turn-off方向の過渡応答は遅くなる。そのため、時間軸波形の上下で非対称な歪が大きくなり、周波数軸の上下でも非対称な歪が大きくなる。さらに、MOS-FETは、温度で導通抵抗が変化する。
ちなみに、Si-MOS構造でも電荷増倍CCDの様に、電荷増倍ゲート電極電圧によるゲート電界と転送電荷の積の積算量に比例して、ゲート電極に電子がトラップされ、特性が劣化する(非特許文献8参照)。
また、GaNは、ドレイン電極電圧によるゲート電界の積算量に比例して、ゲート電極に電子がトラップされ、導通抵抗が劣化する(非特許文献9参照)。
これらの変化や劣化を総称して、メモリ歪と称させる。
However, in class AB amplification of a MOS-FET with high power efficiency, a lot of distortion asymmetric on the frequency axis occurs (see Non-Patent Document 1).
By the way, since the MOS-FET conducts only by applying a voltage between the source and the gate, the transient response in the turn-on direction is fast, but the conduction continues until the gate charge is extracted, so the transient response in the turn-off direction is Become slow. For this reason, the asymmetric distortion becomes large above and below the time axis waveform, and the asymmetric distortion also becomes large above and below the frequency axis. Furthermore, the MOS-FET has a conduction resistance that changes with temperature.
Incidentally, even in the Si-MOS structure, like a charge multiplying CCD, electrons are trapped in the gate electrode in proportion to the integrated amount of the product of the gate electric field and the transfer charge due to the charge multiplying gate electrode voltage, and the characteristics deteriorate ( Non-patent document 8).
In addition, in GaN, electrons are trapped in the gate electrode in proportion to the integrated amount of the gate electric field due to the drain electrode voltage, and the conduction resistance deteriorates (see Non-Patent Document 9).
These changes and deteriorations are collectively referred to as memory distortion.

帰還回路を搭載した40〜900MHzの広帯域SiGe-LNA(非特許文献2参照)や500〜6000MHzで40Wと高出力で高効率で高電圧動作のGaN-HEMT(非特許文献3参照)や2700〜2900MHzで400Wと高出力で高効率で高電圧動作のGaN-HEMT(非特許文献4参照)が製品化され、GaN-MOSFETが開発されている。また、GaN-MOSFET同等性能のSi-MOSFETも開発されている(非特許文献11と非特許文献12と参照)。
さらに、7680H×4320VのUHDTVでは1500MHzの映像信号を並列処理により、暗部の増幅度を高く明部の増幅度を低くするガンマ処理や、被写体輪郭の過渡応答を補償する輪郭補正処理を行っており、高速FPGAを用いて並列数の低減中である(非特許文献5と非特許文献6参照)。また、携帯電話基地局用に、2500MHz14bitのDACも製品化された(非特許文献7参照)。高速FPGAより高速の動的再構成ICを用いたデジタルテレビ送信機も製品化された(非特許文献10参照)。
Wide-band SiGe-LNA of 40 to 900MHz with a feedback circuit (see Non-Patent Document 2), GaN-HEMT with high output and high-efficiency and high-voltage operation at 40 to 500-6000MHz (see Non-Patent Document 3) and 2700- GaN-HEMT (see Non-Patent Document 4), which is 400W at 2900MHz, high output, high efficiency and high voltage operation, has been commercialized, and GaN-MOSFET has been developed. In addition, Si-MOSFETs having the same performance as GaN-MOSFETs have been developed (see Non-Patent Document 11 and Non-Patent Document 12).
In addition, the 7680H × 4320V UHDTV uses 1500MHz video signal in parallel to perform gamma processing to increase dark area amplification and lower light area amplification, and contour correction processing to compensate for the transient response of the subject contour. The number of parallels is being reduced using a high-speed FPGA (see Non-Patent Document 5 and Non-Patent Document 6). A 2500 MHz 14-bit DAC has also been commercialized for mobile phone base stations (see Non-Patent Document 7). A digital television transmitter using a dynamic reconfigurable IC faster than a high-speed FPGA has also been commercialized (see Non-Patent Document 10).

WO2004/045067号公報WO 2004/045067

東芝レビュー 2004Vol.59No.2,p34-p40、地上デジタル放送用送信機Toshiba Review 2004Vol.59No.2, p34-p40, Digital Terrestrial Broadcasting Transmitter パナソニック製VHF/UHF対応ローノイズアンプAN26072A、http://panasonic.co.jp/corp/news/official.data/data.dir/jn110315-1/jn110315-1.htmlPanasonic VHF / UHF compatible low noise amplifier AN26072A, http://panasonic.co.jp/corp/news/official.data/data.dir/jn110315-1/jn110315-1.html 三菱電機MGF0846G http://www.mitsubishielectric.co.jp/news-data/2010/pdf/0722-a.pdfMitsubishi Electric MGF0846G http://www.mitsubishielectric.co.jp/news-data/2010/pdf/0722-a.pdf 住友電気工業EGN28B400M1B-R http://www.sedi.co.jp/pdf/EGN28B400M1B-R_ED1-0.pdfSumitomo Electric EGN28B400M1B-R http://www.sedi.co.jp/pdf/EGN28B400M1B-R_ED1-0.pdf Altera製 StratixV http://www.altera.co.jp/products/devices/stratix-fpgas/stratix-v/stxv-index.jspStratixV from Altera http://www.altera.co.jp/products/devices/stratix-fpgas/stratix-v/stxv-index.jsp Xilinx製Virtex-7 HT http://japan.xilinx.com/products/virtex7/index.htmXilinx Virtex-7 HT http://www.xilinx.com/products/virtex7/index.htm アナログデバイセズ製2.5Gbps14bitDACAD9739A http://www.analog.com/static/imported-files/data_sheets/AD9739A.pdfAnalog Devices 2.5Gbps 14bitDACAD9739A http://www.analog.com/static/imported-files/data_sheets/AD9739A.pdf TI製TC246RGB-B0 680x500PIXEL IMPACTRONTM PRIMARY COLOR CCD IMAGE SENSOR SOCS087-DECEMBER 2004-REVISED MARCH 2005TI TC246RGB-B0 680x500PIXEL IMPACTRONTM PRIMARY COLOR CCD CCD IMAGE SENSOR SOCS087-DECEMBER 2004-REVISED MARCH 2005 日経エレクトロニクス 2011.08.22号p67-p76(p74)Nikkei Electronics 2011.08.22 p67-p76 (p74) 日経エレクトロニクス 2011.08.22号p59-p66(p62)Nikkei Electronics 2011.08.22 p59-p66 (p62) 日経エレクトロニクス 2011.09.05号p18 進化するSi製パワー素子 特性面でGaNに迫るNikkei Electronics 2011.09.05 p18 Evolving Si Power Device Approaching GaN in terms of characteristics フリースケール RF LDMOSパワートランジスタMRFE6V8600H http://cache.freescale.com/files/rf_if/doc/data_sheet/MRFE6VP8600H.pdf?fsrch=1&sr=3Freescale RF LDMOS power transistor MRFE6V8600H http://cache.freescale.com/files/rf_if/doc/data_sheet/MRFE6VP8600H.pdf?fsrch=1&sr=3

本発明は、電力増幅器で発生する歪を安定に補償し低減することを目的とする。   An object of the present invention is to stably compensate and reduce distortion generated in a power amplifier.

本発明は、上記の目的を達成するために、入力信号をデジタル変調しI軸とQ軸とのベースバンド入力デジタル変調信号にする変調部と、高周波中心周波数の8倍のサンプリングにアップコンバートするアップコンバータとを有し、電力増幅器の非線形性の逆特性を加算する線形化部と、電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、D/Aと、高周波中心周波数の8倍以上の帯域のLNAと、高周波中心周波数の4倍以上の帯域の電力増幅器とからなり、電力増幅器の非線形性の逆特性を加算し、電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、D/Aし、高周波中心周波数の8倍以上の帯域のLNAと高周波中心周波数の4倍以上の帯域の電力増幅器で増幅することを特徴とする歪補償を用いた高周波電力増幅器である。   In order to achieve the above object, the present invention digitally modulates an input signal to convert it to a baseband input digital modulation signal of the I axis and the Q axis, and upconverts the sampling to 8 times the high frequency center frequency. A linearizer that adds an inverse characteristic of the nonlinearity of the power amplifier and an inverse characteristic of the transient response of the power amplifier in the turn-on direction and an inverse characteristic of the transient response in the turn-off direction. A transient response compensator, a D / A, an LNA in a band of at least eight times the high frequency center frequency, and a power amplifier in a band of at least four times the high frequency center frequency. Add, add the reverse characteristics of the transient response in the turn-on direction of the power amplifier and the reverse characteristics of the transient response in the turn-off direction, D / A, and LNA and high frequency in a band more than 8 times the high frequency center frequency Bands more than 4 times the center frequency A high frequency power amplifier using the distortion compensation, characterized in that the amplification in the power amplifier.

