JP6084677B2 - ターボチャージャーの軸受ハウジング - Google Patents

ターボチャージャーの軸受ハウジング Download PDF

Info

Publication number
JP6084677B2
JP6084677B2 JP2015255536A JP2015255536A JP6084677B2 JP 6084677 B2 JP6084677 B2 JP 6084677B2 JP 2015255536 A JP2015255536 A JP 2015255536A JP 2015255536 A JP2015255536 A JP 2015255536A JP 6084677 B2 JP6084677 B2 JP 6084677B2
Authority
JP
Japan
Prior art keywords
compressor
turbine
housing
bearing
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015255536A
Other languages
English (en)
Other versions
JP2016040471A (ja
Inventor
建一郎 ▲高▼間
建一郎 ▲高▼間
覚 神原
覚 神原
敬次郎 牧
敬次郎 牧
竜二 成瀬
竜二 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2015255536A priority Critical patent/JP6084677B2/ja
Publication of JP2016040471A publication Critical patent/JP2016040471A/ja
Application granted granted Critical
Publication of JP6084677B2 publication Critical patent/JP6084677B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関に設けられるターボチャージャーの軸受ハウジングの技術に関する。
従来、内燃機関に設けられるターボチャージャーの軸受ハウジングの技術は公知となっている。例えば、特許文献1に記載の如くである。
特許文献1に記載のターボチャージャーの軸受ハウジングは、排気ガスによって駆動されるタービンと、吸入空気を圧縮するコンプレッサと、を連結するシャフトを回転可能に支持している。このような軸受ハウジングは、鋳鉄を用いた鋳造により製作される。
しかし、このように鋳鉄を用いて製作された軸受ハウジングは、当該鋳鉄の密度が比較的高いため、軽量化が困難である点で不利であった。
特開平9−310620号公報
本発明は以上の如き状況に鑑みてなされたものであり、その解決しようとする課題は、軽量化を図ることができるターボチャージャーの軸受ハウジングを提供するものである。
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
即ち、請求項1においては、タービンとコンプレッサとを連結したシャフトを内包するとともに当該シャフトを回動可能に支持するターボチャージャーの軸受ハウジングであって、当該ターボチャージャーの軸受ハウジングは、前記タービン側に配置されるタービン側ハウジングと、前記コンプレッサ側に配置されるコンプレッサ側ハウジングと、に分割され、前記コンプレッサ側ハウジングはアルミニウム系材料により形成され、前記タービン側ハウジングはステンレス鋼により形成され、前記軸受ハウジングは冷却水路を有し、前記冷却水路は、前記シャフトを中心として下部が切り欠かれたような円弧状に形成されると共に、一側端部から他側端部へ向けて冷却水が流れる円弧状冷却水路を含み、前記円弧状冷却水路は、コンプレッサ側冷却水路とタービン側冷却水路からなり、前記シャフトの軸線方向において前記コンプレッサ側冷却水路の最大厚みは、前記タービン側冷却水路の最大厚み以上であり、最上部における前記コンプレッサ側冷却水路及び前記タービン側冷却水路のそれぞれの底面は、軸線方向及び上下方向に平行な断面視で直線状、且つ、互いに面一に形成されていることを特徴とするものである。
請求項2においては、前記タービン側ハウジングの前記コンプレッサ側ハウジングと接触する面及び前記コンプレッサ側ハウジングの前記タービン側ハウジングと接触する面のうち少なくとも一方には、凹部が形成されるものである。
本発明の効果として、以下に示すような効果を奏する。
請求項1においては、比較的低温となるコンプレッサ側ハウジングをアルミニウム系材料により形成することで、軸受ハウジングの軽量化を図ることができる。また、比較的高温となるタービン側ハウジングをステンレス鋼により形成することで、高温による変形や損傷等を防止することができる。また、ステンレス鋼により形成されたタービン側ハウジングによって遮熱することで、アルミニウム系材料で形成されたコンプレッサ側ハウジングの熱による変形や損傷等を防止することができる。また、ステンレス鋼は鋳鉄に比べて表面粗さが低いため、タービン側ハウジングに潤滑油が滞留し難くなり、オイルコーキングの発生率を低減させることができる。
請求項2においては、タービン側ハウジングの熱をコンプレッサ側ハウジングに伝わり難くすることができる。
本発明の一実施形態に係る軸受ハウジングを具備するターボチャージャーの動作の概要を示した模式図。 同じく、ターボチャージャーの構成を示した側面断面図。 本発明の一実施形態に係る軸受ハウジングを示した斜視図。 コンプレッサ側ハウジングを示した斜視図。 (a)同じく、正面図。(b)同じく、底面図。 同じく、背面図。 (a)同じく、左側面図。(b)図5(a)におけるA−A断面を示した図。 (a)図5(a)におけるB−B断面を示した図。(b)同じく、C−C断面を示した図。 タービン側ハウジングを示した斜視図。 (a)同じく、正面図。(b)同じく、右側面図。 同じく、背面図。 (a)図10(a)におけるD−D断面を示した図。(b)同じく、E−E断面を示した図。 (a)軸受ハウジングを示した正面図。(b)同じく、底面図。 同じく、左側面図。 図13(a)におけるF−F断面を示した図。 図13(a)におけるG−G断面を示した図。 (a)他の実施形態に係るタービン側ハウジングを示した背面図。(b)図17(a)におけるH−H断面を示した図。
以下の説明においては、図中に記した矢印に従って、前後方向、上下方向及び左右方向をそれぞれ定義する。
まず、図1を用いて、本発明の一実施形態に係る軸受ハウジング100(図3等を参照)が用いられるターボチャージャー10の動作の概要について説明する。