さらに、入力信号をデジタル変調しI軸とQ軸とのベースバンド入力デジタル変調信号にする変調部と、高周波中心周波数の8倍のサンプリングにアップコンバートするアップコンバータとを有し、電力増幅器の非線形性の逆特性を加算する線形化部と、電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、D/Aと、高周波中心周波数の8倍以上の帯域の(内部帰還やAGC等の増幅度安定化)LNAと、高周波中心周波数の4倍以上の帯域の(AGC等の増幅度安定化)電力増幅器とからなり、電力増幅器の非線形性の逆特性を加算し、電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、D/Aし、高周波中心周波数の8倍以上の帯域のLNAと高周波中心周波数の4倍以上の帯域の電力増幅器で増幅することと、Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性を逆特性の逆特性とを加算する線形化部と、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、D/Aと、高周波中心周波数の8倍以上の帯域の(内部帰還やAGC等の増幅度安定化)LNAと、高周波中心周波数の4倍以上の帯域の(AGC等の増幅度安定化)電力増幅器とを有し、Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算し、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、D/Aし、高周波中心周波数の8倍以上の帯域のLNAと高周波中心周波数の4倍以上の帯域の電力増幅器で増幅することと、電力増幅器の非線形性の逆特性を加算し、電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する線形化部と、遅延信号を加算する加算部と、D/Aと、(高周波中心周波数の16倍以上の帯域の化合物半導体HEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と、高周波中心周波数の8倍以上の帯域の(GaN-MOSFETまたはSuperJunction構造のSi製のMOSFETで構成された)電力増幅器と、抵抗等の減衰器の帰還回路とを有し、電力増幅器の非線形性の逆特性を加算し、電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、遅延信号を加算し、D/Aし、(高周波中心周波数の16倍以上の帯域のHEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と高周波中心周波数の8倍以上の帯域の(MOSFETで構成された)電力増幅器で増幅し帰還させ、抵抗で直接帰還する出力の(信号処理と初段LNAと次段LNAと電力増幅器との)遅延分遅らせた前記アップコンバートした信号を前記電流出力D/A入力に加算することと、Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算する線形化部と、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、遅延信号を加算する加算部と、D/Aと、(高周波中心周波数の16倍以上の帯域のHEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と、高周波中心周波数の8倍以上の帯域の(MOSFETで構成された)電力増幅器と、抵抗等の減衰器の帰還回路とを有し、Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算し、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、遅延信号を加算し、D/Aし、(高周波中心周波数の16倍以上の帯域のHEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と高周波中心周波数の8倍以上の帯域の(MOSFETで構成された)電力増幅器で増幅し帰還させ、抵抗で直接帰還する出力の(信号処理と初段LNAと次段LNAと電力増幅器との)遅延分遅らせた前記アップコンバートした信号を前記電流出力D/A入力に加算することと、
C級PushとC級Pullと個別に電力増幅器の静的な非直線性の逆特性とを加算する線形化部と、C級PushとC級Pullと個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、D/Aと、高周波中心周波数の8倍以上の帯域の励振器と、C級PushとC級Pullとの電力増幅器と、
AB級PushとAB級Pullと個別に電力増幅器の静的な非直線性の逆特性とを加算する線形化部と、AB級PushとAB級Pullと個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、遅延信号を加算する加算部と、D/Aと、高周波中心周波数の8倍以上の帯域の励振器と、高周波中心周波数の8倍以上の帯域のAB級PushとAB級Pullとの電力増幅器と、抵抗等の減衰器の帰還回路とを有し、
C級PushとC級Pullと個別に電力増幅器の静的な非直線性の逆特性とを加算し、
C級PushとC級Pullと個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、D/Aし、高周波中心周波数の8倍以上の帯域の励振器と高周波中心周波数の8倍以上の帯域の電力増幅器で増幅し
AB級PushとAB級Pullと個別に電力増幅器の静的な非直線性の逆特性とを加算し、
AB級PushとAB級Pullと個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、遅延信号を加算し、D/Aし、高周波中心周波数の8倍以上の帯域の励振器と高周波中心周波数の8倍以上の帯域のAB級PushとAB級Pullとの電力増幅器で増幅し帰還させ、抵抗で直接帰還する出力の信号処理と初段LNAと次段LNAと電力増幅器との遅延分遅らせた前記アップコンバートした信号を前記電流出力D/A入力に加算することと、
の少なくとも一方を特徴とする歪補償を用いた高周波電力増幅器である。
And a modulation unit that digitally modulates the input signal to generate a baseband input digital modulation signal of the I-axis and the Q-axis, and an upconverter that upconverts the sampling to 8 times the high-frequency center frequency. A linearizing unit for adding the reverse characteristic of the power, a transient response compensating unit for adding the reverse characteristic of the transient response in the turn-on direction and the reverse characteristic of the transient response in the turn-off direction of the power amplifier, and D / A It consists of an LNA with a frequency band more than 8 times the center frequency of the high frequency (stabilization of amplification such as internal feedback and AGC) and a power amplifier with a band frequency of more than 4 times the center frequency of the high frequency (stabilization of amplification level such as AGC). Add the inverse characteristics of the nonlinearity of the power amplifier, add the inverse characteristics of the transient response of the power amplifier in the turn-on direction and the inverse characteristics of the transient response in the turn-off direction, D / A, and the high frequency center frequency LNA with more than 8 times the bandwidth Linearization adds the amplifying four times more bandwidth of the power amplifier of the RF center frequency, separately and Push-side signal and the Pull-side signal and an inverse characteristic of the inverse characteristic static nonlinearity of the power amplifier A transient response compensator for individually adding the reverse characteristic of the transient response in the turn-on direction and the reverse characteristic of the transient response in the turn-off direction of the power amplifier, A, an LNA (amplification stabilization of internal feedback, AGC, etc.) 8 times or more of the high frequency center frequency, and a power amplifier (amplification stabilization of AGC, etc.) of a band more than 4 times the high frequency center frequency, The push-side signal and the pull-side signal are individually added to the static nonlinear inverse characteristics of the power amplifier, and the push-side signal and the pull-side signal are individually added to the turn-on direction of the power amplifier. Add the reverse characteristics of the transient response and the reverse characteristics of the transient response in the turn-off direction, D / A, Amplifying with a power amplifier with a band of 8 times or more of the number and a power amplifier with a band of 4 or more of the high-frequency center frequency, and adding the inverse characteristics of the nonlinearity of the power amplifier, the transient response of the power amplifier in the turn-on direction A linearizer that adds the inverse characteristics of the transient response and the inverse characteristics of the transient response in the turn-off direction, an adder that adds the delay signal , a D / A, and a compound semiconductor in a band of 16 times or more of the high-frequency center frequency An exciter with a band of 8 times or more of the high frequency center frequency (consisting of HEMT) and a power amplifier (made of a GaN-MOSFET or Super Junction Si MOSFET) with a band of 8 or more times the high frequency center frequency And the feedback circuit of the attenuator such as a resistor, add the inverse characteristics of the nonlinearity of the power amplifier, and the inverse characteristics of the transient response in the turn-on direction and the transient response in the turn-off direction of the power amplifier. Are added, the delay signal is added, D / A, and (high frequency center frequency Amplified and fed back with an exciter with a bandwidth of 8 times or more of the high-frequency center frequency and a power amplifier (made of MOSFET) with a bandwidth of 8 or more times the high-frequency center frequency. and adding the output of the (signal processing and the first stage LNA and the next-stage LNA and power amplifier) signal the up-converting delayed delay amount of the feedback direct resistance to the current output D / a input, Push-side signal Pull a linearization unit for adding the inverse characteristic of the static non-linearity of the side signal and the individual power amplifiers, Push-side signal and the Pull-side signal and the turn-on direction transient response of the individual power amplifier and inverse characteristic and the transient response compensation unit for adding the inverse characteristic of the turn-off direction of the transient response, an adder for adding the delayed signal, and a D / a, (the band of 16 times or more the frequency center frequency HEMT of Excited in a band more than 8 times the high frequency center frequency It has a vibrator, a power amplifier (consisting of a MOSFET) with a bandwidth of 8 times the high frequency center frequency, and a feedback circuit for an attenuator such as a resistor. Push side signal and Pull side signal are powered separately Add the inverse characteristics of the static nonlinearity of the amplifier, and push-side and pull-side signals separately for the reverse characteristics of the transient response in the turn-on direction and the transient response in the turn-off direction of the power amplifier. Characteristics, add delay signal, D / A, exciter and high frequency center frequency of 8 times higher frequency center frequency (consisting of HEMT of 16 times higher frequency center frequency) Amplified and fed back by a power amplifier (consisting of a MOSFET) having a bandwidth of 8 times or more of the above, and delayed by an amount of delay (between signal processing, first-stage LNA, next-stage LNA, and power amplifier) for direct feedback by a resistor Adding the upconverted signal to the current output D / A input;
A linearization unit that adds the inverse characteristics of static nonlinearity of the power amplifier separately to Class C Push and Class C Pull, and a transient in the turn-on direction of the power amplifier separately from Class C Push and Class C Pull. and transient response compensation unit for adding the inverse characteristic and turn-off direction of the response and an inverse characteristic of the transient response, and D / a, and exciter 8 times more bands of high-frequency center frequency, class C Push and class C A power amplifier with Pull,
A linearizer that adds class AB Push and class AB Pull separately to the inverse characteristics of the static nonlinearity of the power amplifier, and class AB Push and class AB Pull separately for the power amplifier turn-on transient and transient response compensation unit for adding the inverse characteristic and turn-off direction of the response and an inverse characteristic of the transient response, an adder for adding the delayed signal, D / a and the excitation of 8 times or more of the band of the RF center frequency A power amplifier of class AB Push and class AB Pull with a band of 8 times or more of the high frequency center frequency, and a feedback circuit of an attenuator such as a resistor,
Class C Push and Class C Pull are individually added to the inverse characteristics of the static nonlinearity of the power amplifier,
Add the inverse characteristics of the transient response in the turn-on direction and the transient response in the turn-off direction of the power amplifier separately for Class C Push and Class C Pull, D / A, and 8 times the center frequency of the high frequency Amplify with an exciter in the above band and a power amplifier in a band more than 8 times the center frequency of the high frequency. Add the class AB Push and class AB Pull separately to the inverse characteristics of the static nonlinearity of the power amplifier.
Add the reverse characteristics of the transient response in the turn-on direction and the transient response in the turn-off direction of the power amplifier separately for class AB Push and class AB Pull, add the delay signal, D / A, Amplifying and feeding back with an exciter with a bandwidth of 8 times or more of the high frequency center frequency and a power amplifier of class AB Push and AB with a bandwidth of 8 times or more of the high frequency center frequency Adding the upconverted signal delayed by the delay of the first stage LNA, the next stage LNA, and the power amplifier to the current output D / A input;
A high frequency power amplifier using distortion compensation characterized by at least one of the above.

また、Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算する線形化部と、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、遅延信号を加算する加算部と、D/Aと、(高周波中心周波数の16倍以上の帯域のHEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と、高周波中心周波数の8倍以上の帯域の(MOSFETで構成された)電力増幅器とと、抵抗等の減衰器の帰還回路とを有し、Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算し、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、遅延信号を加算し、D/Aし、(高周波中心周波数の16倍以上の帯域のHEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と高周波中心周波数の8倍以上の帯域の(MOSFETで構成された)電力増幅器で増幅し帰還させ、抵抗で直接帰還する出力の(信号処理と初段LNAと次段LNAと電力増幅器との)遅延分遅らせた前記アップコンバートした信号をPush側信号とPull側信号と逆相で前記電流出力D/A入力に加算する歪補償を用いた高周波電力増幅器を用い、上記デジタル変調をOFDM変調とすることを特徴とする送信機である。 Further, a linearization unit for adding the inverse characteristic of the static non-linearity of the Push-side signal and the Pull-side signal and individually power amplifier, Push-side signal and the Pull-side signal and the individually power amplifier turn- a transient response compensator that adds the reverse characteristics of the transient response in the on direction and the reverse characteristics of the transient response in the turn-off direction, an adder that adds the delay signal, and D / A (16 times the high frequency center frequency) An exciter with a band of 8 times or more of the high frequency center frequency (consisting of HEMT of the above band), a power amplifier with a band of 8 times or more of the high frequency center frequency (comprising a MOSFET), and attenuation of resistance, etc. The push-side signal and the pull-side signal are individually added to the static non-linear inverse characteristics of the power amplifier, and the push-side signal and the pull-side signal are individually powered. Add the reverse characteristic of the transient response in the turn-on direction and the reverse characteristic of the transient response in the turn-off direction, add the delay signal, D / A, an exciter with a band of 8 times or more of the high frequency center frequency (configured with HEMT of a band of 16 times or more of the high frequency center frequency) and a MOSFET (with MOSFET of 8 times or more of the high frequency center frequency). The above-mentioned up-converted signal delayed by the delay (with signal processing, first stage LNA, next stage LNA, and power amplifier) of the output that is amplified and fed back by the power amplifier and directly fed back by the resistor is the push side signal and the pull side signal. The transmitter is characterized in that a high frequency power amplifier using distortion compensation added to the current output D / A input in reverse phase is used, and the digital modulation is OFDM modulation.

さらに、(放送用送信機)上記の送信機において、上記OFDM変調をガードインターバル付きOFDM変調とし、上記入力信号をTS信号とすることを特徴とする送信機である。   Furthermore, (broadcast transmitter) In the transmitter described above, the OFDM modulation is OFDM modulation with a guard interval, and the input signal is a TS signal.

以上説明したように本発明によれば、電力増幅器で発生する歪を安定に補償し低減することが可能になる。   As described above, according to the present invention, it is possible to stably compensate and reduce distortion generated in the power amplifier.

本発明の1実施例のA級増幅の放送機の全体構成を示すブロック図(線形補償と過渡応答補償のRF前置歪補償)The block diagram which shows the whole structure of the broadcasting machine of Class A amplification of one Example of this invention (RF predistortion compensation of linear compensation and transient response compensation) 本発明の1実施例のPushPull出力合成の放送機の全体構成を示すブロック図(線形補償と過渡応答補償のRF前置歪補償)The block diagram which shows the whole structure of the broadcasting apparatus of PushPull output composition of one example of the present invention (RF predistortion compensation of linear compensation and transient response compensation) 本発明の1実施例のA級増幅の放送機の全体構成を示すブロック図(線形補償と過渡応答補償の前置歪補償をループ前に置くRF Digital Feed Back)1 is a block diagram showing the overall configuration of a class A amplification broadcaster according to an embodiment of the present invention (RF Digital Feed Back in which predistortion compensation for linear compensation and transient response compensation is placed before a loop). 本発明の1実施例のPushPull出力合成の放送機の全体構成を示すブロック図(線形補償と過渡応答補償のRF前置歪補償ループ前に置くRF DigitalFeed Back)1 is a block diagram showing the overall configuration of a push-pull output synthesis broadcaster according to an embodiment of the present invention (RF Digital Feedback Back placed before an RF predistortion compensation loop for linear compensation and transient response compensation). 本発明の1実施例のPushPull出力合成の放送機の全体構成を示すブロック図(線形補償と過渡応答補償のRF前置歪補償ループ前に置くRF DigitalFeed Back)1 is a block diagram showing the overall configuration of a push-pull output synthesis broadcaster according to an embodiment of the present invention (RF Digital Feedback Back placed before an RF predistortion compensation loop for linear compensation and transient response compensation). 本発明の1実施例のPushPull出力合成の放送機の全体構成を示すブロック図(線形補償と過渡応答補償の前置歪補償をループ前に置くRF Digital Feed Back)The block diagram which shows the whole structure of the broadcasting apparatus of PushPull output composition of one Example of this invention (RF Digital Feed Back which puts predistortion compensation of linear compensation and transient response compensation before a loop) 本発明の1実施例のPushPull出力合成の放送機の全体構成を示すブロック図(線形補償と過渡応答補償のRF前置歪補償ループ前に置くRF DigitalFeed Back)1 is a block diagram showing the overall configuration of a push-pull output synthesis broadcaster according to an embodiment of the present invention (RF Digital Feedback Back placed before an RF predistortion compensation loop for linear compensation and transient response compensation). 本発明の1実施例のPushPull出力合成の放送機の全体構成を示すブロック図(C級Push-pullで効率向上し、AB級Push-pullでFeed Backで歪低減)Block diagram showing the overall configuration of a push-pull output synthesis broadcaster of one embodiment of the present invention (improves efficiency with class C push-pull and reduces distortion with feed back with class AB push-pull) 過渡応答補償の構成を示すブロック図Block diagram showing the configuration of transient response compensation 過渡応答強調信号を含んだ過渡応答補償の構成を示すブロック図Block diagram showing configuration of transient response compensation including transient response enhancement signal A級増幅の過渡応答補償の模式図(図1Aまたは図1Cと図2Aの過渡応答補償の模式図)Schematic diagram of transient response compensation for class A amplification (schematic diagram of transient response compensation in FIG. 1A or FIG. 1C and FIG. 2A) A級増幅の過渡応答強調信号を含んだ過渡応答補償の模式図(図1Aまたは図1Cと図2BのTurn-off遅延が多い場合の過渡応答補償の模式図)Schematic diagram of transient response compensation including transient response emphasis signal of class A amplification (Schematic diagram of transient response compensation when turn-off delay is large in FIG. 1A or FIG. 1C and FIG. 2B) PushとPull出力合成のAB級増幅の過渡応答補償の模式図(図1Bまたは図1Dと図2Aの過渡応答補償の模式図、PushとPullで同様の動作)Schematic diagram of class AB amplification transient response compensation for push and pull output synthesis (schematic diagram of transient response compensation in Fig. 1B or Fig. 1D and Fig. 2A, similar operation for push and pull) PushとPull出力合成のAB級増幅の過渡応答強調信号を含んだ過渡応答補償の模式図(図2BのTurn-off遅延が多い場合の過渡応答補償の模式図)Schematic diagram of transient response compensation including transient response emphasis signal of class AB amplification of push and pull output synthesis (schematic diagram of transient response compensation with large turn-off delay in Fig. 2B) 過渡応答補償の動作のフローチャートFlow chart of transient response compensation operation 過渡応答強調信号を含んだ過渡応答補償の動作のフローチャートFlow chart of transient response compensation operation including transient response enhancement signal

入力デジタル映像信号をI軸とQ軸とのベースバンド入力デジタル変調信号に変調し、高周波中心周波数の4倍のサンプリングにアップコンバートし、電力増幅器の非線形性の逆特性を加算し、電力増幅器の過渡応答の逆特性を加算し、電流出力D/Aし、初段LNAと次段LNAと電力増幅器で増幅し、電力増幅器出力を初段LNAに抵抗で直接帰還する。抵抗で直接帰還する出力の(信号処理と初段LNAと次段LNAと電力増幅器との)遅延分遅らせた前記アップコンバートした信号を前記電流出力D/A入力に加算する。   Modulate the input digital video signal into a baseband input digital modulation signal of I axis and Q axis, upconvert to 4 times the sampling of the high frequency center frequency, add the inverse characteristic of the nonlinearity of the power amplifier, The inverse characteristics of the transient response are added, the current output is D / A, amplified by the first-stage LNA, the next-stage LNA, and the power amplifier, and the power amplifier output is directly fed back to the first-stage LNA with a resistor. The up-converted signal delayed by the delay of the output directly fed back by the resistor (the signal processing, the first stage LNA, the next stage LNA, and the power amplifier) is added to the current output D / A input.

図1Aは、線形補償と過渡応答補償のRF前置歪補償との本発明の1実施例の放送機の全体構成を示すブロック図であり、図1Bは、線形補償と過渡応答補償のRF前置歪補償の本発明の1実施例の放送機の全体構成を示すブロック図であり、図1Cは線形補償と過渡応答補償の前置歪補償をループ前に置くHybrid Feed Backの本発明の1実施例の放送機の全体構成を示すブロック図であり、図1Dは線形補償と過渡応答補償のRF前置歪補償ループ前に置くRF Digital Feed Backの本発明の1実施例の放送機の全体構成を示すブロック図であり、図1Eは線形補償と過渡応答補償のRF前置歪補償ループ前に置くアイソレータでプッシュプルを分離したRF Digital Feed Backの本発明の1実施例の放送機の全体構成を示すブロック図である。   FIG. 1A is a block diagram showing an overall configuration of a broadcasting apparatus according to an embodiment of the present invention including linear compensation and RF predistortion compensation for transient response compensation, and FIG. 1B is a diagram showing RF pre-RF for linear compensation and transient response compensation. FIG. 1C is a block diagram showing an overall configuration of a broadcasting apparatus according to an embodiment of the present invention for predistortion, and FIG. 1C is a diagram of Hybrid Feed Back of the present invention in which predistortion for linear compensation and transient response compensation is placed before a loop. FIG. 1D is a block diagram showing an overall configuration of a broadcasting apparatus according to an embodiment, and FIG. 1D is an entire broadcasting apparatus according to an embodiment of the present invention of RF Digital Feed Back placed before an RF predistortion compensation loop for linear compensation and transient response compensation. FIG. 1E is a block diagram showing a configuration, and FIG. 1E is an entire broadcasting apparatus of an RF Digital Feed Back according to an embodiment of the present invention in which push-pull is separated by an isolator placed before an RF predistortion compensation loop for linear compensation and transient response compensation. It is a block diagram which shows a structure.

図1Aから図1Eにおいて、1はSDIをTSに変換するMPEGエンコーダー(ENC)、2はTSをI/Q信号に変換するOFDM/QAM直交変調器(I/QMOD)、3はI/Q信号を出力搬送波の8倍に変換するとともにピークを抑圧する変換器(UpCon)、4は出力搬送波の8倍で動作するA級増幅用前置(歪逆補正)線形化器(Linearizer)、4Aは出力搬送波の8倍で動作するAB級プッシュプル増幅用前置(歪逆補正)線形化器(Linearizer)である。5は出力搬送波の8倍で動作するA級増幅用前置過渡応答逆補正器(Transient Compensator)、5Aと5Bは出力搬送波の8倍で動作するAB級増幅用前置過渡応答逆補正器(Transient Compensator)、6と6Aと6Bは出力搬送波の8倍で動作するデジタル/アナログ変換器(DAC)、7と7Aと7Bと8と8Aと8Bは出力搬送波から8倍までの周波数で動作する(内部帰還やAGC等の増幅度安定化)増幅器(LNA)で、7Cと7Dと7Eと8Cと8Dと8Eとは出力搬送波から16倍までの周波数で動作する増幅器(LNA)である。また、9は出力搬送波から4倍までの周波数で動作するA級増幅大電力増幅器(Power Amp:PA)、9Aと9Bは出力搬送波から4倍までの周波数で動作するAB級増幅大電力増幅器(Power Amp:PA)(並列接続が多い)で、9Cは出力搬送波から8倍までの周波数で動作するA級増幅大電力増幅器(Power Amp:PAで)、9Dと9Eは出力搬送波から8倍までの周波数で動作するAB級増幅大電力増幅器(Power Amp:PA)(並列接続が多い)である。10と10Aと10Bは出力搬送波で動作する検波器、11と11Aと11Bは出力搬送波で動作する方向性結合器、12は出力搬送波で動作する帯域通過濾波器(Band Pass Filter:BPF)、13は出力搬送波で動作するアンテナ(Antenna)である。   1A to 1E, 1 is an MPEG encoder (ENC) that converts SDI into TS, 2 is an OFDM / QAM quadrature modulator (I / QMOD) that converts TS into I / Q signals, and 3 is an I / Q signal. Is converted to 8 times the output carrier wave and suppresses the peak (UpCon), 4 is a class A amplification pre-linearizer that operates at 8 times the output carrier wave (linear distortion correction), 4A is Class AB push-pull preamplifier (distortion inverse correction) linearizer that operates at 8 times the output carrier. 5 is a class A amplification pre-transient response inverse corrector (Transient Compensator) that operates at 8 times the output carrier, and 5A and 5B are class AB amplification pre-transient response inverse correctors (at 8 times the output carrier). Transient Compensator), 6 and 6A and 6B are digital / analog converters (DACs) that operate at 8 times the output carrier, and 7 and 7A, 7B, 8, 8A and 8B operate at frequencies up to 8 times from the output carrier. (Stabilization of amplification such as internal feedback and AGC) Amplifiers (LNA), 7C, 7D, 7E, 8C, 8D, and 8E are amplifiers (LNA) that operate at a frequency up to 16 times from the output carrier wave. 9 is a class A amplified high power amplifier (Power Amp: PA) that operates at a frequency up to 4 times from the output carrier, and 9A and 9B are class AB amplified high power amplifiers that operate at a frequency up to 4 times from the output carrier ( Power Amp (PA) (Many parallel connections), 9C is a class A amplified high-power amplifier (Power Amp: PA) that operates at a frequency up to 8 times the output carrier, 9D and 9E are up to 8 times from the output carrier This is a class AB amplification high power amplifier (Power Amp: PA) (often connected in parallel) operating at a frequency of Reference numerals 10, 10 </ b> A and 10 </ b> B are detectors operating on the output carrier, 11, 11 </ b> A and 11 </ b> B are directional couplers operating on the output carrier, 12 is a band pass filter (BPF) operating on the output carrier, 13 Is an antenna that operates on the output carrier wave.