ターボチャージャー10は、エンジンのシリンダ2に圧縮空気を送り込むものである。空気は吸気通路1を通ってシリンダ2へと供給される。当該空気は、吸気通路1の途中に配置されたエアクリーナ4、ターボチャージャー10、インタークーラ5、及びスロットルバルブ6を順に通過してシリンダ2へと供給される。この際、ターボチャージャー10のコンプレッサ30によって当該空気が圧縮されるため、より多くの空気をシリンダ2内へと送り込むことができる。
シリンダ2内で燃焼した後の高温の空気(排気)は、排気通路3を通って排出される。この際、当該排気がターボチャージャー10のタービン40を回転させ、この回転がコンプレッサ30に伝達されることで、吸気通路1内の空気を圧縮することができる。
また、タービン40の上流側においては、排気通路3が分流され、当該タービン40を通過しない通路が別途形成される。当該通路はウェイストゲートバルブ7によって開閉可能とされる。また、当該ウェイストゲートバルブ7は、アクチュエータ8によって開閉駆動される。さらに、アクチュエータ8の動作は、電磁バルブ等から構成される負圧発生機構9によって制御される。アクチュエータ8によってウェイストゲートバルブ7を開閉することで、タービン40へと送られる排気の流量を調節することができる。
次に、図2を用いて、ターボチャージャー10の構成の概要について説明する。
ターボチャージャー10は、主としてシャフト20、コンプレッサ30、タービン40、軸受ハウジング100、コンプレッサハウジング60、タービンハウジング70、すべり軸受80、カラーターボシール81、スラスト軸受82及びリテーナーシール83を具備する。
シャフト20は、その長手方向を前後方向に向けて配置される。シャフト20の一端(後端)にはコンプレッサ30が固定され、シャフト20の他端(前端)にはタービン40が固定される。このようにして、シャフト20はコンプレッサ30とタービン40とを連結する。シャフト20は鉄鋼材料により形成される。
軸受ハウジング100は、シャフト20を内包するとともに当該シャフト20を回動可能に支持するものである。当該シャフト20は、軸受ハウジング100を前後方向に貫通するようにして配置され、コンプレッサ30は軸受ハウジング100の後方に、タービン40は軸受ハウジング100の前方に、それぞれ配置される。
コンプレッサハウジング60は、コンプレッサ30を内包するものである。コンプレッサハウジング60は軸受ハウジング100の後部に固定され、コンプレッサ30を覆うように形成される。
タービンハウジング70は、タービン40を内包するものである。タービンハウジング70は軸受ハウジング100の前部に固定され、タービン40を覆うように形成される。
すべり軸受80は、シャフト20と軸受ハウジング100との間に介装され、当該シャフト20を滑らかに回動させるためのものである。すべり軸受80は銅系材料により形成される。
カラーターボシール81は、すべり軸受80の後方においてシャフト20に挿通される。スラスト軸受82はすべり軸受80の後方においてカラーターボシール81に外嵌され、リテーナーシール83はスラスト軸受82の後方においてカラーターボシール81に外嵌される。
次に、図2から図16までを用いて、軸受ハウジング100の構成について説明する。
軸受ハウジング100は、主としてコンプレッサ側ハウジング110、タービン側ハウジング120及び金属ガスケット150を具備する。当該コンプレッサ側ハウジング110とタービン側ハウジング120とを前後方向に並べて固定することで、軸受ハウジング100が構成される。
図2から図8までに示すコンプレッサ側ハウジング110は、軸受ハウジング100のうちコンプレッサ30側の部分を構成する部材である。コンプレッサ側ハウジング110は、主として本体部111及びフランジ部112を具備する。
本体部111は、その軸線を前後方向に向けた略円柱状に形成された部分である。本体部111の下部には、前後方向及び左右方向に平行な平面である下面(底面)が形成される。本体部111には、Oリング溝111a、軸受部111b及びヒートシンク部111cが形成される。
Oリング溝111aは、本体部111の後面の略中央部に形成され、所定の深さを有する凹部である。Oリング溝111aの断面(背面視)は略円形状となるように形成される。
軸受部111bは、シャフト20を回動可能に支持する部分である。軸受部111bは、本体部111を前後方向に貫通するように形成された貫通孔により構成される。より詳細には、軸受部111bは、本体部111の前面と後述するスラスト軸受油路143aとを連通するように、かつ前後方向に平行となるように形成される。
ヒートシンク部111cは、コンプレッサ側ハウジング110に伝達された熱を放出するための部分である。ヒートシンク部111cは、本体部111の外周面(より詳細には、本体部111の前後面及び当該本体部111の下部に形成された平面以外の面)に形成される。ヒートシンク部111cは、本体部111の外周面に、複数の平板状(フィン状)の部分を並べるようにして形成される。
フランジ部112は、その板面を前後方向に向けた略円板状に形成された部分である。フランジ部112は、本体部111の後端部外周に当該本体部111と一体的に形成される。
このように構成されたコンプレッサ側ハウジング110は、アルミダイキャスト(アルミニウム系材料を用いたダイキャスト)により形成される。
図2及び図3、並びに図9から図12までに示すタービン側ハウジング120は、軸受ハウジング100のうちタービン40側の部分を構成する部材である。タービン側ハウジング120は、主としてフランジ部121及び肉厚部122を具備する。
フランジ部121は、その板面を前後方向に向けた略円板状に形成された部分である。
肉厚部122は、略円板状に形成されたフランジ部121の中央部の板厚が、他の部分の板厚よりも厚くなるように形成された部分である。より詳細には、肉厚部122はその軸線を前後方向に向けた略円柱状に形成され、フランジ部121の前面から前方へと突出するように形成される。当該肉厚部122は、フランジ部121と一体的に形成される。肉厚部122には貫通孔122aが形成される。
貫通孔122aは、タービン側ハウジング120の肉厚部122を前後方向に貫通するように形成される。
このように構成されたタービン側ハウジング120は、ステンレス鋼を用いた板金加工により形成される。
上述の如く構成されたコンプレッサ側ハウジング110及びタービン側ハウジング120において、図2及び図3、並びに図13から図16までに示すように、当該コンプレッサ側ハウジング110の前面とタービン側ハウジング120の後面とを当接させた状態でボルト等の締結具、または拡散接合などにより締結(固定)することで、軸受ハウジング100が形成される。
この際、当該コンプレッサ側ハウジング110とタービン側ハウジング120との間には、金属製のガスケットである金属ガスケット150が介装され、当該コンプレッサ側ハウジング110とタービン側ハウジング120と間の液密性が保たれる。
また、軸受ハウジング100のコンプレッサ側ハウジング110に形成される軸受部111b内にはすべり軸受80が挿入され、さらに当該すべり軸受80内にシャフト20が挿入される。このようにして、すべり軸受80はシャフト20と軸受ハウジング100(より詳細には軸受部111b)との間に介装される。
このように構成された軸受ハウジング100を具備するターボチャージャー10において、タービン40がエンジンの排気によって回転すると、高温の排気によって軸受ハウジング100の温度も高温となる。この際、軸受ハウジング100の中でも排気によって回転するタービン40に近い部分、すなわちタービン側ハウジング120の温度が特に高温となる。本実施形態のタービン側ハウジング120はステンレス鋼を用いて形成されているため熱に強く、エンジンの排気による高温に耐えることができる。
また、軸受ハウジング100のうちタービン40に近い部分をステンレス鋼で形成されたタービン側ハウジング120で構成することで、当該タービン側ハウジング120において排気による熱を遮断(遮熱)し、コンプレッサ側ハウジング110へ熱を伝わり難くすることができる。さらに本実施形態の如くコンプレッサ側ハウジング110とタービン側ハウジング120との間に金属ガスケット150を介装することで、当該金属ガスケット150においても遮熱することができ、よりコンプレッサ側ハウジング110へ熱を伝わり難くすることができる。
また、軸受ハウジング100の中でもタービン40から遠い部分、すなわちコンプレッサ側ハウジング110は、タービン側ハウジング120による遮熱作用もあるため、当該タービン側ハウジング120よりも高温になり難い。従って、本実施形態の如く、コンプレッサ側ハウジング110をステンレス鋼よりも比較的熱に弱いアルミニウム系材料を用いて形成することができる。これによって、軸受ハウジング100の軽量化や加工性の向上を図ることができる。
さらに、コンプレッサ側ハウジング110には、熱を放出し易くするためのヒートシンク部111cが形成されているため、当該コンプレッサ側ハウジング110(ひいては、軸受ハウジング100)の温度の上昇をより効果的に抑制することができる。
また、一般的に、すべり軸受を用いて高速で回転する部分(本実施形態においては、コンプレッサ側ハウジング110の軸受部111bにおいて、すべり軸受80を介してシャフト20が回動可能に支持されている部分)ではホワール振動が発生する場合がある。ホワール振動が発生すると、当該ホワール振動に起因して騒音(異音)が発生する場合があり、当該ホワール振動を低減させることが重要である。
本実施形態においては、シャフト20が高速で回転したりタービン40側から排気の熱が伝達されたりすることによって軸受部111b(より詳細には、軸受部111b並びに当該軸受部111bにおいて支持されているすべり軸受80及びシャフト20)の温度が上昇すると、当該軸受部111b、すべり軸受80及びシャフト20はそれぞれ膨張(熱膨張)する。
ここで、すべり軸受80(銅系材料)の熱膨張率はシャフト20(鉄鋼材料)の熱膨張率よりも大きく、軸受部111b(アルミニウム系材料)の熱膨張率はすべり軸受80(銅系材料)の熱膨張率よりも大きい。このため、すべり軸受80の内径はシャフト20の外径よりも大きく膨張し、軸受部111bの内径はすべり軸受80の外径よりも大きく膨張する。従って、すべり軸受80とシャフト20との間に介在する潤滑油量、及び軸受部111bとすべり軸受80との間に介在する潤滑油量がそれぞれ増加し、ホワール振動を低減させることができる。
また、本実施形態の如く軸受部111bを熱伝導率の高いアルミニウム系材料で形成することによって、当該軸受部111bで発生した熱を効果的に吸収及び伝導(例えば、ヒートシンク部111cから放熱)し、当該軸受部111bの温度の上昇を抑制することができる。これによって、当該軸受部111bの熱による変形や損傷等を効果的に防止することができる。
なお、当該軸受部111bに潤滑油を供給するための潤滑油路140については後述する。
次に、図2から図8まで、並びに図11から図16までを用いて、軸受ハウジング100に形成される冷却水路130及び潤滑油路140について説明する。
冷却水路130は、軸受ハウジング100を冷却するための冷却水を当該軸受ハウジング100内に供給するためのものである。冷却水路130は、主としてコンプレッサ側円弧状冷却水路131、タービン側円弧状冷却水路132、供給水路133及び排出水路134を具備する。
図4から図8までに示すコンプレッサ側円弧状冷却水路131は、コンプレッサ側ハウジング110の本体部111の前面に形成される溝である。コンプレッサ側円弧状冷却水路131は、正面視(図5参照)において軸受部111bを中心とする円形の下部が切り欠かれたような形状(円弧状)となるように形成される。コンプレッサ側円弧状冷却水路131は、コンプレッサ側ハウジング110の本体部111の前面に切削加工や研削加工等の機械加工を施すことによって形成される。
図11及び図12に示すタービン側円弧状冷却水路132は、タービン側ハウジング120の肉厚部の後面に形成される溝である。タービン側円弧状冷却水路132は、背面視(図11参照)において貫通孔122aを中心とする円形の下部が切り欠かれたような形状(円弧状)となるように形成される。当該タービン側円弧状冷却水路132は、コンプレッサ側ハウジング110に形成されたコンプレッサ側円弧状冷却水路131(図5参照)と重複するような形状となるように形成される。タービン側円弧状冷却水路132は、タービン側ハウジング120の肉厚部122の後面に切削加工や研削加工等の機械加工、又はプレス加工を施すことによって形成される。
図5及び図8に示す供給水路133は、コンプレッサ側ハウジング110に形成され、コンプレッサ側円弧状冷却水路131と当該コンプレッサ側ハウジング110の本体部111の底面とを連通するものである。より詳細には、供給水路133は、コンプレッサ側ハウジング110の本体部111の底面の右端部近傍と、コンプレッサ側円弧状冷却水路131の右端部と、を連通するように形成される。供給水路133は、コンプレッサ側ハウジング110の本体部111の前面(より詳細には、コンプレッサ側円弧状冷却水路131内)及び当該コンプレッサ側ハウジング110の本体部111の底面に切削加工や研削加工等の機械加工を施すことによって形成される。