また、図1Aから図1Eにおいて、14と14Aと14Bは出力搬送波から4倍までの周波数で動作するプッシュプル合成器、15Aと15Bと15Cと15Dは出力搬送波の8倍で動作する遅延器(Delay)、16と16Aと16Bとは出力搬送波の8倍で動作する加算器である。17は出力搬送波から8倍までの周波数で動作する金属被膜抵抗(直列接続が多い)、18Aは出力搬送波の8倍で動作するバッファー(Buffer)、18Bは出力搬送波の8倍で動作する反転バッファー(Inverter)、19Aと19Bは出力搬送波から4倍までの周波数で動作するアイソレーターである。   1A to 1E, 14 and 14A and 14B are push-pull synthesizers that operate at a frequency up to four times the output carrier, and 15A, 15B, 15C, and 15D are delay units that operate at eight times the output carrier ( Delay), 16 and 16A and 16B are adders operating at 8 times the output carrier. 17 is a metal film resistor that operates at a frequency up to 8 times from the output carrier (in many series connection), 18A is a buffer that operates at 8 times the output carrier, and 18B is an inverting buffer that operates at 8 times the output carrier. (Inverter), 19A and 19B are isolators that operate at a frequency up to four times from the output carrier wave.

図2Aは過渡応答補償の構成を示すブロック図であり、図2Bは過渡応答強調信号を含んだ過渡応答補償の構成を示すブロック図である。
図2Aと図2Bにおいて、40は立ち上がり立下り判定、遅延量選択部、41は過渡応答強調信号生成部、43は過渡応答補正部である。M1,M2,M3,M4,M5,M6:出力搬送波の8倍で動作する遅延器(Delay)、N0,N1,N2,N4,N5,N6:出力搬送波の8倍で動作する反転増幅器、P3:出力搬送波の8倍で動作する増幅器である。45と46と47と48と49と50と51は出力搬送波の8倍で動作する加算器である。
2A is a block diagram showing a configuration of transient response compensation, and FIG. 2B is a block diagram showing a configuration of transient response compensation including a transient response enhancement signal.
2A and 2B, reference numeral 40 denotes a rise / fall determination, a delay amount selection unit, 41 denotes a transient response enhancement signal generation unit, and 43 denotes a transient response correction unit. M1, M2, M3, M4, M5, M6: Delays (Delay) that operate at 8 times the output carrier, N0, N1, N2, N4, N5, N6: Inverting amplifiers that operate at 8 times the output carrier, P3 : An amplifier that operates at 8 times the output carrier wave. 45, 46, 47, 48, 49, 50 and 51 are adders which operate at 8 times the output carrier wave.

図3AはA級増幅の図1A又は図1Cにおける、図2Aの過渡応答補償の動作の模式図であり、図3BはA級増幅の図1A又は図1Cにおける、図2BのTurn-off遅延が多い過渡応答強調信号を含んだ過渡応答補償の動作の模式図である。
図3CはPush側出力とPull側出力を合成するAB級増幅の図1B又は図1Dにおける、図2Aの過渡応答補償の動作の模式図であり、図3DはPush側出力とPull側出力を合成するAB級増幅の図1B又は図1Dにおける、図2BのTurn-off遅延が多い過渡応答強調信号を含んだ過渡応答補償の動作の模式図である。
3A is a schematic diagram of the transient response compensation operation of FIG. 2A in FIG. 1A or FIG. 1C of class A amplification, and FIG. 3B is the Turn-off delay of FIG. 2A in FIG. 1A or FIG. It is a schematic diagram of the operation | movement of the transient response compensation containing many transient response emphasis signals.
3C is a schematic diagram of the transient response compensation operation of FIG. 2A in FIG. 1B or FIG. 1D of class AB amplification for combining the push side output and the pull side output , and FIG. 3D synthesizes the push side output and the pull side output. in Figure 1B or Figure 1D class AB amplifier that is a schematic view of the operation of the transient response compensation including the Turn-off delay is often transient response enhancement signal in Figure 2B.

図4Aは図2Aの過渡応答補償の動作のフローチャートであり、図3Aと図3Cの動作に対応する。図4Bは図2BのTurn-off遅延が多い過渡応答強調信号を含んだ過渡応答補償の動作のフローチャートであり、図3Bと図3Dの動作に対応する。
以下に本発明について説明する。
4A is a flowchart of the transient response compensation operation of FIG. 2A and corresponds to the operations of FIGS. 3A and 3C. FIG. 4B is a flowchart of the transient response compensation operation including the transient response enhancement signal with a large Turn-off delay of FIG. 2B, and corresponds to the operations of FIGS. 3B and 3D.
The present invention will be described below.

背景技術の各非特許文献の素子の高速化を利用し、高周波出力搬送波の8倍の周波数で動作するD/Aと、高周波出力搬送波から8倍までの周波数で動作する内部帰還やAGC等の増幅度を安定化した増幅器(LNA)と、高周波出力搬送波から4倍までの周波数で動作する電力増幅器を用い、電力増幅器の非線形性の逆特性と過渡応答の逆特性とを、高周波のデジタル領域で前置補償する。電力増幅器の出力を方向性結合器経由で検波し、AGCをかけて、高周波出力レベルを安定化する。
以下、線形補償と過渡応答補償のRF前置歪補償との本発明の1実施例の放送機の全体構成を示すブロック図の図1Aと、過渡応答補償の構成を示すブロック図の図2Aまたは過渡応答強調信号を含んだ過渡応答補償の構成を示すブロック図の図2Bと、A級増幅の過渡応答補償の模式図の図3AまたはA級増幅の過渡応答強調信号を含んだ過渡応答補償の模式図の図3Bと、過渡応答補償の動作のフローチャートの図4Aまたは過渡応答強調信号を含んだ過渡応答補償の動作のフローチャートの図4Bとを用いて説明する。
Utilizing the speedup of the elements of each non-patent document of the background art, D / A that operates at a frequency eight times that of a high-frequency output carrier, internal feedback that operates at a frequency up to eight times from the high-frequency output carrier, AGC, etc. Using an amplifier (LNA) with a stabilized amplification factor and a power amplifier that operates at a frequency up to four times the frequency of the high-frequency output carrier wave, the inverse characteristics of the nonlinearity of the power amplifier and the inverse characteristics of the transient response are represented in the high-frequency digital domain. Pre-compensation with. The output of the power amplifier is detected via a directional coupler, and AGC is applied to stabilize the high-frequency output level.
Hereinafter, FIG. 1A of a block diagram showing the overall configuration of the broadcasting apparatus of one embodiment of the present invention with linear compensation and RF predistortion compensation of transient response compensation, and FIG. 2A of the block diagram showing the configuration of transient response compensation, or FIG. 2B is a block diagram showing the configuration of the transient response compensation including the transient response enhancement signal, and FIG. 3A is a schematic diagram of the transient response compensation of the class A amplification or the transient response compensation including the transient response enhancement signal of the class A amplification. 3B of the schematic diagram and FIG. 4A of the flowchart of the transient response compensation operation or FIG. 4B of the flowchart of the transient response compensation operation including the transient response enhancement signal will be described.

過渡応答補償の模式図の図3Aのように、Turn-onに対してはTurn-onが早いので補償なしで、Turn-offに対してはTurn-offが多く又は少し遅い補償をするために遅延の少ない信号に差し替える。
そのため、過渡応答補償の動作のフローチャートの図4Aの22のように、図2A乃至図2Bにおける遅延信号0d乃至6dと図3A乃至図3DのTurn-off時間対応のパラメータA,Bを用いて、3dと4dとを比較し、3d≦4dなら25のように3dを選択する。
そして、3d>4dなら23のように3dと4d+Aとを比較し、3d≦4d+Aなら、26のように2dを選択する。さらに、3d>4d+Aなら、24のように3dと4d+A+Bとを比較し、3d≦4d+A+Bなら27のように1dを選択する。そして、3d>4d+A+Bなら28のように0dを選択する。
As shown in Fig. 3A in the schematic diagram of transient response compensation, the turn-on is fast for the turn-on, so no compensation, and the turn-off for the turn-off has a large or slightly slow compensation. Replace with a signal with less delay.
Therefore, as indicated by 22 in FIG. 4A in the flowchart of the transient response compensation operation, using the delay signals 0d to 6d in FIGS. 2A to 2B and the parameters A and B corresponding to the turn-off time in FIGS. 3A to 3D, 3d and 4d are compared, and if 3d ≦ 4d , 3d is selected as 25.
Then, if 3d> 4d, 3d and 4d + A are compared as in 23, and if 3d ≦ 4d + A , 2d is selected as in 26. Further, if 3d> 4d + A, 3d is compared with 4d + A + B as in 24, and if 3d ≦ 4d + A + B , 1d is selected as in 27. If 3d> 4d + A + B, 0d is selected as in 28.

または、過渡応答強調信号を含んだ過渡応答補償の模式図の図3Bのように、Turn-onに対してはTurn-onが早いので補償なしで、Turn-offに対してはTurn-offが多く又は少し遅い補償をするために遅延の少ない信号に差し替え、前後信号の差分を加算する。
そのため、過渡応答強調信号を含んだ過渡応答補償の動作のフローチャートの図4Bの22のように、図2A乃至図2Bにおける遅延信号0d乃至6dと図3A乃至図3DのTurn-off時間対応のパラメータA,B,C、過渡応答強調信号を含んだ際のTurn-off時間対応のパラメータK,Lを用いて、3dと4dとを比較し、3d≦4dなら25のように3dを選択する。
そして、3d>4dなら30のように、4dと5dを比較し、4d≦5dなら31のように出力に1dを選択する。4d>5dなら32のように出力に0dを選択し4d-5dを加算する。
さらに、33のように4dと5d+Bとを比較し、4d≦5d+Bなら終了し、4d>5d+Bなら34のように出力からKを減算する。
また、35のように4dと5d+B+Cとを比較し、4d≦5d+B+Cなら終了し、4d>5d+B+Cなら36のように出力からLを減算し終了する。
Alternatively, as shown in FIG. 3B of the schematic diagram of transient response compensation including a transient response emphasizing signal, the turn-on is fast for the turn-on, so there is no compensation, and the turn-off for the turn-off. In order to compensate more or less slowly, the signal is replaced with a signal with less delay, and the difference between the preceding and following signals is added.
Therefore, as indicated by 22 in FIG. 4B in the flowchart of the transient response compensation operation including the transient response enhancement signal, the delay signals 0d to 6d in FIGS. 2A to 2B and the parameters corresponding to the turn-off time in FIGS. 3A to 3D are used. 3d and 4d are compared using parameters K and L corresponding to the turn-off time when A, B and C and the transient response emphasis signal are included, and 3d is selected as 25 if 3d ≦ 4d .
When 3d> 4d, 4d and 5d are compared as in 30, and when 4d ≦ 5d , 1d is selected as output as 31. If 4d> 5d, 0d is selected for output as in 32, and 4d-5d is added.
Further, 4d and 5d + B are compared as in 33, and if 4d ≦ 5d + B, the process ends. If 4d> 5d + B, K is subtracted from the output as in 34.
Also, 4d and 5d + B + C are compared as in 35, and if 4d ≦ 5d + B + C, the process ends. If 4d> 5d + B + C, L is subtracted from the output as in 36, and the process ends.