図5に示す排出水路134は、コンプレッサ側ハウジング110に形成され、コンプレッサ側円弧状冷却水路131と当該コンプレッサ側ハウジング110の本体部111の底面とを連通するものである。より詳細には、排出水路134は、コンプレッサ側ハウジング110の本体部111の底面の左端部近傍と、コンプレッサ側円弧状冷却水路131の左端部と、を連通するように形成される。排出水路134は、コンプレッサ側ハウジング110の本体部111の前面(より詳細には、コンプレッサ側円弧状冷却水路131内)及び当該コンプレッサ側ハウジング110の本体部111の底面に切削加工や研削加工等の機械加工を施すことによって形成される。
図3、及び図13から図16までに示すように、コンプレッサ側ハウジング110とタービン側ハウジング120とを締結(固定)すると、供給水路133、コンプレッサ側円弧状冷却水路131、タービン側円弧状冷却水路132及び排出水路134が互いに連通接続され、冷却水路130が形成される。
このように形成された冷却水路130において、供給水路133を介して軸受ハウジング100内に冷却水が供給される。当該冷却水は、供給水路133からコンプレッサ側円弧状冷却水路131の一端部(図5(a)における右下端部)及びタービン側円弧状冷却水路132の一端部(図11における右下端部)へと供給される。
当該冷却水は、当該コンプレッサ側円弧状冷却水路131及びタービン側円弧状冷却水路132内を流通し、当該コンプレッサ側円弧状冷却水路131の他端部(図5(a)における左下端部)及びタービン側円弧状冷却水路132の他端部(図11における左下端部)へと供給される。この際、コンプレッサ側円弧状冷却水路131及びタービン側円弧状冷却水路132は、軸受部111b及び貫通孔122a(すなわち、シャフト20)を中心とした円弧状となるように形成されている。従って、当該シャフト20を介してタービン40側から伝達される熱や当該シャフト20が回転することによって発生する熱を効果的に冷却することができる。
当該冷却水は、当該コンプレッサ側円弧状冷却水路131の他端部及びタービン側円弧状冷却水路132の他端部から排出水路134へと供給される。当該冷却水は、排出水路134から軸受ハウジング100の外部へと排出される。
このように、冷却水路130内に冷却水を循環させることで、軸受ハウジング100の温度が上昇するのを効果的に抑制することができる。
潤滑油路140は、軸受ハウジング100とシャフト20との摺動部を潤滑するための潤滑油を当該軸受ハウジング100内に供給するためのものである。潤滑油路140は、主として軸受部111b、第一潤滑油路142及び第二潤滑油路143を具備する。
図4から図8までに示す軸受部111bは、前述の如くコンプレッサ側ハウジング110の本体部111を前後方向に貫通するように形成された貫通孔である。軸受部111bは、シャフト20を回動可能に支持する部分であると共に、潤滑油路140の一部を構成する部分でもある。軸受部111bは、コンプレッサ側ハウジング110の前面又は後面(より詳細には、後述するスラスト軸受油路143a内)から切削加工や研削加工等の機械加工を施すことによって形成される。
図4、図7及び図8に示す第一潤滑油路142は、軸受ハウジング100の上面と軸受部111bとを連通するものである。より詳細には、第一潤滑油路142は、コンプレッサ側ハウジング110の本体部111の上面(上部)の略中央部と、軸受部111bの前後略中央部と、を連通するように形成される。第一潤滑油路142は、コンプレッサ側ハウジング110の本体部111の上面(上部)に切削加工や研削加工等の機械加工を施すことによって形成される。
第一潤滑油路142の中途部からは、コンプレッサ側分岐油路142aが分岐するように形成される。コンプレッサ側分岐油路142aは、第一潤滑油路142の上下中途部と、後述するスラスト軸受油路143aと、を連通する。コンプレッサ側分岐油路142aは、後述するスラスト軸受油路143aに切削加工や研削加工等の機械加工を施すことによって形成される。
図4から図7まで、並びに図11及び図12に示す第二潤滑油路143は、軸受ハウジング100の下面と軸受部111bとを連通するものである。第二潤滑油路143は、主としてスラスト軸受油路143a、コンプレッサ側横油路143b、タービン側縦油路143c及び排出油路143dを具備する。
図6及び図7に示すスラスト軸受油路143aは、コンプレッサ側ハウジング110の本体部111に形成されたOリング溝111aの内側(本体部111の後部)を縦方向に切り欠いて形成される溝である。より詳細には、スラスト軸受油路143aは、本体部111の後部の略中央部(軸受部111bの後端部(コンプレッサ30側端部))から下部に亘って、当該本体部111を前方向に深く切り欠くようにして形成される。スラスト軸受油路143aは、コンプレッサ側ハウジング110の後面(より詳細には、Oリング溝111aの内側)に切削加工や研削加工等の機械加工を施すことによって形成される。
図4から図7までに示すコンプレッサ側横油路143bは、コンプレッサ側ハウジング110の本体部111を前後方向に貫通するように形成される貫通孔である。より詳細には、コンプレッサ側横油路143bは、本体部111の前面とスラスト軸受油路143aとを連通するように、かつ軸受部111bに平行となるように当該軸受部111bの下方に形成される。コンプレッサ側横油路143bは、コンプレッサ側ハウジング110の前面又は後面(より詳細には、スラスト軸受油路143a内)から切削加工や研削加工等の機械加工を施すことによって、又は型により鋳抜かれることによって形成される。
図11及び図12に示すタービン側縦油路143cは、タービン側ハウジング120の肉厚部122の後面を縦方向に切り欠いて形成される溝である。より詳細には、タービン側縦油路143cは、肉厚部122の後面の略中央部(貫通孔122a)から下部に亘って形成される。タービン側縦油路143cは、タービン側ハウジング120の後面に切削加工や研削加工等の機械加工、又はプレス加工を施すことによって形成される。
図5及び図7に示す排出油路143dは、コンプレッサ側ハウジング110に形成され、コンプレッサ側横油路143bと当該コンプレッサ側ハウジング110の本体部111の底面とを連通するものである。より詳細には、排出油路143dは、コンプレッサ側ハウジング110の本体部111の底面の左右中央部と、コンプレッサ側横油路143bの前後略中央部と、を連通するように形成される。排出油路143dは、コンプレッサ側ハウジング110の本体部111の底面に切削加工や研削加工等の機械加工を施すことによって形成される。
図3、及び図13から図16までに示すように、コンプレッサ側ハウジング110とタービン側ハウジング120とを締結(固定)すると、スラスト軸受油路143a、コンプレッサ側横油路143b、タービン側縦油路143c及び排出油路143dが互いに連通接続され、第二潤滑油路143が形成される。また、第一潤滑油路142、軸受部111b及び第二潤滑油路143によって潤滑油路140が形成される。