映像信号を圧縮したTS信号をデジタル変調しI軸とQ軸とのベースバンド入力デジタル変調信号にする変調部と、高周波中心周波数の8倍のサンプリングにアップコンバートするアップコンバータとを有し、電力増幅器の非線形性の逆特性を加算する線形化部と、電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、D/Aと、高周波中心周波数の8倍以上の帯域のLNAと、高周波中心周波数の4倍以上の帯域の電力増幅器とからなり、電力増幅器の非線形性の逆特性を加算し、電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、D/Aし、高周波中心周波数の8倍以上の帯域のLNAと高周波中心周波数の4倍以上の帯域の電力増幅器で増幅する。
実施例1の効果は、Linearizerは、静的な歪の非直線性を逆特性に補償する。Transient Compensatorは、MOS-FETはturn-on速いがturn-offはゲート電荷引き抜かれるまで遅くなるのを、MOS-FET過渡応答の逆特性を入力信号に加算して補償する。又は、4fsc
Transient Compensatorは、入力信号を1Clk単位に2NClk遅延し、NClk遅延した信号から前後の信号を減算し、カメラの輪郭強調の様に過渡応答の逆特性を入力信号に加算して、直交変調波の過渡応答を簡易に補償することである。
実施例1は、VHF低周波数帯のシングルQAM等の直交変調波の小電力放送に適している。
A modulation unit that digitally modulates a TS signal obtained by compressing a video signal to form a baseband input digital modulation signal of the I axis and the Q axis, and an upconverter that upconverts the sampling to 8 times the high frequency center frequency. A linearizer for adding the inverse characteristics of the nonlinearity of the amplifier, a transient response compensator for adding the inverse characteristics of the transient response of the power amplifier in the turn-on direction and the inverse characteristics of the transient response in the turn-off direction, and D / A, an LNA in a band of 8 times or more of the high-frequency center frequency, and a power amplifier in a band of 4 or more times the high-frequency center frequency, adding the inverse characteristics of the nonlinearity of the power amplifier, Add the inverse characteristics of the transient response in the on direction and the reverse characteristics of the transient response in the turn-off direction, and perform D / A to obtain an LNA in a band that is at least 8 times the high frequency center frequency and a band that is at least 4 times the high frequency center frequency. Amplify with power amplifier
The effect of the first embodiment is that the linearizer compensates for the non-linearity of static distortion to an inverse characteristic. The Transient Compensator compensates for the reverse characteristics of the MOS-FET transient response added to the input signal to compensate for the fact that the MOS-FET is turn-on fast but the turn-off is slow until the gate charge is extracted. Or 4fsc
The Transient Compensator delays the input signal by 2 NClk in 1Clk units, subtracts the preceding and following signals from the NClk delayed signal, and adds the inverse characteristics of the transient response to the input signal as in the case of camera edge enhancement. It is simply compensating for the transient response.
The first embodiment is suitable for low-power broadcasting of orthogonal modulation waves such as single QAM in the VHF low frequency band.

線形補償と過渡応答補償のRF前置歪補償の本発明の1実施例の放送機の全体構成を示すブロック図の図1Bと、Push側出力とPull側出力を合成するAB級増幅の過渡応答補償の模式図の図3CまたはPush側出力とPull側出力を合成するAB級増幅の過渡応答強調信号を含んだ過渡応答補償の模式図の図3Dを用いて実施例1との相違点のみ説明する。
過渡応答補償の構成を示すブロック図の図2Aまたは過渡応答強調信号を含んだ過渡応答補償の構成を示すブロック図の図2Bと、過渡応答補償の動作のフローチャートの図4Aまたは過渡応答強調信号を含んだ過渡応答補償の動作のフローチャートの図4Bは実施例1と同様である。
FIG. 1B is a block diagram showing the overall configuration of a broadcasting apparatus according to an embodiment of the present invention for linear predistortion and transient response compensation RF predistortion, and a transient response of class AB amplification that synthesizes a push side output and a pull side output. Only differences from the first embodiment will be described with reference to FIG. 3C of the schematic diagram of compensation or FIG. 3D of the schematic diagram of transient response compensation including the transient response enhancement signal of class AB amplification that synthesizes the push side output and the pull side output . To do.
2A of the block diagram showing the configuration of the transient response compensation or FIG. 2B of the block diagram showing the configuration of the transient response compensation including the transient response enhancement signal, and FIG. 4A of the flowchart of the transient response compensation operation or the transient response enhancement signal. 4B of the flowchart of the operation of the included transient response compensation is the same as in the first embodiment.

Push側出力とPull側出力を合成するAB級増幅の過渡応答補償の模式図の図3CまたはPush側出力とPull側出力を合成するAB級増幅の過渡応答強調信号を含んだ過渡応答補償の模式図の図3Dにおいて、Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算し、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、電力増幅器の非線形性の逆特性と過渡応答の逆特性とを、高周波のデジタル領域で前置補償する。 Fig. 3C Schematic diagram of transient response compensation of class AB amplification that synthesizes push side output and pull side output . Schematic of transient response compensation including transient response enhancement signal of class AB amplification that synthesizes push side output and pull side output. In FIG. 3D, the push-side signal and the pull-side signal are individually added to the static nonlinear inverse characteristics of the power amplifier, and the push-side signal and the pull-side signal are individually added to the turn- Add the inverse characteristics of the transient response in the on direction and the transient response in the turn-off direction to pre-compensate the inverse characteristics of the nonlinearity of the power amplifier and the inverse characteristics of the transient response in the high frequency digital domain. .

Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算する線形化部と、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、D/Aと、高周波中心周波数の8倍以上の帯域のLNAと、高周波中心周波数の4倍以上の帯域の電力増幅器とを有し、Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算し、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、D/Aし、高周波中心周波数の8倍以上の帯域のLNAと高周波中心周波数の4倍以上の帯域の電力増幅器で増幅する。 A linearization unit for adding the inverse characteristic of the static non-linearity of the Push-side signal and the Pull-side signal and individually power amplifier, turn-on direction of the Push-side signal and the Pull-side signal and individually power amplifier A transient response compensator for adding the inverse characteristics of the transient response and the inverse characteristics of the transient response in the turn-off direction, a D / A, an LNA in a band more than eight times the high frequency center frequency, and a high frequency center frequency of 4 It has a power amplifier with a bandwidth of more than double, and push side signal and pull side signal are individually added to the inverse characteristics of static non-linearity of power amplifier, and push side signal and pull side signal are individually Add the reverse characteristics of the transient response of the power amplifier in the turn-on direction and the reverse characteristics of the transient response in the turn-off direction, and perform D / A to obtain an LNA and a high-frequency center frequency that are at least eight times the high-frequency center frequency. Is amplified by a power amplifier with a bandwidth of 4 times or more.

実施例2の効果は、Transient Compensatorは、MOS-FETはturn-on速いがturn-offはゲート電荷引き抜かれるまで遅くなるのを、Push側信号とPull側信号とを個別に、MOS-FET過渡応答の逆特性を入力信号に加算して補償することである。
実施例2は、VHF低周波数帯のOFDM等の平均電力に比べてピーク電力の大きい直交変調波の小電力放送に適している。
Effect of Embodiment 2, the Transient Compensator is that the MOS-FET is fast turn-on slower to turn-off is withdrawn gate charge, individually and Push-side signal and the Pull-side signal, MOS-FET transient The inverse characteristic of the response is added to the input signal to compensate.
The second embodiment is suitable for low-power broadcasting of an orthogonal modulation wave having a peak power larger than the average power of OFDM or the like in the VHF low frequency band.

線形補償と過渡応答補償の前置歪補償をループ前に置くHybrid
Feed Backの本発明の1実施例の放送機の全体構成を示すブロック図の図1Cを用いて実施例1と実施例2との相違点のみ説明する。
過渡応答補償の構成を示すブロック図の図2Aまたは過渡応答強調信号を含んだ過渡応答補償の構成を示すブロック図の図2Bと、過渡応答補償の動作のフローチャートの図4Aまたは過渡応答強調信号を含んだ過渡応答補償の動作のフローチャートの図4Bは実施例1と同様である。
Hybrid with pre-distortion pre-distortion compensation for linear and transient response compensation
Only the differences between the first embodiment and the second embodiment will be described with reference to FIG. 1C of the block diagram showing the overall configuration of the broadcasting apparatus of the first embodiment of the present invention of Feed Back.
2A of the block diagram showing the configuration of the transient response compensation or FIG. 2B of the block diagram showing the configuration of the transient response compensation including the transient response enhancement signal, and FIG. 4A of the flowchart of the transient response compensation operation or the transient response enhancement signal. 4B of the flowchart of the operation of the included transient response compensation is the same as that of the first embodiment.

背景技術の各非特許文献の素子の高速化を利用し、高周波出力搬送波から16倍までの周波数で動作し遅延も高周波出力搬送波周期の1/16の増幅器(LNA)と、高周波出力搬送波から8倍までの周波数で動作し遅延も高周波出力搬送波周期の1/8の電力増幅器を用い合計遅延が高周波出力搬送波周期の1/4として、電力増幅器の非線形性の逆特性と過渡応答の逆特性とを、高周波のデジタル領域で前置補償する。
さらに合計遅延が高周波出力搬送波周期の1/4と少ないことを利用し、電力増幅器の出力を増幅器(LNA)入力に抵抗で直接帰還し、抵抗で直接帰還する出力の(信号処理と初段LNAと次段LNAと電力増幅器との)遅延分遅らせた前記アップコンバートした信号を前記電流出力D/A入力に加算する。抵抗で直接帰還する帰還量が少ないので、帰還抵抗は抵抗値が特性抵抗に比べ高くなるので、電力定格は少なくて良く、帰還経路のインピーダンス変換の必要性もない。
Using the speedup of the elements of each non-patent document of the background art, an amplifier (LNA) that operates at a frequency up to 16 times from the high-frequency output carrier and has a delay of 1/16 of the high-frequency output carrier period, and 8 from the high-frequency output carrier The power amplifier operates at a frequency up to twice, and the delay is 1/8 of the high frequency output carrier cycle, and the total delay is 1/4 of the high frequency output carrier cycle. Is pre-compensated in the high frequency digital domain.
Furthermore, using the fact that the total delay is as small as 1/4 of the high frequency output carrier cycle, the output of the power amplifier is directly fed back to the amplifier (LNA) input by a resistor, and the output of the output directly fed back by the resistor (signal processing and first stage LNA and The up-converted signal delayed by the delay of the next stage LNA and the power amplifier is added to the current output D / A input. Since the feedback amount directly fed back by the resistor is small, the resistance value of the feedback resistor is higher than that of the characteristic resistor, so that the power rating may be small and there is no need for impedance conversion of the feedback path.