本実施形態に係る潤滑油路140には、当該潤滑油路140の表面粗さを小さくするための加工(例えば、精密研削加工やコーティング加工等)が施される。
このように形成された潤滑油路140において、第一潤滑油路142を介して軸受ハウジング100(コンプレッサ側ハウジング110)の上面から当該軸受ハウジング100内に潤滑油が供給される。当該潤滑油は、第一潤滑油路142内を下方へと流通し、軸受部111bへと供給される。また、当該第一潤滑油路142内を流通する潤滑油の一部は、コンプレッサ側分岐油路142aを介してコンプレッサ側ハウジング110のスラスト軸受油路143aへと供給される。
軸受部111bへと供給された潤滑油は、当該軸受部111bとすべり軸受80との間に流通し、当該すべり軸受80の振動を減衰する。また、当該潤滑油は、すべり軸受80の外周面に適宜形成された貫通孔から当該すべり軸受80の内側に流通する。当該潤滑油は、すべり軸受80とシャフト20との間に流通し、当該すべり軸受80とシャフト20との相対回転を潤滑すると共に軸受部の冷却を行う。。
軸受部111b、すべり軸受80及びシャフト20を潤滑した潤滑油は、軸受部111bの前端部(タービン40側端部)又は後端部(コンプレッサ30側端部)へと流通し、スラスト軸受油路143a又はタービン側縦油路143cのいずれか一方を介してコンプレッサ側横油路143bへと供給される。コンプレッサ側横油路143bへと供給された潤滑油は、排出油路143dを介してコンプレッサ側ハウジング110の本体部111の底面から軸受ハウジング100の外部へと排出される。
このように、潤滑油を軸受ハウジング100の上面から軸受部111bを介して当該軸受ハウジング100の下面(本体部111の底面)へと流通させることで、当該潤滑油を重力に従って円滑に流通させることができる。また、軸受部111bの前端及び後端から潤滑油を排出することで、当該潤滑油を円滑に循環させると共に、当該潤滑油を軸受部111bの前端から後端まで確実に導くことができる。
以上の如く、本実施形態に係るターボチャージャー10の軸受ハウジング100は、タービン40とコンプレッサ30とを連結したシャフト20を内包するとともに当該シャフト20を回動可能に支持するターボチャージャー10の軸受ハウジング100であって、当該ターボチャージャー10の軸受ハウジング100は、タービン40側に配置されるタービン側ハウジング120と、コンプレッサ30側に配置されるコンプレッサ側ハウジング110と、に分割され、冷却水を供給するための冷却水路130及び潤滑油を供給するための潤滑油路140は、タービン側ハウジング120及びコンプレッサ側ハウジング110に機械加工を施すことで形成されるものである。
このように構成することにより、軸受ハウジング100に形成される冷却水路130及び潤滑油路140は機械加工によって形成されるため、当該軸受ハウジング100を鋳造によって作成する場合に中子を用いる必要が無くなり、コストの削減を図ることができる。また、鋳造する段階で砂中子による冷却水路130及び潤滑油路140を形成する必要が無くなるため、当該冷却水路130及び潤滑油路140内に砂中子の鋳砂が残留しているか否かを検査する必要が無くなる。また、軸受ハウジング100を2つの部材に分割することで、冷却水路130及び潤滑油路140の加工性を向上させる(機械加工を施し易くする)ことができる。
また、潤滑油路140は、シャフト20が挿通されるとともに当該シャフト20を回動可能に支持する貫通孔である軸受部111bと、当該軸受ハウジング100の上面と軸受部111bとを連通する第一潤滑油路142と、当該軸受ハウジング100の下面と軸受部111bとを連通する第二潤滑油路143と、を含むものである。
このように構成することにより、潤滑油路140の形状を簡素化することができ、ひいては潤滑油路140の加工性を向上させることができる。また、潤滑油を第一潤滑油路142を介して軸受ハウジング100内に供給することによって、当該潤滑油は重力に従って第一潤滑油路142、軸受部111b、第二潤滑油路143の順に流通することになり、当該潤滑油を円滑に循環させることができる。
また、第二潤滑油路143は、軸受部111bのコンプレッサ30側端部及びタービン40側端部と、当該軸受ハウジング100の下面と、をそれぞれ連通するように形成されるものである。
このように構成することにより、軸受部111bの両端部から、軸受ハウジング100の下方へと潤滑油を排出することができ、当該潤滑油を円滑に循環させることができる。また、潤滑油を軸受部111bの両端へと確実に導くことができ、当該軸受部111bを効果的に潤滑及び冷却することができる。
また、タービン側ハウジング120のコンプレッサ側ハウジング110と接触する面及びコンプレッサ側ハウジング110のタービン側ハウジング120と接触する面のうち少なくとも一方には、冷却水路130として、シャフト20を中心とした円弧状の円弧状冷却水路(コンプレッサ側円弧状冷却水路131及びタービン側円弧状冷却水路132)が形成されるものである。
このように構成することにより、シャフト20の周囲を囲むように冷却水路を形成することによって、当該シャフト20を介してタービン40側から伝達される熱やシャフト20が回転することによって発生する熱によって軸受ハウジング100の温度が上昇するのを効果的に抑制することができる。
また、潤滑油路140には、表面粗さを小さくするための加工が施されるものである。
このように構成することにより、潤滑油路140の流動抵抗を低減することができ、ひいてはターボチャージャー10の機械効率の向上を図ることができる。また、潤滑油が滞留し難くなるため、オイルコーキングの発生率を低減させることができる。
また、本実施形態に係るターボチャージャー10の軸受ハウジング100は、タービン40とコンプレッサ30とを連結したシャフト20を内包するとともに当該シャフト20を回動可能に支持するターボチャージャー10の軸受ハウジング100であって、当該ターボチャージャー10の軸受ハウジング100は、タービン40側に配置されるタービン側ハウジング120と、コンプレッサ30側に配置されるコンプレッサ側ハウジング110と、に分割され、コンプレッサ側ハウジング110はアルミニウム系材料により形成されるものである。
このように構成することにより、比較的低温となるコンプレッサ側ハウジング110をアルミニウム系材料により形成することで、軸受ハウジング100の軽量化を図ることができる。
また、コンプレッサ側ハウジング110の外周面には、当該コンプレッサ側ハウジング110に伝達された熱を放出するためのヒートシンク部111cが形成されるものである。