電力増幅器の非線形性の逆特性を加算し、電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する線形化部と、遅延信号を加算する加算部と、D/Aと、(高周波中心周波数の16倍以上の帯域のGaN-HEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と、高周波中心周波数の8倍以上の帯域の(GaN-MOSFETで構成された)電力増幅器と、抵抗等の減衰器の帰還回路とを有し、電力増幅器の非線形性の逆特性を加算し、電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、遅延信号を加算し、D/Aし、(高周波中心周波数の16倍以上の帯域のGaN-HEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と高周波中心周波数の8倍以上の帯域の(GaN-MOSFETで構成された)電力増幅器で増幅し帰還させ、抵抗で直接帰還する出力の(信号処理と初段LNAと次段LNAと電力増幅器との)遅延分遅らせた前記アップコンバートした信号を前記電流出力D/A入力に加算する。 Add the inverse characteristic of the nonlinearity of the power amplifier, add the delay signal and the linearizer that adds the inverse characteristic of the transient response of the power amplifier in the turn-on direction and the inverse characteristic of the transient response in the turn-off direction An adder, a D / A, an exciter having a band of 8 times or more of the high frequency center frequency (configured by GaN-HEMT having a band of 16 times or more of the high frequency center frequency), and 8 times or more of the high frequency center frequency. Power amplifier (consisting of GaN-MOSFET) and feedback circuit of attenuator such as a resistor, adding the inverse characteristics of the nonlinearity of the power amplifier, and the transient response of the power amplifier in the turn-on direction And reverse characteristics of turn-off direction transient response are added, delayed signal is added, D / A is performed, and high frequency (consisting of GaN-HEMT with a bandwidth of 16 times higher than the high frequency center frequency) It consists of an exciter with a bandwidth 8 times higher than the center frequency and a GaN-MOSFET with a bandwidth 8 times higher than the high frequency center frequency The up-converted signal delayed by the delay (with signal processing, first stage LNA, next stage LNA, and power amplifier) of the output that is amplified and fed back by the power amplifier and directly fed back by the resistor is the current output D / A. Add to input.

実施例3の効果は、帰還ループ遅延が100MHzの1/4周期2.5nsと短く安定で、線形と過渡応答の前置歪補償で非対称歪低減しているので、歪改善FB(例えば12dB)分の利得と帯域幅とを増加するだけで良いことである。
実施例3は、VHF低周波数帯のシングルQAM等の直交変調波の放送に適している。
The effect of the third embodiment is that the feedback loop delay is as short as a quarter cycle of 100 MHz, 2.5 ns, is stable, and asymmetric distortion is reduced by predistortion of linear and transient response. It is only necessary to increase the gain and bandwidth.
The third embodiment is suitable for broadcasting of orthogonal modulation waves such as single QAM in the VHF low frequency band.

線形補償と過渡応答補償のRF前置歪補償ループ前に置くRF Digital Feed Backの本発明の1実施例の放送機の全体構成を示すブロック図の図1Dを用いて実施例1から実施例3までとの相違点のみ説明する。
過渡応答補償の構成を示すブロック図の図2Aまたは過渡応答強調信号を含んだ過渡応答補償の構成を示すブロック図の図2Bと、過渡応答補償の動作のフローチャートの図4Aまたは過渡応答強調信号を含んだ過渡応答補償の動作のフローチャートの図4Bは実施例1と同様である。
Push側出力とPull側出力を合成するAB級増幅の過渡応答補償の模式図の図3CまたはPush側出力とPull側出力を合成するAB級増幅の過渡応答強調信号を含んだ過渡応答補償の模式図の図3Dは実施例2と同様である。
Example 1 to Example 3 using FIG. 1D of a block diagram showing the overall configuration of a broadcasting apparatus of an RF digital feed back of an embodiment of the present invention of RF Digital Feed Back placed before an RF predistortion compensation loop of linear compensation and transient response compensation Only differences from the above will be described.
2A of the block diagram showing the configuration of the transient response compensation or FIG. 2B of the block diagram showing the configuration of the transient response compensation including the transient response enhancement signal, and FIG. 4A of the flowchart of the transient response compensation operation or the transient response enhancement signal. 4B of the flowchart of the operation of the included transient response compensation is the same as that of the first embodiment.
Fig. 3C Schematic diagram of transient response compensation of class AB amplification that synthesizes push side output and pull side output . Schematic of transient response compensation including transient response enhancement signal of class AB amplification that synthesizes push side output and pull side output. FIG. 3D is the same as that of the second embodiment.

Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算し、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、電力増幅器の非線形性の逆特性と過渡応答の逆特性とを、高周波のデジタル領域で前置補償する。
さらに合計遅延が高周波出力搬送波周期の1/4と少ないことを利用し、Push側信号とPull側信号と合成され、電力増幅器の出力を増幅器(LNA)入力に抵抗で直接帰還し、抵抗で直接帰還する出力の(信号処理と初段LNAと次段LNAと電力増幅器との)遅延分遅らせた前記アップコンバートした信号をPush側信号とPull側信号と逆相で前記電流出力D/A入力に加算する。
A Push-side signal and the Pull-side signal by adding the inverse characteristic of the static non-linearity of the individual power amplifiers, Push-side signal and the Pull-side signal and the individually power amplifier turn-on direction of the transient response of the The inverse characteristic and the inverse characteristic of the transient response in the turn-off direction are added, and the inverse characteristic of the nonlinearity of the power amplifier and the inverse characteristic of the transient response are pre-compensated in the high frequency digital domain.
Furthermore, using the fact that the total delay is as small as 1/4 of the high frequency output carrier cycle, it is combined with the Push side signal and Pull side signal, and the output of the power amplifier is directly fed back to the amplifier (LNA) input with a resistor, and directly with the resistor The up-converted signal delayed by the delay of the output to be fed back (with signal processing, first-stage LNA, next-stage LNA, and power amplifier) is added to the current output D / A input in the opposite phase to the push-side signal and the pull-side signal. To do.

Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算する線形化部と、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、遅延信号を加算する加算部と、D/Aと、(高周波中心周波数の16倍以上の帯域のGaN-HEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と、高周波中心周波数の8倍以上の帯域の(GaN-MOSFETで構成された)電力増幅器とと、抵抗等の減衰器の帰還回路とを有し、Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算し、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、遅延信号を加算し、D/Aし、(高周波中心周波数の16倍以上の帯域のGaN-HEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と高周波中心周波数の8倍以上の帯域の(GaN-MOSFETで構成された)電力増幅器で増幅し帰還させ、抵抗で直接帰還する出力の(信号処理と初段LNAと次段LNAと電力増幅器との)遅延分遅らせた前記アップコンバートした信号を前記電流出力D/A入力に加算する。 A linearization unit for adding the inverse characteristic of the static non-linearity of the Push-side signal and the Pull-side signal and individually power amplifier, turn-on direction of the Push-side signal and the Pull-side signal and individually power amplifier and transient response compensation unit for adding the inverse characteristic of the transient response of the reverse characteristic and turn-off direction of the transient response of an adder for adding the delayed signal, and a D / a, of more than 16 times (RF center frequency An exciter with a bandwidth of 8 times or more of the high frequency center frequency (composed of GaN-HEMT in the bandwidth), a power amplifier with a bandwidth of 8 times or more of the high frequency center frequency (composed of GaN-MOSFET), a resistance, etc. the attenuator comprises a feedback circuit, adds the inverse characteristic of the static non-linearity of the Push-side signal and the Pull-side signal and individually power amplifier, individually and Push-side signal and the Pull-side signal Add the reverse characteristic of the transient response in the turn-on direction and the reverse characteristic of the transient response in the turn-off direction of the power amplifier, add the delay signal, / A and an exciter with a bandwidth of 8 times or more of the high frequency center frequency (consisting of GaN-HEMT with a bandwidth of 16 times or more of the high frequency center frequency) and a GaN-MOSFET with a bandwidth of 8 times or more of the high frequency center frequency (GaN-MOSFET) The up-converted signal delayed by the delay (with signal processing, first-stage LNA, next-stage LNA, and power amplifier) of the output that is amplified and fed back by a power amplifier (directly fed back) and directly fed back by a resistor. Add to the / A input .

実施例4の効果は、Push側出力とPull側出力が合成により混合されて抵抗等の減衰器の帰還回路で帰還されても、(信号処理と初段LNAと次段LNAと電力増幅器との)遅延分遅らせた前記アップコンバートした信号をPush側信号とPull側信号と逆相で加算して補正してあり、安定に動作することである。
実施例4は、VHF低周波数帯のOFDM等の平均電力に比べてピーク電力の大きい直交変調波の広域放送に適している。
The effect of the fourth embodiment is that the push side output and the pull side output are mixed by synthesis and fed back by a feedback circuit of an attenuator such as a resistor (signal processing, first stage LNA, next stage LNA, and power amplifier). The up-converted signal delayed by the delay amount is corrected by adding it in the opposite phase to the push-side signal and the pull-side signal, and the operation is stable.
The fourth embodiment is suitable for wide-area broadcasting of orthogonal modulation waves having a peak power larger than the average power of OFDM or the like in the VHF low frequency band.

線形補償と過渡応答補償のRF前置歪補償ループ前に置くアイソレータでプッシュプルを分離したRF Digital Feed Backの本発明の1実施例の放送機の全体構成を示すブロック図の図1Eを用いて実施例1から実施例4までとの相違点のみ説明する。
過渡応答補償の構成を示すブロック図の図2Aまたは過渡応答強調信号を含んだ過渡応答補償の構成を示すブロック図の図2Bと、過渡応答補償の動作のフローチャートの図4Aまたは過渡応答強調信号を含んだ過渡応答補償の動作のフローチャートの図4Bは実施例1と同様である。
Push側出力とPull側出力を合成するAB級増幅の過渡応答補償の模式図の図3CまたはPush側出力とPull側出力を合成するAB級増幅の過渡応答強調信号を含んだ過渡応答補償の模式図の図3Dは実施例2と同様である。
FIG. 1E of the block diagram showing the entire configuration of the broadcasting apparatus of the RF digital feed back according to the first embodiment of the present invention in which the push-pull is separated by the isolator placed before the RF predistortion compensation loop of the linear compensation and the transient response compensation. Only differences from the first to fourth embodiments will be described.
2A of the block diagram showing the configuration of the transient response compensation or FIG. 2B of the block diagram showing the configuration of the transient response compensation including the transient response enhancement signal, and FIG. 4A of the flowchart of the transient response compensation operation or the transient response enhancement signal. 4B of the flowchart of the operation of the included transient response compensation is the same as that of the first embodiment.
Fig. 3C Schematic diagram of transient response compensation of class AB amplification that synthesizes push side output and pull side output . Schematic of transient response compensation including transient response enhancement signal of class AB amplification that synthesizes push side output and pull side output. FIG. 3D is the same as that of the second embodiment.