このように構成することにより、高温の環境下に配置される(具体的には、エンジンの排気の熱や、シャフト20の回転によって発生する熱が伝達される)軸受ハウジング100の温度上昇を抑制することができる。
また、タービン側ハウジング120はステンレス鋼により形成されるものである。
このように、比較的高温となるタービン側ハウジング120をステンレス鋼により形成することで、高温による変形や損傷等を防止することができる。また、ステンレス鋼により形成されたタービン側ハウジング120によって遮熱することで、アルミニウム系材料で形成されたコンプレッサ側ハウジング110の熱による変形や損傷等を防止することができる。また、ステンレス鋼は鋳鉄に比べて表面粗さが低いため、タービン側ハウジング120に潤滑油が滞留し難くなり、オイルコーキングの発生率を低減させることができる。
また、本実施形態に係るターボチャージャー10は、タービン40とコンプレッサ30とを連結したシャフト20と、シャフト20を回動可能に支持する軸受部111bを有する軸受ハウジング100と、シャフト20と軸受部111bとの間に介装されるすべり軸受80と、を具備するターボチャージャー10であって、軸受部111bはアルミニウム系材料で形成され、シャフト20は鉄鋼材料で形成され、すべり軸受80は銅系材料で形成されるものである。
このように構成することにより、軸受部111bの温度が上昇した場合、アルミニウム系材料で形成された軸受部111bの内径が銅系材料で形成されたすべり軸受80の外径よりも大きく膨張するため、当該軸受部111bとすべり軸受80との間に介在する潤滑油量が増加し、ホワール振動を低減させることができる。また同様に、軸受部111bの温度が上昇した場合、銅系材料で形成されたすべり軸受80の内径が鉄鋼材料で形成されたシャフト20の外径よりも大きく膨張するため、当該すべり軸受80とシャフト20との間に介在する潤滑油量が増加し、ホワール振動を低減させることができる。また、アルミニウム系材料で形成された軸受部111b内径は熱伝導率が高いため、軸受部111bで発生した熱を効果的に吸収・伝導し、軸受部111bの温度を下げる事で熱による変形や損傷等をより効果的に防止できる。
また、軸受ハウジング100は、タービン40側に配置されるタービン側ハウジング120と、コンプレッサ30側に配置されるコンプレッサ側ハウジング110と、に分割され、タービン側ハウジング120はステンレス鋼により形成され、軸受部111bはコンプレッサ側ハウジング110に形成されるものである。
このように、比較的高温となるタービン側ハウジング120をステンレス鋼により形成することで、高温による変形や損傷等を防止することができる。また、ステンレス鋼により形成された当該タービン側ハウジング120によって遮熱することで、アルミニウム系材料で形成された軸受部111bの熱による変形や損傷等を防止することができる。
また、タービン側ハウジング120とコンプレッサ側ハウジング110との間には、金属ガスケット150が介装されるものである。
このように、金属ガスケット150をタービン側ハウジング120とコンプレッサ側ハウジング110との間に介在させることによって、タービン40側からの熱を遮熱することができ、アルミニウム系材料で形成された軸受部111bの熱による変形や損傷等をより効果的に防止することができる。
なお、本実施形態において、コンプレッサ側ハウジング110の本体部111に形成されるヒートシンク部111cは複数の平板状(フィン状)であるものとしたが、本発明はこれに限るものではない。すなわち、ヒートシンク部111cは、当該本体部111の表面積を増やすような形状であれば良く、例えばローブ形状、螺旋状、剣山状、蛇腹状等となるように形成することも可能である。
また、本実施形態において、タービン側ハウジング120はステンレス鋼を用いた板金加工により形成されるものとしたが、本発明はこれに限るものではなく、例えば鋳鉄を用いた鋳造により形成することも可能である。
また、本実施形態において、潤滑油路140に表面粗さを小さくするための加工を施すものとしたが、本発明はこれに限るものではなく、冷却水路130に表面粗さを小さくするための加工を施すことも可能である。これによって、当該冷却水路130を流通する冷却水の流動抵抗を低減することができる。
なお、他の実施形態として、図17に示すように、タービン側ハウジング120に凹部121aを形成することも可能である。
凹部121aは、タービン側ハウジング120の後面に切削加工や研削加工等の機械加工又はプレス加工を施すことによって形成される。凹部121aは、タービン側ハウジング120の後面に、可能な限り広い範囲に亘って形成される。
このように構成されたタービン側ハウジング120の後面と、コンプレッサ側ハウジング110(図4から図8まで参照)の前面と、を当接させた状態で互いに固定すると、当該タービン側ハウジング120の後面には凹部121aが形成されているため、当該タービン側ハウジング120とコンプレッサ側ハウジング110との接触面積が減少する。これによって、タービン側ハウジング120が高温になっても、その熱がコンプレッサ側ハウジング110へと伝わり難くすることができ、ひいては当該コンプレッサ側ハウジング110の高温による変形や損傷等を防止することができる。さらに、凹部121a内には空気が介在する空間が形成されるため、当該空間(空気の層)によって、よりコンプレッサ側ハウジング110へと熱が伝わり難くすることができる。
以上の如く、本実施形態に係るターボチャージャー10の軸受ハウジング100は、タービン側ハウジング120のコンプレッサ側ハウジング110と接触する面(後面)には、凹部121aが形成されるものである。
このように構成することにより、タービン側ハウジング120の熱をコンプレッサ側ハウジング110に伝わり難くすることができる。
なお、本実施形態においては、タービン側ハウジング120に凹部121aが形成されるものとしたが、本発明はこれに限るものではない。すなわち、コンプレッサ側ハウジング110のタービン側ハウジング120と接触する面(前面)に凹部を形成する構成や、タービン側ハウジング120の後面及びコンプレッサ側ハウジング110の前面の両方に凹部を形成する構成とすることも可能である。
20 シャフト
30 コンプレッサ
40 タービン
80 すべり軸受
100 軸受ハウジング
110 コンプレッサ側ハウジング
111b 軸受部
111c ヒートシンク部
120 タービン側ハウジング
130 冷却水路
131 コンプレッサ側円弧状冷却水路
132 タービン側円弧状冷却水路
140 潤滑油路
142 第一潤滑油路
143 第二潤滑油路
150 金属ガスケット