アイソレータが小型低価格になる場合の代替え手段として、アイソレータで電力増幅器出力とPush側出力とPull側出力の合成とを分離させて、、Push側信号とPull側信号とをそれぞれ個別に、抵抗で直接帰還と、電力増幅器の静的な非直線性の逆特性とを加算し、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する。 As an alternative when the isolator is small and low-priced, the power amplifier output, push side output, and pull side output are separated by the isolator, and the push side signal and the pull side signal are individually separated by resistors. Add direct feedback and reverse characteristics of static non-linearity of power amplifier, and push-side signal and pull-side signal separately for power amplifier turn-on direction transient response and turn-off direction Add the inverse characteristics of the transient response.

Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算する線形化部と、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、遅延信号を加算する加算部と、D/Aと、(高周波中心周波数の16倍以上の帯域のGaN-HEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と、高周波中心周波数の8倍以上の帯域の(GaN-MOSFETで構成された)電力増幅器とと、抵抗等の減衰器の帰還回路とを有し、Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算し、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、遅延信号を加算し、D/Aし、(高周波中心周波数の16倍以上の帯域のGaN-HEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と高周波中心周波数の8倍以上の帯域の(GaN-MOSFETで構成された)電力増幅器で増幅しアイソレータでPush側出力とPull側出力と出力を分離させて帰還させ、抵抗で直接帰還する出力の(信号処理と初段LNAと次段LNAと電力増幅器との)遅延分遅らせた前記アップコンバートした信号を前記電流出力D/A入力に加算する。 A linearization unit for adding the inverse characteristic of the static non-linearity of the Push-side signal and the Pull-side signal and individually power amplifier, turn-on direction of the Push-side signal and the Pull-side signal and individually power amplifier and transient response compensation unit for adding the inverse characteristic of the transient response of the reverse characteristic and turn-off direction of the transient response of an adder for adding the delayed signal, and a D / a, of more than 16 times (RF center frequency An exciter with a bandwidth of 8 times or more of the high frequency center frequency (composed of GaN-HEMT in the bandwidth), a power amplifier with a bandwidth of 8 times or more of the high frequency center frequency (composed of GaN-MOSFET), a resistance, etc. the attenuator comprises a feedback circuit, adds the inverse characteristic of the static non-linearity of the Push-side signal and the Pull-side signal and individually power amplifier, individually and Push-side signal and the Pull-side signal Add the reverse characteristic of the transient response in the turn-on direction and the reverse characteristic of the transient response in the turn-off direction of the power amplifier, add the delay signal, / A and an exciter with a bandwidth of 8 times or more of the high frequency center frequency (consisting of GaN-HEMT with a bandwidth of 16 times or more of the high frequency center frequency) and a GaN-MOSFET with a bandwidth of 8 times or more of the high frequency center frequency (GaN-MOSFET) The output of the output (signal processing, first-stage LNA, next-stage LNA, and power amplifier) that is amplified by a power amplifier, separated by an isolator, separated from the Push-side output and Pull-side output, and directly fed back by a resistor. ) Add the up-converted signal delayed by the delay to the current output D / A input.

実施例5の効果は、2ヶのアイソレータが必要で構成は複雑になるが、Push側信号とPull側信号とをそれぞれ個別に制御でき、より歪を低減できることである。
実施例5は、VHF低周波数帯のOFDM等の平均電力に比べてピーク電力の大きい直交変調波の広域放送に適している。
The effect of the fifth embodiment is that although two isolators are required and the configuration is complicated, the push-side signal and the pull-side signal can be individually controlled, and distortion can be further reduced.
The fifth embodiment is suitable for wide-area broadcasting of orthogonal modulation waves having a peak power larger than the average power of OFDM or the like in the VHF low frequency band.

線形補償と過渡応答補償のRF前置歪補償ループ前に置くアイソレータでプッシュプルを分離したRF Digital Feed Backの本発明の1実施例の放送機の全体構成を示すブロック図の図1Fを用いて実施例1から実施例5までとの相違点のみ説明する。   FIG. 1F is a block diagram showing an overall configuration of a broadcaster of an RF Digital Feed Back according to an embodiment of the present invention, in which push-pull is separated by an isolator placed before an RF predistortion compensation loop for linear compensation and transient response compensation. Only differences from the first to fifth embodiments will be described.

実施例3の図1Cとの相違は、フィードバックがPA単体となっていることでる。
実施例6は、実施例3同様にVHF低周波数帯のシングルQAM等の直交変調波の放送に適している。
The difference from FIG. 1C of Example 3 is that the feedback is a single PA.
As in the third embodiment, the sixth embodiment is suitable for broadcasting of quadrature modulation waves such as single QAM in the VHF low frequency band.

線形補償と過渡応答補償のRF前置歪補償ループ前に置くRF Digital Feed
Backの本発明の1実施例の放送機の全体構成を示すブロック図の図1Gを用いて実施例1から実施例6までとの相違点のみ説明する。
RF Digital Feed placed before RF predistortion compensation loop for linear compensation and transient response compensation
Only differences from the first to sixth embodiments will be described with reference to FIG. 1G which is a block diagram showing the overall configuration of a broadcasting apparatus according to one embodiment of the present invention.

実施例4の図1Dとの相違は、フィードバックがPA単体となっていることでる。
実施例7は、実施例4同様にVHF低周波数帯のOFDM等の平均電力に比べてピーク電力の大きい直交変調波の広域放送に適している。
The difference from FIG. 1D of the fourth embodiment is that the feedback is a single PA.
As in the fourth embodiment, the seventh embodiment is suitable for wideband broadcasting of orthogonal modulation waves having a peak power larger than the average power of OFDM or the like in the VHF low frequency band.

C級Push-pullで効率向上し、AB級Push-pullでFeed Backで歪低減する本発明の1実施例の放送機の全体構成を示すブロック図の図1Gを用いて実施例1から実施例7までとの相違点のみ説明する。   Example 1 to Example Using FIG. 1G of a block diagram showing the overall configuration of a broadcasting apparatus of one example of the present invention that improves efficiency with Class C Push-pull and reduces distortion with Class AB Push-pull with Feed Back Only differences from 7 will be described.

実施例7の図1Gとの相違は、C級Push-pullで効率向上し、AB級Push-pullでFeed Backで歪低減することでる。
実施例8は、実施例7同様にVHF低周波数帯のOFDM等の平均電力に比べてピーク電力の大きい直交変調波の広域放送に適している。
The difference from FIG. 1G in Example 7 is that the efficiency is improved by class C push-pull, and the distortion is reduced by feed back by class AB push-pull.
As in the seventh embodiment, the eighth embodiment is suitable for wideband broadcasting of orthogonal modulation waves having a peak power larger than the average power of OFDM or the like in the VHF low frequency band.

以上説明したように、本発明は、RF前置歪補償とRFフィードバックとを組み合わせることにより、VHF低周波数帯での広帯域の送信機の歪率を低減し、VHF低周波数帯での広帯域の放送に適している。   As described above, the present invention reduces the distortion factor of a wideband transmitter in the VHF low frequency band by combining RF predistortion compensation and RF feedback, and wideband broadcasting in the VHF low frequency band. Suitable for

1:SDIをTSに変換するMPEGエンコーダー(ENC)、
2:TSをI/Q信号に変換するOFDM/QAM直交変調器(I/QMOD)、
3:I/Q信号を出力搬送波の8倍に変換するとともにピークを抑圧する変換器(UpCon)、
4:出力搬送波の8倍で動作するA級増幅用前置(歪逆補正)線形化器(Linearizer)、
4A:出力搬送波の8倍で動作するAB級プッシュプル増幅用前置(歪逆補正)線形化器(Linearizer)、
5:出力搬送波の8倍で動作するA級増幅用前置過渡応答逆補正器(Transient Compensator)、
5A,5B:出力搬送波の8倍で動作するAB級増幅用前置過渡応答逆補正器(Transient Compensator)、
6,6A,6B:出力搬送波の8倍で動作するデジタル/アナログ変換器(DAC)、
7,7A,7B,8,8A,8B:出力搬送波から8倍までの周波数で動作する(内部帰還やAGC等の増幅度安定化)増幅器(LNA)、
7C,7D,7E,8C,8D,8E:出力搬送波から16倍までの周波数で動作する増幅器(LNA)、
9:出力搬送波から4倍までの周波数で動作するA級増幅大電力増幅器(Power Amp:PA)、
9A,9B:出力搬送波から4倍までの周波数で動作するAB級増幅大電力増幅器(PA)、
9C:出力搬送波から8倍までの周波数で動作するA級増幅大電力増幅器(PA)、
9D,9E:出力搬送波から8倍までの周波数で動作するAB級増幅大電力増幅器(PA)、
10,10A,10B:出力搬送波で動作する検波器、
11,11A,11B:出力搬送波で動作する方向性結合器、
12:出力搬送波で動作する帯域通過濾波器(Band Pass Filter:BPF)、
13:出力搬送波で動作するアンテナ(Antenna)、
14,14A,14B:出力搬送波から4倍までの周波数で動作するプッシュプル合成器、
15A,15B,15C,15D:出力搬送波の8倍で動作する遅延器(Delay)、
16,16A,16B,45,46,47,48、49,50,51:出力搬送波の8倍で動作する加算器、
17:出力搬送波から8倍までの周波数で動作する金属被膜抵抗(直列接続が多い)
18A:出力搬送波の8倍で動作するバッファー(Buffer)、
18B:出力搬送波の8倍で動作する反転バッファー(Inverter)、
19A,19B:出力搬送波から4倍までの周波数で動作するアイソレーター、
40:立ち上がり立下り判定、遅延量選択部、
41:過渡応答強調信号生成部、
43:過渡応答補正部、
M1,M2,M3,M4,M5,M6:出力搬送波の8倍で動作する遅延器(Delay)、
N0,N1,N2,N4,N5,N6:出力搬送波の8倍で動作する反転増幅器、
P3:出力搬送波の8倍で動作する増幅器、
1: MPEG encoder (ENC) that converts SDI to TS,
2: OFDM / QAM quadrature modulator (I / QMOD) that converts TS into I / Q signal;
3: Converter (UpCon) that converts the I / Q signal to 8 times the output carrier wave and suppresses the peak.
4: Pre-class A amplification (reverse distortion correction) linearizer that operates at 8 times the output carrier.
4A: Class AB push-pull amplification predistortion (distortion inverse correction) linearizer that operates at 8 times the output carrier wave,
5: Transient Compensator for class A amplification operating at 8 times the output carrier, Transient Compensator,
5A, 5B: class AB amplification pre-transient response inverse compensator (Transient Compensator) operating at 8 times the output carrier,
6, 6A, 6B: Digital / analog converter (DAC) operating at 8 times the output carrier wave,
7, 7A, 7B, 8, 8A, 8B: an amplifier (LNA) that operates at a frequency up to 8 times from the output carrier wave (internal feedback, stabilization of amplification such as AGC),
7C, 7D, 7E, 8C, 8D, 8E: an amplifier (LNA) operating at a frequency from the output carrier to 16 times,
9: Class A amplified high-power amplifier (Power Amp: PA) operating at a frequency up to 4 times from the output carrier wave,
9A, 9B: Class AB amplification high power amplifier (PA) operating at a frequency up to 4 times from the output carrier wave,
9C: Class A amplified high power amplifier (PA) operating at a frequency up to 8 times from the output carrier wave,
9D, 9E: Class AB amplification high power amplifier (PA) operating at a frequency of 8 times from the output carrier wave,
10, 10A, 10B: detectors operating on the output carrier wave,
11, 11A, 11B: Directional couplers operating on the output carrier wave,
12: Band pass filter (BPF) operating on the output carrier,
13: Antenna operating with output carrier wave (Antenna),
14, 14A, 14B: push-pull synthesizer operating at a frequency up to 4 times from the output carrier wave,
15A, 15B, 15C, 15D: delay units that operate at 8 times the output carrier wave (Delay),
16, 16A, 16B, 45, 46, 47, 48, 49, 50, 51: an adder operating at 8 times the output carrier wave,
17: Metal film resistor operating at a frequency up to 8 times from the output carrier wave (many in series connection)
18A: Buffer that operates at 8 times the output carrier wave,
18B: Inverter that operates at 8 times the output carrier wave,
19A, 19B: Isolators operating at a frequency up to 4 times from the output carrier wave,
40: rise / fall determination, delay amount selection unit,
41: Transient response emphasis signal generator,
43: Transient response correction unit,
M1, M2, M3, M4, M5, M6: Delays that operate at 8 times the output carrier wave (Delay),
N0, N1, N2, N4, N5, N6: an inverting amplifier operating at 8 times the output carrier wave,
P3: an amplifier that operates at 8 times the output carrier wave,

Claims (4)

入力信号をデジタル変調しI軸とQ軸とのベースバンド入力デジタル変調信号にする変調部と、高周波中心周波数の8倍のサンプリングにアップコンバートするアップコンバータとを有し、
電力増幅器の非線形性の逆特性を加算する線形化部と、電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、D/Aと、高周波中心周波数の8倍以上の帯域のLNAと、高周波中心周波数の4倍以上の帯域の電力増幅器とからなり、
電力増幅器の非線形性の逆特性を加算し、電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、D/Aし、高周波中心周波数の8倍以上の帯域のLNAと高周波中心周波数の4倍以上の帯域の電力増幅器で増幅することを特徴とする歪補償を用いた高周波電力増幅器。
A modulation unit that digitally modulates an input signal to form a baseband input digital modulation signal of the I-axis and the Q-axis, and an upconverter that upconverts the sampling to 8 times the high-frequency center frequency,
A linearizer that adds the inverse characteristics of the nonlinearity of the power amplifier, a transient response compensator that adds the inverse characteristics of the transient response in the turn-on direction and the inverse characteristics of the transient response in the turn-off direction, A D / A, an LNA in a band more than 8 times the high frequency center frequency, and a power amplifier in a band more than 4 times the high frequency center frequency,
Add the inverse characteristics of the nonlinearity of the power amplifier, add the inverse characteristics of the transient response in the turn-on direction and the inverse characteristics of the transient response in the turn-off direction, D / A, and A high-frequency power amplifier using distortion compensation, wherein amplification is performed by an LNA having a band of 8 times or more and a power amplifier having a band of 4 times or more of a high-frequency center frequency.
入力信号をデジタル変調しI軸とQ軸とのベースバンド入力デジタル変調信号にする変調部と、高周波中心周波数の8倍のサンプリングにアップコンバートするアップコンバータとを有し、
更に、Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算する線形化部と、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、D/Aと、高周波中心周波数の8倍以上の帯域の(内部帰還やAGC等の増幅度安定化)LNAと、高周波中心周波数の4倍以上の帯域の(AGC等の増幅度安定化)電力増幅器とを有し、
Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算し、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、D/Aし、高周波中心周波数の8倍以上の帯域のLNAと高周波中心周波数の4倍以上の帯域の電力増幅器で増幅することを特徴とする歪補償を用いた高周波電力増幅器。
A modulation unit that digitally modulates an input signal to form a baseband input digital modulation signal of the I-axis and the Q-axis, and an upconverter that upconverts the sampling to 8 times the high-frequency center frequency,
Furthermore, a linearization unit that adds the push-side signal and the pull-side signal individually to the inverse characteristics of the static nonlinearity of the power amplifier, and the push-side signal and the pull-side signal are individually turned- A transient response compensator that adds the reverse characteristics of the transient response in the on direction and the reverse characteristics of the transient response in the turn-off direction, a D / A, and a band of at least eight times the high frequency center frequency (internal feedback, AGC, etc. (Amplification stabilization of AGC) LNA and a power amplifier (amplification stabilization of AGC, etc.) in a band more than four times the center frequency of the high frequency,
A Push-side signal and the Pull-side signal by adding the inverse characteristic of the static non-linearity of the individual power amplifiers, Push-side signal and the Pull-side signal and the individually power amplifier turn-on direction of the transient response of the The inverse characteristic and the inverse characteristic of the transient response in the turn-off direction are added, D / A, and amplified by an LNA in a band of 8 times or more of the high frequency center frequency and a power amplifier in a band of 4 or more of the high frequency center frequency. high frequency power amplifier using the distortion compensation, characterized in that.
Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算する線形化部と、
Push側信号とPull側信号とを電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算する過渡応答補償部と、遅延信号を加算する加算部と、D/Aと、(高周波中心周波数の16倍以上の帯域のHEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と、高周波中心周波数の8倍以上の帯域の(MOSFETで構成された)電力増幅器とと、抵抗等の減衰器の帰還回路とを有し、Push側信号とPull側信号とを個別に電力増幅器の静的な非直線性の逆特性とを加算し、Push側信号とPull側信号とを個別に電力増幅器のturn-on方向の過渡応答の逆特性とturn-off方向の過渡応答の逆特性とを加算し、遅延信号を加算し、D/Aし、(高周波中心周波数の16倍以上の帯域のHEMTで構成された)高周波中心周波数の8倍以上の帯域の励振器と高周波中心周波数の8倍以上の帯域の(MOSFETで構成された)電力増幅器で増幅し帰還させ、抵抗で直接帰還する出力の(信号処理と初段LNAと次段LNAと電力増幅器との)遅延分遅らせた前記アップコンバートした信号をPush側信号とPull側信号と逆相で前記電流出力D/A入力に加算する歪補償を用いた高周波電力増幅器を用い、上記デジタル変調をOFDM変調とすることを特徴とする送信機。
A linearization unit that individually adds the push-side signal and the pull-side signal to the inverse characteristic of the static nonlinearity of the power amplifier;
A transient response compensator that adds the reverse characteristics of the transient response in the turn-on direction and the reverse characteristics of the transient response in the turn-off direction to the push side signal and the pull side signal, and an adder that adds the delay signal And D / A, an exciter having a band of 8 times or more of the high frequency center frequency (configured by HEMT having a band of 16 times or more of the high frequency center frequency), and a MOSFET having a band of 8 or more times of the high frequency center frequency (MOSFET Power amplifier, and a feedback circuit for the attenuator such as a resistor. Push side signal and Pull side signal are individually added to the inverse characteristics of static nonlinearity of the power amplifier. The push-side signal and the pull-side signal are individually added with the reverse characteristic of the transient response in the turn-on direction and the reverse characteristic of the transient response in the turn-off direction, and the delay signal is added. However, excitation of a band of 8 times or more of the high frequency center frequency (consisting of HEMT of a band of 16 times or more of the high frequency center frequency) The output is amplified and fed back by a power amplifier (consisting of a MOSFET) with a bandwidth of 8 times or more of the center frequency of the vibrator and directly fed back by a resistor (with signal processing, first-stage LNA, next-stage LNA, and power amplifier. ) Using a high-frequency power amplifier using distortion compensation that adds the delayed up-converted signal to the current output D / A input in phase opposite to the push-side signal and the pull-side signal, and the digital modulation is referred to as OFDM modulation. A transmitter characterized by.
請求項3の送信機において、上記OFDM変調をガードインターバル付きOFDM変調とし、上記入力信号をTS信号とすることを特徴とする送信機。   4. The transmitter according to claim 3, wherein the OFDM modulation is OFDM modulation with a guard interval, and the input signal is a TS signal.
JP2012210754A 2012-09-25 2012-09-25 High frequency power amplifier and transmitter using high frequency power amplifier Active JP6086582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012210754A JP6086582B2 (en) 2012-09-25 2012-09-25 High frequency power amplifier and transmitter using high frequency power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012210754A JP6086582B2 (en) 2012-09-25 2012-09-25 High frequency power amplifier and transmitter using high frequency power amplifier

Publications (2)

Publication Number Publication Date
JP2014068113A JP2014068113A (en) 2014-04-17
JP6086582B2 true JP6086582B2 (en) 2017-03-01

Family

ID=50744136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012210754A Active JP6086582B2 (en) 2012-09-25 2012-09-25 High frequency power amplifier and transmitter using high frequency power amplifier

Country Status (1)

Country Link
JP (1) JP6086582B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137973B2 (en) * 2008-01-15 2013-02-06 三菱電機株式会社 Predistorter
JP2009260489A (en) * 2008-04-14 2009-11-05 Mitsubishi Electric Corp Frequency correcting predistortor
JP5279605B2 (en) * 2008-05-13 2013-09-04 株式会社日立国際電気 Individual imaging apparatus and monitoring system
JP2010278929A (en) * 2009-05-29 2010-12-09 Toshiba Corp Image processing apparatus

Also Published As

Publication number Publication date
JP2014068113A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
Younes et al. An accurate complexity-reduced “PLUME” model for behavioral modeling and digital predistortion of RF power amplifiers
EP1238455B1 (en) Method and apparatus for generating a radio frequency signal
Kang et al. Symmetric three-way Doherty power amplifier for high efficiency and linearity
KR101128487B1 (en) Power amplifier linearization method and apparatus
JP5217182B2 (en) High frequency amplifier circuit
JP5779725B2 (en) Distortion compensation circuit and transmitter using distortion compensation circuit and high-frequency power amplifier
EP3648343B1 (en) Doherty amplifier and amplification circuit
CN102710222B (en) Linear signal conditioning driving device for traveling wave tube
JP2004222151A (en) Doherty amplifier
JP6073820B2 (en) Broadband high efficiency amplifier system
Watkins et al. How not to rely on Moore's Law alone: low-complexity envelope-tracking amplifiers
Parsons et al. The efficiency of a feedforward amplifier with delay loss
Seo et al. Ultrabroadband linear power amplifier using a frequency-selective analog predistorter
Singh et al. Review of efficiency enhancement techniques and linearization techniques for power amplifier
Vizarreta et al. Slew-rate and efficiency trade-off in slow envelope tracking power amplifiers
EP2658116A1 (en) Amplifier circuit
JP2010154459A (en) High-frequency amplifying device
JP2007243491A (en) Amplifier circuit
Atanasković et al. Linearization of two-way Doherty amplifier
JP6086582B2 (en) High frequency power amplifier and transmitter using high frequency power amplifier
JP2010183525A (en) Predistorter
Atanasković et al. The linearization of Doherty amplifier
JP3412594B2 (en) Distortion compensation circuit
JP2007243492A (en) Amplifier circuit for broadcast
JP2002368716A (en) Ofdm high efficiency power amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R150 Certificate of patent or registration of utility model

Ref document number: 6086582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250