Claims (2)

  1. タービンとコンプレッサとを連結したシャフトを内包するとともに当該シャフトを回動可能に支持するターボチャージャーの軸受ハウジングであって、
    当該ターボチャージャーの軸受ハウジングは、
    前記タービン側に配置されるタービン側ハウジングと、
    前記コンプレッサ側に配置されるコンプレッサ側ハウジングと、
    に分割され、
    前記コンプレッサ側ハウジングはアルミニウム系材料により形成され、
    前記タービン側ハウジングはステンレス鋼により形成され、
    前記軸受ハウジングは冷却水路を有し、
    前記冷却水路は、
    前記シャフトを中心として下部が切り欠かれたような円弧状に形成されると共に、一側端部から他側端部へ向けて冷却水が流れる円弧状冷却水路を含み、
    前記円弧状冷却水路は、
    コンプレッサ側冷却水路とタービン側冷却水路からなり、
    前記シャフトの軸線方向において前記コンプレッサ側冷却水路の最大厚みは、前記タービン側冷却水路の最大厚み以上であり、
    最上部における前記コンプレッサ側冷却水路及び前記タービン側冷却水路のそれぞれの底面は、軸線方向及び上下方向に平行な断面視で直線状、且つ、互いに面一に形成されていることを特徴とする、
    ターボチャージャーの軸受ハウジング。
  2. 前記タービン側ハウジングの前記コンプレッサ側ハウジングと接触する面及び前記コンプレッサ側ハウジングの前記タービン側ハウジングと接触する面のうち少なくとも一方には、凹部が形成される、
    請求項1に記載のターボチャージャーの軸受ハウジング。
JP2015255536A 2015-12-27 2015-12-27 ターボチャージャーの軸受ハウジング Expired - Fee Related JP6084677B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015255536A JP6084677B2 (ja) 2015-12-27 2015-12-27 ターボチャージャーの軸受ハウジング

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015255536A JP6084677B2 (ja) 2015-12-27 2015-12-27 ターボチャージャーの軸受ハウジング

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012080661A Division JP2013209933A (ja) 2012-03-30 2012-03-30 ターボチャージャーの軸受ハウジング

Publications (2)

Publication Number Publication Date
JP2016040471A JP2016040471A (ja) 2016-03-24
JP6084677B2 true JP6084677B2 (ja) 2017-02-22

Family

ID=55540849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015255536A Expired - Fee Related JP6084677B2 (ja) 2015-12-27 2015-12-27 ターボチャージャーの軸受ハウジング

Country Status (1)

Country Link
JP (1) JP6084677B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4330380A1 (de) * 1993-09-08 1995-03-09 Abb Management Ag Abgasturbolader mit mehrteiligem Lagergehäuse
JP4755071B2 (ja) * 2006-11-20 2011-08-24 三菱重工業株式会社 排気ターボ過給機
JP2008223569A (ja) * 2007-03-12 2008-09-25 Toyota Industries Corp ターボチャージャ

Also Published As

Publication number Publication date
JP2016040471A (ja) 2016-03-24

Similar Documents

Publication Publication Date Title
JP5975698B2 (ja) ターボチャージャー
JP5926094B2 (ja) ターボチャージャーの軸受ハウジング
KR20110131231A (ko) 냉각 경로를 갖는 슬리브 밸브 조립체
CN109072716B (zh) 用于内燃发动机的涡轮增压器
JP2010261365A (ja) 過給機用の軸受ハウジング
JP6084677B2 (ja) ターボチャージャーの軸受ハウジング
JP2016089735A (ja) ターボチャージャーの軸受ハウジング
JP2016196894A (ja) ターボチャージャーの軸受ハウジング
JP2013209933A (ja) ターボチャージャーの軸受ハウジング
JP5902143B2 (ja) シャフトシール
JP4333507B2 (ja) ターボチャージャのシール構造
JP2021080921A (ja) ガス交換弁の弁座リング及びガス交換弁
JP2018053840A (ja) 排気ターボ過給機のタービンハウジング
JP4631854B2 (ja) エンジン
JP2021080921A5 (ja)
WO2022064596A1 (ja) ターボチャージャのケーシングの製造方法及びターボチャージャのケーシング
JP2008057406A (ja) 内燃機関のカムシャフト支持構造
JP5995735B2 (ja) ターボチャージャの軸受構造及びそれを具備するターボチャージャ
JP2016089731A (ja) ターボチャージャーの軸受ハウジング
JP2018053839A (ja) 排気ターボ過給機
JP6001470B2 (ja) ターボチャージャの軸受構造及びそれを具備するターボチャージャ
JP2018053836A (ja) 排気ターボ過給機
JP2014145282A (ja) ターボチャージャ
JP2019143512A (ja) エンジン用動弁機構
JP2019094524A (ja) アルミニウム合金製フローティングメタルベアリング

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170125

R150 Certificate of patent or registration of utility model

Ref document number: 6084677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees