JP6083928B2 - 身体組織にエネルギーに印加する方法および装置 - Google Patents

身体組織にエネルギーに印加する方法および装置 Download PDF

Info

Publication number
JP6083928B2
JP6083928B2 JP2011533312A JP2011533312A JP6083928B2 JP 6083928 B2 JP6083928 B2 JP 6083928B2 JP 2011533312 A JP2011533312 A JP 2011533312A JP 2011533312 A JP2011533312 A JP 2011533312A JP 6083928 B2 JP6083928 B2 JP 6083928B2
Authority
JP
Japan
Prior art keywords
antenna
microwave
tissue
ablation
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011533312A
Other languages
English (en)
Other versions
JP2012506300A (ja
JP2012506300A5 (ja
Inventor
ケタン シュロフ,
ケタン シュロフ,
チュン ユウ チュウ,
チュン ユウ チュウ,
ディネシュ アイ. モディ,
ディネシュ アイ. モディ,
クラレンス エモンズ,
クラレンス エモンズ,
アムリッシュ ジャイプラカシュ ウォルケ,
アムリッシュ ジャイプラカシュ ウォルケ,
Original Assignee
マイクロキューブ, エルエルシー
マイクロキューブ, エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロキューブ, エルエルシー, マイクロキューブ, エルエルシー filed Critical マイクロキューブ, エルエルシー
Publication of JP2012506300A publication Critical patent/JP2012506300A/ja
Publication of JP2012506300A5 publication Critical patent/JP2012506300A5/ja
Application granted granted Critical
Publication of JP6083928B2 publication Critical patent/JP6083928B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • A61B2018/00422Angioplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00482Digestive system
    • A61B2018/00488Esophagus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00511Kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00517Urinary bladder or urethra
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00523Treatment of incontinence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00529Liver
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00547Prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00559Female reproductive organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00726Duty cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00761Duration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • A61B2018/1846Helical antennas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • A61B2018/1853Monopole antennas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1869Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles

Description

(関連出願の相互参照)
本願は、米国仮特許出願第61/107,252号(2008年10月21日出願)、同第61/162,241号(2009年3月20日出願)、同第61/180,133号(2009年5月21日出願)および、同第61/222,409号(2009年7月1日出願)の非仮特許出願であり、これらの出願の各々の開示は、その全体が本明細書に参考として援用される。
(発明の分野)
本発明は、患者の身体の上または内側で診断および/または治療手技を実施するために使用可能な医療要素(例えば、マイクロ波アブレーションアンテナ)に関する。
いくつかの病状を治療する改良型デバイスおよび方法の必要性がある。心房細動、癌、月経過多、しわ等を含む、いくつかの症状は、切除エネルギーを印加することにより、組織を切除することによって治療されてもよい。組織を切除することによって、これらの症状を治療するデバイスおよび方法が存在するものの、依然として改良型デバイスおよび方法の満たされていない必要性がある。
例えば、マイクロ波アンテナ(例えば、螺旋状アンテナ)が、良性前立腺肥大の治療、癌治療等を含む、医療用途で使用されてきた。既存のアンテナの多くには、デバイスシャフトの加熱、およびアンテナの長さに沿った不均一な損傷プロファイル等の一般的な不利点がある。したがって、これらの問題を克服する独自に成形されたマイクロ波場を生成することが可能なマイクロ波アンテナの必要性がある。いくつかの従来技術のアンテナは、また、許容可能な臨床結果を達成するために、冷却機構および高性能温度監視システムも必要とする。
月経過多は、閉経前の女性において最も一般的な婦人科症状のうちの1つである。それは、過剰な経血量によって特徴付けられる。該症状は、身体的活動、仕事、および性的活動を妨害し得るため、罹患した女性の生活の質に大きく影響する。最小侵襲的に月経過多を治療するために子宮内膜を破壊することを目指すいくつかの技法が開発されてきた。そのような子宮内膜アブレーション技法は、無線周波数加熱、子宮腔内での高温生理食塩水の循環、マイクロ波加熱、冷凍破壊、レーザ破壊等の種々の方法によって実施することができる。あらゆる現在の子宮内膜アブレーション技法には、いくつかの基本的制限がある。例えば、Boston ScientificによるHydrothermablatorTMデバイスは、手技に費用および複雑性を追加する子宮鏡を必要とする。さらに、デバイスは、厚くて剛体である。そのため、手技は、通常は意識下鎮静または全身麻酔の形態である、有意な麻酔を必要とする。NovasureTMデバイスも、厚くて剛体である。したがって、子宮腔にデバイスを導入するために、有意量の子宮頸管拡張が必要とされる。子宮頸管拡張は非常に苦痛であるため、手技は、通常は意識下鎮静または全身麻酔の形態である、有意な麻酔を必要とする。また、デバイスは高価である(約$900)。したがって、種々の子宮内膜アブレーションデバイスがあるものの、この大きく、かつ成長しつつある市場において、依然として、小型、可撓性、低費用で使用しやすい次世代デバイスの必要性がある。
腫瘍組織を加熱することによって固形腫瘍(例えば、肝臓腫瘍)を治療するために、マイクロ波アブレーション等の、いくつかのアブレーションモダリティを使用することができる。腫瘍を治療するためのマイクロ波アブレーションを使用するデバイスは、より大きい均一な容量損傷を作成する可能性のため、他のアブレーションモダリティを使用するデバイスと比べて有利である。従来技術のマイクロ波アブレーションデバイスでは、マイクロ波エネルギーは、アンテナによって放出され、主要組織に伝送される。アブレーション手技の有効性は、電力効率、ならびにアンテナのSARおよび熱プロファイルに有意に依存する。大部分の既存のマイクロ波アブレーションデバイスは、単純なモノポールアンテナに由来し、直線状構造を有する。それらのSARおよび熱プロファイルは、実質的に楕円形であり、図2Eに示されるようなフットボールの形状とほぼ同様である。十分に短い時間で、数センチメートルの厚さまたは直径を有する腫瘍を切除するために、単一のモノポールアンテナを使用することは困難である。多くの癌関連用途について、標的腫瘍は過剰なサイズ(例えば、数センチメートルの直径)を有し、単一のモノポールアンテナはあまり役立たない。損傷サイズを増加させるために提案される解決策のうちの1つは、複数のアブレーションデバイスを同時に使用することを伴う。これは、アブレーションシステムの複雑性を増加させる。アブレーションデバイスの全体的サイズおよび費用も、システムで採用されるより多くの数の要素により、増加させられる。また、これは、手技の侵襲性および複雑性を増加させる。
また、図2Fに示されたSARプロファイルは、放射要素(モノポールアンテナ)に供給する同軸ケーブルの遠位端の近位に有意量のマイクロ波場があることを実証する。したがって、アブレーションは、正確には放射要素の周囲の領域に含有されない。同軸ケーブルの遠位領域を包囲する組織の一部分が切除される。これは次に、マイクロ波エネルギーによって健康な組織を損傷する危険性を抱える。したがって、隣接する健康な組織を損傷することなく組織容量を切除することができる、薄型の改良型マイクロ波アブレーションデバイスの必要性がある。
心房細動(AF)は、何百万人もの米国人に見られる心臓の電気生理学的障害である。心臓組織を切除して心房細動を治療するために、カテーテルおよび手術道具を含む、種々のアブレーションシステムが使用される。カテーテルアブレーション手技では、次いで、いくつかの個々の損傷が、所望の損傷パターンの一部として作成される。多くの既存の手技では、単一の小さい点損傷のみが、常に作成される。患者において所望の臨床反応を達成するために、複数のそのような点損傷が必要とされる。そのような手技では、電気生理学者が、左心房上の点までアブレーションカテーテルのアブレーション先端を誘導し、第1の点アブレーションを作成する。いったん第1の点アブレーションが作成されると、次いで、電気生理学者は、左心房上の新しい場所にアブレーション先端を誘導し、典型的には第1の点損傷と連通している第2の点アブレーションを作成する。この過程は、所望の損傷パターンが作成されるまで継続する。そのような複数の接続点損傷の作成は、非常に時間がかかり、技術的に困難である。点アブレーションシステムには、他の制限がある。例えば、新しい場所へのアブレーション先端の平行移動中に、遠位アブレーション先端が滑動する、または別様に望ましくない方式で標的組織を横断して移動する場合がある。新しい場所へのアブレーション先端の平行移動のステップは、心臓の自然な鼓動のため、左心房の運動によってさらに複雑になる。さらに、点アブレーションシステムのユーザは、一般的に、解剖学的心内構造物および以前に作成された損傷に関して、切除部分の履歴および現在位置情報を提供するために、高価な支援機器を使用する。支援機器は、極めて高価であり、操作するために付加的な人員を必要とし、最終的に手技の費用を増加させる。切除先端部分を有する点アブレーションデバイスに関連する、さらに別の問題は、穿孔の危険性である。アブレーションデバイスに印加される力は、比較的細いアブレーション先端によって心房壁に伝達される。したがって、比較的細いアブレーション先端は、心房壁に有意量の圧力を及ぼす。これは、次に、心房壁の穿孔をもたらす場合があり、それは、次に、潜在的に致命的な心房食道瘻の形成につながる場合がある。したがって、心房細動を治療するためのカテーテルアブレーションの手技を単純化し、合併症の低い危険性を有する、改良型アブレーションデバイスの必要性がある。
点アブレーションシステムの制限を克服するために、複数の無線周波数(RF)電極のアレイを備えるデバイスが開発された。しかしながら、RF電極は、電極の長さの全体を通して優れた組織接触を必要とする。これは、RF電極と標的組織との間の一貫性のない接触につながる、従来技術の送達システムを使用して達成することが困難である。そのような非一貫性電極接触は、切除された凝固組織の標的長さの全体を通して、エネルギーの伝達の変動性を引き起こす。この非一貫性は、また、心房細動を持続させるか、または心房粗動、心房性頻脈、あるいは他の不整脈基質を産生するウェーブレットの伝搬を推進する生体組織の望ましくない間隙も生じさせる。したがって、たとえ標的組織との完璧な接触を達成しないものであっても、十分に深い損傷を作成するようなデバイスの必要性が存在する。
したがって、エネルギー送達によって臨床症状を治療するいくつかの方法およびデバイスが存在するものの、依然として改良型方法およびデバイスに対する満たされていない必要性が存在する。
組織等の標的材料にエネルギーを印加するための本発明のいくつかの医療用途も、本明細書で開示される。エネルギーは、種々の臨床的に有用な効果を達成するように組織に印加されてもよい。そのような効果の実施例は、1.組織を死滅させる、または別様に損傷させるように組織を切除すること、2.組織の熱誘発性修飾(例えば、コラーゲンの熱収縮)を引き起こすこと、3.人工的に導入された材料の熱誘発性修飾(例えば、注入された単量体の熱誘発性重合)を引き起こすこと、4.組織の代謝活性を変化させるように組織を加温すること(例えば、代謝を増加させるように組織を加温すること)、5.例えば、マイクロ波支援脂肪吸引中に脂肪抽出を容易にするように、脂肪の液状化を引き起こすこと、6.閉塞性睡眠時無呼吸、BPH等の症状を治療するために、組織を減量するように制御された組織死を引き起こすこと、および7.組織の電気生理学的特性を変化させるように、その組織にエネルギーを送達することを含むが、それらに限定されない。
本発明は、エネルギーで組織を治療するためのデバイスおよび方法を開示する。いくつかの方法の実施形態では、マイクロ波エネルギーは、例えば、左心房組織等の制御されたアブレーションによって心房細動を治療するために、組織を切除するために使用される。
本明細書で開示されるデバイスおよび方法は、1つ以上の点、直線状、領域、または容量損傷を作成するために、修飾を伴って、または伴わずに使用されてもよい。本発明は、標的組織の中または付近に、非侵襲または最小侵襲性的に挿入することができる、可撓性の薄型デバイスの種々の実施形態を開示する。
本明細書の実施形態のうちのいくつかは、同軸ケーブル等の伝送線と、同軸ケーブルに連結されるアンテナとを備える、マイクロ波デバイスとして広く表される。アンテナは、1.放射要素と、2.1つ以上の成形要素と、3.放射要素および/または成形要素の1つ以上の部分を覆う1つ以上のアンテナ誘電体とを備える。伝送線が同軸ケーブルである実施形態では、放射要素は、同軸ケーブルの内側導体の継続であってもよく、または同軸ケーブルの内側導体に電気的に接続される付加的な伝導性要素であってもよい。放射要素は、その特異的設計に特有のマイクロ波場を放射する。放射されたマイクロ波場は、標的組織内にある水分子等の偏極分子の撹拌を引き起こす。この偏極分子の撹拌は、摩擦熱を生成し、それは次に、標的組織の温度を上昇させる。さらに、放射要素によって放射されるマイクロ波場は、アンテナの中の1つ以上の成形要素によって成形または別様に再分配されてもよい。一実施形態では、成形要素は、導電性材料(例えば、種々のサイズ、形状、配向等の1つ以上の金属物体)でできている。この実施形態では、成形要素は、伝送線の外側導体または遮蔽要素(例えば、同軸ケーブルの外側導体)に電気的に接続されてもよい。代替実施形態では、成形要素は、伝送線の外側導体または遮蔽要素、例えば、同軸ケーブルの外側導体と直接電気伝導していない。1つ以上のアンテナ誘電体は、放射要素および成形要素のうちの一方または両方の1つ以上の部分を覆ってもよい。アンテナ誘電体は、放射要素および成形要素のうちの一方または両方から周囲へのマイクロ波場の伝搬を変化させるために使用されてもよい。アンテナ誘電体は、整合を変化させるために使用されてもよい。
アンテナの中の1つ以上の付加的な成形要素は、より大きい領域にわたって分布する、より均一なマイクロ波場を作成するために使用されてもよい。アンテナの中の1つ以上の成形要素はまた、アンテナによる電力集中を向上させるために使用されてもよい。放射要素および成形要素のうちの一方または両方は、アンテナ誘電材料の中に取り囲まれてもよい。本明細書で開示される実施形態のうちのいくつかでは、マイクロ波場を成形するために、同軸ケーブルの外側導体に電気的に接続される伝導性要素(例えば、1本の金属ワイヤ)が使用される。
放射要素および成形要素ならびにそれらの組み合わせのいくつかの実施形態が、本明細書で説明される。放射要素および成形要素の断面の形状は、所望の機械およびマイクロ波特性を達成するように設計されてもよい。そのような断面形状の実施例は、円形、長円形、長方形、三角形、楕円形、正方形等を含むが、それらに限定されない。種々のアンテナは、本明細書で開示される放射要素および本明細書で開示される成形要素の組み合わせを使用して、設計されてもよい。そのようなアンテナによって放出されるマイクロ波場の形状は、アンテナを設計することによって意図的に成形することができる。例えば、アンテナは、標的器官の中心でより深いアブレーション、標的器官の周辺に向かってより浅いアブレーションを作成するように設計される、マイクロ波場を生成するように設計されてもよい。
アンテナ104の種々の実施形態は、SARおよび/またはアブレーションプロファイルの種々の形状を生成するように設計されてもよい。例えば、アンテナ104は、実質的に正方形、三角形、五角形、長方形、円形または部分円形(例えば、半円形、四半円形等)、紡錘形、または長円形のSARまたはアブレーションパターンを生成するように設計されてもよい。
本明細書で開示される方法およびデバイス(例えば、本明細書で開示される直線状アンテナ)は、1つ以上の操縦可能または非操縦可能デバイスを使用して、生体構造を通してナビゲートされ、標的生体構造内の1つ以上の位置に配置されてもよい。本明細書で開示されるアンテナのうちのいずれかは、ユーザが生体構造を通してアンテナをナビゲートすることを可能にするように、1つ以上のアタッチメントまたは一体要素を備えてもよい。そのようなアタッチメントまたは要素の実施例は、デバイスの1つ以上の領域を引く、またはデバイスの1つ以上の領域を屈曲または偏向させる、一体テザーまたは外部引張ワイヤ、デバイスの1つ以上の領域を屈曲または偏向させるように適合される内部引張ワイヤ、外科的磁気ナビゲーションモダリティによって操縦されるように適合される1つ以上の要素等を含むが、それらに限定されない。
本明細書で開示されるアンテナは、標的組織に近接して、またはその内側に配置される前に、挿入構成から作業構成に配備されてもよい。代替として、アンテナは、標的組織に近接して、またはその内側に配置された後に、挿入構成から作業構成に配備されてもよい。本明細書で開示されるアンテナの配備は、いくつかの方法のうちの1つによって行われてもよい。本明細書のアンテナは、完全配備構成で標的組織までナビゲートされてもよい。一実施形態では、アンテナは、開腹術を通して、完全配備構成で、腹部器官、例えば、肝臓の表面までナビゲートされる。別の実施形態では、本明細書で開示されるアンテナは、導入器を通して配備され、その場合、アンテナは、導入器の内側にある時には押しつぶされた薄型構成であり、アンテナが導入器から退出した後に作業構成に配備される。アンテナは、アンテナまたはその構成要素の弾性、アンテナまたはその構成要素の超弾性、アンテナまたはその構成要素の形状記憶特性、アンテナまたはその構成要素の機械的配備機構の使用、1つ以上のアンテナ部分の形状を変化させるための1つ以上の解剖学的領域の使用等のうちの1つ以上によって、アンテナが導入器から退出した後に配備されてもよい。本明細書のアンテナの1つ以上の部分は、可鍛性または塑性的に変形可能であってもよい。これは、ユーザが、標的組織とのより良好な接触、または生体組織を通したより良好なナビゲーションを確保するようにアンテナを成形することを可能にする。
本明細書で開示されるデバイスは、アンテナを備え、アンテナによって生成されるアブレーションプロファイルは、特定の臨床用途のために調整され、最適化される。例えば、体腔壁全体または体腔壁の円周領域全体を切除するためにマイクロ波アンテナが使用される実施形態では、アブレーションプロファイルは、アンテナを再配置する必要なく、体腔壁全体または体腔壁の円周領域全体を実質的に切除するように設計されてもよい。そのような実施形態では、マイクロ波場は、アンテナ全体を円周方向に包んでもよい。例えば、組織容量を切除するためにマイクロ波アンテナが使用される実施形態では、アブレーションプロファイルは、アンテナの再配置を必要とすることなく、組織容量全体を実質的に切除するように設計されてもよい。本明細書のいくつかのデバイス実施形態では、マイクロ波アンテナは、組織の実質的に直線状の領域を切除するように設計されてもよい。いくつかのそのような直線状損傷は、所望の臨床結果を達成する損傷パターンを形成するように作成されてもよい。
本明細書で開示されるアンテナは、標的生体構造の一部分の形状を取得するように一致してもよく、または別様に、標的生体構造の1つ以上の部分によって成形されてもよい。例えば、本明細書で開示されるアンテナは、小さい空洞の形状に、またはアンテナが配備される空洞の隣接する壁の形状に一致するように、弾性的に可撓性であってもよい。本明細書で開示されるアンテナは、子宮腔等の標的生体構造のサイズおよび形状に近似するようにサイズ決定され、成形されてもよい。
細い可撓性アブレーションデバイスのいくつかの実施形態が、本明細書で開示される。これは、ユーザが、小切開または開口部を通して最小侵襲性的に、あるいは天然開口部または通路を通して非侵襲的に、そのようなアブレーションデバイスを導入することを可能にする。最小侵襲性導入の実施例は、血管系を通した経皮的導入である。非侵襲導入の実施例は、肛門、口、または鼻腔から消化管の中への導入、膣から女性生殖系の中への導入、尿道から泌尿器系の中への導入、耳、鼻腔、または口からENT系の中への導入等を含む。本明細書で開示されるデバイスおよび方法は、器官または人工的に作成された空洞の中の病的組織または健康な組織あるいは不要な組織を切除するために使用されてもよい。本明細書で開示されるデバイスは、腹腔鏡、胸腔鏡、膀胱鏡、子宮鏡、または他の内視鏡開口部、または器官あるいは体腔の中またはその付近への器具類を通して導入されてもよい。本明細書で開示される方法は、例えば、直接目視観察、子宮鏡検査、膀胱鏡検査、内視鏡検査、腹腔鏡、超音波撮像、放射線撮像等のうちの1つ以上を使用することによって、リアルタイム監視下で実施されてもよい。
本明細書で開示されるデバイスに付加的な特性を付与するように、種々の付加的特徴が、本明細書で開示されるデバイスに追加されてもよい。そのような特徴の実施例は、1つ以上の管腔、標的生体構造に真空または吸引を印加する能力、標的生体構造の1つ以上の領域を可視化する能力、標的生体構造の中への挿入の深さを限定する能力、アンテナを配備する能力、エネルギー源に接続する能力等を含むが、それらに限定されない。
方法およびデバイスの実施形態のうちのいくつかは、局所麻酔のみを使用して、方法が潜在的に実施されてもよいように、麻酔の使用を最小化するように設計されている。
本明細書で開示されるデバイスの寸法または他の作業パラメータは、ユーザ入力に基づいて調整可能またはプログラム可能であってもよい。ユーザ入力は、解剖学的寸法と、所望のレベルの安全性および有効性とを含む、患者の解剖学的データ等の要因に基づいてもよい。
本明細書で開示される、種々のマイクロ波アンテナおよびマイクロ波工学原理は、種々の非医療ならびに医療用途で使用されてもよい。本明細書で開示されるマイクロ波アンテナの近接場は、食物、工業製品、半導体等の標的材料上で使用されてもよい。本明細書で開示されるマイクロ波アンテナの近接場は、食物を調理または加熱するために、製品を乾燥および硬化させるための工業過程で、反応性イオンエッチングおよびプラズマ化学気相成長法(PECVD)等の過程のためのプラズマを生成する半導体処理技法で、使用されてもよい。
本発明は、例えば、以下の項目も提供する。
(項目1)
マイクロ波エネルギーを組織に印加するためのマイクロ波エネルギー源に連結されるように適合される医療デバイスであって、該医療デバイスは、
遮蔽要素を有する伝送線と、
マイクロ波エネルギーを組織に印加するように構成されるマイクロ波アンテナであって、該アンテナは、該伝送線を介して該マイクロ波エネルギー源に動作可能に連結される放射部材と、アンテナ誘電体と、該遮蔽要素に電気的に連結される成形部材であって、導電性である成形部材とを備えるアンテナと
を備え、該放射部材は、該放射部材単独によるマイクロ波エネルギーの印加が第1の成形されていないマイクロ波エネルギー場をもたらすように第1のプロファイルを備え、成形要素は、該成形要素が該第1の成形されていないマイクロ波エネルギー場を該アンテナの周囲に容量的に延在する第2の成形されたマイクロ波エネルギー場に改変するように第2のプロファイルを備える、デバイス。
(項目2)
前記アンテナは、臨床使用中に前記伝送線の遠位端に対して屈曲するほど十分に可撓性である、項目1に記載のデバイス。
(項目3)
前記アンテナは、前記伝送線のサイズと実質的に同様の圧縮された配備前サイズを有するほど十分に可撓性である、項目2に記載のデバイス。
(項目4)
前記アンテナは、実質的に直線状の配備前構成から実質的に非直線状の配備構成に変化するほど十分に可撓性である、項目2に記載のデバイス。
(項目5)
前記放射要素の前記第1のプロファイルは、直線状のプロファイル、実質的に平面のプロファイル、または3次元のプロファイルから成る群より選択されるプロファイルを備える、項目1に記載のデバイス。
(項目6)
前記アンテナは、前記伝送線の遠位端に接続され、前記放射部材および前記成形部材は、該伝送線の遠位端の遠位に位置する、項目1に記載のデバイス。
(項目7)
前記放射部材は、非直線状の導体を備える、項目1に記載のデバイス。
(項目8)
前記放射部材は、螺旋状の導体を備える、項目1に記載のデバイス。
(項目9)
前記放射部材は、組織または前記成形部材から絶縁されたままでいるために電気的に絶縁されたカバーを備える、項目1に記載のデバイス。
(項目10)
前記伝送線は、内側導体および外側導体を有する同軸ケーブルを備え、前記遮蔽要素は、該外側導体に電気的に連結され、前記放射部材は、該内側導体に電気的に連結される、項目1に記載のデバイス。
(項目11)
前記放射部材は、433MHz ISM帯域、915MHz ISM帯域、2.45GHz ISM帯域、および5.8GHz ISM帯域のうちの少なくとも1つにおける有効波長の4分の1の奇数倍数の長さを備える、項目1に記載のデバイス。
(項目12)
前記放射部材は、前記伝送線の導体の継続を備える、項目1に記載のデバイス。
(項目13)
少なくとも1つの付加的な放射部材をさらに備える、項目1に記載のデバイス。
(項目14)
少なくとも1つの付加的な成形部材をさらに備える、項目1に記載のデバイス。
(項目15)
前記成形部材は、前記アンテナの長さに沿って前記第1の成形されていないマイクロ波エネルギー場よりも均一になるよう前記第2の成形されたマイクロ波エネルギー場を成形するように構成される、項目1に記載のデバイス。
(項目16)
前記成形部材は、前記伝送線の前記遠位端から前記第1の成形されていないマイクロ波エネルギー場よりもさらに遠位に、前記第2の成形されたマイクロ波エネルギー場を成形するように構成される、項目1に記載のデバイス。
(項目17)
前記成形部材は、実質的に直線状である、項目1に記載のデバイス。
(項目18)
前記放射部材と成形部材とは、実質的に平行である、項目1に記載のデバイス。
(項目19)
前記放射部材は、実質的に平面であり、前記成形部材は、実質的に平面であり、該放射部材の平面は、該成形部材の平面と実質的に平行である、項目1に記載のデバイス。
(項目20)
前記放射部材は、前記成形部材を実質的に取り囲んでいる、項目1に記載のデバイス。
(項目21)
前記成形部材は、マイクロ波エネルギーを送達するときに前記アンテナの反射減衰量を低減する、項目1に記載のデバイス。
(項目22)
前記成形部材は、前記アンテナが許容性能を達成する周波数範囲を増加させる、項目1に記載のデバイス。
(項目23)
前記放射部材は、誘電材料内に封入される、項目1に記載のデバイス。
(項目24)
前記成形部材は、誘電材料内に封入される、項目1に記載のデバイス。
(項目25)
前記アンテナ誘電体は、EPTFE、PTFE、FEP、および他のフッ素重合体、シリコーン、空気、PEEK、ポリイミド、天然ゴム、人造ゴム、およびそれらの組み合わせから成る群から選択される、項目1に記載のデバイス。
(項目26)
前記第2の成形されたマイクロ波エネルギー場は、実質的に細長い、項目1に記載のデバイス。
(項目27)
前記第2の成形されたマイクロ波エネルギー場は、前記アンテナの周囲において実質的に放射方向に対称である、項目1に記載のデバイス。
(項目28)
前記第2の成形されたマイクロ波エネルギー場は、実質的に左右対称である、項目1に記載のデバイス。
(項目29)
前記第2の成形されたマイクロ波エネルギー場は、前記アンテナの遠位端においてより広く、該アンテナの近位端においてより狭い、項目1に記載のデバイス。
(項目30)
前記第2の成形されたマイクロ波エネルギー場は、前記成形部材を包む、項目1に記載のデバイス。
(項目31)
前記第2の成形されたマイクロ波エネルギー場は、前記放射部材を包む、項目30に記載のデバイス。
(項目32)
身体領域内で組織を切除する方法であって、該方法は、
該身体領域内にアンテナを挿入することであって、該アンテナは、放射部材と、成形部材と、誘電材料とを備え、該成形部材は、該アンテナの周囲に延在する容量的な成形されたマイクロ波エネルギー場を形成するように、該放射部材によって生成されたマイクロ波エネルギー場を改変し、該放射部材および成形部材は、各々、それぞれのプロファイルを備え、該放射部材の該プロファイルおよび該成形部材の該プロファイルは、該身体領域の容量に近似するように該容量的な成形されたマイクロ波エネルギー場を形成するように選択される、ことと、
該アンテナの周囲に延在する容量的な成形されたマイクロ波エネルギー場を生成するために該アンテナを使用することと
を含む、方法。
(項目33)
前記身体領域における体腔内で前記アンテナを前進させることをさらに含み、前記容量的な成形されたマイクロ波エネルギー場は、該体腔の少なくとも一部分を切除する、項目32に記載の方法。
(項目34)
マイクロ波エネルギーの1回の印加において、前記体腔を画定する壁の表面を切除することをさらに含む、項目32に記載の方法。
(項目35)
身体組織を切除する方法であって、該方法は、
該身体組織に近接してアンテナを設置することであって、該アンテナは、成形部材が伝送線の一部分に電気的に接続されるように、放射部材および該成形部材を備える、ことと、
マイクロ波場を生成することによって標的組織を切除するために、第1の損傷を作成することであって、該マイクロ波場は、該アンテナの外周を包囲し、該伝送線の遠位端の遠位に実質的に画定される、ことと
を含む、方法。
(項目36)
成形されたマイクロ波場を産生することによってマイクロ波エネルギーを送達する方法であって、該方法は、
伝送線と、アンテナとを備えるマイクロ波デバイスを配備することであって、該アンテナは、放射要素と、成形要素とを備える、ことと、
第1の成形されていないマイクロ波場を生成することと、
該放射要素に近接して成形部材を配備することであって、該成形部材は、該伝送線の遮蔽要素に電気的に接続される、ことと、
漏洩電流が該成形部材上に誘発されるように、該放射要素の十分近くに該成形部材を設置することであって、該成形部材は、第2の成形されたマイクロ波場を作成するように、該第1の成形されていないマイクロ波場を成形する、ことと
を含む、方法。
図1Aは、放射要素と、マイクロ波場成形要素とを備える、マイクロ波アンテナを有する、本発明のマイクロ波アブレーションデバイスの実施形態の概略図を示す。図1Bは、図1Aの実施形態と同様のマイクロ波アブレーションデバイスの実施形態の概略図を示し、マイクロ波場成形要素は、伝送線の遠位端の近位にある伝送線の領域に接続される。 図1Cは、放射要素と、マイクロ波場成形要素とを備える、マイクロ波アンテナを有する、本発明のマイクロ波アブレーションデバイスの実施形態の概略図を示す。 図1Dは、図1Cのアブレーションデバイスの同軸ケーブルの実施形態を通る横断面を示す。図1Eは、同軸ケーブルの遠位端を通る図1Cのアブレーションデバイスの縦断面を示す。 図2Aおよび2Bは、図2Aのデバイスの実施形態によって生成された、シミュレートされたSARプロファイルの2つの側面図を示す。 図2Cは、図2Aのデバイスの実施形態によって生成された、シミュレートされたSARプロファイルの上面図を示す。図2Dは、図2Aのアンテナを伴うアブレーションデバイスのシミュレートされた反射減衰量を示す。 図2Eおよび2Fは、モノポールアンテナによって生成された、シミュレートされたSARプロファイルの側面図および上面図をそれぞれ示す。 図2Gは、成形要素114がない図2Aのデバイスの実施形態によって生成された、シミュレートされたSARプロファイルの側面図を示す。図2Hは、成形要素114がない図2Aのアンテナを伴うアブレーションデバイスのシミュレートされた反射減衰量を示す。 図2Iは、図2Aの設計と同様である、完全機能的直線状アンテナの写真を示す。図2Jは、心内アブレーションおよび他の用途のための図2Iのアンテナの有用性を実証するための実験装置を示す。図2K−2Nは、組織に2つの重複損傷を作成する方法の方法ステップを示す。 図2K−2Nは、組織に2つの重複損傷を作成する方法の方法ステップを示す。 図2Oは、図2K−2Nの方法から得られる、2つの結果として生じる重複損傷の表面図を示す。図2Pは、2つの深い重複損傷を示す、図2Oの平面2P−2Pを通る断面の図を示す。 図2Qおよび2Rは、屈曲または曲線構成における、図2Iのアンテナによって作成された均一な損傷を示す。 図3A−3Dは、アンテナ104の実施形態を示し、アンテナ104は、それぞれ、直線状、曲線、閉ループ、および螺旋形状を有する。図3Eは、操縦可能または偏向可能なアンテナを備える、アブレーションデバイスの実施形態を示す。図3Fは、複数の標的領域を切除するように再配置される、アブレーションデバイス100の実施形態を示す。 図3G−3Hは、直線構成と屈曲構成との間で可逆的に変換させることができるアンテナを有する、マイクロ波デバイスの2つの構成を示す。図3Iは、3Gおよび3Hのアブレーションデバイスを使用して、組織上に小さい局部的な「点」損傷を作成するために使用される、方法の実施形態を示す。図3Jは、3Gおよび3Hのアブレーションデバイスを使用して、組織上に直線状損傷を作成するために使用される、方法の実施形態を示す。 図3Kは、3Gおよび3Hのアブレーションデバイスを使用して、組織上に環状損傷を作成するために使用される、方法の実施形態を示す。図3Lは、3Gおよび3Hのアブレーションデバイスを使用して、組織上に円形損傷を作成するために使用される、方法の実施形態を示す。 図4Aおよび4Bは、組織を切除する2つの方法の実施形態を示し、アンテナの放射要素および成形要素は、組織の対向側に配置される。 図4Cおよび4Dは、マイクロ波遮蔽体または反射体等の、アンテナと成形要素との間に位置する組織を切除する2つの方法の実施形態を示す。 図5Aは、プリント基板上に構築されたアンテナの一部分の実施形態を示す。 図6Aは、組織の容量を切除するように適合される、放射要素および複数の成形要素を伴うアブレーションデバイスの実施形態を示す。 図6Bおよび6Cは、図6Aのアンテナの実施形態のシミュレートされたSARプロファイルの側面図および上面図をそれぞれ示す。 図6Dおよび6Eは、図6Aのアンテナの実施形態の熱シミュレーションの側面図および上面図を示す。 図6Fおよび6Gは、図6Aのアンテナと同様のアンテナの実施形態の0.915GHzにおける、シミュレートされたSARプロファイルの側面図および上面図を示す。 図6Hは、図6Fおよび6Gのアンテナを伴うアブレーションデバイスのシミュレートされた反射減衰量を示す。 図7Aは、身体組織を貫通し、腫瘍を切除するために使用される、実質的に直線状のアンテナの実施形態を示す。 図8A−8Dは、静脈逆流疾患を治療するための最小侵襲性治療の方法のステップを示す。 図9Aおよび9Bは、腹圧性尿失禁(SUI)を治療するための内尿道括約筋の経尿道治療の方法を示す。 図9Aおよび9Bは、腹圧性尿失禁(SUI)を治療するための内尿道括約筋の経尿道治療の方法を示す。 図9Cは、設置要素と協働するエネルギー送達デバイスによって腹圧性尿失禁(SUI)を治療するための内尿道括約筋の経尿道治療の方法の実施形態を示す。 図9Dは、より大量の組織にエネルギーを同時に送達するアンテナを伴うエネルギー送達デバイスによって、腹圧性尿失禁(SUI)を治療するための内尿道括約筋の経尿道治療の方法の実施形態を示す。 図10Aは、エネルギー送達デバイスによって良性前立腺肥大(BPH)を治療するための方法の実施形態を示す。 図10Bは、尿道管腔を通して挿入されたエネルギー送達デバイスによって良性前立腺肥大(BPH)を治療するための方法の実施形態を示す。 図10Cは、尿道管腔を通して挿入されたエネルギー送達デバイスによって良性前立腺肥大(BPH)を治療するための方法の実施形態を示す。 図11A−11Cは、胃食道逆流性疾患(GERD)を治療するために使用される、操縦可能または偏向可能アンテナを伴うマイクロ波デバイスの使用を図示する。 図11A−11Cは、胃食道逆流性疾患(GERD)を治療するために使用される、操縦可能または偏向可能アンテナを伴うマイクロ波デバイスの使用を図示する。 図12Aは、皮膚の審美的外観を向上させるために表面冷却モダリティとともにアンテナを使用する方法の実施形態を示す。 図14Aは、子宮内膜アブレーションのために最適化されたマイクロ波アブレーションデバイスのアンテナの図を示す。 図14Bは、同軸ケーブル102の遠位端を通る図14Aのアブレーションデバイス100の断面を示す。 図14Cは、中心ループがない図14Aのアンテナと同様のアンテナの図を示す。 図14Dおよび14Eは、図14Aのアンテナと同様の中心ループを伴うアンテナによって生成される、SARプロファイルの前面図および側面図をそれぞれ示す。 図14Fは、図14Dのアンテナを伴うアブレーションデバイスのシミュレートされた反射減衰量を示す。 図14Gは、中心ループがない図14Dのアンテナによって生成される、SARプロファイルの前面図を示す。図14Hは、図14Gのアンテナを伴うアブレーションデバイスのシミュレートされた反射減衰量を示す。 図14DXおよび14EXは、図14Dおよび14Eのアンテナと同様の中心ループを伴うアンテナによって生成される、SARプロファイルの前面図および側面図をそれぞれ示す。 図14Iおよび14Jは、アブレーションデバイスのマイクロ波アンテナの形状の2つの代替実施形態を示す。図14Kは、平面14K−14Kを通る、図14Iおよび14Jのマイクロ波アンテナの実質的に円形の断面を示す。図14Lは、平面14L−14Lを通る、図14Iおよび14Jのマイクロ波アンテナの2つの代替断面を示す。 図14M−14Oは、ほぼ三角形のマイクロ波アンテナを備える、アブレーションデバイスの種々の実施形態を示す。 図14P−14Rは、中心ループの種々の代替実施形態を示す。 図14Sおよび14Tは、機械的に配備可能なアンテナの2つの構成を示す。 図14Uは、マイクロ波アンテナの実施形態の縦方向に拘束されず、かつ横方向に押しつぶされていない構成を示す。図14Vは、図14Uのマイクロ波アンテナの実施形態の縦方向に拘束され、かつ横方向に押しつぶされていない作業構成を示す。 図14Wは、組織の折り畳まれた断片の中の図14Uおよび図14Vのマイクロ波アンテナの配置を示す。図14Xは、縦方向に拘束され、かつ横方向に押しつぶされていない作業構成における、図14Uおよび図14Vのマイクロ波アンテナの配置と、マイクロ波アンテナから得られたアブレーションとを示す、図14Wの組織の折り畳まれた断片を示す。 図14Yは、図14Wに示されたアブレーション後の切除組織の折り畳まれていない図を示す。図14Zは、図14Yの平面14Z−14Zを通して薄切りにされた切除組織の図を示す。図14AAは、図14Yの平面14AA−14AAを通して薄切りにされた切除組織の図を示す。 図15Aは、単一の放射要素と、2つの成形要素とを備える、子宮内膜アブレーションのために最適化されたマイクロ波アブレーションデバイスのアンテナの図を示す。図15Bは、アブレーション手技のための2つの対向組織表面の間の図15Aのアンテナの配置と、得られている、結果として生じるアブレーションパターンとを示す。 図15Cは、貫壁性損傷を明示する、図15Bの組織の逆の表面を示す。 図15D−15Nは、単一の放射要素と、1つ以上の成形要素とを備える、アンテナを有するデバイスの変化例を図示する。 図15D−15Nは、単一の放射要素と、1つ以上の成形要素とを備える、アンテナを有するデバイスの変化例を図示する。 図15D−15Nは、単一の放射要素と、1つ以上の成形要素とを備える、アンテナを有するデバイスの変化例を図示する。 図15O−15Qは、生体構造の中のアンテナ104の適正な配備を確保する機構を備える、アンテナ104の実施形態を示す。 図16A−16Dは、アンテナの形状を変更または拘束するようにアンテナを拘束するために使用可能である、成形要素の実施形態の種々の図を示す。
本明細書は、本発明の種々の側面を例証する、複数のアンテナ設計、システム、構造、およびデバイス、ならびに関連方法を開示する。本明細書で開示される、種々のマイクロ波アンテナおよびマイクロ波工学の原理は、種々の非医療および医療用途で使用されてもよい。本明細書で開示されるマイクロ波アンテナの近接場は、食物、工業製品、半導体等の標的材料上で使用されてもよい。本明細書で開示されるマイクロ波アンテナの近接場は、食物を調理または加熱するために、製品を乾燥および硬化させるための工業過程で、反応性イオンエッチングおよびプラズマ化学気相成長法(PECVD)等の過程のためのプラズマを生成する半導体処理技法で、使用されてもよい。これらのシステム、構造、およびデバイス、ならびに関連方法は、主にいくつかの特定の臨床用途(例えば、不整脈を治療するための心臓組織の切除、子宮内膜アブレーション)に関して論議されるが、本明細書で開示される方法およびデバイスは、他の身体構造で使用するためにも適用可能である。これらのシステム、構造、およびデバイス、ならびに関連方法は、脳、前立腺、尿路の複数部分、胆嚢、子宮および女性生殖管の他の部分、血管系の複数領域、腸および下部消化管の他の部分、胃および上部消化管の他の部分、肝臓および他の消化器官、肺、皮膚、粘膜、腎臓、生殖器官、関節、または他の器官の中、またはそれらに隣接する組織、あるいは身体の軟組織を切除するために使用されてもよい。本明細書で開示されるデバイスおよび方法は、膝の障害、前十字靱帯の不安定性、椎間板損傷、および慢性腰痛の治療のために使用されてもよい。本明細書で開示されるデバイスおよび方法は、肩関節を安定させるために、これらの靱帯にかかる張力を増加させるように靱帯関節包の組織を縮小すること等のいくつかの関節鏡用途で使用されてもよい。
本明細書で開示されるいくつかのデバイスおよび方法は、マイクロ波熱アブレーションによって組織を治療するために使用されてもよい。本開示の有意な部分が、組織を死滅させる、または別様に損傷させる組織のアブレーションのためのマイクロ波デバイスおよび方法に関するものの、マイクロ波エネルギーは、アブレーション以外の種々の臨床的に有用な効果を達成するように組織に印加されてもよい。そのような効果の実施例は、1.組織の熱誘発性修飾(例えば、熱収縮、またはコラーゲンの特性の他の改変)を引き起こすこと、2.人工的に導入された材料の熱誘発性修飾(例えば、注入された単量体の熱誘発性重合)を引き起こすこと、3.組織の代謝活性を変化させるように組織を加温すること(例えば、代謝を増加させるように組織を加温すること)、4.例えば、マイクロ波支援脂肪吸引中に脂肪抽出を容易にするように、脂肪の液状化を引き起こすこと、5.閉塞性睡眠時無呼吸等の症状を治療するために、組織を減量するように制御された組織死を引き起こすこと、および6.組織の電気生理学的特性を変化させるように、その組織にエネルギーを送達することを含むが、それらに限定されない。本明細書のいくつかのマイクロ波放出デバイスの実施形態は、アブレーションデバイス100と呼ばれるものの、そのようなマイクロ波放出デバイスの実施形態は、組織のアブレーションを伴わない方法に使用されてもよい。
マイクロ波熱アブレーションは、RFアブレーションと違って、組織への電気の伝導に依存しない。したがって、本明細書で開示されるデバイス等の、マイクロ波熱アブレーションを使用するデバイスは、組織との良好な接触を必要としない。それらは、標的組織との完璧な接触がなくても十分に機能することができる。したがって、本明細書で開示されるデバイスは、組織の中の極めて正確な配置を必要とせず、それにより、医師の技能への手技の成果の依存を低減する。本明細書のデバイスは、アンテナと、近位シャフトとを備える、遠位マイクロ波放出部分を有するように設計されている。近位シャフトは、マイクロ波発生器からマイクロ波放出部分にマイクロ波エネルギーを送達する、可撓性同軸ケーブル等の伝送線を備える。シャフトは、狭い開口部を通したアブレーションデバイスの導入を可能にするように細く(例えば、直径<3mm)設計することができる。シャフトは、生体構造の中へのアブレーションデバイスの導入中に、最小の力が身体組織に及ぼされるように、可撓性に設計することができる。シャフトの可撓性質は、デバイスのシャフトによって通路を歪曲する代わりに、導入中にシャフトが通路の自然な形状を成すことを可能にする。例えば、デバイスが子宮に経頸管的に挿入されると、シャフトは、膣、頸管、および子宮腔のうちの1つ以上を歪曲する代わりに、膣、頸管、および子宮腔を含む導入通路の形状を取得してもよい。本明細書で開示される同軸ケーブルの設計は、デバイスシャフトが、生体構造による歪曲力を体験すると、45度以上に屈曲することが可能であるように、デバイスシャフトに十分な可撓性を与える。所望であれば、デバイスシャフトは、1つ以上の被覆、被膜、スタイレット、および他の硬化要素を追加することによって、さらに剛性にされてもよい。
本明細書の実験のうちのいくつかは、0.915GHzまたは2.45GHz ISM帯域で実施された。本明細書で開示されるアンテナ、方法等は、0.433GHz、5.8GHz等のISM帯域を含むがそれらに限定されない、他の周波数で、修正を伴って、または伴わずに使用されてもよい。マイクロ波発電機は、マグネトロンベースまたは固体状態であってもよい。マイクロ波発電機は、単一または多重チャネルであってもよい。実験に使用されたマイクロ波発電機は、Vector Network Analyzer(Agilent 8753系)と、Freescale Semiconductor(Austin,Texas)からのトランジスタを使用して自社で構築された増幅器モジュールとを備えた。電力測定は、電力計(ML2438A Power Meter,Anritsu Company.Richardson.TX)を使用して行われた。本明細書で開示されるデバイスおよび方法を用いて、臨床用途のためのマイクロ波発生器を設計するために、同様のデバイスおよび構成要素を使用することができる。
実験では、所望される場合に、組織中のいくつかの場所で温度を測定するために、光ファイバ温度測定システム(FOT Lab Kit by LumaSense Technologies, Santa Clara, CA)が使用された。光ファイバ温度測定システムは、マイクロ波場に干渉する場合がある金属構成要素がないため使用されたい。アブレーション手技中に1つ以上の場所で温度を測定するために、同様の非干渉温度測定が使用されてもよい。
図1Aは、放射要素と、マイクロ波場成形要素とを備える、マイクロ波アンテナを有する、本発明のマイクロ波アブレーションデバイスの実施形態の概略図を示す。図1Aでは、マイクロ波アブレーションデバイス100は、同軸ケーブル102等の伝送線を備える。アンテナ104は、同軸ケーブル102の遠位端に接続される。図1Aは、仮想遷移線105によって第1の区域Z1および第2の区域Z2に分割される、マイクロ波アブレーションデバイス100を示す。第1の区域Z1は、第2の区域Z2の近位にある。遷移線105は、同軸ケーブル102の遠位端によって画定され、同軸ケーブル102の遠位端において同軸ケーブル102の軸と実質的に垂直である。図1Aに示された実施形態では、同軸ケーブル102の遠位領域は、完全に第1の区域Z1内に位置し、アンテナ104は、完全に第2の区域Z2内に位置する。一実施形態では、単一のマイクロ波信号が、同軸ケーブル102を通してアンテナ104に供給される。アンテナ104は、マイクロ波場を生成する。アンテナ104によって生成されるマイクロ波場の近接場が、組織アブレーションに使用されてもよい。
図1Aでは、アンテナ104は、放射要素112と、成形要素114とを備える。放射要素112は、種々の伝導材料、例えば、金属、伝導性ポリマー、埋め込まれた伝導性粒子を伴う材料等でできていてもよい。マイクロ波エネルギーが同軸ケーブル102を通してアンテナ104に送達されると、第1のマイクロ波場が放射要素112によって放出される。第1のマイクロ波場は、成形要素114と相互作用する。この相互作用は、成形要素114上で漏洩電流を誘発する。漏洩電流は次に、第2のマイクロ波場を作成する。第1のマイクロ波場および第2のマイクロ波場はともに、放射要素112のみを備えるアンテナ104によって生成される成形されていないマイクロ波場よりも臨床的に有用である、アンテナ104の独特の成形されたマイクロ波場を産生するように結合する。したがって、元のマイクロ波場は、成形要素114の設計によって再分配される。成形要素114単独は、アンテナとして機能することができず、むしろ、成形要素114は、臨床的に向上したマイクロ波場を産生するように、放射要素112によって放出される電磁場またはマイクロ波場を成形または再分配する。放射要素112と成形要素114との間には、いずれの直接電気伝導もないことに留意されたい。アンテナ104はさらに、放射要素112および成形要素114の一方または両方の1つ以上の部分を覆う、1つ以上のアンテナ誘電体116を備える。図1Aでは、アンテナ誘電体116は、放射要素112の近位部分を覆う。本明細書で開示されるアンテナ誘電体116のうちのいずれかは、マイクロ波場を成形するため、およびアンテナ104の性能を最適化するために使用されてもよい。本明細書で開示されるアンテナ誘電体116のうちのいずれかは、1つ以上の伝導ポリマーに置換されてもよい。
マイクロ波場は、最も近い伝導性経路に連結する。図2Eに示されるような従来技術のモノポールアンテナでは、最も近い伝導性経路は、伝送線の遮蔽要素(例えば、供給同軸ケーブル102の外側導体106)によって提供される。これは、アンテナ104と伝送線102との間の接合点において、マイクロ波場の強力な集中を引き起こす。しかしながら、本明細書で開示されるアンテナ104のいくつかの実施形態では、最も近い伝導性経路は、成形要素114によって提供される。したがって、マイクロ波場は、伝送線の遮蔽要素(例えば、供給同軸ケーブル102の外側導体106)に連結する代わりに、成形要素114に連結する。したがって、最小のマイクロ波場が、伝送線の遮蔽要素に近位で連結される。これは次に、図2A、2M、6B、6F、および14Dに示されるように、アンテナ104まで有意に近位に延在しない、独特の成形または再配分あされたマイクロ波場を作成する。さらに、放射要素112および成形要素114の組み合わせは、アンテナ104の電力集中を向上させる。
本明細書で開示されるアンテナは、種々の伝導材料、例えば、金属、伝導性ポリマー、埋め込まれた伝導性粒子を伴う材料でできている、1つ以上の成形要素114を備えてもよい。そのような成形要素114は、周辺組織から成形要素114を絶縁するように1つ以上の誘電体を備えてもよい。そのような成形要素114の実施例は、金属要素の直線または曲線セグメント、円形または長円形を伴う要素、多角形(例えば、三角形、正方形、長方形、五角形等)を伴う要素、1つ以上の導電性継手によってともに接合される複数の要素、非導電性継手によってともに接合される複数の要素、複数の曲線を伴う要素、要素の対称に配設されたセグメント、要素の非対称に配設されたセグメント等を含むが、それらに限定されない。
図1Aに示された実施形態では、アンテナ104の幅は、同軸ケーブル102の幅よりも実質的に大きい。一実施形態では、放射要素112は、同軸ケーブル102の内側導体108の継続である。一実施形態では、成形要素114は、導電性材料、例えば、金属でできており、同軸ケーブル102の外側導体106の領域に電気的に接続される。代替実施形態では、アンテナ104は、外側導体106から電気的に隔離される、1つ以上の伝導性成形要素114を備える。この実施形態では、1つ以上の成形要素114は、アンテナ104の受動放射体または非励振要素として機能する。一実施形態では、成形要素114は、マイクロ波遮蔽要素および/またはマイクロ波反射要素の役割を果たすように設計されている。
放射要素112に鋭い角がない、アンテナ104の実施形態が設計されてもよい。放射要素112の鋭い角は、波動場を鋭い角に近接して集中させてもよい。したがって、集中したマイクロ波場の望ましくない領域を回避するように、最小の鋭い角を有する、または鋭い角がない、本発明の実施形態が設計されてもよい。
アンテナ104は、切除される標的組織の形状に実質的に近似する形状を有するように設計されてもよい。一実施形態では、アンテナ104は、子宮内膜アブレーションに特に適しているほぼ三角形の形状を有する。別の実施形態では、アンテナ104は、例えば、左心房の中で直線状損傷を作成するための、組織の直線状領域のアブレーションに特に適している、ほぼ直線状の形状を有する。
さらに、アンテナ104は、生体構造の中でのアンテナ104の導入および配備の間または後に、生体構造がアンテナ104からわずかな力しか受けないように、十分に可撓性に設計されてもよい。これは、1つ以上の可撓性放射要素112と、1つ以上の可撓性成形要素114と、1つ以上の可撓性アンテナ誘電材料とを備える、アンテナ104を設計することによって達成されてもよい。十分に可撓性のアンテナは、健康な組織への損傷を低減し、ならびに、導入および配備中に患者が体験する苦痛を潜在的に低減してもよい。アンテナ104は、小管腔を通して押しつぶされた構成で導入されてもよい。押しつぶされた構成は、アンテナ104の全体的なプロファイルを低減する。押しつぶされた構成では、放射要素112および成形要素114は、押しつぶされていない構成である時よりも相互に近くてもよい。これは、細いカテーテル、シャフト、導入器、および他の導入デバイスを通したアンテナ104の導入を可能にする。さらに、これは、体内の小さい自然開口部または人工的に作成された開口部を通したアンテナ104の導入を可能にする。さらに、アンテナ104は、組織の穿孔の危険性を低減するように、アンテナ104の遠位領域がより幅広い、および/または十分に可撓性である、非外傷性遠位端を有するように設計されてもよい。アンテナ104の可撓性質は、通路を歪曲する代わりに、アンテナ104が導入中に導入通路の自然な形状を成すことを可能にする。例えば、アンテナ104が、大腿静脈アクセスを介して心腔の中へ血管系を介して導入されると、可撓性アンテナ104は、大腿静脈アクセス部位、大腿静脈、および下大静脈を含む、導入通路を通して容易に導入されてもよい。
一実施形態では、同軸ケーブル102または他の伝送線の遠位端から放射要素112の遠位端まで放射要素112に沿って測定される、放射要素112の長さは、433MHz ISM帯域、915MHz ISM帯域、2.45GHz ISM帯域、および5.8GHz ISM帯域のうちの少なくとも1つにおける、有効波長の4分の1の奇数倍数である。例えば、放射要素112の長さは、915MHz ISM帯域における有効波長の4分の3であってもよい。有効波長は、アンテナを包囲する媒体、および放射要素112を覆う誘電体の設計に依存している。誘電体被膜の設計は、誘電体の種類および誘電体層の厚さ等の特徴を含む。放射要素112の正確な長さは、良好なインピーダンス整合を得るように設計されてもよい。
本明細書の実施形態のうちのいずれかでは、放射要素112の近位部分は、同軸ケーブル102の内側導体108の継続であってもよい。本明細書の実施形態のうちのいずれかでの放射要素112の近位部分は、より剛性であり、放射要素112の遠位部分よりも大きい機械的強度を有するように設計されてもよい。1つのそのような実施形態では、放射要素112は、同軸ケーブル102の内側導体108の継続であり、同軸ケーブル102の誘電材料110は、放射要素112の近位部分上で保持される。別の実施形態では、放射要素112の近位部分は、誘電体の層で放射要素112の近位部分を被覆することによって、より剛性にされる。
本明細書の実施形態のいずれかでは、放射要素112の1つ以上の外面が、1つ以上のアンテナ誘電体116の層で覆われてもよい。放射要素112の長さに沿ったアンテナ誘電体116の厚さおよび種類は、アンテナ104のマイクロ波特性を修正し、最適化するように設計されてもよい。例えば、放射要素112を覆う1つ以上のアンテナ誘電体116は、マイクロ波場を成形し、アンテナ104の性能を最適化するために使用されてもよい。放射要素112を覆う1つ以上のアンテナ誘電体116は、放射要素112に隣接する領域中で局所誘電環境を変化させることによって、マイクロ波場を成形するために使用されてもよい。本明細書の実施形態のいずれかでは、放射要素112のあらゆる部分は、放射要素112のいずれの金属表面も組織に曝露されないように、何らかのアンテナ誘電体116で覆われてもよい。したがって、放射要素112は、組織から電気的に絶縁されてもよい。したがって、そのような実施形態では、放射要素112は、組織の中へマイクロ波場を伝送することができるが、組織に電気を伝導することはできない。したがって、そのような実施形態では、放射要素112と成形要素114との間には、いずれの電気伝導および伝導性経路もない。さらに、そのような実施形態では、放射要素112と周辺組織との間には、いずれの電気伝導および伝導性経路もない。本明細書で開示される1つ以上の実施形態を設計するために使用することができる誘電材料の実施例は、EPTFE、PTFE、FEP、および他のフッ素重合体、シリコーン、空気、PEEK、ポリイミド、シアノアクリレート、エポキシ、伝導性天然または人造ゴム、およびそれらの組み合わせを含むが、それらに限定されない。一実施形態では、放射要素112の近位部分上の誘電体は、同軸ケーブル102の誘電体110の継続である。放射要素112上の誘電体の厚さは、放射要素112の長さに沿って変化してもよい。さらに、放射要素112上の誘電体の断面は、放射対称性でなくてもよい。誘電体の種々の構成は、所望のアブレーションプロファイルを達成し、ならびに所望のインピーダンス整合または電力効率を達成するように設計されてもよい。一実施形態では、放射要素112全体が、シリコーン誘電体で覆われる。放射要素112の遠位部分を被覆するために使用されるシリコーンの層は、放射要素112の近位部分を被覆するために使用されるシリコーンの層より薄くてもよい。より薄いシリコーン誘電体は、通常はマイクロ波アンテナの遠位部分に存在する、より低い波動場強度を補うために使用されてもよい。したがって、マイクロ波場は、放射要素112の長さに沿って、より均一にされる。放射要素112の周囲にシリコーン誘電体を伴う1つのデバイス実施形態では、放射要素112は、金属材料でできており、放射要素112の遠位領域の金属材料の円周は、放射要素112の近位部分の金属材料の円周よりも大きい。これは、シリコーン誘電体を、放射要素112の近位部分よりも遠位部分で伸張させる。これは次に、放射要素112の近位部分よりも放射要素112の遠位部分で、より薄い誘電体の層を生成する。別の実施形態では、放射要素112全体が、均一な断面の1本の金属ワイヤでできている。この実施形態では、様々な厚さのシリコーン誘電体の管状断片が、放射要素112を覆うために使用されてもよい。管状シリコーン誘電体は、シリコーン誘電体の層が、放射要素112の遠位部分の周囲でより薄く、近位部分の周囲でより厚くなるように、放射要素112を覆うために使用される。
本明細書の実施形態のうちのいずれかでは、放射要素112の形状は、成形要素114の形状と同じ、または異なってもよい。さらに、本明細書の実施形態のうちのいずれかでは、放射要素112および成形要素114の両方は、非直線状であってもよい。さらに、本明細書の実施形態のうちのいずれかでは、放射要素112および成形要素114は、相互と非平行であってもよい。
図1Bは、図1Aの実施形態と同様のマイクロ波アブレーションデバイスの実施形態の概略図を示し、マイクロ波場成形要素は、伝送線の遠位端の近位にある伝送線の領域に接続される。図1Aでは、成形要素114が伝送線の遠位端に接続されるため、この実施形態は図1Aの実施形態とは異なる。図1Bに示されたデバイスの一実施形態では、成形要素114は、金属であり、同軸ケーブル102の外側導体106の領域に電気的に接続される。
図1Aおよび1Bでは、放射要素112が内側導体108と電気的に接触しているため、内側導体108から放射要素112の遠位端まで延在する第1の導電性経路がある。成形要素114が伝導性材料でできており、同軸ケーブル102または他の伝送線の外側導体106に電気的に接続される実施形態においては、外側導体106から成形要素114の遠位端まで延在する第2の導電性経路がある。そのような実施形態では、第1の区域Z1から第2の区域Z2まで延在する2つの伝導性経路があるものの、2つの伝導性経路の設計、材料、およびマイクロ波特性は、第1の区域Z1および第2の区域Z2において有意に異なってもよい。例えば、第1の区域Z1の中の第1の伝導性経路の領域が、同軸ケーブル102の誘電体110によって包囲される一方で、第2の区域Z2の中の第1の伝導性経路の領域は、1つ以上の誘電材料によって、または標的組織等の解剖学的領域によって包囲されてもよい。さらに、図1Aおよび1Bでは、第1の区域Z1の中のマイクロ波場は、同軸ケーブル102の内側導体108と外側導体106との間に実質的に限定される。しかしながら、第2の区域Z2では、マイクロ波場は、放射要素112と成形要素114との間に限定されていない。さらに、第1の区域Z1では、同軸ケーブル102の外側導体106は、内側導体108の周囲に対称的に位置し、内側導体108から実質的に一定の距離を置いている。しかしながら、第2の区域Z2では、放射要素112と成形要素114とは、相互に対して対称的に位置せず、放射要素112と成形要素114との間の距離は、第2の区域Z2の全体を通して一定であってもなくてもよい。さらに、同軸ケーブル102の外側導体106は、第1の区域Z1の中の内側導体108と平行に配向される。しかし、第2の区域Z2では、放射要素112と成形要素114とは、相互と平行であってもなくてもよい。しかしながら、放射要素112と成形要素114とは、両方とも平面形状を有してもよい。1つのそのような実施形態では、放射要素112を含有する平面は、成形要素114を含有する平面と実質的に平行である。第1の区域Z1では、同軸ケーブル102の外側導体106が、常に第1の区域Z1の中のマイクロ波場に対する遮蔽体の役割を果たす一方で、第2の区域Z2では、成形要素114は、第2の区域Z2の中のマイクロ波場に対する遮蔽体の役割を果たしても果たさなくてもよい。第1の区域Z1では、外側導体106と内側導体108との間の距離は、第2の区域Z2の放射要素112と成形要素114との間の距離より大幅に小さくてもよい。
図1Cは、放射要素と、マイクロ波場成形要素とを備えるマイクロ波アンテナを有する、本発明の直線状マイクロ波アンテナの実施形態の側面図を示す。図1Cに示された実施形態では、本発明の新規のマイクロ波場成形技法は、螺旋状アンテナの性能を向上させるために使用される。結果として生じたアンテナは、伝送線を包囲する組織に悪影響を与えることなく、アンテナの長さに沿って均一な損傷を作成するために使用することができる。図1Cでは、マイクロ波アブレーションデバイス100は、同軸ケーブル102等の伝送線を備える。アンテナ104は、同軸ケーブル102の遠位端に接続される。図1Cに示された実施形態では、アンテナ104の幅は、同軸ケーブル102の幅と実質的に同じである。図1Cは、仮想遷移線105によって第1の区域Z1と第2の区域Z2とに分割されるマイクロ波アブレーションデバイス100を示す。第1の区域Z1は、第2の区域Z2の近位にある。図1Cの遷移線105は、同軸ケーブル102の遠位端によって画定され、同軸ケーブル102の遠位端において同軸ケーブル102の軸と実質的に垂直である。図1Cに示された実施形態では、同軸ケーブル102の遠位端は、完全に第1の区域Z1内に位置し、アンテナ104は、完全に第2の区域Z2内に位置する。一実施形態では、単一のマイクロ波信号が、同軸ケーブル102を通してアンテナ104に供給される。アンテナ104は、マイクロ波場を生成する。アンテナ104によって生成されるマイクロ波場の近接場は、組織を切除すること等の所望の臨床成果を達成するために使用されてもよい。図1Cでは、アンテナ104は、放射要素112と、成形要素114とを備える。一実施形態では、放射要素112は、同軸ケーブル102の内側導体108の継続である。成形要素114は、放射要素112によって放出されるマイクロ波場を成形する。一実施形態では、成形要素114は、導電性材料、例えば、金属または伝導性ポリマーでできており、同軸ケーブル102の外側導体106の領域に電気的に接続される。代替実施形態では、伝導性成形要素114は、外側導体106から電気的に隔離される。この実施形態では、成形要素114は、アンテナ104の受動放射体または非励振要素として機能する。この電気的に隔離された実施形態での成形要素114は、放射要素112から放射されるマイクロ波を吸収し、マイクロ波を再放射する。放射要素112と成形要素114との間には、なんらの直接の電気伝導がないことに留意されたい。マイクロ波エネルギーが、図1Cで同軸ケーブル102を通してアンテナ104に送達されると、第1のマイクロ波場が放射要素112によって放出される。この第1のマイクロ波場は、小径(アンテナ直径Dがマイクロ波の波長よりもはるかに小さい)螺旋状アンテナの通常モードマイクロ波場である。第1のマイクロ波場は、成形要素114と相互作用する。この相互作用は、成形要素114上で漏洩電流を誘発する。漏洩電流は次に、第2のマイクロ波場を作成する。第2のマイクロ波場は、成形要素114の細長い形状により、細長い軸モードマイクロ波場である。第1のマイクロ波場および第2のマイクロ波場はともに、放射要素112のみを備えるアンテナ104によって生成される成形されていないマイクロ波場よりも臨床的に有用である、アンテナ104の独特の成形されたマイクロ波場を産生するように結合する。したがって、元のマイクロ波場は、成形要素114の設計によって再分配される。成形要素114単独は、アンテナとして機能することができず、むしろ、成形要素114は、臨床的に向上したマイクロ波場を産生するように、放射要素112によって放出される電磁場またはマイクロ波場を成形または再分配する。図1Cの放射要素112と成形要素114との間には、なんらの直接の電気伝導もないことに留意されたい。
さらに、成形要素114の特異的設計が、放射要素112を備えるアンテナ104の電力集中を向上させるために使用されてもよい。成形要素114は、1つ以上の非絶縁または絶縁要素でできていてもよい。そのような要素の実施例は、金属要素の直線または曲線セグメント、円形または長円形を有する要素、多角形(例えば、三角形、正方形、長方形、五角形等)を有する要素、1つ以上の導電性継手によってともに接合される複数の要素、非導電性継手によってともに接合される複数の要素、複数の曲線を有する要素、要素の対称に配設されたセグメント、要素の非対称に配設されたセグメント、非伝導材料の外側被覆または層を備える要素等を含むが、それらに限定されない。
集中したマイクロ波場の望ましくない領域を回避するために、個々の要素、例えば、放射要素112が、最小の鋭い角を有するか、または鋭い角がない、本発明の実施形態が設計されてもよい。
アンテナ104は、切除される標的組織の形状または作成される損傷の形状に実質的に近似する形状を有するように設計されてもよい。一実施形態では、アンテナ104は、子宮内膜アブレーションに特に適しているほぼ三角形の形状を有する。別の実施形態では、アンテナ104は、例えば、左心房の中で直線状の損傷を作成するための、組織の直線状領域のアブレーションに特に適している、図1Cに示された形状等のほぼ直線状の形状を有する。
図1Cでは、放射要素112の表面は、1つ以上の誘電材料の層の中に封入される。放射要素112の長さに沿った誘電材料の厚さおよび種類は、マイクロ波場形状を最適化するように設計される。したがって、放射要素112を覆う1つ以上の誘電材料はまた、マイクロ波場を成形するために非伝導の成形要素として使用されてもよい。放射要素112を覆う1つ以上の誘電材料は、放射要素112に隣接する領域中で局所誘電環境を変化させることによって、マイクロ波場を成形する。この実施形態では、放射要素112のあらゆる部分は、放射要素112のいずれの金属表面も組織に曝露されないように、何らかの誘電材料で覆われる。したがって、この実施形態では、放射要素112は、組織から電気的に絶縁される。したがって、この実施形態では、放射要素112は、組織の中へマイクロ波場を伝送することができるが、組織に電気を伝導することはできない。したがって、この実施形態では、放射要素112と成形要素114との間には、なんらの電気伝導および伝導性経路もない。さらに、この実施形態では、放射要素112と周辺組織との間には、いずれの電気伝導および伝導性経路もない。一実施形態では、放射要素112の近位部分上の誘電体は、同軸ケーブル102の誘電体110の継続である。放射要素112上の誘電体の厚さは、放射要素112の長さに沿って変化してもよい。さらに、放射要素112上の誘電体の断面は、放射方向に対称性でなくてもよい。
図1Cの実施形態では、放射要素112は、1本の螺旋状に配設された金属導体でできている。螺旋は、螺旋の長さに沿った一定のピッチおよび一定の直径を有して対称であってもよい。一実施形態では、放射要素112を構築するために使用される導体の直線化された長さは、915MHzにおける有効波長の約4分の3である。代替実施形態では、この長さは、433MHz ISM帯域、915MHz ISM帯域、2.45GHz ISM帯域、および5.8GHz ISM帯域のうちの少なくとも1つにおける有効波長の4分の1の奇数倍数であってもよい。図1Cでは、放射要素112は、約19回の旋回を有するが、放射要素112が約1〜30回の旋回を有するアブレーションデバイス100の実施形態が構築されてもよい。螺旋状放射要素112のピッチは、0.3mmと20mmとの間に及んでもよい。放射要素112は、Nitinol、ステンレス鋼、または銅から成る群より選択される、金属要素または合金でできていてもよい。放射要素112は、放射要素112の外面上にAgまたはAu等の伝導金属のめっきを備えてもよい。放射要素112を構築するために使用される金属導体は、円形、長円形、長方形、または正方形の断面を有してもよい。一実施形態では、放射要素112を構築するために使用される金属導体は、0.5mm+/−0.4mmの直径を有する円形断面を有する。別の実施形態では、放射要素112を構築するために使用される金属導体は、10mm+/−9.5mm×0.5mm+/−0.4mmの断面寸法を有する長方形の断面を有する。長方形の断面を有する放射要素の別の実施形態では、断面寸法は、1mm+/−0.3mm×0.1mm+/−0.05mmである。代替実施形態では、放射要素112は、実質的に2次元の構成で配設される1本の金属導体でできている。例えば、1本の金属導体は、実質的に波状またはジグザグあるいは蛇行構成で配設されてもよい。図1Cの実施形態では、放射要素112は、成形要素114の周囲に対称的に配設され、成形要素114を部分的または完全に取り囲む。成形要素114は、1本の直線状または螺旋状の金属導体でできていてもよい。成形要素114の外径は、アンテナ104の長さに沿って均一であってもよく、または不均一であってもよい。図1Cに示された実施形態では、成形要素114は、1本の実質的に直線状の金属導体でできている。成形要素114は、Nitinol、ステンレス鋼、または銅から成る群より選択される、金属要素または合金でできていてもよい。成形要素114は、成形要素114の外面上にAgまたはAu等の伝導金属のめっきを備えてもよい。成形要素114を構築するために使用される金属導体は、円形、長円形、長方形、または正方形の断面を有してもよい。一実施形態では、成形要素114を構築するために使用される金属導体は、0.5mm+/−0.3mmの直径を有する円形断面を有する。別の実施形態では、成形要素114を構築するために使用される金属導体は、0.5mm+/−0.3mm×0.5mm+/−0.3mmの寸法を有する長方形の断面を有する。アンテナ104はさらに、放射要素112と成形要素114との間に1つ以上のアンテナ誘電体116を備える。一実施形態では、アンテナ誘電体116は、可撓性アンテナ104を作成することに十分な可撓性である。アンテナ104の可撓性は、臨床使用中に、アンテナ104が、実質的に直線構成から実質的に非直線構成へ、および逆もまた同様に屈曲することを可能にする。アンテナ104の可撓性はまた、臨床使用中に、アンテナ104が伝送線の遠位端に対して屈曲することを可能にする。これは次に、ユーザが、血管等の蛇行性または非直線状の導入経路を通して、アンテナ104を標的場所に導入することを可能にする。一実施形態では、アンテナ誘電体116は、十分な剛性のアンテナ104を作成することに十分な剛性である。アンテナ104の剛性は、アンテナ104が臨床使用中に屈曲することを防止する。これは次に、ユーザが、図7Aに示されるような腫瘍組織等の組織を穿刺または貫通するためにアンテナ104を使用することを可能にする。放射要素112と成形要素114との間で使用することができる誘電体の実施例は、EPTFE、PTFE、FEP、および他のフッ素重合体、シリコーン、空気、PEEK、ポリイミド、天然または人造ゴム、およびそれらの組み合わせを含むが、それらに限定されない。加えて、アンテナ104全体が、誘電体に覆われるか、または被包されてもよい。アンテナ104を覆うか、または被包するために使用することができる誘電体の実施例は、EPTFE、PTFE、FEP、および他のフッ素重合体、シリコーン、PEEK、ポリイミド、天然または人造ゴム、およびそれらの組み合わせを含むが、それらに限定されない。アンテナ誘電体116は、そのような誘電体の1つ以上の層を備えてもよい。アンテナ104を覆うか、または被包するために使用することができる誘電体は、有孔性または無孔性であってもよい。図1Cでは、アンテナ104の長さは、10mmと80mmとの間である。図1Cでは、アンテナ104の長さは、1mmと40mmとの間である。1つの特定の実施形態では、アンテナ104は、45mm+/−7mmの長さ、および2mm+/−0.5mmの幅を有する。放射要素112は、同軸ケーブル102の内側導体108に電気的に接続される。これは、放射要素112を内側導体108にはんだ付けするか、または抵抗溶接することによって行われてもよい。成形要素114は、同軸ケーブル102の外側導体106に電気的に接続される。これは、成形要素114を外側導体106にはんだ付けするか、または抵抗溶接することによって行われてもよい。アンテナ104は、柔軟、可撓性、または実質的に剛性であってもよい。アンテナ104は、可鍛性であってもよく、あるいは、形状記憶または弾性または超弾性特性を有してもよい。アンテナ104の遠位端は、非外傷性であってもよい。アンテナ104は、アンテナ104の長さが調整可能であるように設計されてもよい。例えば、アンテナ104の長さは、アブレーション区域の長さを増加または短縮するために増加または短縮されてもよい。この実施形態では、成形要素114は、螺旋状、あるいは実質的に波状またはジグザグまたは蛇行性構成を有してもよい。アンテナ104の長さは、術中または術前に増加または短縮させられてもよい。一実施形態では、放射要素112および成形要素114の一方または両方は、フレキシブル回路の一部であり、フレキシブル回路を製造するための一般的に知られている技法を使用して製造される。
図1Cでは、放射要素112の形状は、成形要素114の形状とは異なる。さらに、図1Cの実施形態では、放射要素112は、非直線状である。さらに、図1Cの実施形態では、成形要素114は、実質的に直線状である。しかしながら、放射要素112および成形要素114は、概して、それらの軸が相互に平行であるように配向される。放射要素112が実質的に直線状であるアンテナ104の代替実施形態が設計されてもよい。成形要素114が実質的に非直線状であるアンテナ104の代替実施形態が設計されてもよい。放射要素112および成形要素114が、概して、それらの軸が平行ではないように配向されるアンテナ104の代替実施形態が設計されてもよい。
図1Cの実施形態では、成形要素114は、同軸ケーブル102の遠位端に接続されるが、成形要素114が同軸ケーブル102の遠位端以外の領域で同軸ケーブル102に接続されるアンテナ104の他の実施形態が設計されてもよい。例えば、1つの代替実施形態では、成形要素114は、金属であり、同軸ケーブル102の遠位端の近位にある同軸ケーブル102の外側導体106の領域に電気的に接続される。
図1Cでは、放射要素112が内側導体108と電気的に接触しているので、内側導体108から放射要素112の遠位端まで延在する第1の導電性経路がある。成形要素114が伝導性材料でできており、同軸ケーブル102の外側導体106に電気的に接続される、実施形態では、外側導体106から成形要素114の遠位端まで延在する第2の導電性経路がある。そのような実施形態では、第1の区域Z1から第2の区域Z2まで延在する2つの伝導性経路があるものの、2つの伝導性経路の設計、材料、およびマイクロ波特性は、以前に説明されているように、第1の区域Z1および第2の区域Z2において有意に異なってもよい。第1の区域Z1では、同軸ケーブル102の外側導体106は、内側導体108の周囲で対称的に位置し、内側導体108から一定の距離を置いている。しかしながら、第2の区域Z2では、放射要素112は、成形要素114の周囲で対称的に位置し、成形要素114から一定の距離を置いている。第1の区域Z1では、同軸ケーブル102の外側導体106が、常に第1の区域Z1の中のマイクロ波場に対する遮蔽体の役割を果たす一方で、第2の区域Z2では、成形要素114は、第2の区域Z2の中のマイクロ波場に対する遮蔽体の役割を果たしても果たさなくてもよい。
図1Dは、図1Cのアブレーションデバイス100に、および本明細書で開示される他のアブレーションデバイス100に使用可能である、同軸ケーブル102の実施形態を通る断面を示す。一実施形態では、本明細書で使用される同軸ケーブル102は、可撓性であり、56%+/−5%のNi含有量を有するNitinolでできている内側導体108を備える。内側導体108の外径は、0.0172”+/−0.004”である。内側導体108は、AgまたはAu等の高伝導性金属のクラッディングまたはめっき120を有する。一実施形態では、内側導体108は、0.000250”+/−0.000050”の銀クラッディング120を備える。クラッディング120は次に、誘電材料110によって包囲される。一実施形態では、誘電材料110は、0.046”+/−0.005”の外径を有する発泡PTFEでできている。誘電材料110は次に、外側導体106によって包囲される。外側導体106は、内側導体108によって伝送されるマイクロ波信号に対する遮蔽要素の役割を果たす。さらに、外側導体106は、外部雑音から内側導体108によって伝送されるマイクロ波信号を遮蔽する。一実施形態では、外側導体106は、複数本のAgめっきしたCuを備える。複数本の外側導体106は、外側導体106の外径が0.057”+/−0.005”であるように配設される。外側導体106は次に、外側ジャケット118によって覆われる。一実施形態では、外側ジャケット118は、0.065”+/−0.005”の外径を有するPTFEでできている。したがって、同軸ケーブル102の外径は、約2mm未満である。可撓性同軸ケーブル102の薄型外径は、狭いおよび/または蛇行性の解剖学的経路あるいは導入デバイス管腔を通して挿入することができるので、多大な臨床的利点を有する。一実施形態では、同軸ケーブル102を備えるシャフトは、同軸ケーブル102上で硬化デバイスジャケット、ブレイズ、または硬化層を取り囲むこと等の、1つ以上の硬化または強化要素を追加することによって、硬化または強化される。一実施形態では、アンテナ104は、アンテナ104内または上のジャケット、ブレイズ、または層等の、1つ以上の硬化または強化要素を追加することによって、硬化または強化される。
図1Eは、同軸ケーブル102の遠位端を通る、図1Cのアブレーションデバイス100の実施形態の縦断面を示す。図1Eでは、同軸ケーブル102の同一性は、外側導体106の遠位端で終端する。図1Eの遷移線105は、外側導体106の遠位端に位置し、外側導体106の遠位端において同軸ケーブル102の軸と実質的に垂直である。同軸ケーブル102の外側ジャケット118は、外側導体106の遠位端の近位にわずかな距離を置いて終端する。内側導体108の遠位端に取り付けられる伝導性要素は、放射要素112を形成する。一実施形態では、放射要素112の近位端は、内側導体108の遠位端に電気的に接続される。一実施形態では、放射要素112の近位端は、内側導体108にはんだ付けされる。別の実施形態では、放射要素112の近位端は、内側導体108にレーザ溶接される。放射要素112の近位端は、重ね継ぎおよび突き合わせ継ぎを含むがそれらに限定されない種々の構成で、内側導体108に電気的に接続されてもよい。成形要素114の近位端は、外側導体106の領域に電気的に接続される。一実施形態では、成形要素114の近位端は、外側導体106の遠位端に電気的に接続される。一実施形態では、成形要素114の近位端は、外側導体106にはんだ付けされる。別の実施形態では、成形要素114の近位端は、外側導体106にレーザ溶接される。成形要素114の近位端は、重ね継ぎおよび突き合わせ継ぎを含むがそれらに限定されない、種々の構成で、外側導体106に電気的に接続されてもよい。
図2Aおよび2Bは、図1Cのデバイスの実施形態によって生成された、シミュレートされたSARプロファイルの2つの側面図を示す。図2Cは、図1Cのデバイスの実施形態によって生成された、シミュレートされたSARプロファイルの上面図を示す。図2Cは、図1Cのデバイスの実施形態によって生成された、シミュレートされたSARプロファイルが、実質的に放射方向に対称であり、アンテナ104全体を円周方向に包むことを明示する。図2Aおよび2Bは、図1Cのアンテナ104によって生成されたマイクロ波場が、実質的に第2の区域Z2に制限されることを明示する。同軸ケーブル102を含有する第1の区域Z1の中に、有意量のマイクロ波場がある。したがって、マイクロ波場と同軸ケーブル102の遠位部分との間には、ごくわずかな後方結合がある。これは次に、同軸ケーブル102の遠位端の近位にある組織を切除する危険性を低減する。さらに、マイクロ波場は、同等のモノポールアンテナと比較して、アンテナ104の長さに沿って実質的に均一である。したがって、図2Aおよび2Bのマイクロ波場によって形成される損傷は、均一となり、アンテナ104の範囲に実質的に局限される。また、図2Aおよび2Bは、マイクロ波場がアンテナ104全体を容量的に包むことを示す。したがって、35mmよりも大きい損傷の長さで、均一、対称、連続的な直線状損傷を作成することができる、915MHzおよび他のマイクロ波周波数で動作するように設計されている直線状アンテナ104の実施形態が設計され得る。
代替実施形態では、SARプロファイルは、直線状アンテナ104の長さに沿って実質的に不均一に設計されてもよい。例えば、アンテナ104は、アンテナ104の中心においてより幅広い、および/またはより強力であり、アンテナ104の端においてあまり強力ではない、SARプロファイルを有するように設計されてもよい。これを達成するために、図1Cのアンテナ104の1つ以上の設計パラメータが修正されてもよい。そのような修正の実施例は、1つ以上の付加的な伝導性成形要素114の追加、アンテナ104の長さに沿って成形要素114および/放射要素112の幅および/または断面形状を変化させること、アンテナ104の長さに沿って螺旋状放射要素112および/または螺旋状成形要素114のピッチを変化させること、1つ以上のアンテナ誘電体116の厚さ、種類、および他の設計パラメータを変化させること等を含むが、それらに限定されない。
図2Dは、図1Cのアンテナを伴うアブレーションデバイスのシミュレートされた反射減衰量を示す。シミュレートされた反射減衰量は、915MHzにおいて良好な整合(約−13.35dB)を示す。
図1Cのアンテナ104は、同等のモノポールアンテナと比べていくつかの利点を有する。図2Eおよび2Fは、モノポールアンテナによって生成された、シミュレートされたSARプロファイルの側面図および上面図をそれぞれ示す。図2Eは、集中したマイクロ波場の領域、または伝送線(例えば、同軸ケーブル)の遠位端の付近あるいはモノポールアンテナの近位端にある「ホットスポット」の存在を示す。したがって、図2Eのマイクロ波場は、図2Bの波動場と比較して不均一である。図2Fのマイクロ波場の約半分が、第1の区域Z1の中に存在する。したがって、第1の区域Z1の中に有意量のマイクロ波場がある。したがって、同軸ケーブル102の遠位端の近位にある組織を切除する高い危険性がある。第1の区域Z1の中の有意量のマイクロ波場の存在は、マイクロ波場と同軸ケーブルまたは他の伝送線の外側導体との間の望ましくない連結によるものである。この望ましくない連結はまた、健康な組織の巻き添え損傷につながる場合がある、同軸ケーブル102の後方加熱も引き起こし得る。
本明細書の実施形態のうちのいくつかでは、成形要素114は、アンテナ104によって生成されるマイクロ波場を成形するのに重要な役割を果たす。図2Gは、成形要素114がない図1Cのデバイスの実施形態によって生成された、シミュレートされたSARプロファイルの側面図を示す。図2Gに示されたマイクロ波場は、成形要素114によって成形されていないため、非成形波動場である。図2Gのアンテナ104は、図2Eのモノポールアンテナと同様に挙動することが分かる。図2Gは、集中したマイクロ波場の領域、または同軸ケーブル102の遠位端の付近あるいはアンテナ104の近位端にある「ホットスポット」の存在を示す。したがって、図2Gの成形されていないマイクロ波場は、図2Bの成形要素114によって生成される成形されたマイクロ波場と比較して不均一である。図2Gの成形されていないマイクロ波場の約半分が、第1の区域Z1の中に存在する。したがって、第1の区域Z1の中に有意量のマイクロ波場がある。したがって、同軸ケーブル102の遠位端の近位にある組織を切除する高い危険性がある。第1の区域Z1の中の有意量のマイクロ波場の存在は、マイクロ波場と同軸ケーブル102または他の伝送線の外側導体との間の望ましくない連結によるものである。この望ましくない連結はまた、健康な組織の巻き添え損傷につながる場合がある、同軸ケーブル102の後方加熱も引き起こし得る。図2Hは、成形要素114がない図1Cのアンテナ(図2Hにおける点線)を伴うアブレーションデバイスのシミュレートされた反射減衰量(実線)を示す。シミュレートされた反射減衰量は、図1Cのアンテナを用いて得られる、915MHzにおける良好な整合(約−13.35dB)よりも規模がはるかに低い、915MHzにおける整合(約−9.41dB)を示す。したがって、図1Cのアンテナ104の中の成形要素114の設計が、整合を向上させる。
成形要素114は、周波数スペクトル内の付加的な共振点を提供するために使用されてもよい。これは次に、アンテナ104が許容性能を達成する周波数範囲(帯域幅)を増加させるために使用されてもよい。例えば、図1Cの成形要素114の設計は、重要な性能パラメータが容認可能である周波数範囲を向上させる。図2Hでは、実線および鎖線を比較した場合、−10dBのカットオフにおいて、成形要素114を含有する実施形態での許容周波数範囲は、約0.23GHzである(約0.87GHzから約1.10GHzに及ぶ)。成形要素114がない図2Gの同等の実施形態での許容周波数範囲は、わずか約0.19GHzである(約0.93GHzから約1.12GHzに及ぶ)。したがって、第1の場合においては、アンテナ104が許容性能を達成するより大きい周波数範囲(帯域幅)が利用可能である。これは次に、典型的な臨床使用中の、または軽微な製造変動によるアンテナ104の軽微な歪曲が、アンテナ104の性能に有意に影響を及ぼさないアンテナ104の設計を可能にする。
図2Iは、図1Cの設計と同様である、完全機能的直線状アンテナの写真を示す。図2Iでは、放射要素112の複数の巻きが、成形要素114(見えていない)を包囲している。アンテナ104全体が、透明な誘電材料の層で覆われている。同軸ケーブル102の遠位端から放射要素112の遠位端までのアンテナ104の直線長さは、約4.5cmである。アンテナ104の代替実施形態は、2.5〜5.5cmに及ぶ直線長さを伴って設計されてもよい。図2Iのアンテナ104の外径は、約2mmである。アンテナ104の代替実施形態は、1.5〜4mmに及ぶ外径を伴って設計されてもよい。
図2Jは、心内アブレーションおよび他の用途のための図2Iのアンテナ104の有用性を実証するための実験装置を示す。図2Jでは、ブタ筋肉組織の薄片が、37℃に維持された水槽中で保たれる。さらに、水が、ノズル125から水槽中で送出され、ポンプ(図示せず)を使用して、水槽を通して継続的に循環させられる。これは、心腔内の血流の効果をシミュレートするものである。図2Jは、ブタ筋肉組織の未切除薄片を示す。
図2J−2Nは、組織に2つの重複損傷を作成する方法の方法ステップを示す。図2J−2Nでは、方法が図2Jの実験装置において実証されている。図2Jでは、図2Iの直線状アンテナ104は、示されるようにブタ組織と接触して配置されている。その後、0.915GHzのマイクロ波電力が、アブレーションデバイス100に80Wで60秒間送達される。図2Lは、アンテナ104の周囲に作成された第1のアブレーションを示す。図2Mでは、アンテナ104は、新しい場所に移動させられている。その後、図2Nに示されるような第2の損傷を作成するために、マイクロ波電力が、アブレーションデバイス100に80Wで60秒間送達される。図2Nでは、アンテナ104は、第2の損傷を作成した後に離されている。したがって、本明細書で開示されるアンテナ104のうちのいずれかを再配置することによって、複数の損傷の種々のパターンが作成され得る。本明細書で開示されるアンテナ104のうちのいずれかは、軸の周りを回転すること、近位または遠位に移動すること、横に移動すること、軸の周りを回転すること、サイズを増加または縮小させること、アブレーションデバイス100上の操縦または偏向機構に係合すること、および付属デバイス上の操縦または偏向機構に係合することのうちの1つ以上によって、再配置されてもよい。さらに、本明細書で開示されるアンテナ104のうちのいずれかは、臨床使用中に、周辺組織上の可撓性アンテナ104によって及ぼされる力が周辺組織を歪曲しないように、設計および使用されてもよい。一実施形態では、相互に交差しない2つの損傷が作成される。別の実施形態では、縦方向に接合される、2つの細長い損傷が作成される。別の実施形態では、横方向に接合される、2つの細長い損傷が作成される。別の実施形態では、相互に交差して、ほぼX字形の結果として生じる損傷を形成する2つの細長い損傷が作成される。
図2Oは、図2J−2Nの方法から得られる、2つの結果として生じる重複損傷の表面図を示す。図2Oでは、アブレーションの視覚的区域は、幅約6〜10mmおよび全長約9cmで延在することが分かる。アブレーション時間、アブレーション電力、アンテナ104の設計、アンテナ104の位置のうちの1つ以上を変更することによって、損傷の長さおよび/または幅が変化させられ得る。
図2Pは、2つの深い重複損傷を示す、図2Oの平面2P−2Pを通る断面の図を示す。図2Pでは、複合損傷の長さは、約9cmであり、損傷の視覚的深さは、1〜1.5cmまで様々である。したがって、長くて深い損傷がアンテナ104によって作成され得る。損傷は、心臓壁の組織の厚さ全体に及ぶように作成されてもよい。したがって、アンテナ104は、貫壁性(trans−mural)損傷を作成するために使用することができる。さらに、損傷の炭化が完全に欠如している。また、流動流体の存在下でさえも、長くて深い損傷が作成された。したがって、アンテナ104は、血管系(静脈、動脈等)および心腔等の、流動血液を含有する解剖学的領域中で損傷を作成するために使用され得る。
図2Qおよび2Rは、屈曲または曲線構成における、図2Iのアンテナによって作成された均一な損傷を示す。図2Rでは、下にある損傷を示すように、アンテナ1904が離されている。図2Qおよび2Rは、損傷が屈曲または曲線構成であり、アンテナ104の屈曲または曲線のプロファイルに対応することを示す。さらに、組織の表面の燃焼または炭化がない。したがって、図1Cの実施形態等のアンテナ104の実施形態は、屈曲または曲線構成でさえも均一な損傷を作成することが可能である。これは、長い曲線または屈曲損傷を作成する能力が、より速く、かつ向上した成果を伴ってユーザが手技を完了することを可能にする、不整脈を治療するための心臓組織の電気生理学的アブレーション等の用途で非常に重要である。
図1Cの直線状アンテナ104等の本明細書のアンテナ104のうちのいずれかは、種々の具体的用途のために成形または別様に修正されてもよい。図3A−3Dは、アンテナ104の実施形態を示し、アンテナ104は、それぞれ、直線、曲線、閉ループ、および螺旋の形状を有する。図3A−3Dに示された形状の実施形態は、固定された形状を有してもよく、またはユーザ成形可能であってもよい。例えば、アンテナ104には、図3Aに示されるようなアンテナ104の直線形状から図3Bに示されるようなより曲線または屈曲形状に、および逆もまた同様に、可逆的に変化させるように、引張ワイヤまたは同様の形状歪曲要素が提供されてもよい。別の実施例では、アンテナ104の遠位領域には、図3Aに示されるようなアンテナ104の直線形状から図3Cに示されるようなよりループ状の形状に、および逆もまた同様に、可逆的に変化させるように、引張ワイヤまたは同様の形状歪曲要素が提供されてもよい。アンテナ104の形状を変化させるために使用されてもよい機構の実施例は、内部または外部の引張ワイヤ、バルーン、膨張性構造、および直線または屈曲摺動可能スタイレットを含むが、それらに限定されない。本明細書で開示されるアンテナ104のうちのいずれかは、アンテナ104の形状に実質的に対応するアブレーションを作成するために使用されてもよい。例えば、図3Aのアンテナ104は、実質的に直線状の損傷を作成するために使用されてもよく、図3Bのアンテナ104は、実質的に曲線の損傷または屈曲した損傷を作成するために使用されてもよく、図3Dのアンテナ104は、螺旋状損傷を作成するために使用されてもよい、等である。本明細書で開示されるアンテナ104のうちのいずれかは、アンテナ104の形状に実質的に対応しないアブレーションを作成するために使用されてもよい。例えば、アンテナ3Cは、図3I−3Lでよりよく図示されるように、円形損傷、点損傷、または直線状損傷を作成するために使用されてもよい。本明細書で開示されるアンテナ104のうちのいずれかは、身体組織に貫通して標的を切除するために使用されてもよい。組織の貫通を容易にするために、本明細書で開示されるアンテナ104のうちのいずれかの遠位端は、(例えば、鋭い先端を有することによって)組織の貫通を容易にするように修正されてもよい。例えば、図3Aのアンテナ104は、皮膚を貫通して腹部器官および他の内部器官を切除するために十分剛性であり、かつ鋭い遠位先端を有するように設計されてもよい。代替として、図3Aのアンテナ104は、身体の天然開口部および通路を通るか、またはカテーテルを通るアンテナ104の導入を可能にするように十分可撓性に設計されてもよい。別の実施例では、図3Dのアンテナ104は、組織表面を貫通し、かつ下層組織にアクセスするために螺旋状に挿入可能であるように十分剛性であり、かつ遠位先端を有するように設計されてもよい。別の実施形態では、図3Dのアンテナ104は、身体の天然開口部および通路を通るか、またはカテーテルを通るアンテナ104の導入を可能にするために、十分可撓性かつ押しつぶし可能に設計されてもよい。次いで、アンテナ104の弾性または超弾性あるいは形状記憶的性質が、身体通路または体腔、例えば、血管の管腔等の標的組織に到達した後に、アンテナ104が螺旋形状を取り戻すことを可能にしてもよい。
本明細書で開示されるアンテナ104のうちのいずれかは、身体の複数の領域にアクセスするために、手技中に1回または複数回、再配置され得る。この再配置は、アブレーションデバイス100の全体または一部を移動させることによって行われてもよい。図3Eは、操縦可能または偏向可能なアンテナを備えるアブレーションデバイスの実施形態を示す。図3Eでは、アブレーションデバイス100は、制御可能に操縦可能または偏向可能であるアンテナ104を備える。したがって、アンテナ104は、アブレーションデバイス100全体を移動させることなく、種々の標的領域にアクセスすることができる。一実施形態では、図3Eのアブレーションデバイス100は、空洞または管腔に挿入される。そのような空洞または管腔の実施例は、男性尿路の複数部分、胆嚢、子宮および女性生殖管の他の部分、血管系の複数領域、腸および下部消化管の他の部分、胃および上部消化管の他の部分、肝臓および他の消化器官、肺、皮膚、粘膜、腎臓、生殖器官、関節、または他の器官、あるいは身体の軟組織の中の天然または人工的に作成された空洞または管腔を含むが、それらに限定されない。アンテナ104は、組織の第1の領域にアクセスするために設置され、組織の第1の領域を切除するために使用される。その後、アンテナ104は、組織の第2の領域にアクセスするために偏向され、組織の第2の領域を切除するために使用される。したがって、組織の複数の領域がアンテナ104によって切除されてもよい。アンテナ104を操縦または偏向するために使用されてもよい機構の実施例は、内部または外部引張ワイヤ、バルーン、膨張性構造、および直線または屈曲摺動可能スタイレットを含むが、それらに限定されない。直線状アンテナが図3Eおよび3Fで示されているものの、本明細書で開示されるアンテナ104のうちのいずれかは、図3Eおよび3Fのアブレーションデバイス100を構築するために使用されてもよい。一実施形態では、アンテナ104を1回以上再配置しながら、アブレーションデバイス100全体を再配置することなく、標的組織領域全体が切除される。例えば、子宮腔の中の少なくとも2つの位置にアンテナ104を設置した後に、頸部を通して子宮腔に挿入されるアブレーションデバイス100によって、子宮内膜全体が切除されてもよい。
図3Fは、複数の標的領域を切除するために再配置されるアブレーションデバイス100の実施形態を示す。図3Fでは、アブレーションデバイス100の大部分または全体が、複数の標的領域にアクセスするように再配置される。1つのそのような実施形態では、アンテナ104が、肝臓の表面上の第1の位置に配置され、肝臓の第1の領域を切除するために使用される。その後、アブレーションデバイス100が、肝臓の表面上の第2の位置にアンテナ104を設置するように移動させられ、アンテナ104が、肝臓の第2の領域を切除するために使用される。アブレーションデバイス100は、横に、前方または後方に、あるいは任意の他の好適な運動で移動させられてもよい。方法の実施形態では、アブレーションデバイス100は、組織の別の領域を切除するために、第1のアブレーション後に組織に再挿入される。例えば、アンテナ104は、第1の位置で肝臓の内側に挿入され、肝臓の内部の第1の領域を切除するために使用される。その後、アンテナ104は、肝臓から除去される。その後、アンテナ104は、第2の位置で肝臓の内側に再挿入され、肝臓の内部の第2の領域を切除するために使用される。別の実施例では、アブレーションデバイス100が、心臓腔に挿入され、アンテナ104が、心臓腔の第1の領域を切除して第1の損傷を作成するために使用される。その後、アンテナ104は、心臓腔の第2の場所に移動させられ、心臓腔の第2の領域を切除して第2の損傷を作成するために使用される。第1および第2の損傷は、重複または非重複であってもよい。重複損傷の場合、第1の損傷と第2の損傷とは、実質的に端から端まで、または辺から辺までの重複状態で重複してもよい。
図3G−3Hは、直線構成と屈曲構成との間で可逆的に変換させることができるアンテナを有する、マイクロ波デバイスの2つの構成を示す。図3Gでは、アンテナ104は、実質的に直線状である。アンテナ104の遠位領域は、引張ワイヤまたはテザーに接続される。テザーは、アブレーションデバイス100の外部に位置し、アブレーションデバイスシャフト上に位置する開口部を通過してもよい。開口部は、例えば、端から端までの管腔の開口部、急速交換管腔の開口部、押しつぶし可能な管腔の開口部、ループ等であってもよい。テザーの近位領域は、ユーザによって操作することができる。図3Hでは、屈曲力がアンテナ104に及ぼされる。この屈曲力は次に、アンテナ104を屈曲させ、図3H等の実質的に非直線の形状にさせる。図3Hでは、アンテナ104は、実質的に円形の閉ループ形状を有する。他の非直線の形状の実施例は、他の閉ループ形状、開ループ形状、1つ以上の屈曲または曲線を取り囲む形状等を含むが、それらに限定されない。屈曲力の解放時に、アンテナ104は、アンテナ104の弾性または超弾性によって図3Gの実質的に直線の形状に戻る。代替実施形態では、アンテナ104は、屈曲力の印加時に実質的に直線構成に可逆的に変換される非直線構成を有する。
図3Gおよび3Hのアブレーションデバイスは、小さい局部的な「点」損傷、直線状損傷、領域損傷、および容量損傷等の種々の損傷を作成するために使用されてもよい。例えば、図3Iは、図3Gおよび3Hのアブレーションデバイスを使用して、組織上に小さい局部的な「点」損傷を作成するために使用される方法の実施形態を示す。図3Iでは、アンテナ104は、非直線構成である。アンテナ104の一部分は、組織と接触している。アンテナ104と組織との間の接触は、アンテナ104が組織に接触することを可能にすることに十分であるが、アンテナ104を歪曲するか、または平たくすることに十分ではない力で行われる。その後、「点」損傷を作成するために、エネルギーがアンテナ104によって組織に送達される。図3Jは、図3Gおよび3Hのアブレーションデバイスを使用して、組織上に直線状損傷を作成するために使用される方法の実施形態を示す。図3Jでは、アンテナ104は、非直線構成である。アンテナ104の一部分は、組織と接触している。アンテナ104と組織との間の接触は、アンテナ104と組織との間の接触面が実質的に直線状であるように、アンテナ104を歪曲するか、または平たくするのに十分な力で行われる。その後、実質的に直線状損傷を作成するために、エネルギーがアンテナ104によって組織に送達される。図3Kは、図3Gおよび3Hのアブレーションデバイスを使用して、組織上に環状損傷を作成するために使用される方法の実施形態を示す。図3Kでは、アンテナ104は、非直線構成である。アンテナ104の一部分は、組織と接触している。アンテナ104と組織との間の接触は、アンテナ104が実質的に組織表面の平面内にあるように行われる。その後、実質的に環状の損傷を作成するために、エネルギーがアンテナ104によって組織に送達される。アブレーション時間、アブレーション電力等の種々のパラメータが、所望の臨床成果を達成するように、本明細書で説明される方法のうちのいずれかで変更または操作されてもよい。マイクロ波エネルギーは、連続モードまたは不連続モードで送達されてもよい。図3Kの実施形態では、マイクロ波エネルギーは、アンテナ104に直接隣接する組織の領域が切除されるように送達される。これは、図3Kに示されるような環状損傷を作成する。図3Lは、図3Gおよび3Hのアブレーションデバイスを使用して、組織上に円形損傷を作成するために使用される、方法の実施形態を示す。図3Lでは、アンテナ104は、非直線構成である。アンテナ104の一部分は、組織と接触している。アンテナ104と組織との間の接触は、アンテナ104が実質的に組織表面の平面内にあるように行われる。その後、実質的に円形の損傷を作成するように、エネルギーがアンテナ104によって組織に送達される。図3Lの実施形態では、マイクロ波エネルギーは、アンテナ104に隣接する組織の円形領域が切除されるように、図3Kの方法よりも長い時間にわたって、および/または高い電力で送達される。この円形損傷は、組織の表面に制限されてもよい。代替として、より高いアブレーション電力またはより長いアブレーション時間により、損傷が、組織の中へ十分深く延在して、容量損傷を作成してもよい。
アンテナ104の形状は、標的組織の2つの異なる領域を標的にするように、手技中に修正されてもよい。例えば、図1Cのアンテナ104は、組織(例えば、肝臓、脳等)の内側に挿入され、器官の奥深くの組織を切除するために使用されてもよい。これを達成するために、アンテナ104(例えば、図1Cのアンテナ104)は、誘電材料でできている十分に剛性の外側シースの内側に封入されたままで挿入されてもよい。同じ手技で、アンテナ104は、図3Kおよび3Lで示されるように屈曲または曲線であり、その後、器官の表面を切除するために使用されてもよい。これは、深部組織を切除するための1つのデバイスおよび表面組織を切除するための1つのデバイスといった、2つの別個のデバイスの必要性を排除する。これは次に、手技の複雑性および費用を削減する。
図4Aおよび4Bは、組織を切除する2つの方法の実施形態を示し、アンテナの放射要素および成形要素は、組織の対向側に配置される。図4Aでは、アブレーションデバイス100が、管腔130または体腔に導入される。そのような管腔130または体腔の実施例は、男性尿路の複数部分、胆嚢、子宮および女性生殖管の他の部分、血管系の複数領域、腸および下部消化管の他の部分、胃および上部消化管の他の部分、肝臓および他の消化器官、肺、皮膚、粘膜、腎臓、生殖器官、関節、または他の器官、あるいは身体の軟組織の中の天然または人工的に作成された空洞または管腔を含むが、それらに限定されない。アンテナ104は、放射要素112および成形要素114が標的組織の対向側に配置されるように、標的組織の付近に設置される。図4Aでは、放射要素112が管腔130の中に位置する一方で、成形要素114は管腔130の外側に位置する。アンテナ104は、管腔130の壁の一部分を切除するために使用される。成形要素114は、管腔130の壁の組織の内側に位置してもよく、または図4Aに示されるように、管腔130の外側の場所まで、天然または人工的に作成された開口部を通過させられてもよい。成形要素114は、マイクロ波場が放射要素112と成形要素114との間の領域内に集中させられるように、放射要素112によって放出されるマイクロ波場を成形する。放射要素112と成形要素114との間の領域中のこの集中したマイクロ波場は、組織を切除するために使用される。図4Bでは、成形要素114が管腔130の中に位置する一方で、放射要素112は管腔130の外側に位置する。
図4Cおよび4Dは、アンテナとマイクロ波遮蔽体または反射体との間に位置する組織を切除する2つの方法の実施形態を示す。図4Cは、アンテナとマイクロ波遮蔽体または反射体との間に位置する、子宮の壁の中の組織を切除する方法の実施形態を示す。図4Cでは、アンテナ104は、子宮腔の内側に導入される。アンテナ104は、アンテナ104に隣接する組織を除去するために使用されるマイクロ波場を生成する。図4Cでは、アンテナ104は、子宮腔の中でナビゲートされ、切除される標的組織に隣接して配置される。そのような標的組織の実施例は、子宮筋腫、癌病変、腺筋症、ポリープ、および子宮内膜の複数部分を含むが、それらに限定されない。さらに、図4Cでは、マイクロ波反射体または遮蔽体132は、子宮の外面上、すなわち、子宮漿膜の表面上に配置される。マイクロ波反射体または遮蔽体132は、子宮の外面に到達するあらゆるマイクロ波エネルギーを遮蔽または反射するために使用される。マイクロ波反射体または遮蔽体132は、伝導性または誘電材料、あるいはそれらの組み合わせでできていてもよい。これは、組織の巻き添え損傷の危険性を低減することによって、手技の安全性を増加させる。マイクロ波反射体または遮蔽体132は、腹腔鏡切開を通して、経膣的に、開腹術を介して、または子宮の表面上にデバイスを導入するための当技術分野で公知の他の方法を介して導入されてもよい。代替実施形態では、アンテナ104およびマイクロ波反射体または遮蔽体132の位置が交換される。この実施形態では、マイクロ波反射体または遮蔽体132は、アンテナ104の一部ではない。
図4Dは、図4Cの方法と同様である、子宮の壁の中の組織を切除する方法の実施形態を示す。しかしながら、図4Dでは、マイクロ波反射体または遮蔽体132は、経膣的アプローチを介して所望の位置に導入される。マイクロ波反射体または遮蔽体132は、外側導体106等の同軸ケーブル102の1つ以上の部分に電気的に接続されてもされなくてもよい。この実施形態では、マイクロ波反射体または遮蔽体132は、アンテナ104の一部であってもなくてもよい。図4Cの方法と同様に、アンテナ104およびマイクロ波反射体または遮蔽体132の位置が交換されてもよい。解剖学的空洞または管腔あるいは組織容量等の他の解剖学的領域を治療するために、図4Cおよび4Dに図示された方法と同様の方法が使用されてもよい。1つのそのような実施形態では、アンテナ104が、心臓内の場所に配置され、マイクロ波反射体または遮蔽体132が、心臓周囲の場所に配置され、逆もまた同様である。マイクロ波反射体または遮蔽体132は、伝導性または誘電材料、あるいはそれらの組み合わせでできていてもよい。1つのアンテナ104の実施形態では、成形要素114が、マイクロ波反射体または遮蔽体132としての役割を果たしてもよい。
図5Aは、プリント基板上に構築されたアンテナの一部分の実施形態を示す。図5Aでは、アンテナ104の一部分は、剛性または可撓性の略平面のプリント基板上にプリントされている。本明細書の実施形態のうちのいずれかでは、アンテナ104の全体または複数部分が、1つ以上の剛性または可撓性の平面または平面プリント基板上にプリントされてもよい。
本明細書で開示されるデバイスおよび方法ならびにそれらの修正は、組織の最小侵襲性または侵襲性治療中に使用されてもよい。例えば、図6Aは、組織の容量を切除するように適合される放射要素および複数の成形要素を備える3次元アンテナを有するアブレーションデバイスの実施形態を示す。図6Aでは、アブレーションデバイス100は、実質的に直線状の放射要素112を備える、アンテナ104を備える。アンテナ104はさらに、複数の成形要素114を備える。図6Aでは、4つの成形要素114は、同一であり、放射要素112の周囲に対称的に配設される。アンテナ104の実施形態は、1〜10個の成形要素114によって設計されてもよい。成形要素114は、放射要素112の周囲に対称的または非対称的に配設されてもよい。成形要素114は、同一であってもなくてもよい。図6Aでは、各成形要素114は、細長く、屈曲したまたは角度付き領域を備える。図6Aでは、各成形要素は、同軸ケーブル102または他の伝送線の外側導体に電気的に接続される。放射要素112および/または成形要素114の遠位端は、鋭いまたは貫通性先端を備えてもよい。一実施形態では、成形要素114は、アブレーションデバイス100から延在する格納式つめ構造である。一実施形態では、放射要素112の設計は、長さ14mmのモノポールアンテナと同様である。図6Aでは、成形要素114は、放射要素112と成形要素114との間の容量の中に電磁場を成形し、増進させる。これは、放射要素112と成形要素114との間に大きい容量損傷を作成する。容量損傷は、図6Bおよび6Cから分かるように、実質的に成形要素114の範囲に限定される。さらに、成形要素114は、そうでなければ同軸ケーブル102または他の伝送線の外側導体の外壁上で誘発される、漏洩電流を低減する。
マイクロ波エネルギーが伝送線を通して図6Aのアンテナ104に送達されると、第1のマイクロ波場が放射要素112によって放出される。第1のマイクロ波場は、成形要素114と相互作用する。この相互作用は、成形要素114上で漏洩電流を誘発する。漏洩電流は次に、第2のマイクロ波場を作成する。第1のマイクロ波場および第2のマイクロ波場はともに、放射要素112のみを備えるアンテナ104によって生成される成形されていないマイクロ波場よりも臨床的に有用である、アンテナ104の独特の成形されたマイクロ波場を産生するように結合する。したがって、元のマイクロ波場は、成形要素114の設計によって再分配される。成形要素114単独では、アンテナとして機能することができず、むしろ、成形要素114は、臨床的に向上したマイクロ波場を産生するように放射要素112によって放出される電磁場またはマイクロ波場を成形または再分配する。さらに、放射要素112と成形要素114との組み合わせは、アンテナ104の電力集中を向上させる。
成形要素114のマイクロ波効果は、図2Eを図6Bと比較することによって分かる。成形要素114がない場合、図6Aのアンテナ104は、図2Bに示されたものと同様のモノポールアンテナの役割を果たす。したがって、図2Bは、成形要素114によって成形されていない第1の非成形場を示す。アンテナ104が、図6Aに示されるような成形要素114を備える場合、アンテナは、図6Bに示されるような成形されたマイクロ波場を生成する。
最小侵襲性手技の実施形態では、アンテナ104は、皮膚の小さい穿刺創傷を通して患者の身体に挿入される。その後、アンテナ104は、つめ状成形要素114によって取り囲まれた容量が、標的組織を取り囲むように配備される。例えば、癌治療について、標的組織は、腫瘍または癌細胞を伴う組織である。アンテナ104の配備の程度は、異なる標的組織サイズ(例えば、異なる腫瘍サイズ)に合うように調整可能であってもよい。1つのそのような実施形態では、成形要素114の位置を制御するように、1本以上の引張ワイヤまたはテザーが成形要素114に取り付けられる。別の実施形態では、成形要素114は、事前成形され、Nitinol等の形状記憶特性を伴う材料でできている。成形要素114は、組織に挿入する前に、押しつぶされた構成で、カテーテルまたは管状構造の内側に引っ込められる。挿入手技中に健康な組織への外傷を低減するために、好ましくは薄型カテーテルまたは管状構造が使用される。いったんカテーテルまたは管状構造の一部分が標的組織の内側に挿入されると、成形要素114および放射要素112が配備される。成形要素114は、カテーテルまたは管状構造からそれらを延在させることによって、押しつぶされていない事前設定された形状に配備される。図6Aのアンテナ104は、種々の手技に使用することができるものの、癌(例えば、肝臓および肺癌)および良性腫瘍(例えば、子宮筋腫)で見られるもの等の固形腫瘍を切除するために特に適している。
図6Bおよび6Cは、図6Aのアンテナの実施形態のシミュレートされたSARプロファイルの側面図および上面図を示す。SARプロファイルは、肝臓でのアブレーションをシミュレートするために、COMSOL Multiphysicsパッケージを使用して、2.45GHzにおいてシミュレートされた。図6Bおよび6Cは、アンテナ104によって作成された容量損傷が、実質的に成形要素114の範囲に限定されることを図示する。また、図6Bおよび6Cは、マイクロ波場がアンテナ104全体を容量的に包むことも示す。
図6Dおよび6Eは、図6Aのアンテナの実施形態の熱シミュレーションの側面図および上面図を示す。黒い区域の最外面は、定常状態で約28mmの直径または幅および約22mmの縦長さを有する50℃の等位面である。したがって、アンテナ104は、約28mmの直径または幅および約22mmの縦長さを有する損傷を形成することが可能である。50℃の等位面は、60℃の等位面(黒い区域と濃い灰色の区域との間の境界)を取り囲み、それは次に、70℃の等位面(濃い灰色の区域と薄い灰色の区域との間の境界)を取り囲み、それは次に、80℃の等位面(薄い灰色の区域と白い灰色の区域との間の境界)を取り囲む。
図6Fおよび6Gは、図6Aのアンテナと同様のアンテナの実施形態の0.915GHzにおける、シミュレートされたSARプロファイルの側面図および上面図を示す。SARプロファイルは、肝臓でのアブレーションをシミュレートするために、Ansoft HFSSパッケージを使用して、0.915GHzでシミュレートされた。図6Fおよび6Gの放射要素112は、直線状であり、有効波長の約4分の1の長さを有する。図6Fおよび6Gは、容量損傷が、実質的に成形要素114の範囲に限定されることを図示する。
図6Fおよび6Gに示されたアンテナ104は、複数の成形要素114を有する実質的に直線状の放射要素112を備える。図6Fおよび6Gに示された4つの成形要素114は、同一であり、放射要素112の周囲に対称的に配設される。アンテナ104の実施形態は、放射要素112の周囲に対称的または非対称的に配設される、1〜10個の成形要素114によって設計されてもよい。成形要素114は、同一であってもなくてもよい。図6Fおよび6Gでは、各成形要素は、細長く、2つの屈曲したまたは角度付き領域を備える。図6Aの実施形態と同様に、各成形要素は、同軸ケーブル102の外側導体に電気的に接続される。放射要素112および/または成形要素114の遠位端は、鋭いまたは貫通性先端を備えてもよい。一実施形態では、成形要素114は、アブレーションデバイス100から延在する格納式つめ構造である。図6Fおよび6Gでは、成形要素114は、放射要素112と成形要素114との間の空間中に電磁場を増進させる。これは、放射要素112と成形要素114との間に大きい容量損傷を作成する。容量損傷は、図6Fおよび6Gに示されるように、実質的に成形要素114の範囲に限定される。さらに、成形要素114は、そうでなければ同軸ケーブル102の外側導体の外壁上において誘発される漏洩電流を低減する。
図6Fおよび6Gでは、放射要素112は、長さ約34mmの細長い導体を備える。細長い導体の遠位端は、細長い導体と伝導接触している金属の管状キャップによって覆われている。伝導性キャップの外径は、約0.8mmであり、伝導性キャップの長さは、約6mmである。伝導性キャップは、伝導性キャップの近位端と同軸ケーブルの遠位端との間の距離が約28mmであるように配設される。放射要素112全体が、誘電材料の層で覆われている。各成形要素114は、近位屈曲部と、遠位屈曲部とを備えている。近位屈曲部は、放射要素112の長さに沿って測定される、約15mmの縦方向距離を置いて配設される。放射要素112の長さに沿って測定される、近位屈曲部と遠位屈曲部との間の縦方向距離は、約15mmである。放射要素112の長さに沿って測定される、遠位屈曲部と成形要素114の遠位端との間の縦方向距離は、約4mmである。したがって、放射要素112の長さに沿って測定される、各成形要素114の全縦長さは、約34mmである。成形要素114によって形成される構造の全直径は、約30mmである。図6Fおよび6Gのアンテナ104の使用は、図6Aのアンテナ104と同様である。
図6Hは、図6Fおよび6Gのアンテナを有するアブレーションデバイスのシミュレートされた反射減衰量を示す。シミュレートされた反射減衰量は、0.915GHzにおいて良好な整合(約−11.4dB)を示す。
図7Aは、身体組織を貫通し、腫瘍を切除するために使用される、実質的に直線状のアンテナの実施形態を示す。図7Aでは、アンテナ104は、螺旋状の放射要素112および実質的に直線状の成形要素114を有する図1Cのアンテナ104と同様である。しかしながら、図7Aのアンテナ104は、組織を貫通することに十分な機械的強度を有する。さらに、図7Aのアンテナ104は、遠位貫通性先端134を備える。アブレーションデバイス100の長さは、5cmから60cmに及んでもよい。アブレーションデバイス100は、開腹術または開胸術等の外科的切開を通して導入されてもよい。アブレーションデバイス100はまた、腹腔鏡または胸腔鏡器具用のポート等の手術器具ポートを通して導入されてもよい。アブレーションデバイス100は、遠位貫通性先端134を使用して皮膚を貫通し、標的組織の中へアンテナ104を前進させることによって、経皮的に導入されてもよい。そのような経皮的導入は、例えば、放射線誘導または視覚的あるいは内視鏡的誘導等の適切な誘導を用いて、肝臓または肺または子宮腫瘍を切除するために使用されてもよい。アンテナ104の薄型プロファイルは、健康な組織に過剰な損傷を引き起こすことなく、アンテナ104が、標的組織中の異なる領域においいて連続的に複数回導入されることを可能にする。複数のアブレーションデバイス100も、組織のより大きい領域を切除するために、標的組織に同時に導入されてもよい。
図8A−8Dは、静脈逆流疾患または静脈瘤を治療するための最小侵襲性治療の方法のステップを示す。この方法では、標的静脈の1つ以上の領域を加熱するために、マイクロ波デバイス100が使用される。一実施形態では、標的静脈の1つ以上の領域は、80℃〜85℃に及ぶ温度まで加熱される。この温度は、静脈の制御された加熱によって治療的線維性静脈閉塞を引き起こすために外来手技として実施されてもよい。線維性静脈閉塞は、内皮破壊、コラーゲン収縮、および静脈壁肥厚のうちの1つ以上によって引き起こされてもよい。図8Aでは、マイクロ波デバイス100は、小皮膚切開を通して標的静脈管腔に導入される。マイクロ波デバイス100は、標的静脈の管腔内の遠位領域に設置される。体内のマイクロ波デバイス100の導入および/またはナビゲーションは、好適な誘導モダリティを使用して誘導されてもよい。そのようなモダリティの実施例は、超音波撮像(例えば、二重超音波撮像)、透光、蛍光透視撮像、およびX線撮像を含むが、それらに限定されない。いったんアンテナ104が所望の位置に設置されると、アンテナ104は、マイクロ波エネルギーを標的静脈に送達するために使用される。その後、図8Bでは、アンテナ104は、図8Aの位置の近位にある位置で、標的静脈の中に設置される。いったんアンテナ104が所望の位置に設置されると、アンテナ104は、マイクロ波エネルギーを標的静脈に送達するために使用される。図8Aおよび8Bで治療される標的静脈の領域は、重複してもよい。この過程は、標的静脈が治療されるまで、図8Cおよび8Dに示されるように継続される。送達されたマイクロ波エネルギーは、静脈を加熱し、静脈を収縮させる。一実施形態では、マイクロ波デバイス100は、0.025”ガイドワイヤまたは0.035”ガイドワイヤあるいは0.014”ガイドワイヤ等のガイドワイヤ上を送達される。手技を制御するために、マイクロ波デバイス100および/または標的静脈上の1つ以上の場所での温度感知および/またはインピーダンス測定が使用されてもよい。そのような温度感知および/またはインピーダンス測定は、マイクロ波エネルギー送達の電力および/または時間を調整するために使用されてもよい。実質的に直線状のアンテナ104が図8A−8Dで図示されているが、本明細書で開示される好適なアンテナ104の実施形態のいずれかが使用されてもよい。例えば、図3Dの螺旋状アンテナ104が、この手技に使用されてもよい。1つのそのような実施形態では、アンテナ104、例えば、図3Dの螺旋状アンテナ104は、狭い開口部および管腔を通した挿入を容易にするために押しつぶし可能であり、標的静脈の内側でその形状を取り戻すように十分な弾性を有する。一実施形態では、アンテナ104の直径は、静脈管腔の直径よりも大きい。これは、アンテナ104の少なくとも一部分を、標的管腔の壁と物理的に接触させる。しかしながら、マイクロ波エネルギー送達は、標的組織との完璧な接触を必ずしも必要としない。よって、アンテナ104が標的静脈の一部分と接触しないときでさえも、アンテナ104がマイクロ波エネルギーを標的静脈のその部分に送達する、アンテナ104の実施形態が使用されてもよい。
図9Aおよび9Bは、腹圧性尿失禁(SUI)を治療するための内尿道括約筋の経尿道治療の方法を示す。図9Aでは、治療的コラーゲン変性を達成するために、マイクロ波エネルギーが内尿道括約筋に送達される。図9Aでは、アンテナ104を備えるマイクロ波デバイス100が、経尿道アプローチを介して泌尿器系に導入される。本明細書で開示される任意の好適なアンテナ104の設計が、図9Aおよび9Bの実施形態に使用されてもよい。一実施形態では、アンテナ104は、成形要素114を有するか、または有しないモノポールアンテナである。アンテナ104は、図9Aに示されるように、内尿道括約筋に近接するように設置される。アンテナ104は、同軸ケーブル102に対するアンテナ104の配向を変更するために、操縦または偏向モダリティを備えてもよい。一実施形態では、アンテナ104は、1本以上の引張ワイヤ等の操縦または偏向モダリティを備えるシースを通して導入される。この操縦または偏向モダリティは、泌尿器系の中の種々の点にアンテナ104を設置して、マイクロ波エネルギーを内尿道括約筋に送達するために使用されてもよい。マイクロ波デバイス100は、アンテナ104が同軸ケーブル102に対してある角度で配向されるように屈曲領域を備えてもよい。また、マイクロ波デバイス100は、泌尿器系の中の種々の点にアンテナ104をさらに設置して、マイクロ波エネルギーを内尿道括約筋に送達するように、図9Bに示されるようにねじられる、および/または遠位に前進させられる、および/または近位に引き出されてもよい。代替実施形態では、アンテナ104は、実質的に泌尿器系の管腔または通路の中心に設置され、標的組織とのアンテナ104の直接の物理的接触を伴わずに所望の標的組織を治療するために使用される。そのような実施形態では、第1の位置におけるアンテナ104を用いてマイクロ波エネルギーを一度だけ送達し、その後、第2の位置におけるアンテナ104を用いてマイクロ波エネルギーを再送達することによって、所望の臨床効果が得られてもよい。アンテナ104は、制御されたマイクロ波エネルギーを送達して、内尿道括約筋の1つ以上の領域中に制御された加熱を生じるために使用される。一実施形態では、この加熱は、内尿道括約筋において最小の細胞死があるか、または細胞死が全くないように、低温で実行される。加熱は、内尿道括約筋の中のコラーゲンを変性させる。この変性は、アンテナ104を再配置することによって複数の部位で実行されてもよく、またはアンテナ104を再配置することなく実行されてもよい。このコラーゲン変性は、高まった腹圧の効果に対して増加した抵抗を有し、次にSUI発作を低減または排除する、より引き締まった組織を作成するために使用されてもよい。本明細書で開示される方法およびデバイスのうちのいずれかは、治療されている組織の表面を冷却するために、表面冷却モダリティとともに使用されてもよい。これは、組織の深部領域で所望の治療効果を生じるようにマイクロ波エネルギーが送達されている間、組織の表面が比較的不変のままとなることを可能にする。例えば、図9Aでは、内尿道括約筋等の組織の深部領域にマイクロ波エネルギーを送達している間、尿路の管腔の表面を保護するために表面冷却モダリティが使用されてもよい。
図9Aにおいて、方法は、外来または診療室環境において、局所麻酔下で実施することができる。そのような方法は、伝統的なケアに失敗した女性、および外科的療法を所望しない、または外科的療法に適格ではない女性において、過可動性に起因するSUIを治療するために特に有用である。
本明細書で開示されるデバイスは、薄型(6F未満)可撓性デバイスとして設計されてもよいため、デバイスは、男性および女性患者の両方においてSUIを治療するために使用されてもよい。従来技術におけるコラーゲン変性のための剛性でより大きいプロファイルのデバイスは、短い直線の尿道のために女性での使用に制限される。しかしながら、男性患者でのそのような従来技術のデバイスの使用は、男性の尿道がより長く、あまり直線ではないので困難である。
組織の制御された加熱を引き起こすためのマイクロ波エネルギーの送達を伴う、図9Aおよび9Bに示されたものと同様の方法は、また、解剖学的管腔の他の障害を治療するために使用されてもよい。解剖学的管腔のそのような障害の実施例は、胃食道逆流性疾患および便失禁を含むが、それらに限定されない。一実施形態では、本明細書で開示されるデバイスまたは方法は、便失禁、GERD、尿失禁等の症状を治療するための組織収縮を引き起こすために、深部組織加熱に使用されてもよい。そのような深部加熱は、管腔または他の体腔内に配置されたデバイスを用いて実行されてもよい。
図9Cは、設置要素と協働するエネルギー送達デバイスによって腹圧性尿失禁(SUI)を治療するための内尿道括約筋の経尿道治療の方法の実施形態を示す。図9Cでは、アンテナ104は、図9Aおよび9Bのアンテナ104と同様である。マイクロ波デバイス100のシャフトは、同軸ケーブル102等のマイクロ波伝送線と、1つ以上のデバイスまたは流体が通過させられてもよい管腔とを備える。図9Cでは、マイクロ波デバイス100は、アンテナ104が内尿道括約筋に近接して設置されるように、経尿道アプローチによって導入される。その後、設置デバイス138が、シャフト102の管腔を通過させられる。その後、設置デバイス138の遠位領域に位置する設置要素140が、膀胱の中で配備される。図9Cに示された実施形態では、その配備構成である設置要素140は、その配備構成である設置要素140が膀胱の中にとどまるように、尿道の幅より大きいが、膀胱の幅よりも小さい幅を有する。その後、設置デバイス138は、設置要素140が内尿道口に対して設置されるように近位方向に引かれる。したがって、設置デバイス138が引かれるときの力の経験を感じることによって、なんらの画像診断法も使用することなく、内尿道口の場所を容易に決定することができる。ついで、内尿道口に対して設置された設置要素140は、アンテナ104を正確に所望の位置に設置するために使用される。一実施形態では、アンテナ104は、組織と設置要素140との間に位置する。この実施形態では、設置要素140は、組織にアンテナ104を押し付けるために使用されてもよい。設置要素140は、組織の表面を冷却するように冷却モダリティを備えてもよい。設置要素140は、押しつぶされた薄型構成から配備されたより大きいプロファイルの構成まで制御可能に配備可能である。したがって、設置要素140は、非柔軟、半柔軟、または柔軟であるバルーン、傘状構造、弾性または超弾性あるいは形状記憶構造、1つ以上の屈曲可能なスプラインを備える構造等であってもよい。アンテナ104は、エネルギーを標的組織中の複数の部位に送達するために、必要であれば再配置されてもよい。手技が完了した後に、設置要素は、押しつぶされた薄型構成に変換され、マイクロ波デバイス100および設置デバイス138は、両方とも生体構造から除去される。
図9Dは、より大量の組織にエネルギーを同時に送達するアンテナを伴うエネルギー送達デバイスによって、腹圧性尿失禁(SUI)を治療するための内尿道括約筋の経尿道治療の方法の実施形態を示す。図9Dでは、アンテナ104は、放射要素112と、1つ以上の成形要素114とを備える。一実施形態では、アンテナ104は、内尿道括約筋の大部分を包むマイクロ波場を生成するために使用される。アンテナ104は、第1のエネルギー送達後に必要であれば再配置されてもよいが、この実施形態では、アンテナ104は、単一の部位からのエネルギー送達を介して所望の臨床効果を生じるように設計されている。
図10Aは、エネルギー送達デバイスによって良性前立腺肥大(BPH)を治療するための方法の実施形態を示す。BPHは、中年および高齢の男性で見られる前立腺の良性肥大、すなわち、前立腺のサイズの増加である。肥大した前立腺は、尿道を圧迫し、尿道の部分閉塞、または時には事実上完全な閉塞を引き起こす。これは次に、尿の正常な流れを妨害する。したがって、BPHは、排尿困難の症状、頻尿、尿路感染の増加した危険性、および尿閉につながる場合がある。BPHは、前立腺の容量を低減することによって治療され得る。図10Aは、前立腺の容量を低減するために前立腺組織を切除する方法を図示する。図10Aでは、経直腸的超音波プローブ142が、生体構造および/またはマイクロ波デバイス100を可視化するために使用される。マイクロ波デバイス100のアンテナ104が、直腸の壁を通して前立腺組織に挿入される。マイクロ波デバイス100の遠位端は、切断または貫通刃を備えてもよい。BPH治療手技は、生検針等の生検デバイスをマイクロ波デバイス100と交換することによって、経直腸的前立腺生検手技と同様であってもよい。
1つの方法の実施形態では、直腸部が洗浄され、麻酔ゲルが塗布される。その後、細い超音波プローブ142が直腸に挿入される。一実施形態では、超音波プローブ142は、5.0から7.5MHzのトランスデューサを備える。次いで、前立腺を撮像するために、経直腸的超音波検査法が使用される。超音波検査法は、マイクロ波デバイス100の貫通の部位、麻酔注射で麻酔をかけられる必要がある1つ以上の領域、およびアブレーションの1つ以上の部位のうちの1つ以上を識別するために使用される。その後、経直腸的超音波検査法は、第1の所望の場所にアンテナ104を誘導するために使用される。その後、アブレーションエネルギーがアンテナ104によって送達される。アンテナ104を再配置し、マイクロ波エネルギーを送達することによって、前立腺の単一の領域または複数の領域が切除されてもよい。切除される前立腺の領域の数および場所を決定するためのプロトコルは、前立腺針生検のための前立腺の領域の数および場所を決定するためのプロトコルと同様であってもよい。例えば、5つの領域、8つの系統的コアテンプレート、および11個の多重部位の生検プロトコルと同様のプロトコルが、前立腺を切除するために使用されてもよい。
図10Aのアンテナ104は、放射要素112と、1つ以上の成形要素114とを備えてもよい。代替として、1つ以上の成形要素114が、アンテナ104によって生成されるマイクロ波エネルギープロファイルを成形するために、別個のデバイスまたは別個の導入経路を通して導入されてもよい。1つのそのような実施形態では、アンテナ104は、放射要素112を備え、1つ以上の成形要素114が尿道管腔に導入されている間に、経直腸的に前立腺に導入される。別のそのような実施形態では、アンテナ104は、放射要素112を備え、1つ以上の成形要素114が経直腸的に前立腺に導入される別個のデバイス上に位置している間に、経直腸的または経尿道的に前立腺に導入される。マイクロ波デバイス100は、超音波プローブ142に機械的に連結されてもよく、または超音波プローブ142から機械的に独立していてもよい。
代替的な方法の実施形態では、前立腺の1つ以上の領域が、尿道を通して、または肛門と陰嚢(会陰)との間の空間を通してアクセスされてもよい。
図10Bは、尿道管腔を通して挿入されたエネルギー送達デバイスによって良性前立腺肥大(BPH)を治療するための方法の実施形態を示す。図10Bは、前立腺の容量を低減するために前立腺組織を切除する方法を図示する。図10Bでは、経直腸的超音波プローブが、生体構造および/またはマイクロ波デバイス100を可視化するために使用される。マイクロ波デバイス100のアンテナ104が、尿道の壁を通して前立腺組織に挿入される。マイクロ波デバイス100の遠位端は、切断または貫通刃を備えてもよい。マイクロ波デバイス100の1つ以上の領域は、屈曲したまたは曲線状であってもよく、あるいは、前立腺組織へのアンテナ104の挿入を容易にするために制御可能に偏向可能であってもよい。
1つの方法の実施形態では、超音波検査法が、マイクロ波デバイス100の貫通の部位、麻酔注射で麻酔をかけられる必要がある1つ以上の領域、およびアブレーションの1つ以上の部位のうちの1つ以上を識別するために使用されてもよい。経直腸的超音波検査法、膀胱鏡検査法、または蛍光透視法等の画像診断法が、第1の所望の場所にアンテナ104を誘導するために使用されてもよい。その後、アブレーションエネルギーがアンテナ104によって送達される。アンテナ104を再配置し、マイクロ波エネルギーを送達することによって、前立腺の単一の領域または複数の領域が切除されてもよい。
図10Bのアンテナ104は、放射要素112と、1つ以上の成形要素114とを備えてもよい。代替として、1つ以上の成形要素114が、アンテナ104によって生成されるマイクロ波エネルギープロファイルを成形するために、別個のデバイスまたは別個の導入経路を通して導入されてもよい。1つのそのような実施形態では、アンテナ104は、放射要素112を備え、1つ以上の成形要素114が経直腸的に導入されている間に、経尿道的に前立腺に導入される。別のそのような実施形態では、アンテナ104は、放射要素112を備え、1つ以上の成形要素114が経尿道的に前立腺に導入される別個のデバイス上に位置している間に、経尿道的に前立腺に導入される。
図10Cは、尿道管腔を通して挿入されたエネルギー送達デバイスによって良性前立腺肥大(BPH)を治療するための方法の実施形態を示す。図10Cは、前立腺の容量を低減するために前立腺組織を切除する方法を図示する。図10Cでは、アンテナ104の周りの尿道を押しつぶすために、尿道の管腔の内側に吸引が印加される。したがって、尿道管腔壁が、アンテナ104に接触するか、またはアンテナ104に近接する。その後、所望の治療成果を達成するために、マイクロ波エネルギーがアンテナ104によって送達される。したがって、方法は非侵襲的である。図10Cでは、アンテナ104は、膀胱鏡シースを通して、または単純に膀胱鏡とともに共に導入されて、膀胱鏡的誘導下において導入されてもよい。図10Cでは、経直腸的超音波プローブが、生体構造および/またはマイクロ波デバイス100を可視化するために使用されてもよい。一実施形態では、マイクロ波デバイス100が、尿道前立腺部の内側の単一の場所に設置され、マイクロ波エネルギー送達が、この単一の場所から実行される。代替として、アンテナ104は、尿道前立腺部の内側で1回以上再配置されてもよい。マイクロ波デバイス100の1つ以上の領域は、屈曲したまたは曲線状であってもよく、あるいは制御可能に偏向可能であってもよい。
図11A−11Cは、胃食道逆流性疾患(GERD)を治療するために使用される、操縦可能または偏向可能なアンテナを有するマイクロ波デバイスの使用を図示する。図11A−11Cでは、マイクロ波デバイス100の上、またはマイクロ波デバイス100を取り囲むシースの上に位置する操縦または偏向機構に係合することによって、同軸ケーブル102の遠位領域の配向に対するアンテナ104の配向を変更することができる。この操縦または偏向機構(例えば、1つ以上の引張ワイヤ)は、消化器系の中の種々の点にアンテナ104を設置して、マイクロ波エネルギーを胃食道接合部の平滑筋に送達するために使用されてもよい。図11Aでは、マイクロ波デバイス100、例えば、アンテナ104を備えるマイクロ波カテーテルが、経食道的アプローチを介して胃に導入される。本明細書で開示される任意の好適なアンテナ104の設計が、図11Aの実施形態に使用されてもよい。一実施形態では、アンテナ104は、成形要素114を伴うか、または伴わないモノポールアンテナである。別の実施形態では、図11Aのアンテナ104は、図1Cのアンテナ104と同様である。マイクロ波デバイス100は、患者が意識下にある鎮静状態で、内視鏡的誘導下において胃に導入されてもよい。アンテナ104は、図11Aに示されるように、胃食道接合部の平滑筋に近接するように設置される。また、マイクロ波デバイス100は、消化器系の中の種々の点にアンテナ104をさらに設置して、マイクロ波エネルギーを胃食道接合部の平滑筋に送達するように回転させられる、および/または遠位に前進させられる、および/または近位に引き出されてもよい。アンテナ104は、制御されたマイクロ波エネルギーを伝達して、胃食道接合部における粘膜より下側に熱損傷を作成するために使用される。これは次に、過渡的で不適切な下部食道括約筋(LES)の弛緩を阻害することによって逆流を制御すること、食後のLES圧力を増加させること、LES柔軟性を減少させることといった、臨床効果のうちの1つ以上を生じるために使用されてもよい。マイクロ波エネルギーをLES等の深部組織に送達しながら、胃腸管の粘膜の表面を保護するために、表面冷却モダリティが使用されてもよい。
図11Bでは、アンテナ104は、胃の大弯における胃食道接合部の平滑筋に近接する第2の場所まで移動させられる。これは、マイクロ波デバイス100の上、またはマイクロ波デバイス100を取り囲むシースの上の操縦または偏向機構に係合すること、マイクロ波デバイス100を回転させること、マイクロ波デバイス100を遠位に前進させること、およびマイクロ波デバイス100を近位に引き出すことのうちの1つ以上によって、行われてもよい。図11Cでは、アンテナ104は、胃の小弯における胃食道接合部の平滑筋に近接する第3の場所まで移動させられる。これは、マイクロ波デバイス100の上、またはマイクロ波デバイス100を取り囲むシースの上の操縦または偏向機構に係合すること、マイクロ波デバイス100を回転させること、マイクロ波デバイス100を前進させること、およびマイクロ波デバイス100を近位に引き出すことのうちの1つ以上によって、行われてもよい。したがって、アンテナ104は、胃腸管の中の複数の場所を治療してGERDを治療するために使用されてもよい。
図12Aは、皮膚の審美的外観を向上させるために表面冷却モダリティとともにアンテナを使用する方法の実施形態を示す。図12Aでは、アンテナ104は、マイクロ波エネルギーを皮膚に送達して、1つ以上の皮膚層を加熱する。この加熱は、最小の細胞死があるか、または細胞死が全くないように、低温で実行され得る。図12Aに示された実施形態では、アンテナ104は、皮膚に直接接触しない。本明細書で開示されるアンテナ104の種々の設計が、図12Aの方法に使用されてもよい。アンテナ104は、特定の用途に合った好適な断面を有してもよい。例えば、アンテナ104は、0.5平方cmから9平方cmに及ぶ断面積を伴って設計されてもよい。アンテナ104は、図1Cに示されるように直線状であってもよく、または図3系列に示されるように屈曲または曲線構成であってもよい。マイクロ波エネルギーの任意の好適な周波数が、この用途および本明細書で開示される任意の他の用途に使用されてもよい。皮膚の表面を冷却して、表面皮膚層への損傷の所望の防止のために、表面冷却モダリティ144が使用される。好適な表面冷却モダリティ144の実施例は、冷却流体、ゲル、または他の適合構造で膨張させられる膨張性構造、および皮膚表面上で1つ以上の流体を循環させるように設計される構造を含むが、それらに限定されない。一実施形態では、表面冷却モダリティ144は、マイクロ波エネルギーの通過を妨害しない。したがって、表面冷却モダリティ144は、循環する無極性の冷却流体で膨張させられる膨張性バルーンであってもよい。アンテナ104は、表皮を保護しながら皮膚の深層の容量加熱のために使用されてもよい。これは、皮膚を平滑にすること、皮膚を引き締めること、および皮膚の輪郭を形成することのうちの1つ以上の効果を非侵襲的に生じさせるために使用されてもよい。この方法はまた、セルライトの外観を低減するために使用されてもよい。この方法はまた、大腿および臀部について皮膚のえくぼ形成を低減するために使用されてもよい。一実施形態では、マイクロ波エネルギーは、真皮および皮下組織を加熱して、コラーゲン原線維の収縮を引き起こすために使用される。この後には、所望の審美的効果を達成するように、2次コラーゲン合成および再形成が続いてもよい。圧迫帯が、治療後に患者によって装着されてもよい。治療は、1回の治療セッションまたは複数の治療セッションで実行されてもよい。各治療セッションでは、複数の千鳥状の(staggared)通路、複数の非千鳥状の(non−staggared)通路、または単一の通路でマイクロ波エネルギーを送達することによって、皮膚の表面が治療されてもよい。
本明細書で開示される種々のアンテナの実施形態は、種々の電気生理学的症状(例えば、心房細動、心室頻拍、徐脈、粗動、および他の不整脈)を治療するため、ならびに、非電気生理学的症状を治療するために、心房または心室の壁、弁、および弁を包囲する領域を含むが、それらに限定されない心臓構造を治療するための、アブレーションカテーテルを構築するために使用されてもよい。アンテナ104は、左心房の中で一連のアブレーションを作成して、心房細動を治療するために使用されてもよい。アンテナ104は、左心房の中で長い貫壁性損傷を作成するために使用されてもよい。左心房の中の損傷は、Maze手技を模倣するために使用されてもよい。アンテナ104は、肺静脈の周囲の種々の場所に設置され、肺静脈の電気生理学的隔離のために肺静脈の周囲の種々の場所を切除するために使用されてもよい。
平面アンテナ104のいくつかの実施形態も、本発明の範囲に含まれる。そのような平面アンテナ104は、平面または非平面組織領域を切除または別様に治療するために使用されてもよい。そのような平面アンテナ104は、略平面の配設で、単一または複数のスプライン、曲線、またはループを備えてもよい。平面アンテナ104は、肝臓、胃、食道等の器官の表面等の表面を切除するために使用されてもよい。例えば、図14Aは、子宮内膜アブレーションのために設計されたマイクロ波アブレーションデバイスの平面アンテナの図を示す。図14Aでは、マイクロ波アブレーションデバイス100は、伝送線の遠位端にあるアンテナ104において終端する伝送線(同軸ケーブル102等)を備える。一実施形態では、単一のマイクロ波信号が、同軸ケーブル102を通してアンテナ104に供給される。アンテナ104は、マイクロ波場を生成する。アンテナ104によって生成されるマイクロ波場の近接場は、子宮内膜アブレーションに使用される。図14Aでは、アンテナ104は、外側ループ112の形態の放射要素と、金属の中心ループ114の形態の成形要素とを備える。外側ループ112および中心ループ114は、生体構造の中で配備されると、相互に接触してもよい。一実施形態では、外側ループ112は、同軸ケーブル102の内側導体の継続である。中心ループ114は、外側ループ112によって放射されるマイクロ波場を成形または再分配する。外側ループ112と中心ループ114との間には、なんらの直接の電気伝導もないことに留意されたい。マイクロ波エネルギーが同軸ケーブル102を通してアンテナ104に送達されると、第1のマイクロ波場が外側ループ112によって放射される。第1のマイクロ波場は、中心ループ114と相互作用する。この相互作用は、中心ループ114上で漏洩電流を誘発する。漏洩電流は次に、第2のマイクロ波場を作成する。第1のマイクロ波場および第2のマイクロ波場はともに、外側ループ112のみを備えるアンテナ104によって生成される成形されていないマイクロ波場よりも臨床的に有用である、アンテナ104の独特の成形されたマイクロ波場を産生するように結合する。したがって、元のマイクロ波場は、中心ループ114の設計によって再分配される。中心ループ114単独では、アンテナとして機能することができず、むしろ、中心ループ114は、臨床的により有用である成形されたマイクロ波場を産生するように、外側ループ112によって放出される電磁場またはマイクロ波場を成形または再分配する。さらに、外側ループ112と中心ループ114との組み合わせは、アンテナ104の電力集中を向上させる。
一実施形態では、外側ループ112は鋭い角を有しない。外側ループ112の鋭い角は、波動場を鋭い角に近接して集中させ得る。一実施形態では、外側ループ112の角の最小曲率半径は、少なくとも0.5mmである。図14Aの実施形態では、外側ループ112の角領域154および156の曲率半径は、約1mm+/−0.3mmである。
一実施形態では、アンテナ104は、切除される人体器官の形状に実質的に近似する形状を有する。例えば、図14Aのアンテナは、子宮腔の形状に近接し、子宮内膜アブレーションに特に適しているほぼ三角形の形状を有する。アンテナ104の近位部分は、頸部に向かって方向付けられ、外側ループ112の角領域154および156は、卵管に向かって方向付けられる。しかしながら、以前に記述されているように、マイクロ波熱アブレーションは、必ずしも標的組織の全体との完璧な接触を必要とするわけではない。したがって、アンテナ104は、子宮内膜の全体または実質的に全体を切除することができる。子宮内膜全体は、単一のマイクロ波アンテナを有するアンテナ104による単一のアブレーションで切除することができる。したがって、アブレーション後のアンテナ104の再配置は必要とされない。これは、手技に必要とされる医師の技能の量を多大に低減する。さらに、複数のアンテナ104は、アブレーションデバイス100では必要とされない。単一の場所に設置される単一のアンテナ104が、子宮内膜の治療的に十分な量を切除することができる。これは、アブレーションデバイス100の設計を単純化する。
さらに、作業構成のアンテナ104は、略平坦かつ可撓性である。外側ループ112の平面は、中心ループ114の平面と実質的に平行である。したがって、子宮壁は、アンテナ104からわずかな力しか経験しない。これは次に、子宮壁の膨満を低減または排除し、それにより、患者の不快感を低減する。これは次に、さらなる麻酔の必要性を低減する。可撓性アンテナ104は、小管腔を通して押しつぶされた構成で容易に導入されてもよく、それにより、頸部拡張を排除または最小化する。これは、患者の不快感を劇的に低減し、その結果として、麻酔の必要性を有意に低減する。これは、局所麻酔下で医師の診療室において手技を実施することができるので、多大な臨床的利点を有する。
さらに、その配備構成における図14Aの平坦かつ可撓性のアンテナ104は、アンテナ104の遠位領域がアンテナ104の近位部分よりも幅広い、非外傷性遠位端を有する。これは、子宮の穿孔の危険性を低減する。アンテナの可撓性は、通路を歪曲する代わりに、導入中にアンテナ104が通路の自然な形状を成すことを可能にする。例えば、アンテナ104が子宮に経頸管的に挿入されると、アンテナ104は、膣、頸管、および子宮腔のうちの1つ以上を歪曲する代わりに、膣、頸管、および子宮腔を含む導入通路の形状を取得してもよい。
図14Aに示されるようなアンテナ104の配備構成の一実施形態では、同軸ケーブル102の遠位端から外側ループ112の遠位端まで外側ループ112に沿って測定される、外側ループ112の長さは、915MHz ISM帯域における有効波長の約4分の3である。有効波長は、アンテナを包囲する媒体、および外側ループ112上のアンテナ誘電体の設計に依存している。アンテナ誘電体の設計は、誘電体の種類および誘電体層の厚さ等の特徴を含む。外側ループ112の正確な長さは、良好なインピーダンス整合を得るために、外側ループ112の長さを同調した後に決定される。一実施形態での外側ループ112の長さは、100+/−15mmである。一実施形態では、配備された外側ループ112の幅は、40+/−15mmであり、同軸ケーブル102の軸に沿って測定される配備された外側ループ112の縦長さは、35+/−10mmである。図14Aに示された実施形態では、外側ループ112の遠位端158は、細長い誘電体部品160によって同軸ケーブル102の遠位端に機械的に接続される。
一実施形態では、外側ループ112の近位部分は、より剛性であり、遠位部分よりも大きい機械的強度を有するように設計されている。図14Aに示された実施形態では、これは、外側ループ112の近位部分上に同軸ケーブル102の元の誘電材料110を残すことによって達成されてもよい。代替実施形態では、これは、アンテナ誘電体の層によって外側ループ112の近位部分を被覆することによって達成される。
図14Aに示された実施形態では、外側ループ112の断面形状は、外側ループ112の長さ全体に沿って均一ではない。この実施形態では、外側ループ112の近位部分は、同軸ケーブル102の内側導体の継続である。この部分は、実質的に円形の断面を有する。外側ループ112の中間部分は、実質的に平坦または長円形あるいは長方形の断面を有する。中間部分は、配備構成で同軸ケーブル102の遠位領域と略垂直に配向されてもよい。外側ループ112の中間部分は、生体構造の中での配備後に、平面内で屈曲するように機械的に設計されている。これは次に、アブレーションデバイス100の最遠位領域が、非外傷性であり、かつ標的組織の生体構造に一致するように十分可撓性であることを確実にする。これは、子宮の中での外側ループ112の適正な配備に役立つ。一実施形態では、外側ループ112の中間部分は、同軸ケーブル102の内側導体の継続であり、平坦である。一実施形態では、外側ループ112の最遠位部分は、同軸ケーブル102の内側導体の継続であり、円形断面を有するように非平坦である。
外側ループ112の1つ以上の外面は、アンテナ誘電体116の1つ以上の層で覆われてもよい。中心ループ114の1つ以上の外面は、アンテナ誘電体116の1つ以上の層で覆われてもよい。外側ループ112の長さに沿ったアンテナ誘電材料の厚さおよび種類は、マイクロ波場の形状を最適化するように設計される。図14Aに示された一実施形態では、外側ループ112のあらゆる部分は、外側ループ112のいずれの金属表面も組織に曝露されないように、何らかのアンテナ誘電材料で覆われる。したがって、図14Aの実施形態では、外側ループ112は、組織の中へマイクロ波場を伝送することができるが、組織に電気を伝導することはできない。したがって、たとえ外側ループ112および中心ループ114が生体構造の中に配備されたときに、相互に物理的に接触し得ても、図14Aの実施形態においては、外側ループ112と中心ループ114との間には、なんらの電気伝導および伝導性経路もない。本明細書で開示される1つ以上の実施形態において、アンテナ誘電体として使用することができる誘電材料の実施例は、EPTFE、PTFE、FEP、および他のフッ素重合体、シリコーン、空気、PEEK、ポリイミド、シアノアクリレート、エポキシ、天然または人造ゴム、およびそれらの組み合わせを含むが、それらに限定されない。図14Aの実施形態では、外側ループ112の近位部分上のアンテナ誘電体116は、同軸ケーブル102の誘電体110の継続である。このアンテナ誘電体116の層の上に、より堅いアンテナ誘電体116の付加的な層があってもよい。図14Aの実施形態では、外側ループ112の中間部分上の誘電体は、含浸空気を伴うか、または伴わないシリコーン層、あるいは空気の層を取り囲むシリコーン管である。図14Aの実施形態では、外側ループ112の最遠位部分上の誘電体は、含浸空気を伴うか、または伴わないシリコーン層、あるいは空気またはEPTFEの層を取り囲むシリコーン管である。外側ループ112の任意の部分上のアンテナ誘導体の厚さは、外側ループ112の長さに沿って変化してもよい。さらに、外側ループ112の任意の部分上のアンテナ誘導体の断面は、対称でなくてもよい。アンテナ誘電体の種々の構成は、所望のアブレーションプロファイルを達成し、ならびに所望のインピーダンス整合または電力効率を達成するように設計されている。代替実施形態では、外側ループ112全体が、シリコーン誘電体で覆われる。1つのそのような実施形態では、外側ループ112の最遠位部分を被覆するために使用されるシリコーンの層は、外側ループ112の中間部分を被覆するために使用されるシリコーンの層より薄くてもよい。より薄いシリコーン誘電体は、通常は図14Aの外側ループ等の放射要素の最遠位部分に存在する、より低い波動場強度を補う。したがって、マイクロ波場は、外側ループ112の長さに沿ってより均一にされる。1つのデバイス実施形態では、外側ループ112は、金属材料でできており、外側ループ112の遠位領域の金属材料の円周は、外側ループ112の中間部分の金属材料の円周よりも大きい。これは、シリコーン誘電体を、外側ループ112の中間部分よりも遠位部分で伸張させる。これは次に、外側ループ112の中間部分よりも外側ループ112の遠位部分において、より薄い誘電体の層を生成する。別の実施形態では、外側ループ112全体が、均一な断面の1本の金属ワイヤでできている。この実施形態では、様々な厚さのシリコーン誘電体の管状断片が、外側ループ112を覆うために使用される。管状シリコーン誘電体は、シリコーン誘電体の層が、外側ループ112の遠位部分の周囲でより薄く、中間部分の周囲でより厚くなるように、外側ループ112を覆うために使用される。
図14Aにおいては、外側ループ112の形状は、中心ループ114の形状とは異なる。さらに、図14Aでは、外側ループ112および中心ループ114は、実質的に平面的であり、外側ループ112の平面は、中心ループ114の平面と実質的に平行である。さらに、図14Aでは、外側ループ112および中心ループ114の両方が非直線状である。
図14Bは、同軸ケーブル102の遠位端を通る図14Aのアブレーションデバイス100の断面を示す。図14Bでは、同軸ケーブル102の同一性は、外側導体106の遠位端で終端する。外側ジャケット118は、外側導体106の遠位端の近位で短い距離を置いて終端する。内側導体108、クラッディング120、および誘電材料110は、外側導体106の遠位端からアンテナ104の中へ遠位に延在する。中心ループ114の2つの近位端は、外側導体106上の2つの領域に電気的に接続される。一実施形態では、中心ループ114の2つの近位端は、外側導体106の遠位端上の直径に沿った正反対の領域に電気的に接続される。一実施形態では、中心ループ114の2つの近位端は、外側導体106の遠位端にはんだ付けされる。別の実施形態では、中心ループ114の2つの近位端は、外側導体106の遠位端にレーザ溶接される。中心ループ114の2つの近位端は、重ね継ぎおよび突き合わせ継ぎを含むがそれらに限定されない、種々の構成で、外側導体106の遠位端に接続されてもよい。代替実施形態では、中心ループ114の2つの近位端のうちの少なくとも1つは、外側導体106の遠位端に接続されない。例えば、中心ループ114の2つの近位端のうちの少なくとも1つは、外側導体106の遠位端の近位にある、外側導体106の領域に電気的に接続されてもよい。
方法の実施形態では、アブレーションデバイス100が子宮内膜アブレーションに使用されるときに、図14Aのアンテナ104は、子宮の中心でより集中し、副角領域に向かって、および頸部に向かってあまり集中しない実質的に均一のマイクロ波場を生成する。したがって、アンテナ104によって生成されるアブレーションの深さは、子宮の中心でより深く、副角領域に向かって、および頸部に向かってあまり深くない。そのようなプロファイルが、向上した安全性および効率のために臨床的に所望される。一実施形態では、アブレーションプロファイルは、子宮内膜の基底層の大部分を切除するように成形される。一実施形態では、中心ループ114は、円形または平坦ワイヤでできている。中心ループ114を作製するために使用することができる平坦ワイヤの実施例は、約0.025”×約0.007”の断面プロファイルを有するAgまたはAuめっきしたNitinolまたはステンレス鋼でできている平坦ワイヤである。そのようなループ状成形要素は、マイクロ波場に対する遮蔽体の役割を果たさない。この非遮蔽作用は、図14DのSARパターンで見ることができる。図14Dでは、中心ループ114を越えたマイクロ波場強度の急落がない。図14Aの実施形態では、中心ループ114は、形状がほぼ長円形である。中心ループ114の2つの近位端は、同軸ケーブル102の外側導体の2つの円周方向に反対の領域に電気的に取り付けられる。図14Aの実施形態では、中心ループ114の幅は、13+/−5mmであり、中心ループ114の長さは、33+/−8mmである。アブレーションデバイス100が子宮内膜アブレーションに使用されるときに、外側ループ112および中心ループ114は両方とも、子宮内膜組織表面に接触する。
中心ループ114は、外側ループ112から機械的に独立していてもよく、または外側ループ112に機械的に取り付けられてもよい。図14Aに示された実施形態では、中心ループ114は、外側ループ112から機械的に独立しており、または外側ループ112の片側に位置する。代替実施形態では、中心ループ114の一部分は、外側ループ112の内部を通過する。代替実施形態では、中心ループ114の一部分は、外側ループ112に機械的に接続される。これは、例えば、中心ループ114の一部分を外側ループ112に接続するために接着剤を使用することによって行われてもよい。代替実施形態では、中心ループ114の1つ以上の部分は、1つ以上の可撓性の取付部によって外側ループ112の1つ以上の部分に機械的に取り付けられる。
中心ループ114の複数部は、アンテナ誘電材料116の1つ以上の層によって覆われても覆われなくてもよい。図14Aの実施形態では、中心ループ114の1つ以上または全ての金属表面が、デバイス環境に曝露される。
外側ループ112および中心ループ114の複数部分は、銅、Nitinol、アルミニウム、銀、または任意の他の伝導性金属あるいは合金等の1本以上の金属からできていてもよい。外側ループ112および中心ループ114の1つ以上の部分はまた、金属化繊維またはプラスチックでできていてもよい。
図14Dおよび14Eは、図14Aのアンテナと同様の中心ループを有するアンテナによって生成される、SARプロファイルの前面図および側面図をそれぞれ示す。図14Dの実施形態では、外側ループ112の遠位端は、外側ループ112の遠位端の近位にある外側ループ112の領域に機械的かつ非伝導的に取り付けられる。したがって、外側ループ112は、実質的に直線状の近位領域と、ループ状の遠位領域とを有する。一実施形態では、ループ状の遠位領域は、図14Dに示されるように、形状が実質的に三角形であってもよい。外側ループ112の近位領域上のアンテナ誘電体116の外径は、外側ループ112のループ状の遠位領域上のアンテナ誘電体116の外径よりも大きいか、または実質的に同じであってもよい。外側ループ112のループ状の遠位領域上のアンテナ誘電体116は、様々な厚さのシリコーンの層であってもよい。外側ループ112は、Nitinol等の銀または金クラッド金属でできていてもよい。中心ループ114は、Nitinol等の銀または金クラッド金属でできていてもよい。図14Dおよび14Eに示された実施形態では、中心ループ114は、いずれのアンテナ誘電体116によっても覆われない。したがって、中心ループ114の金属表面は、周囲に曝露されていてもよい。外側ループ112および中心ループ114は、図14Eに示されるように生体構造の中に配備されると、相互に物理的に接触してもよい。図14Dでは、マイクロ波場は、アンテナ104の中心におけるアブレーションが、アンテナ104の角におけるアブレーションよりも深くなるように成形される。これは、子宮内膜アブレーションのために臨床的に望ましい。また、図14Dおよび14Eは、マイクロ波場がアンテナ104全体を容量的に包むことを意味する。また、図14Dおよび14Eは、マイクロ波場が実質的に左右対称であることを示す。図14Gは、中心ループ114がない図14Dのアンテナ104によって生成される、SARプロファイルの前面図を示す。図14Dの成形要素114のマイクロ波効果は、図14Dを図14Gと比較することによって分かる。図14Gは、成形要素114によって成形されていない第1の非成形波動場を示す。アンテナ104が図14Dに示されるような成形要素114を備えるときに、アンテナは、図14Dに示されるような成形されたマイクロ波場を生成する。図14Dおよび14Eでは、成形されたマイクロ波場は、図14Gよりも子宮内膜の広域にわたって均一に分布することに留意されたい。図14Gでは、成形されていないマイクロ波場は、同軸ケーブル102の遠位端においてより集中している。図14Dおよび14Eのようなより均一に分布した成形されたマイクロ波場は、子宮内膜アブレーションのために臨床的に望ましい。さらに、図14Dのアンテナ104が子宮内膜アブレーションに使用されるときに、マイクロ波場は、図14Gのアンテナ104によって生成されるマイクロ波場よりも子宮内膜の広域にわたって分布する。これは、図14Dおよび14Eの同軸ケーブル102の遠位端より遠位にあるSARプロファイルを、図14Gの同軸ケーブル102の遠位端より遠位にあるSARプロファイルと比較することによって分かる。さらに、図14Gでは、成形されていないマイクロ波場の一部分は、同軸ケーブル102の遠位端の近位で有意な距離まで延在する。図14Dおよび14Eでは、マイクロ波場のわずかな部分は、同軸ケーブル102の遠位端まで近位に延在する。したがって、図14Dおよび14Eのマイクロ波場プロファイルは、健康な組織の巻き添え損傷を制限するため、図14Gのマイクロ波場プロファイルと比べて有利である。したがって、中心ループ114の存在は、マイクロ波場がより分布するようにマイクロ波場を成形する。中心ループ114がない場合、マイクロ波場は、同軸ケーブルの外側導体等の伝送線102の要素と相互作用する。これは、マイクロ波場の望ましくないプロファイル、すなわち、図14Gに示されるような伝送線102の遠位端の周囲の集中した波動場をもたらす。この相互作用はまた、健康な組織の巻き添え損傷につながる場合がある、同軸ケーブル102の後方加熱も引き起こし得る。さらに、外側ループ112と中心ループ114との組み合わせは、より頑丈なアンテナ104を作成し、アンテナ104の性能は、臨床使用中に歪曲による影響をあまり受けない。また、図14Dおよび14Eは、マイクロ波場がアンテナ104全体を容量的に包囲することを示す。
さらに、図14DのSARプロファイルは、単一のアブレーションの中において子宮内膜全体を切除できることを実証する。したがって、医師は、第1の子宮内膜アブレーション後にアンテナ104を再配置する必要がない。このデバイスおよび手技の新規の側面は、手技に必要とされる時間量を大いに低減し、また、手技の危険性および医師の技能要件も低減させる。本明細書で開示される実施形態では、所望の治療効果を達成するために、直接マイクロ波誘電加熱および組織を通した熱伝導の組み合わせが使用される。熱伝導は、マイクロ波場の軽微な変動を均等にし、平滑で均一なアブレーションの作成を可能にする。さらに、図14Dおよび14EのSARプロファイルは、アンテナ104が、外側ループ112および中心ループ114の表面の間で切除するだけでなく、アンテナ104を包囲する容量全体を切除することが可能であることを実証する。さらに、図14Dおよび14EのSARプロファイルは、アンテナ104が、組織領域内の未切除組織の「間隙」を残すことなく、組織領域を切除することが可能であることを実証する。さらに、図14Dおよび14EのSARプロファイルは、アンテナ104によって生成されるマイクロ波場全体がアブレーションに使用されることを実証する。マイクロ波場全体は、外側ループ112の周囲のマイクロ波場、中心ループ114の周囲のマイクロ波場、外側ループ112と中心ループ114との間のマイクロ波場、および中心ループ114内のマイクロ波場を含む。さらに、図14Dおよび14EのSARプロファイルは、マイクロ波場が外側ループ112の全周囲に位置し、中心ループ114によって遮蔽または反射されないことを実証する。したがって、中心ループ114は、図14Dおよび14Eに示された実施形態では、遮蔽体または反射体の役割を果たさない。
アンテナ104の種々の実施形態は、SARおよび/またはアブレーションプロファイルの種々の形状を生成するように設計されてもよい。例えば、アンテナ104は、実質的に正方形、三角形、多角形、長方形、円形、または部分円形(例えば、半円形、四半円形等)、紡錘形、または長円形のSARまたはアブレーションパターンを生成するように設計されてもよい。
図14Fは、図14Dのアンテナ104を有するアブレーションデバイスのシミュレートされた反射減衰量を示す。シミュレートされた反射減衰量は、915MHzにおいて良好な整合(約−11dB)を示す。図14Hは、図14Gのアンテナを有するアブレーションデバイスのシミュレートされた反射減衰量を示す。シミュレートされた反射減衰量は、915MHzにおいて約−7.5dBの反射減衰量を示す。したがって、中心ループ114の存在はまた、整合を向上させ、電力効率を増加させる。中心ループ114の存在下で、マイクロ波電力は、より効率的に組織に送達され、アブレーションデバイス100内で生成される熱として無駄にされない。
成形要素114はまた、アンテナ104が許容性能を達成する周波数範囲(帯域幅)を増加させる。図14Fおよび14Hのグラフを比較した場合、−10dBのカットオフにおいて、成形要素114を含有する実施形態での許容周波数範囲は、0.52GHzより大きい(約0.88GHzから約1.40GHz以上に及ぶ)。成形要素114がない図14Gの同等の実施形態での許容周波数範囲は、わずか約0.18GHzである(約0.97GHzから約1.15GHzに及ぶ)。したがって、第1の場合においては、アンテナ104が許容性能を達成するより大きい周波数範囲(帯域幅)が利用可能である。これは、次に、典型的な臨床使用中の、または軽微な製造変動によるアンテナ104の軽微な歪曲が、アンテナ104の性能に有意に影響を及ぼさないアンテナ104の設計を可能にする。
図14DXおよび14EXは、図14Dのアンテナと同様の中心ループを有するアンテナによって生成される、SARプロファイルの前面図および側面図をそれぞれ示す。図14DXの実施形態の一般構造は、図14Dの実施形態の一般構造と同様である。しかしながら、図14DXでは、外側ループ112のループ状遠位領域の2つの遠位縁の曲率半径は、図14Dの対応する曲率半径より大きい。さらに、外側ループ112の実質的に直線状の近位領域の長さは、図14Dの対応する長さよりも小さい。また、図14DXのアンテナ104上のアンテナ誘電体116の設計は、図14Dのアンテナ104上のアンテナ誘電体116の設計とは異なる。一実施形態では、外側ループ112の近位領域上のアンテナ誘電体116は、EPTFEの層上のPEEK層でできている。PEEK層は、外側ループ112の近位領域の機械的強度を増加させる。この実施形態では、外側ループ112のループ状遠位領域のアンテナ誘電体116は、様々な厚さのシリコーンである。外側ループ112のループ状遠位領域の最近位部分上のシリコーンアンテナ誘電体116の厚さは、外側ループ112のループ状遠位領域の最遠位部分上のシリコーンアンテナ誘電体116の厚さより大きくてもよい。外側ループ112は、Nitinol等の銀または金クラッド金属でできていてもよい。中心ループ114は、Nitinol等の銀または金クラッド金属でできていてもよい。図14Dおよび14Eに示された実施形態では、中心ループ114は、いずれのアンテナ誘電体116によっても覆われない。したがって、中心ループ114の金属表面は、周囲に曝露されてもよい。外側ループ112および中心ループ114は、図14Eに示されるように生体構造の中で配備されると、相互に物理的に接触してもよい。図14DXおよび14EXのアンテナ104のSARプロファイルの形状の臨床的利点は、図14Dおよび14Eのアンテナ104のSARプロファイルの形状の臨床的利点と同様である。
図14Iおよび14Jは、アブレーションデバイス100のマイクロ波アンテナ104の形状の2つの代替実施形態を示す。図14Iおよび14Jでは、中心ループ114は示されていない。図14Iでは、マイクロ波アンテナ104は、ほぼダイヤモンド形である。同軸ケーブル102の軸に沿って測定されるマイクロ波アンテナ104の最遠位領域は、平滑な角を備える。この実施形態でのマイクロ波アンテナ104は、図14Iに示されるような形状を形成するように事前成形される。そのようなマイクロ波アンテナ104は、デバイスの管腔を通した、押しつぶされた薄型構成のマイクロ波アンテナ104の挿入を可能にするように押しつぶすことができる。図14Iでは、マイクロ波アンテナ104は、アンテナ104が子宮腔の中に配備されると、同軸ケーブル102の軸に沿って測定されるマイクロ波アンテナ104の最遠位領域が、鎖線によって示されるような構成を達成するために、子宮底によって押されるようにサイズ決定および成形される。したがって、マイクロ波アンテナ104は、子宮内膜アブレーションに適しているほぼ三角形の形状に変換される。図14Jでは、同軸ケーブル102の軸に沿って測定されるマイクロ波アンテナ104の最遠位領域は、平滑な弧または曲線を備える。この実施形態でのマイクロ波アンテナ104は、図14Jに示されるような形状を形成するように事前成形される。そのようなマイクロ波アンテナ104は、デバイスの管腔を通した、押しつぶされた薄型構成のマイクロ波アンテナ104の挿入を可能にするように押しつぶすことができる。図14Jでは、マイクロ波アンテナ104は、子宮腔の中に配備されると、同軸ケーブル102の軸に沿って測定されるマイクロ波アンテナ104の最遠位領域が、鎖線によって示されるような構成を達成するために子宮底によって押され、平らにされるようにサイズ決定および成形される。したがって、マイクロ波アンテナは、子宮内膜アブレーションに適しているほぼ三角形の形状に変換される。代替実施形態では、マイクロ波アンテナ104は、弾性、超弾性、または形状記憶能力を有する。この実施形態では、マイクロ波アンテナ104は、デバイスの管腔を通した子宮腔の中での配備後に、その形状を取り戻す。図14Kは、平面14K−14Kを通るマイクロ波アンテナ104の実質的に円形の断面を示す。図14Lは、平面14L−14Lを通るマイクロ波アンテナ104の2つの代替断面を示す。図14Lでは、一方の断面が長方形である一方で、他方の断面は長円形である。
図14M−14Oは、ほぼ三角形のマイクロ波アンテナ104を備える、アブレーションデバイス100の種々の実施形態を示す。図14Mでは、アブレーションデバイス100は、同軸ケーブル102と、外側ループ112と、中心ループ114とを備える。アブレーションデバイス100はさらに、図14Rの細長い金属導体168と同様の細長い金属導体を備える。細長い金属導体168の近位端は、同軸ケーブル102の外側導体106の遠位端に電気的に接続される。細長い金属導体168の遠位端は、外側ループ112の遠位端158に非伝導的に取り付けられる。金属導体168は、外側ループ112に機械的安定性を与え、ならびにマイクロ波場を成形する。図14Nでは、アブレーションデバイス100は、同軸ケーブル102と、外側ループ112と、中心ループ114とを備える。この実施形態では、同軸ケーブル102の遠位端に隣接する外側ループ112の領域は、同軸ケーブル102の遠位端に隣接する外側ループ112の別の領域に電気的に短絡される。図14Oでは、アブレーションデバイス100は、同軸ケーブル102と、外側ループ112と、中心ループ114とを備える。この実施形態では、外側ループ112の領域は、外側ループ112の他の領域から電気的に隔離される。したがって、外側ループ112の2つの領域は、伝導的に接続される。
図14P−14Rは、中心ループ114の種々の代替実施形態を示す。図14P−14Rの中心ループ114は、AgまたはAuめっきしたNitinolまたはステンレス鋼でできている。中心ループ114は、事前成形されてもされなくてもよい。中心ループ114の断面は、円形または長方形あるいは長円形であってもよい。中心ループ114は、多重より線であってもよい。図14Pでは、中心ループ114は、形状がほぼ長円形であり、13+/−5mmの幅および約35+/−8mmの長さを有する。図14Qでは、中心ループ114は、形状がほぼ長円形であり、13+/−5mmの幅および約27.5+/−8mmの長さを有する。図14Rでは、中心ループ114は、形状がほぼ長円形であり、13+/−5mmの幅および約35+/−8mmの長さを有する。図14Rでは、アブレーションデバイス100はさらに、外側導体106の遠位端に電気的に接続される、1つ以上の付加的な細長い金属導体168を備える。細長い金属導体168の遠位端は、アンテナ104に機械的安定性を与え、ならびにマイクロ波場を成形するように、アンテナ104の領域に接続される。一実施形態では、細長い金属導体168の遠位端は、非伝導性接続によってアンテナ104の領域に接続される。本明細書で開示される種々の要素の組み合わせを使用して、種々のアンテナ104が設計されてもよい。本明細書で開示される放射要素112および本明細書で開示される成形要素114の任意の組み合わせを使用して、種々のアンテナ104が設計されてもよい。例えば、図14I−14Oからの外側ループ112の設計は、種々のアンテナ104を作成するように、図14P−14Rの中心ループ114の設計と組み合わせられてもよい。
図14Sおよび14Tは、機械的に配備可能なアンテナの2つの構成を示す。図14Sでは、アンテナ104は、外側ループ112と、中心ループ114とを備える。図14Sでは、アンテナ104は、非作業構成である。この実施形態でのアンテナ104は、機械的配備システムに係合することによって、ユーザ配備可能である。図14Sおよび14Tの実施形態の機械的配備システムは、外側ループ112の領域に取り付けられる、引張可能かつ解放可能な引張ワイヤ170である。引張ワイヤ170は、金属または非金属、例えば、ポリマー材料でできていてもよい。引張ワイヤ170が近位方向に沿って引かれると、外側ループ112が歪曲される。歪曲は、アンテナ104が図14Tに示されるような作業構成を達成するようなものである。非作業構成から作業構成にアンテナ104を変換するために引張ワイヤ170が使用される、そのような実施形態は、アンテナの適正な配備のために組織の力の存在が必要とされないので有利である。これは、アンテナ104がより堅く作製されることを可能にする。1本以上の引張ワイヤ170は、同軸ケーブル102の遠位端の軸に対してアンテナ104の配向を制御可能に修正するように、アンテナ104の1つ以上の領域に取り付けられてもよい。これは、例えば、腹腔鏡手技を実施しながら、所望の配向で標的組織に対してアンテナ104を設置するために使用されてもよい。さらに、機械的配備システムは、ユーザがアンテナ104の適正な配備についてのフィードバックを得ることを可能にする。これは、適正な配備を確認するためのアンテナ104の配備後の可視化の必要性を排除する。例えば、図14Sおよび14Tに示されるような機械的配備システムは、引張ワイヤ170に係合しながら、ユーザが経験する力によって、ユーザがアンテナ104の適正な配備についての触覚フィードバックを得ることを可能にする。別の実施例では、図14Sおよび14Tに示されるような機械的配備システムは、ユーザが、アンテナ104の配備の程度と相関がある引張ワイヤ170の変位の程度を視覚的に観察することを可能にする。
図14Uは、マイクロ波アンテナの実施形態の縦方向に拘束されず、かつ横方向に押しつぶされていない構成を示す。図14Uでは、アブレーションデバイス100は、外側ループ112と、金属中心ループ114とを備えるアンテナ104を備える。この構成の外側ループ112は、より長円形の形状である。外側ループ112の遠位端は、非導電性接続によって外側ループ112の近位部分に接続される。アンテナ104の最大横幅寸法は、約2.7cmである。中心ループ114の横幅は、1.6cm+/−0.6cmであってもよく、中心ループ114の縦長さは、約3.5cm+/−1cmであってもよい。
図14Vは、図14Uのマイクロ波アンテナの実施形態の縦方向に拘束され、かつ横方向に押しつぶされていない作業構成を示す。図14Vでは、アンテナ104の最遠位部分を歪曲するために、外力が使用される。図14Vでは、アンテナ104の最遠位部分を歪曲して、より長円形の形状から、示されるようなより三角形の形状に外側ループ112を変化させるために、指が使用された。外側ループ112の最大横幅は、ここで約3.5cmである。同軸ケーブル102の遠位端からアンテナ104の最遠位部分までのアンテナ104の縦長さは、約3.8cmである。これは、子宮内膜アブレーションにおいて、実際の臨床使用中に子宮底によってアンテナ104が体験する歪曲をシミュレートする。図14Vに示された構成は、子宮内膜アブレーションにアンテナ104を使用することができる、アンテナ104の作業構成である。したがって、本明細書のアンテナ104のいくつかの実施形態は、アンテナ104が、管腔または開口部を通した挿入のために横方向に圧縮される第1の構成、アンテナ104にかかる有意な外部歪曲力がない場合に、アンテナ104が縦方向に拘束されず、かつ横方向に押しつぶされない第2の構成、およびアンテナ104にかかる外部歪曲力の存在下で、アンテナ104が縦方向に拘束され、かつ横方向に押しつぶされない第3の構成といった、3つの構成で存在することが可能である。第3の構成は、実際の作業構成である。
図14Wは、組織の折り畳まれた断片の中の図14Uおよび図14Vのマイクロ波アンテナの配置を示す。図14Wでは、摂氏37度で維持されたブタ筋肉組織の厚切りを一回折り畳んだ。組織襞によって取り囲まれた空洞は、子宮腔をほぼシミュレートする。その後、アンテナ104の最遠位領域が、図14Vに示されるような作業構成を達成するようブタ組織によって歪曲されるように、図14Uおよび14Vのアンテナ104を十分な深さまで挿入した。その後、ブタ組織を切除した。アブレーションは、0.915GHzにおけるマイクロ波発生器からの40Wのマイクロ波電力の送達により、90秒間行われた。この実験では、アブレーション手技の全体を通して、40Wの定電力が使用されたが、臨床使用では、マイクロ波発生器による電力送達の規模は、アブレーション手技の全体を通して一定でなくてもよい。
マイクロ波発生器によって送達される全マイクロ波エネルギーの約85%が、最終的にアンテナ104によって組織に送達されると仮定した場合、組織に送達される全エネルギーは、約3,000ジュールである。図14Wで使用された組織は、子宮内膜組織をシミュレートするように設計されているため、子宮内膜への約3,000ジュールのマイクロ波エネルギーの送達を伴う子宮内膜アブレーションプロトコルが設計されてもよい。さらに、子宮内膜に約3,000ジュール未満のマイクロ波エネルギーを送達する子宮内膜アブレーションのプロトコルが設計されてもよい。これは、例えば、子宮の前治療によって、月経期間があった直後に患者のアブレーションの予定を入れること等によって行われてもよい。
図14Vでは、その作業構成での略平坦なアンテナ104の全面積は、約6.7平方センチメートルである。したがって、アンテナ104によって送達されるマイクロ波エネルギーは、それぞれ約6.7平方センチメートルである2つの対向組織表面に送達される。再度、マイクロ波発生器によって送達される全マイクロ波エネルギーの約85%が、最終的にアンテナ104によって組織に送達されると仮定した場合、組織に送達される全電力は、組織の1平方センチメートルにつき約2.5ワットである。さらに、子宮内膜面の1平方センチメートルにつき2.5ワット未満のマイクロ波電力を送達しながら、所望の臨床成果を達成する子宮内膜アブレーションのプロトコルが設計されてもよい。これは、例えば、子宮のホルモン前治療によって、D&Cによる子宮の機械的前治療によって、月経期間があった直後に患者のアブレーションの予定を入れること等によって、行うことができる。
図14Xは、縦方向に拘束され、かつ横方向に押しつぶされていない作業構成における、図14Uおよび図14Vのマイクロ波アンテナの配置と、マイクロ波アンテナから得られたアブレーションとを示す、図14Wの組織の折り畳まれた断片を示す。アブレーションは、形状がほぼ三角形であることに留意されたい。子宮の中のそのようなアブレーションは、月経過多を治療するために子宮内膜全体を切除することが可能である。
図14Yは、図14Wに示されたアブレーション後の切除組織の折り畳まれていない図を示す。図14Zは、図14Yの平面14Z−14Zを通して薄切りにされた切除組織の図を示す。図14Zでは、アブレーションは、均一であり、組織の全層に及ぶことが分かる。顕著な炭化はどこにも見られない。したがって、組織の合計7〜9mmの深さに及ぶ貫壁性アブレーションが作成されている。図14AAは、図14Yの平面14AA−14AAを通して薄切りにされた切除組織の図を示す。図14Zと同様に、図14AAは、アブレーションが均一であり、組織の全層に及ぶことを示す。炭化はどこにも見られない。したがって、組織の合計7〜10mmの深さに及ぶ貫壁性アブレーションが作成されている。さらに、組織は、中心においてより深く、損傷の周辺に向かってより浅いことに留意されたい。子宮内膜の厚さが、子宮の中心に向かってより大きく、副角領域に向かって、および子宮下部領域に向かってより小さいため、そのようなアブレーションが臨床的に所望される。さらに、所望であれば、マイクロ波発生器によって送達される電力を増加させること、アブレーション時間を増加させること、子宮動脈を一時的に閉塞することによって子宮への血流を閉塞することのうちの1つ以上を使用することによって、より深い損傷が作成されてもよい。さらに、所望であれば、マイクロ波発生器によって送達される電力を低減すること、アブレーション時間を低減すること、生体構造の中で冷却剤を循環させること等のうちの1つ以上を使用することによって、より浅い損傷が作成されてもよい。
図15Aは、単一の放射要素と、2つの成形要素とを備える、子宮内膜アブレーションのために最適化されたマイクロ波アブレーションデバイスのアンテナの図を示す。図15Aでは、アンテナ104は、アンテナ104のほぼ中心にある開ループ状放射要素112を備える。放射要素112の遠位端158は、伝送線102の遠位端に隣接して位置する。放射要素112の遠位端158は、近位方向を指す。一実施形態では、放射要素112は、同軸ケーブル102の内側導体108の継続である。放射要素112の少なくとも近位部分は、同軸ケーブル102の誘電体110等のアンテナ誘電体116で覆われる。放射要素112の全長は、約110+/−20mm、または915MHzにおける有効波長の約4分の3である。一実施形態では、アンテナ誘電体116は、伝送線102の遠位端に位置してもよい。このアンテナ誘電体116は、放射要素112の近位部分、放射要素112の遠位端158、およびループ状成形要素114の近位部分を包んでもよい。アンテナ104の誘電特性を局所的に修正することに加えて、このアンテナ誘電体116はまた、アンテナ104の種々の部分を機械的に結合するために使用されてもよい。放射要素112上のアンテナ誘電体の量は、アンテナ104を同調し、アンテナ104によって生成されるマイクロ波場プロファイルを成形するために制御することができる。アンテナ104はさらに、示されるように放射要素112の両側に位置する2つの成形要素114を備える。一実施形態では、2つの成形要素114は、アンテナ誘電体116で覆われた2本の伝導性ワイヤによって形成される。2つの成形要素114のそれぞれの近位端は、同軸ケーブル102の外側導体106に伝導的に接続される。一実施形態では、各成形要素114の全長は、約110+/−20mm、または915MHzにおける有効波長の約4分の3である。各成形要素114の遠位端は、図15Aに示されるような共通セグメントを形成するように、ともに接合される。放射要素112から放出されるマイクロ波場は、2つの成形要素114と相互作用し、2つの成形要素114によって成形または再分配される。これは次に、生成された損傷のサイズを増加させる。マイクロ波場プロファイルは、実質的に同軸ケーブル102まで延在することなく、実質的に放射要素112および2つの成形要素114の領域に限定される。本明細書の図15Aの実施形態における同軸ケーブル102は、Insulated Wire(Danbury,CT)からのIW70同軸ケーブルである。このケーブルの中の内側導体は、0.018インチのODを有するAgめっきしたCuである。外側導体は、AgめっきしたCuでできている。最外層は、Teflonジャケットである。同軸ケーブルの全ODは、0.068インチである。このIW70ケーブルは、実施例として使用されるにすぎない。本明細書のデバイスのうちのいずれかを構築するために、いくつかの他の同軸ケーブルまたは他のマイクロ波伝送線を使用することができる。本明細書で開示される実施形態のいずれかでは、同軸ケーブル102は、Ag、Au、Pt、または任意の他の高伝導性金属でできている外側クラッディングまたはめっきを有する、Nitinolワイヤでできている内側導体108を備えてもよい。Nitinolワイヤ上に外層を追加するために使用することができる方法の実施例は、電気めっき、電着、またはクラッディングを含むが、それらに限定されない。一実施形態では、同軸ケーブル102の残りの要素(誘電体110、外側導体106、および外側ジャケット118)の設計は、IW70ケーブルと同じである。Nitinolワイヤは、形状記憶または超弾性特性を有してもよい。一実施形態では、Nitinolワイヤの1つ以上の部分が、所望の幾何学形状に熱成形される。
図15Bは、アブレーション手技のための2つの対向する組織表面の間の図15Aのアンテナの配置と、得られている、結果として生じるアブレーションパターンとを示す。図15Bでは、アブレーションプロファイルを実証するために、37℃のブタ筋肉組織の2つの対向する薄切りを使用した。図15Bの損傷を作成するために、90〜100Wにおける0.915MHzマイクロ波発生器からアブレーション電力を送達し、アブレーション時間は60秒であった。図15Bは、子宮内膜アブレーションをシミュレートする、炭化がない実質的に均一なアブレーションを示す。
図15Cは、貫壁性損傷を明示する、図15Bの組織の逆の表面を示す。さらに、図15Cは、損傷パターンに間隙がないことを示す。さらに、損傷の深さは、損傷の縁に向かって漸減する。したがって、アンテナ104は、結果として生じる損傷が、子宮の中心においてより深く、副角および子宮下部領域中でより浅いように、子宮内膜を切除することが可能である。
図15Dは、単一の放射要素と、2つの成形要素とを備えるアンテナの実施形態の図を示す。この実施形態では、ループ状放射要素112が伝送線102の遠位端から出現する。放射要素112の近位部分は、示されるようにアンテナ誘電体116で覆われる。放射要素112の遠位端も、アンテナ誘電体116に封入される。2つの成形要素114は、放射要素112の両側で対称に位置する。2つの成形要素114の近位端は、伝送線の一部分(例えば、同軸ケーブル102の外側導体)の遠位端に電気的に接続される。成形要素114の自由端は、近位方向を指し、アンテナ誘電体116内に位置する。成形要素114の自由端は、相互に電気伝導しており、放射要素112の複数部分から電気的に絶縁される。アンテナ104の誘電特性を局所的に修正することに加えて、このアンテナ誘電体116は、また、アンテナ104の種々の部分を機械的に結合するために使用されてもよい。
図15Eは、単一の放射要素と、2つの成形要素とを備えるアンテナの実施形態の図を示す。図15Eのアンテナ104の実施形態は、図15Dのアンテナ104の実施形態と同様である。しかしながら、この実施形態では、成形要素114の近位端は、伝送線102の遠位端の近位に位置する伝送線の一部分(例えば、同軸ケーブル102の外側導体)に電気的に接続される。
図15Fは、単一の放射要素と、単一の成形要素とを備えるアンテナの実施形態の図を示す。この実施形態では、放射要素112が伝送線102の遠位端から遠位に出現する。成形要素114の一方の端は、伝送線102の遠位端に機械的に接続される。放射要素112と成形要素114とは、相互に交差し、伝送線102の遠位端の近位にある伝送線102の領域に接続される。放射要素112は、伝送線102の遠位端の近位にある伝送線102の領域に機械的かつ非伝導的に接続される。一方で、成形要素114は、伝送線102の遠位端の近位にある伝送線102の領域に電気的に接続される。放射要素112は、アンテナ誘電体116で覆われてもよい。この場合、マイクロ波場の一部は、伝送線102の遠位端の近位に位置する。放射要素112および成形要素114の一方または両方の長さは、マイクロ波エネルギーの有効波長の約4分の3であってもよい。
図15Gは、単一の放射要素と、2つの成形要素とを備えるアンテナの実施形態の図を示す。図15Gのアンテナ104の設計は、図15Aのアンテナ104と同様である。しかしながら、図15Gの実施形態では、2つの成形要素114が相互に接合されていない。さらに2つの成形要素114の遠位端は、図15Aのアンテナ104上の対応する終端点よりも遠位にある点で終端する。また、図15Gでは、アンテナ104と伝送線102との間の接合点領域を覆うために、アンテナ誘電体116の層が使用されてもよい。代替実施形態では、図15Gの成形要素114の長さは、マイクロ波エネルギーの有効波長の4分の3より長くてもよい。
図15Hは、単一の放射要素と、2つの成形要素とを備えるアンテナの実施形態の図を示す。この実施形態では、放射要素112は、図15Aの放射要素112と同様である。第1の成形要素114は、閉ループであり、示されるように放射要素112の周囲に位置する。閉ループの両端は、伝送線102の遠位端の一部分に電気的に接続される。アンテナ104は、さらに伝送線の遠位端と平行に配設され、アンテナ104の中心に位置する直線状の成形要素114を備える。直線状の成形要素114も、伝送線102の遠位端の一部分に電気的に接続される。直線状の成形要素114の遠位端は、アンテナ104の最遠位部分の近位で終端する。
図15Iは、単一の放射要素と、単一の成形要素とを備えるアンテナの実施形態の図を示す。この実施形態では、放射要素112は、図15Aの放射要素112と同様である。成形要素114は、ハート形であり、示されるように放射要素112の周囲に位置する。成形要素114は、伝送線102の遠位端の一部分に電気的に接続される。
図15Jは、複数の放射要素と、複数の成形要素とを備えるアンテナの実施形態の図を示す。複数の成形要素114は、伝送線102の一部分に電気的に接続される。複数の放射要素112のうちのいくつかまたは全ては、アンテナ誘電体116で覆われてもよい。複数の放射要素112および複数の成形要素114は、複数の放射要素112と複数の成形要素114との間のマイクロ波場相互作用連結を増進するように交互に配置される。実施形態は、4つの放射要素112および3つの成形要素114を示すが、2〜64個の放射要素112と、2〜64個の成形要素114とを備える代替実施形態が可能である。
図15Kは、単一の放射要素と、螺旋状の成形要素とを備えるアンテナの実施形態の図を示す。アンテナ104は、ループ状放射要素112を備える。アンテナ誘電体116は、少なくとも放射要素112の遠位端を覆う。放射要素112の長さは、マイクロ波エネルギーの有効波長の4分の3であってもよい。螺旋状に配設された成形要素114は、同軸ケーブル102の外側導体の継続であってもよく、または伝送線102の遮蔽要素に電気的に接続される伝導性要素であってもよい。
図15Lは、単一の放射要素と、2つの成形要素とを備えるアンテナの実施形態の図を示す。図15Lでは、遠位端158を有するループ状放射要素112は、アンテナ104の軸のほぼ中心に設置される。ループ状放射要素112は、同軸ケーブル102の内側導体の延長によって形成されてもよく、かつアンテナ誘電体116で覆われてもよい。放射要素112の長さは、マイクロ波エネルギーの有効波長の4分の3であってもよい。示された実施形態では、2つの成形要素114は、同一ではなく、放射要素112の両側に配設される。一実施形態では、2つの成形要素114は、同軸ケーブル102の外側導体の延長によって形成される。代替実施形態では、成形要素114は、同一であり、放射要素112の両側に対称的に配設されてもよい。
図15Mは、単一の放射要素と、ループ状成形要素とを備えるアンテナの実施形態の図を示す。図15Mでは、放射要素112は、モノポールアンテナと設計が同様であってもよい。一実施形態では、ループ状放射要素114の近位側は、同軸ケーブル102の外側導体の延長によって形成されてもよい。ループ状放射要素114の遠位側は、ループを完成させる同軸ケーブル102の外側導体の延長に取り付けられる細長い導体によって形成されてもよい。代替実施形態では、ループ状成形要素114を形成するために、単一の導体が使用されてもよい。ループ状成形要素114の近位端は、伝送線102の遮蔽要素に電気的に接続される。
図15Nは、単一の放射要素と、2つの成形要素とを備えるアンテナの実施形態の図を示す。図15Lでは、遠位端158を有する放射要素112は、波状またはジグザグ構成であり、アンテナ104のほぼ中心に設置される。放射要素112は、同軸ケーブル102の内側導体の延長によって形成されてもよく、かつアンテナ誘電体116で覆われてもよい。放射要素112の長さは、マイクロ波エネルギーの有効波長の4分の3であってもよい。放射要素112の構成の幅は、遠位方向に次第に増加する。示された実施形態では、2つの成形要素114は、放射要素112の両側に配設される。
図15O−15Qは、生体構造の中のアンテナ104の適正な配備を確保する機構を備える、アンテナ104の実施形態を示す。図15Oでは、放射要素112および成形要素114の一方または両方は、Nitinol等の形状記憶または超弾性材料でできている。アンテナ104は、アンテナ誘電体116で覆われた放射要素112を備える。放射要素112は、伝送線102の遠位端から角度をつけて出現する。放射要素112は、図15Oに示されるような屈曲形状で配備される。成形要素114は、伝送線102の遮蔽要素に電気的に接続される。成形要素114は、図15Qに示されるような屈曲形状で配備される。放射要素112および成形要素114の一方または両方の長さは、マイクロ波エネルギーの有効波長の約4分の3であってもよい。アンテナ104の形状記憶または超弾性特性は、生体構造の中でのアンテナ104の適正な配備を可能にする。図15Pのアンテナ104の設計は、図15Oのアンテナ104と実質的に同様である。しかしながら、図15Pでは、アンテナ104は、形状記憶または超弾性材料でできていても、できていなくてもよい。図15Pのアンテナ104は、剛性または可撓性アンテナ誘電体116の実質的に平面的な領域に埋め込まれる。アンテナ誘電体116は、放射要素112および成形要素114の相対位置を固定し、それにより、生体構造の中での適正な配備を確保する。図15Qのアンテナ104の設計は、図15Oのアンテナ104と実質的に同様である。しかしながら、図15Qでは、アンテナ104は、形状記憶または超弾性材料でできていても、できていなくてもよい。図15Pのアンテナ104は、放射要素112および成形要素114を接続する支柱または接続要素の形態である、1つ以上の剛性または可撓性アンテナ誘電体116を備える。アンテナ誘電体116の支柱または接続要素は、放射要素112および成形要素114の相対位置を固定し、それにより、生体構造の中での適正な配備を確保する。
方法の実施形態では、ユーザには、2つのサイズのアンテナ104が提供される。ユーザは、手技前評価に基づいて、適切なサイズのアンテナ104を選択することができる。一実施形態では、2つのアンテナは、相互の拡大縮小版である。別の実施形態では、アンテナ104の要素の全てが、同じ割合で拡大または縮小されるわけではない。例えば、放射要素112上の誘電体の厚さの比率は、放射要素112のサイズの比率と同じであってもなくてもよい。2つのアンテナ104の要素の構造の材料は、同じであるか、または異なってもよい。付加的な要素が、異なるサイズのアンテナ104のうちの1つ以上に追加されてもよい。大きいほうのアンテナ104は、あるより大きいサイズ範囲にある標的組織を治療するために使用されてもよく、小さいほうのアンテナ104は、ある小さいほうのサイズ範囲にある標的組織を治療するために使用されてもよい。2つのサイズ範囲は、重複してもよく、または非重複であってもよい。デバイスの使用中の使用パラメータ(例えば、エネルギー送達時間、エネルギー送達電力等)は、同じであるか、または異なってもよい。使用パラメータを計算するために使用される公式は、同じであるか、または異なってもよい。
1つの方法の実施形態では、マイクロ波電力送達の負荷サイクルは、アブレーションの経過中に変化してもよい。1つのそのような実施形態では、アブレーションの初期段階中に、マイクロ波電力は、より高い負荷サイクルで送達され、アブレーションの後期段階中に、マイクロ波電力は、より低い負荷サイクルで送達される。1つのそのような実施形態では、標的組織の温度を所望のレベルまで、または所望の温度範囲内に上昇させるように、マイクロ波電力は、アブレーションの初期段階中に継続的に(すなわち、100%負荷サイクルで)送達される。その後、標的組織の温度を所望の期間にわたって所望のレベルで、または所望の温度範囲内で維持するように、マイクロ波電力は、100%未満の負荷サイクルで送達される。一実施形態では、標的組織の温度の所望のレベルは、55〜75℃である。一実施形態では、マイクロ波負荷サイクルの変更は、温度フィードバックに基づいて実施される。一実施形態では、マイクロ波負荷サイクルの変更は、事前にプログラムされた時間後に、マイクロ波発生器によって自動的に実施される。
マイクロ波負荷サイクルは、血液の拍動流の入力データに基づいて、マイクロ波発生器によって自動的に変更されてもよい。一実施例では、より高い血流中に、より高い負荷サイクルが使用されてもよく、より低い血流中に、より低い負荷サイクルが使用されてもよい。これは、過剰なエネルギー送達を回避する。別の実施例では、より低い血流中に、より高い負荷サイクルが使用されてもよい。これは、例えば、より多くの量のアブレーションを達成するために使用されてもよい。一実施形態では、システムは、治療中に負荷サイクルを調整するために温度フィードバックを使用する治療を送達するようにプログラムされる。マイクロ波電力送達の負荷サイクルのそのような操作は、マイクロ波子宮内膜アブレーション、心臓の一部分のアブレーション、血管組織のアブレーション等を含むが、それらに限定されない本明細書で開示される治療のうちのいずれかで使用されてもよい。
負荷サイクルを変化させる代わりに、組織に送達されるマイクロ波電力の規模が変化させられる同様の方法およびデバイスの実施形態が構想される。つまり、負荷サイクルを増加させる代わりに、増加したマイクロ波電力が送達され、負荷サイクルを低減する代わりに、低減したマイクロ波電力が送達される。
マイクロ波アンテナと、1つ以上の操縦可能または操縦可能でないカテーテルとを備える治療アセンブリが、経食道的アプローチを介して食道に導入されてもよい。その後、治療アセンブリは、異常食道表面層を切除してバレット食道を治療するために使用されてもよい。マイクロ波アンテナと、1つ以上の操縦可能または操縦可能でないカテーテルとを備える治療アセンブリが、子宮内膜または子宮壁の他の組織を切除するために、経頸管的アプローチを介して子宮腔に導入されてもよい。生体構造および/または治療アセンブリを可視化するために超音波撮像デバイスが使用されてもよい。治療アセンブリは、解剖学的管腔の縦軸と垂直または平行にアンテナ104を配向するために使用されてもよい。アンテナ104は、解剖学的管腔または空洞の縦軸に対して移動させられてもよい。例えば、アンテナ104は、解剖学的管腔または空洞の中の種々の場所にアンテナ104を設置するために、縦軸に対して回転または平行移動させられてもよい。アンテナ104のそのような運動は、アンテナ104を設置して、空洞または管腔壁全体、あるいは空洞または管腔の円周領域全体を切除するか、または別様に治療するために使用されてもよい。
図3Dに示されるような螺旋状アンテナ104の構成は、1つ以上の解剖学的空洞または管腔の内膜に接触することに特に適している。本明細書で開示される他の移動に加えて、螺旋状アンテナ104の外径および/または長さは、標的組織とのより良好な接触を得るように変更されてもよい。例えば、図3Dの螺旋状アンテナ104の外径は、アンテナ104によって周辺組織に及ぼされる力を増加させるために増加させられてもよい。特定の実施形態では、静脈逆流性疾患を治療するための標的静脈の1つ以上の領域を加熱するために、螺旋状アンテナ104が使用される。アンテナ104の螺旋状構成は、螺旋状の導入カテーテルまたは管にアンテナ104を導入すること、事前成形された螺旋状アンテナ104を有すること、アンテナ104の一部分に取り付けられた十分に剛性のデバイスをねじること、アンテナ104の一部分に取り付けられた十分に剛性のデバイスを引くこと、または押すことのうちの1つ以上によって、作成することができる。
本明細書で開示されるアブレーションデバイス100のうちのいずれか、またはアブレーションデバイス100を導入するために使用される導入カテーテルあるいはシースは、流体輸送管腔を備えてもよい。流体輸送管腔は、アブレーションデバイス100または導入カテーテルあるいはシースの近位領域から、患者の体内に配置されるアブレーションデバイス100または導入カテーテルあるいはシースの遠位領域まで延在してもよい。流体輸送管腔は、生体構造から液体または気体を排出すること、麻酔薬、造影剤、焼灼剤、アルコール、熱冷却剤、アンテナ104を包囲する流体誘電媒体、抗生物質および他の薬剤、生理食塩水、および洗浄溶液等の液体を体内に導入すること、空洞(例えば、子宮または腹腔)を膨満させるか、または空洞の穿孔を検出するために、二酸化炭素等の気体を体内に導入すること、アンテナ104の周囲で組織領域を押しつぶすように吸引を印加することのうちの1つ以上のために使用されてもよい。空洞の内膜とのアンテナ104の接触を増加させるために、吸引が空洞(例えば、子宮腔)の内側に印加されてもよい。子宮腔を膨満させる、および/または子宮の穿孔を検出するために、二酸化炭素等の気体が使用されるときに、20〜200mmHgの圧力で気体が送達されてもよい。
本明細書で開示されるアブレーションデバイス100のうちのいずれかを含む、本明細書で開示されるデバイスのうちのいずれかは、デバイス輸送管腔を備えてもよい。デバイス輸送管腔は、アブレーションデバイス100の近位領域から、患者の体内の所望の場所に配置されるアブレーションデバイス100の遠位領域まで延在してもよい。デバイス輸送管腔は、体内に1つ以上の細長い診断用および/または治療用デバイスを導入すること、ガイドワイヤまたは他の導入デバイス上にアブレーションデバイス100を導入すること、および撮像または可視化デバイスを導入することとのうちの1つ以上のために使用されてもよい。
本明細書で開示されるデバイスのうちのいずれかは、デバイスの1つ以上の領域を冷却するための冷却モダリティを備えてもよい。例えば、デバイスは、デバイスの表面、デバイスのシャフト、およびデバイスのアンテナのうちの1つ以上を冷却するために、冷却ジャケットまたは別の冷却モダリティを備えてもよい。
本明細書で開示されるデバイスのうちのいずれかは、インピーダンス測定モダリティ、温度測定モダリティ、および電気生理学的信号ソクテイモダリティのうちの1つ以上を備えてもよい。一実施形態では、本明細書で開示されるデバイスは、放射分析温度感知モダリティを備える。この放射分析温度感知モダリティは、組織の表面において、または組織のより深い領域において、温度を非侵襲的に測定するために使用されてもよい。これは次に、デバイスによるエネルギー送達の有効性に関するリアルタイムフィードバックを得るために使用されてもよい。
本明細書で開示されるアンテナ104のうちのいずれかは、アンテナ104が所望の機能を実施することができないか、または準最適に可能である、非作業構成から、アンテナ104が所望の機能を実施することが可能である作業構成に、アンテナ104を変換するために使用される付加的な配備特徴を備えてもよい。一実施形態では、アンテナ104の1つ以上の領域を引いて、非作業構成から作業構成にアンテナ104の形状を変化させるために、引張ワイヤが使用されてもよい。別の実施形態では、組織にアンテナ104の1つ以上の領域を押し付けて、非作業構成から作業構成にアンテナ104の形状を変化させるために、同軸ケーブル102を備える十分に剛性のシャフトが使用されてもよい。
本明細書で開示されるアンテナ104のうちのいずれかは、マイクロ波遮蔽または吸収要素を備えるか、またはそれと組み合わせて使用されてもよい。マイクロ波遮蔽または吸収要素は、アンテナ104によって放出されるマイクロ波場の大部分または一部を遮蔽してもよい。マイクロ波遮蔽または吸収要素の実施例は、膨張性または非膨張性バルーン、空気または循環あるいは非循環流体で充填された中空構造、金属ワイヤまたは金網、金属膜または他の平坦な構造、ゲルまたは他の適合構造、水で充填または湿潤された構造、アンテナ104の表面上で1つ以上の流体を循環させるように設計されている構造、冷却モダリティ、および誘電材料でできている機械的スペーサを含むが、それらに限定されない。特定の実施形態では、マイクロ波遮蔽または吸収要素は、円盤形である。別の実施形態では、マイクロ波遮蔽または吸収要素は、放射要素112に対して摺動可能に設置される。この実施形態では、アンテナ104によって放出されるマイクロ波場の形状は、放射要素112に対してマイクロ波遮蔽または吸収要素を摺動することによって変化させられてもよい。1つのそのような実施形態では、管状マイクロ波遮蔽または吸収要素は、実質的に直線状のアンテナ104を包囲する。マイクロ波場形状の長さ、アンテナ104による結果として生じる損傷の長さは、アンテナ104に対してマイクロ波遮蔽または吸収要素を摺動することによって変化させられてもよい。本明細書で開示されるアンテナ104と組み合わせた、そのようなマイクロ波遮蔽または吸収要素は、組織の局所領域(子宮内膜または血管内皮の一部)を切除するため、または組織の単一の表面(例えば、子宮内膜の単一の表面)のみを切除するために使用されてもよい。
本明細書で開示されるアンテナ104のうちのいずれかは、アンテナ104のマイクロ波場プロファイルを成形するだけでなく、アンテナ104も機械的に成形する、拘束要素を備えるか、またはそれと組み合わせて使用されてもよい。アンテナ104は、標的組織の付近または中に挿入する前に、拘束要素146によって機械的に拘束されてもよい。導入カテーテルまたはシースの中でアンテナ104を拘束するという概念は、以前に開示されている。図16A−16Dは、アンテナ104の形状を変更または拘束するようにアンテナ104を拘束するために使用可能である、拘束要素146の実施形態の種々の図を示す。一実施形態では、拘束要素146は、より長方形の形状でアンテナ104を拘束するように設計されている、実質的に長方形の空洞またはくぼみ166、あるいはチャンバ、間隙、穴、またはポケットを備える。そのような拘束されたアンテナ104は、組織の深部または表面アブレーションに使用されてもよい。一実施形態では、拘束されたアンテナ104は、標的組織と拘束要素146との間にアンテナ104を配置することによって、軟組織を切除するために使用される。拘束要素146は、標的組織の反対側のアンテナ104上でのアブレーションを防止することによって、巻き添え組織損傷を保護するために遮蔽体として使用されてもよい。拘束要素146は、マイクロ波遮蔽のための1つ以上の金属要素を備えてもよい。拘束要素146は、PTFE、EPTFE、シリコーン、およびABSを含むがそれらに限定されない、好適な誘電材料でできていてもよい。別の実施形態では、拘束されたアンテナ104は、腹部器官を切除するために腹腔の内側で使用される。拘束されたアンテナ104は、器官の表面、例えば、器官の外面を切除するために使用されてもよい。図16Aは、アンテナ104が長方形の空洞またはくぼみ166の中で拘束されるように、拘束要素146の中に設置されたアブレーションデバイス100とともに、拘束要素146の組み合わせの図を示す。図16Aの実施形態では、アンテナ104は、放射要素112と、同軸ケーブル102の外側導体と電気接触している成形要素114とを備える。アンテナ104は、アンテナ104を機械的に拘束する、拘束要素146に封入される。図16Bは、アンテナ104を機械的に成形するように使用可能である、空洞またはくぼみ166を備える拘束要素146の斜視図を示す。図16Cは、空洞またはくぼみ166を示す、図16Bの拘束要素146の側面図である。図16Dは、平面16D−16Dを通る拘束要素146の断面の図を示す。拘束要素146の実施形態は、アンテナ104の片側でマイクロ波場を低減するように、本明細書で開示されるアンテナ104の実施形態のうちのいずれかと組み合わせられてもよい。
本明細書で開示されるデバイスおよび要素のうちのいずれかは、ロボット制御によって制御されてもよい。さらに、本明細書で開示されるデバイスのうちのいずれかは、ロボットシステムを使用して、導入および/またはナビゲートおよび/または操作されてもよい。そのようなロボットシステムの実施例は、Hansen Medical, Inc.製のSenseiTM Robotic Catheter System、およびIntuitive Surgical,Inc.製のda Vinci(登録商標)Surgical Systemを含むが、それらに限定されない。例えば、アンテナ104を導入するために使用される任意の導入シースは、導入管腔を伴うロボットカテーテルであってもよい。
本明細書で開示されるデバイスのうちのいずれかは、1つ以上の細長いシースまたはカテーテルの1つ以上の管腔を通して導入および/または操作されてもよい。アブレーションデバイスと、1つ以上の細長いシースまたはカテーテルとを備える、いくつかのそのような治療アセンブリが可能である。例えば、導入シースの管腔の中に摺動可能に設置されるアブレーションデバイス100を備える、治療アセンブリが設計されてもよい。そのような導入シースまたはカテーテルのうちの1つ以上は、1つ以上の操縦機構を備えることができる。そのような操縦機構の実施例は、引張ワイヤ、事前成形された管状シース、またはスタイレット構造を含むが、それらに限定されない。
本明細書で開示されるデバイスのうちのいずれかは、デバイスまたはアンテナ104の長さに沿って、様々な程度の可撓性を有してもよい。
デバイスが補助構成要素(例えば、電源供給部、撮像モニタ、流体源等)への接続を必要とする場合において、デバイスのハンドルは、接続のための所望の手段を含むことができる。
本明細書で開示される心臓診断または治療手技のうちのいずれかは、心膜腔の中または心外膜の周囲に配置される、心膜デバイスの使用を含んでもよい。心膜デバイスは、剣状突起下アプローチによって挿入されてもよい。そのようなデバイスは、過剰なアブレーションを防止すること、アブレーションの貫壁性質を確認すること、周辺生体構造を冷却すること、横隔神経または食道の不要な損傷を防止すること等のうちの1つ以上のために使用されてもよい。1つのそのような実施形態では、ICE(心内心エコー検査)プローブが、心膜腔の中または心外膜の周囲に挿入されてもよい。ICEプローブは、1つ以上のデバイスおよび/または1つ以上の解剖学的領域を可視化するために使用されてもよい。別の実施形態では、偏向可能デバイスが、心膜腔の中または心外膜の周囲に挿入される。デバイスは、空間を作成するか、または心臓の後面と食道との間の距離を増加させるように、偏向されるか、または別様に操作される。これは、心臓アブレーション手技の安全性を増加させるために使用される。別の実施形態では、食道保護デバイスが、心臓の後面と食道との間にデバイスが設置されるように、心膜腔の中または心外膜の周囲に挿入される。そのようなデバイスは、心臓アブレーション手技中に食道の負傷を防止するために使用されてもよい。そのようなデバイスの実施例は、膨張性デバイス、間隔デバイス、冷却機構を伴うデバイス等を含むが、それらに限定されない。一実施形態では、電気生理学的マッピングのために適合される、1つ以上の電極を備えるマッピングカテーテルが、心膜腔の中または心外膜の周囲に挿入される。マッピングカテーテルは、心臓組織からの電気生理学的信号を測定するために使用されてもよい。一実施形態では、マッピングカテーテルは、損傷の貫壁性質を確認するために使用される。一実施形態では、マッピングカテーテルは、心臓組織からの電気生理学的信号の活性化パターンをマップするために使用されてもよい。一実施形態では、心膜デバイスは、生体構造の中で1つ以上の流体を送達する中空カテーテルである。本明細書で記述される流体のうちのいずれかは、そのようなカテーテルによって送達されてもよい。一実施形態では、心膜デバイスは、図5Aに示されるような平坦基板上にプリントされたアンテナを備える。一実施形態では、心膜デバイスは、1つ以上の心臓領域を切除して、心房細動、心室頻拍、徐脈、心房粗動、および他の不整脈のうちの1つ以上を治療するように、アブレーションモダリティ(例えば、マイクロ波アンテナ、RF電極)を備える。心膜デバイスは、心膜腔の中または心外膜の周囲で、3D外科用電気解剖学的ナビゲーションシステムで使用されるナビゲーションマーカーを配備するために使用されてもよい。そのようなナビゲーションマーカーを使用するシステムの実施例は、Cartoナビゲーションシステム(Biosense−Webster,Diamond Bar,CA)およびEnSite NavXシステム(St.Jude Medical,St.Paul,MN)を含むが、それらに限定されない。一実施形態では、心膜デバイスは、複数のマッピングカテーテルを導入するために使用される、中空カテーテルである。マッピングカテーテルのそれぞれは、テザーを有してもよい。複数のマッピングカテーテルのそれぞれのテザーは、中空カテーテルの中へ折り返されてもよい。
本明細書の方法の実施形態のうちのいずれかでは、生体構造を撮像することによって、手技前の解剖学的データが取得されてもよい。この解剖学的データは、特定の患者に方法を合わせるために使用されてもよい。一実施形態では、解剖学的データは、アブレーションデバイス100のサイズまたは形状パラメータを調整するために使用される。別の実施形態では、解剖学的データは、治療パラメータ、例えば、アブレーション電力、アブレーション時間等を決定するために使用される。解剖学的データは、造影剤を伴う、または伴わない超音波撮像、造影剤を伴う、または伴わない蛍光透視またはX線撮像、造影剤を伴う、または伴わないMRI、PETスキャン、内視鏡検査法、および機械的サイズ決定デバイス(例えば、子宮ゾンデ、距離マーキングを伴う細長いデバイス等)を使用することのうちの1つ以上によって取得されてもよい。
本明細書で開示されるアブレーションデバイス100は、無分別に、すなわち、いずれの付加的な画像診断法も使用せずに、挿入および/または使用されてもよい。
本明細書で開示されるアブレーションデバイス100は、内視鏡的(例えば、子宮鏡検査、膀胱鏡検査法、内視鏡検査法、腹腔鏡検査法、フレキシブル内視鏡検査法等を使用する)誘導下で挿入および/または使用されてもよい。
本明細書で開示されるアブレーションデバイス100は、超音波誘導下で挿入および/または使用されてもよい。
本明細書で開示されるアブレーションデバイス100は、放射線誘導下で挿入および/または使用されてもよい。一実施形態では、アブレーションデバイス100は、X線または蛍光透視誘導下で使用される。アブレーションデバイス100は、X線または蛍光透視誘導下でアブレーションデバイス100の1つ以上の領域の可視化を可能にするように、1つ以上の放射線不透過性マーカーを備えてもよい。
アブレーションデバイス100は、可視化モダリティ、または可視化モダリティに連結するための手段を備えてもよい。一実施形態では、可視化モダリティ(例えば、光ファイバまたは他の光学撮像モダリティ、超音波カテーテル等)は、アブレーションデバイス100および/または導入カテーテル148の壁に埋め込まれてもよい。別の実施形態では、可視化モダリティ(例えば、光ファイバまたは他の光学撮像モダリティ、超音波カテーテル等)は、アブレーションデバイス100または導入カテーテル148の管腔を通して導入されてもよい。
アブレーションデバイス100は、アンテナ104を設置すること、冷却モダリティを提供すること、標的組織とのアンテナ104のより良好な接触を可能にすること、およびアンテナ104を配備することのうちの1つ以上を行うための1つ以上の気体または液体膨張性バルーンを備えてもよい。
本開示の大部分は、伝送線の実施例として同軸ケーブルを使用するものの、マイクロ波を伝送するための代替伝送線が使用されてもよい。マイクロ波を伝送するためのそのような代替伝送線の実施例は、導波管、マイクロストリップ線、ストリップ線、共平面導波管、およびrectaxを含むが、それらに限定されない。そのような実施形態では、成形要素114は、伝送線の遮蔽要素と電気伝導していてもよい。例えば、遮蔽要素が2つの接地面の組み合わせである、ストリップ線では、成形要素114は、2つの接地面の組み合わせと電気伝導していてもよい。例えば、遮蔽要素が導電性壁である、中空金属導波管では、成形要素114は、導電性壁と電気伝導していてもよい。
本明細書で説明される1つ以上の要素は、1つ以上の付加的な治療法を備えてもよい。そのような付加的な治療法の実施例は、無線周波数アブレーション電極を含む無線周波数電極、加熱要素、凍結療法要素、レーザおよび他の放射線を放出するための要素、1つ以上の流体を導入するための要素等を含むが、それらに限定されない。例えば、放射要素112および/または成形要素114は、複数の無線周波数アブレーション電極を備えてもよい。そのような無線周波数アブレーション電極は、無線周波数アブレーション等の他のモダリティと併せて、本明細書で開示されるデバイスの使用を可能にする。本明細書で説明される1つ以上の要素は、1つ以上の付加的な診断法を備えてもよい。そのような付加的な診断法の実施例は、温度センサ、インピーダンスセンサ、電気生理学的信号センサ、可視化要素等を含むが、それらに限定されない。例えば、放射要素112および/または成形要素114は、複数の温度センサを備えてもよい。
本明細書で開示される1つ以上のデバイスは、1つ以上の潤滑被覆を備えてもよい。本明細書で開示される1つ以上のデバイスは、非標的組織を保護するように熱的に絶縁される、1つ以上の領域を備えてもよい。
アンテナ104は、組織との正確な接触を伴わずに十分稼働するように設計されているものの、アブレーションの直前にアンテナ104の適正な設置が判定される場合に、利点があってもよい。例えば、アンテナ104が好ましい作業構成で配備されない場合、損傷は、治療的に最適ではない場合がある。本明細書の本発明はさらに、アブレーションの直前にアンテナ104の適正な設置を判定するために使用することができる、非視覚的な統合デバイスを含む。方法は、適正な設置を判定するために反射率測定を使用する。アンテナが適正に設置されていない場合、アンテナは十分に整合されない場合がある。そのような場合において、入射電力(アンテナに伝送される電力)の特定の範囲にわたる測定された反射電力は、正常範囲内ではなくなる。したがって、反射電力が正常範囲内であるかどうかを測定することによって、アンテナが適正に設置されているかどうかが言える。そのような手技の実施例は、以下の通りである。1.標的組織の中に適正に設置されたアンテナを用いて、一連の実験を行う。2.標的組織の中に適正に設置されたアンテナを用いて、入射電力レベルの特定の範囲にわたって全ての実験における反射電力レベルを測定する。3.アンテナが標的組織の中に適正に設置されている場合に、予期される反射電力レベルの「正常範囲」を決定する。4.子宮内膜アブレーション手技中に、反射電力レベルを測定する。5.反射電力レベルが正常範囲内である場合、アンテナが適正に設置されていると断定する。反射電力レベルが正常範囲内ではない場合、アンテナが適正に設置されていないと断定する。随意的な追加ステップとして、不完全な、または間違った構成で意図的に配備されたアンテナを有することによって、標的組織の中に不適切に設置されたアンテナを用いて、一連の実験が行われてもよい。これは、アンテナが標的組織の中に適正に設置されていない場合に、予期される入射電力レベルの「異常範囲」を決定するものである。
反射電力レベルは、1.外部電力計を使用すること、または2.マイクロ波発生器に内蔵される電力計を使用することによって、測定することができる。
放射要素112が、直線または曲線または屈曲または事前成形モノポールアンテナである、アンテナ104の種々の付加的な実施形態が設計されてもよい。
本明細書の方法の実施形態のうちのいずれかでは、損傷サイズは、マイクロ波発生器によって送達される電量を増加させること、アブレーション時間を増加させること、生体構造への血流を一時的に低減すること、生体構造を事前に治療すること等のうちの1つ以上によって、深く、または長く、または幅広くされてもよい。さらに、損傷サイズは、マイクロ波発生器によって送達される電量を低減すること、アブレーション時間を低減すること、生体構造の中で冷却剤を循環させること、生体構造を事前に治療すること等のうちの1つ以上によって、より浅く、またはより短くされてもよい。
本明細書で開示される任意のアンテナ104によって生成されるマイクロ波場は、種々の機構によって特定の方向に向かって方向付けられてもよい。例えば、マイクロ波反射体(例えば、金網)が、平坦または平面アブレーション部分の片側でより高いマイクロ波エネルギー強度を生成するように、平坦または平面アブレーション部分の反対側に設置されてもよい。マイクロ波場を特定の方向に方向付けるために、1つ以上のマイクロ波吸収または遮蔽あるいは反射材料が、本明細書で開示される実施形態と組み合わせて使用されてもよい。一実施形態では、成形要素114の全体または一部は、マイクロ波遮蔽体または反射体もしくは吸収体の役割を果たすように設計されている。
本明細書で開示されるデバイスは、アンテナ104の直接近位にある同軸ケーブル102の領域に対するアンテナ104の種々の配向で構築されてもよい。例えば、本明細書のデバイスは、アンテナ104の直接近位にある同軸ケーブル102の領域の平面と実質的に平行であるか、または平面内にある、アンテナ104を伴って設計されてもよい。デバイスはまた、アンテナ104の直接近位にある同軸ケーブル102の領域に対してある角度(例えば、90+/−20度、45+/−20度)で配向される、アンテナ104を伴って設計することもできる。これは、体内の到達しにくい標的領域に到達するために有利である。デバイスシャフト(例えば、同軸ケーブル102)に対するアンテナ104の全体または複数部分の相対的配向は、固定されてもよく、または変更可能であってもよい。例えば、アンテナ104とシャフトとの間に、弾力のある継手または領域があってもよい。別の実施形態では、シャフトに対するアンテナ104の全体または複数部分の相対的配向を変更するように、能動的操縦機構、例えば、引張ワイヤ機構があってもよい。そのような機構は、標的組織上でのアンテナ104の適正な設置のために、または生体構造を通してデバイスをナビゲートするために使用されてもよい。例えば、内視鏡を通して、または腹腔鏡ポートを通して配備されるアンテナ104は、アンテナ104が標的組織の平面内に位置するように、配備され、ナビゲートされてもよい。
ユーザには、様々なサイズおよび/または形状のいくつかのデバイスが供給されてもよい。次いで、ユーザは、アブレーションを実行する判断に基づいて、適正なデバイスを選択してもよい。特定の実施形態では、同様の形状であるが異なるサイズのアンテナ104を伴う、2個から3個の異なるデバイスが供給される。次いで、ユーザは、適正なデバイスを選択する。そのような複数のデバイスは、別個に、または一緒に包装されてもよい。別の実施形態では、同様のサイズであるが異なる形状のアンテナ104を伴う、2個から3個の異なるデバイスが供給される。次いで、ユーザは、必要に応じて適正なデバイスを選択する。1つの方法の実施形態では、デバイスの配備は、特定の標的組織または空洞に合わせられる。そのような実施形態では、アンテナ104の全体または複数部分は、特定の標的組織または空洞に最善に適合する特定のサイズおよび/または形状で配備されるように設計されている。
本発明のいくつかの実施例または実施形態が本明細書で論議されているが、本発明の意図された精神および範囲から逸脱することなく、種々の修正、追加、および削除が、これらの実施例および実施形態に行われてもよい。したがって、そうすることにより、結果として生じる方法またはデバイスの実施形態が意図された用途にとって不適当にならない限り、1つの方法またはデバイスの実施形態の任意の要素、構成要素、方法ステップ、または属性が、別の方法またはデバイスの実施形態に組み込まれるか、またはそれに使用されてもよい。例えば、そうすることにより、結果として生じるデバイスの実施形態が意図された用途にとって不適当にならない限り、一実施形態のアンテナ104を別の実施形態のデバイス特徴と組み合わせることによって、アブレーションデバイス100のいくつかの実施形態が作成されてもよい。本明細書で開示される方法のうちのいずれかを実施するために、本明細書で開示される任意の好適なアンテナが使用されてもよい。方法の種々のステップが特定の順番で開示される場合、そうすることにより、結果として生じる方法の実施形態が意図された用途にとって不適当にならない限り、種々のステップは、任意の他の順番で実行されてもよい。説明された実施例または実施形態の種々の合理的な修正、追加、または削除は、説明された実施例または実施形態の同等物と見なされるものである。

Claims (34)

  1. マイクロ波エネルギーを組織に印加するためのマイクロ波エネルギー源に連結されるように適合される医療デバイスであって、該医療デバイスは、
    遮蔽要素を有する伝送線と、
    マイクロ波エネルギーを組織に印加するように構成されるマイクロ波アンテナであって、該アンテナは、マイクロ波エネルギー場を放射するように該伝送線を介して該マイクロ波エネルギー源に動作可能に連結される放射部材と、アンテナ誘電体と、該遮蔽要素に電気的に連結される成形部材であって、該成形部材は、導電性であり、かつ、該放射部材により放射された該マイクロ波場に最も近い伝導性経路を提供するように該放射部材に隣接して位置する、成形部材とを備える、アンテナと
    を備え、該放射部材は、該成形部材と相互作用して該成形部材上に漏洩電流を誘発する第1の成形されていないマイクロ波エネルギー場を生成し、該成形部材は、該アンテナの長さに沿って均一第2の成形されたマイクロ波エネルギー場を該漏洩電流が作成するような形状を有する、デバイス。
  2. 前記アンテナは、臨床使用中に前記伝送線の遠位端に対して屈曲するほど十分に可撓性である、請求項1に記載のデバイス。
  3. 前記アンテナは、前記伝送線のサイズと実質的に同様の圧縮された配備前サイズを有するほど十分に可撓性である、請求項2に記載のデバイス。
  4. 前記アンテナは、実質的に直線状の配備前構成から実質的に非直線状の配備構成に変化するほど十分に可撓性である、請求項2に記載のデバイス。
  5. 前記放射部材は、直線状の形状、実質的に平面の形状、または3次元の形状から成る群より選択される形状を備える、請求項1に記載のデバイス。
  6. 前記アンテナは、前記伝送線の遠位端に接続され、前記放射部材および前記成形部材は、該伝送線の遠位端の遠位に位置する、請求項1に記載のデバイス。
  7. 前記放射部材は、非直線状の導体を備える、請求項1に記載のデバイス。
  8. 前記放射部材は、螺旋状の導体を備える、請求項1に記載のデバイス。
  9. 前記放射部材は、組織または前記成形部材から絶縁されたままでいるために電気的に絶縁されたカバーを備える、請求項1に記載のデバイス。
  10. 前記伝送線は、内側導体および外側導体を有する同軸ケーブルを備え、前記成形部材は、該外側導体に電気的に連結され、前記放射部材は、該内側導体に電気的に連結される、請求項1に記載のデバイス。
  11. 前記放射部材は、433MHz ISM帯域、915MHz ISM帯域、2.45GHz ISM帯域、および5.8GHz ISM帯域のうちの1つにおける有効波長の4分の1の奇数倍数である長さを備える、請求項1に記載のデバイス。
  12. 前記放射部材は、前記伝送線の内側導体の一部分である、請求項1に記載のデバイス。
  13. 少なくとも1つの付加的な放射部材をさらに備える、請求項1に記載のデバイス。
  14. 少なくとも1つの付加的な成形部材をさらに備える、請求項1に記載のデバイス。
  15. 前記成形部材は、前記伝送線の遠位端から前記第1の成形されていないマイクロ波エネルギー場よりもさらに遠位に、前記第2の成形されたマイクロ波エネルギー場を成形するように構成される、請求項1に記載のデバイス。
  16. 前記成形部材は、実質的に直線状である、請求項1に記載のデバイス。
  17. 前記放射部材と前記成形部材とは、実質的に平行である、請求項1に記載のデバイス。
  18. 前記放射部材は、実質的に平面であり、前記成形部材は、実質的に平面であり、該放射部材の平面は、該成形部材の平面と実質的に平行である、請求項1に記載のデバイス。
  19. 前記放射部材は、前記成形部材を実質的に取り囲んでいる、請求項1に記載のデバイス。
  20. 前記成形部材は、マイクロ波エネルギーを送達するときに前記アンテナの反射減衰量を低減する、請求項1に記載のデバイス。
  21. 前記成形部材は、前記アンテナが許容性能を達成する周波数範囲を増加させる、請求項1に記載のデバイス。
  22. 前記放射部材は、誘電材料内に封入される、請求項1に記載のデバイス。
  23. 前記成形部材は、誘電材料内に封入される、請求項1に記載のデバイス。
  24. 前記アンテナ誘電体は、EPTFE、PTFE、FEP、および他のフッ素重合体、シリコーン、空気、PEEK、ポリイミド、天然ゴム、人造ゴム、およびそれらの組み合わせから成る群から選択される、請求項1に記載のデバイス。
  25. 前記第2の成形されたマイクロ波エネルギー場は、実質的に細長い、請求項1に記載のデバイス。
  26. 前記第2の成形されたマイクロ波エネルギー場は、前記アンテナの周囲において実質的に放射方向に対称である、請求項1に記載のデバイス。
  27. 前記第2の成形されたマイクロ波エネルギー場は、実質的に左右対称である、請求項1に記載のデバイス。
  28. 前記第2の成形されたマイクロ波エネルギー場は、前記アンテナの遠位端においてより広く、該アンテナの近位端においてより狭い、請求項1に記載のデバイス。
  29. 前記第2の成形されたマイクロ波エネルギー場は、前記成形部材を包む、請求項1に記載のデバイス。
  30. 前記第2の成形されたマイクロ波エネルギー場は、前記放射部材を包む、請求項29に記載のデバイス。
  31. 身体領域内で組織を切除するためのシステムであって、該システムは、
    該身体領域内に挿入されるように構成されたアンテナを備え、該アンテナは、放射部材と、成形部材と、誘電材料とを備え、該成形部材は、該アンテナの長さに沿って均一成形されたマイクロ波エネルギー場を形成するように、該放射部材によって生成されたマイクロ波エネルギー場を改変するように構成され、該成形部材は、該放射部材によって生成されたマイクロ波エネルギー場に最も近い伝導性経路であるように配置され、該放射部材および成形部材は、各々、それぞれの形状有し、該放射部材の該形状および該成形部材の該形状は、該成形されたマイクロ波エネルギー場が該身体領域の形状に近似するように該成形されたマイクロ波エネルギー場を形成するように選択され、
    該アンテナは、該アンテナの長さに沿った成形されたマイクロ波エネルギー場を生成するように構成され、
    放射部材によって生成されたマイクロ波エネルギー場は、該成形部材と相互作用して該成形部材上に漏洩電流を誘発する、システム。
  32. 記成形されたマイクロ波エネルギー場は、身体領域における体腔の少なくとも一部分を切除するように構成される、請求項31に記載のシステム。
  33. 身体組織を切除するためのシステムであって、該システムは、
    該身体組織に近接して配置されるように構成されたアンテナを備え、該アンテナは、成形部材が伝送線の外側導体または遮蔽要素に電気的に接続されるように、放射部材および該成形部材を備え、該放射部材は、該アンテナの長さに沿って均一マイクロ波場を生成することによって標的組織を切除するために第1の損傷を作成するように構成され、
    該成形部材は、該マイクロ波場該成形部材と相互作用して該成形部材上に漏洩電流を誘発するように、該放射部材の十分近くに設置されるように構成される、システム。
  34. 成形されたマイクロ波場を生成することによってマイクロ波エネルギーを送達するためのシステムであって、該システムは、
    伝送線とアンテナとを備えるマイクロ波デバイスを含み、該アンテナは、放射要素と、成形部材とを備え、該放射要素は、該成形部材と相互作用して該成形部材上に漏洩電流を誘発する第1の成形されていないマイクロ波場を生成するように構成され、
    該成形部材は、該放射要素に近接し、該成形部材は、該伝送線の遮蔽要素に電気的に接続され、該成形部材は、漏洩電流が該成形部材上に誘発されるように、該放射要素の十分近くに設置されるように構成され、該成形部材は、該アンテナの長さに沿って均一第2の成形されたマイクロ波場を該漏洩電流が作成するような形状を有する、システム。
JP2011533312A 2008-10-21 2009-10-21 身体組織にエネルギーに印加する方法および装置 Active JP6083928B2 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US10725208P 2008-10-21 2008-10-21
US61/107,252 2008-10-21
US16224109P 2009-03-20 2009-03-20
US61/162,241 2009-03-20
US18013309P 2009-05-21 2009-05-21
US61/180,133 2009-05-21
US22240909P 2009-07-01 2009-07-01
US61/222,409 2009-07-01
PCT/US2009/061548 WO2010048335A1 (en) 2008-10-21 2009-10-21 Methods and devices for applying energy to bodily tissues

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014209959A Division JP6758797B2 (ja) 2008-10-21 2014-10-14 身体組織にエネルギーを印加する方法および装置

Publications (3)

Publication Number Publication Date
JP2012506300A JP2012506300A (ja) 2012-03-15
JP2012506300A5 JP2012506300A5 (ja) 2012-12-13
JP6083928B2 true JP6083928B2 (ja) 2017-02-22

Family

ID=46085283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011533312A Active JP6083928B2 (ja) 2008-10-21 2009-10-21 身体組織にエネルギーに印加する方法および装置

Country Status (5)

Country Link
US (1) US8968287B2 (ja)
EP (1) EP2349045B1 (ja)
JP (1) JP6083928B2 (ja)
CN (1) CN102245119B (ja)
WO (1) WO2010048335A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101832551B1 (ko) 2012-03-29 2018-02-26 미츠비시 마테리알 가부시키가이샤 볼 엔드밀

Families Citing this family (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821486B2 (en) 2009-11-13 2014-09-02 Hermes Innovations, LLC Tissue ablation systems and methods
US8540708B2 (en) 2008-10-21 2013-09-24 Hermes Innovations Llc Endometrial ablation method
US8197476B2 (en) 2008-10-21 2012-06-12 Hermes Innovations Llc Tissue ablation systems
EP2813192A3 (en) 2008-10-21 2015-04-15 Microcube, LLC Methods and devices for applying energy to bodily tissues
US11219484B2 (en) 2008-10-21 2022-01-11 Microcube, Llc Methods and devices for delivering microwave energy
US11291503B2 (en) 2008-10-21 2022-04-05 Microcube, Llc Microwave treatment devices and methods
US8197477B2 (en) 2008-10-21 2012-06-12 Hermes Innovations Llc Tissue ablation methods
US9993293B2 (en) * 2008-11-10 2018-06-12 Microcube, Llc Methods and devices for applying energy to bodily tissues
US9662163B2 (en) 2008-10-21 2017-05-30 Hermes Innovations Llc Endometrial ablation devices and systems
JP6083928B2 (ja) 2008-10-21 2017-02-22 マイクロキューブ, エルエルシー 身体組織にエネルギーに印加する方法および装置
US8500732B2 (en) 2008-10-21 2013-08-06 Hermes Innovations Llc Endometrial ablation devices and systems
US8382753B2 (en) 2008-10-21 2013-02-26 Hermes Innovations, LLC Tissue ablation methods
US9980774B2 (en) 2008-10-21 2018-05-29 Microcube, Llc Methods and devices for delivering microwave energy
US8954161B2 (en) 2012-06-01 2015-02-10 Advanced Cardiac Therapeutics, Inc. Systems and methods for radiometrically measuring temperature and detecting tissue contact prior to and during tissue ablation
US9277961B2 (en) 2009-06-12 2016-03-08 Advanced Cardiac Therapeutics, Inc. Systems and methods of radiometrically determining a hot-spot temperature of tissue being treated
US9226791B2 (en) 2012-03-12 2016-01-05 Advanced Cardiac Therapeutics, Inc. Systems for temperature-controlled ablation using radiometric feedback
US8926605B2 (en) 2012-02-07 2015-01-06 Advanced Cardiac Therapeutics, Inc. Systems and methods for radiometrically measuring temperature during tissue ablation
US8715278B2 (en) 2009-11-11 2014-05-06 Minerva Surgical, Inc. System for endometrial ablation utilizing radio frequency
US11896282B2 (en) 2009-11-13 2024-02-13 Hermes Innovations Llc Tissue ablation systems and method
US9289257B2 (en) * 2009-11-13 2016-03-22 Minerva Surgical, Inc. Methods and systems for endometrial ablation utilizing radio frequency
US8529562B2 (en) 2009-11-13 2013-09-10 Minerva Surgical, Inc Systems and methods for endometrial ablation
EP3804651A1 (en) * 2010-05-03 2021-04-14 Neuwave Medical, Inc. Energy delivery systems
US8672933B2 (en) * 2010-06-30 2014-03-18 Covidien Lp Microwave antenna having a reactively-loaded loop configuration
US8956348B2 (en) 2010-07-21 2015-02-17 Minerva Surgical, Inc. Methods and systems for endometrial ablation
US9510897B2 (en) 2010-11-05 2016-12-06 Hermes Innovations Llc RF-electrode surface and method of fabrication
JP5514089B2 (ja) * 2010-11-30 2014-06-04 株式会社 オリエントマイクロウェーブ マイクロ波手術器
US9655557B2 (en) 2011-02-04 2017-05-23 Minerva Surgical, Inc. Methods and systems for evaluating the integrity of a uterine cavity
EP2693970B1 (en) 2011-04-08 2017-10-25 Covidien LP Flexible microwave catheters for natural or artificial lumens
CA2843183A1 (en) 2011-07-26 2013-01-31 Amphora Medical, Inc. Apparatus and methods to modulate pelvic nervous tissue
US8646921B2 (en) 2011-11-30 2014-02-11 Izi Medical Products Reflective marker being radio-opaque for MRI
TWI483459B (zh) * 2012-01-16 2015-05-01 Quanta Comp Inc 隱藏式天線
US8943744B2 (en) * 2012-02-17 2015-02-03 Nathaniel L. Cohen Apparatus for using microwave energy for insect and pest control and methods thereof
US8661573B2 (en) 2012-02-29 2014-03-04 Izi Medical Products Protective cover for medical device having adhesive mechanism
JP6022671B2 (ja) * 2012-03-29 2016-11-09 スパイレーション インコーポレイテッド ディー ビー エイ オリンパス レスピラトリー アメリカ 肺組織の同定および処置のための装置、方法、およびシステム
CN108542496B (zh) * 2012-03-31 2021-12-07 微立方有限责任公司 用于微波应用的返回功率
US20130281920A1 (en) * 2012-04-20 2013-10-24 Elwha LLC, a limited liability company of the State of Delaware Endometrial Ablation
US9375249B2 (en) 2012-05-11 2016-06-28 Covidien Lp System and method for directing energy to tissue
WO2014047355A1 (en) 2012-09-19 2014-03-27 Denervx LLC Cooled microwave denervation
EP2934357B1 (en) * 2012-12-20 2017-11-15 Renal Dynamics Ltd. Multi point treatment probes
US9901394B2 (en) 2013-04-04 2018-02-27 Hermes Innovations Llc Medical ablation system and method of making
JP6177576B2 (ja) * 2013-04-26 2017-08-09 アルフレッサファーマ株式会社 マイクロ波供給装置及びこれを備えたマイクロ波手術装置
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
GB201312416D0 (en) 2013-07-11 2013-08-28 Creo Medical Ltd Electrosurgical Device
GB201317713D0 (en) 2013-10-07 2013-11-20 Creo Medical Ltd Electrosurgical device
US9649125B2 (en) 2013-10-15 2017-05-16 Hermes Innovations Llc Laparoscopic device
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
GB2521611B (en) * 2013-12-23 2020-02-12 Creo Medical Ltd Electrosurgical apparatus and electrosurgical device
US10555746B2 (en) 2014-02-04 2020-02-11 Hologic, Inc. Devices and methods for treating conditions caused by affarent nerve signals
WO2015140083A1 (en) * 2014-03-21 2015-09-24 Koninklijke Philips N.V. Guided thermal treatment system
AU2015263874B2 (en) 2014-05-23 2020-01-30 Hologic, Inc. Methods and devices for treating pelvic conditions
US11540875B2 (en) 2014-07-16 2023-01-03 Microcube, Llc Minimally invasive access channels into bodily regions
US20160030111A1 (en) * 2014-07-31 2016-02-04 Covidien Lp Systems and methods for in situ quantification of a thermal environment
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
WO2016081611A1 (en) 2014-11-19 2016-05-26 Advanced Cardiac Therapeutics, Inc. High-resolution mapping of tissue with pacing
JP6825789B2 (ja) 2014-11-19 2021-02-03 エピックス セラピューティクス,インコーポレイテッド 組織の高分解能マッピングのためのシステムおよび方法
CA2967824A1 (en) 2014-11-19 2016-05-26 Advanced Cardiac Therapeutics, Inc. Ablation devices, systems and methods of using a high-resolution electrode assembly
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10492856B2 (en) 2015-01-26 2019-12-03 Hermes Innovations Llc Surgical fluid management system and method of use
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9636164B2 (en) 2015-03-25 2017-05-02 Advanced Cardiac Therapeutics, Inc. Contact sensing systems and methods
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
CN107708591B (zh) 2015-04-29 2020-09-29 席勒斯科技有限公司 医疗消融装置及其使用方法
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
CA2988609C (en) 2015-06-12 2023-09-05 The University Of Sydney Microwave ablation device
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
GB2541946B (en) * 2015-09-07 2020-10-28 Creo Medical Ltd Electrosurgical snare
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10751123B2 (en) 2015-10-30 2020-08-25 Washington University Thermoablation probe
US10052149B2 (en) 2016-01-20 2018-08-21 RELIGN Corporation Arthroscopic devices and methods
GB2547941A (en) * 2016-03-04 2017-09-06 Creo Medical Ltd Electrosurgical instrument
US11517758B2 (en) 2016-03-04 2022-12-06 El.En. S.P.A. Delivery device with coaxial cable, apparatus comprising said device and method
ITUA20161370A1 (it) * 2016-03-04 2017-09-04 El En Spa Dispositivo applicatore a cavo coassiale, apparecchio comprendente il dispositivo e metodo
WO2017160808A1 (en) 2016-03-15 2017-09-21 Advanced Cardiac Therapeutics, Inc. Improved devices, systems and methods for irrigated ablation
EP3445258A4 (en) 2016-04-22 2019-12-04 Relign Corporation ARTHROSCOPIC DEVICES AND METHOD
GB2551117A (en) * 2016-05-31 2017-12-13 Creo Medical Ltd Electrosurgical apparatus and method
JP7015797B2 (ja) 2016-07-01 2022-02-03 リライン コーポレーション 関節鏡視下デバイスおよび方法
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
WO2018064481A1 (en) 2016-09-30 2018-04-05 Boston Scientific Scimed, Inc. Tissue retraction device
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
FR3062786B1 (fr) * 2017-02-13 2021-06-25 Oreal Dispositif de traitement de cheveux
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
EP3600551A1 (en) * 2017-03-28 2020-02-05 Emblation Limited Stenosis treatment
US11896823B2 (en) 2017-04-04 2024-02-13 Btl Healthcare Technologies A.S. Method and device for pelvic floor tissue treatment
CN110809448B (zh) 2017-04-27 2022-11-25 Epix疗法公司 确定导管尖端与组织之间接触的性质
GB2563203A (en) * 2017-06-01 2018-12-12 Creo Medical Ltd Electrosurgical apparatus
CN108992166A (zh) * 2018-05-25 2018-12-14 南京亿高微波系统工程有限公司 一种螺旋式微波温控静脉曲张治疗导管
GB2576481B (en) * 2018-05-30 2022-07-20 Creo Medical Ltd Electrosurgical instrument
GB2574219A (en) * 2018-05-30 2019-12-04 Creo Medical Ltd Electrosurgical instrument
BR102019004205A2 (pt) * 2019-02-28 2020-10-06 Mario Fernandes Chammas Junior Dispositivo para tratamento de aumento prostático através do uso de campo eletromagnético pulsado
US11717656B2 (en) * 2019-03-20 2023-08-08 Gyros ACMI Inc. Delivery of mixed phase media for the treatment of the anatomy
US11547471B2 (en) 2019-03-27 2023-01-10 Gyrus Acmi, Inc. Device with loop electrodes for treatment of menorrhagia
GB2583715A (en) * 2019-04-30 2020-11-11 Creo Medical Ltd Electrosurgical system
GB2583490A (en) * 2019-04-30 2020-11-04 Creo Medical Ltd Electrosurgical system
WO2020250417A1 (ja) * 2019-06-14 2020-12-17 株式会社Alivas カテーテルデバイスおよび処置方法
US11554214B2 (en) 2019-06-26 2023-01-17 Meditrina, Inc. Fluid management system
US20230404648A1 (en) * 2022-06-21 2023-12-21 Varian Medical Systems, Inc. Ablation probes including flexible circuits for heating and sensing

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583556A (en) 1982-12-13 1986-04-22 M/A-Com, Inc. Microwave applicator/receiver apparatus
US4658836A (en) 1985-06-28 1987-04-21 Bsd Medical Corporation Body passage insertable applicator apparatus for electromagnetic
US4700716A (en) 1986-02-27 1987-10-20 Kasevich Associates, Inc. Collinear antenna array applicator
US5007437A (en) 1989-06-16 1991-04-16 Mmtc, Inc. Catheters for treating prostate disease
US5277201A (en) 1992-05-01 1994-01-11 Vesta Medical, Inc. Endometrial ablation apparatus and method
US5449380A (en) 1993-09-17 1995-09-12 Origin Medsystems, Inc. Apparatus and method for organ ablation
US5683384A (en) 1993-11-08 1997-11-04 Zomed Multiple antenna ablation apparatus
US5603697A (en) 1995-02-14 1997-02-18 Fidus Medical Technology Corporation Steering mechanism for catheters and methods for making same
US5788692A (en) 1995-06-30 1998-08-04 Fidus Medical Technology Corporation Mapping ablation catheter
US5769880A (en) 1996-04-12 1998-06-23 Novacept Moisture transport system for contact electrocoagulation
US6813520B2 (en) 1996-04-12 2004-11-02 Novacept Method for ablating and/or coagulating tissue using moisture transport
US5928145A (en) 1996-04-25 1999-07-27 The Johns Hopkins University Method of magnetic resonance imaging and spectroscopic analysis and associated apparatus employing a loopless antenna
AU2931897A (en) 1996-05-06 1997-11-26 Thermal Therapeutics, Inc. Transcervical intrauterine applicator for intrauterine hyperthermia
US5861021A (en) 1996-06-17 1999-01-19 Urologix Inc Microwave thermal therapy of cardiac tissue
US5741249A (en) 1996-10-16 1998-04-21 Fidus Medical Technology Corporation Anchoring tip assembly for microwave ablation catheter
US7052493B2 (en) 1996-10-22 2006-05-30 Epicor Medical, Inc. Methods and devices for ablation
US6635055B1 (en) 1998-05-06 2003-10-21 Microsulis Plc Microwave applicator for endometrial ablation
US6190382B1 (en) 1998-12-14 2001-02-20 Medwaves, Inc. Radio-frequency based catheter system for ablation of body tissues
US20070066972A1 (en) 2001-11-29 2007-03-22 Medwaves, Inc. Ablation catheter apparatus with one or more electrodes
US7226446B1 (en) 1999-05-04 2007-06-05 Dinesh Mody Surgical microwave ablation assembly
US6868289B2 (en) 2002-10-02 2005-03-15 Standen Ltd. Apparatus for treating a tumor or the like and articles incorporating the apparatus for treatment of the tumor
US6471696B1 (en) * 2000-04-12 2002-10-29 Afx, Inc. Microwave ablation instrument with a directional radiation pattern
ATE305757T1 (de) 2000-04-12 2005-10-15 Afx Inc Ablationskatheter mit einem gerichtetem h.f. strahlungselement
US20020087151A1 (en) 2000-12-29 2002-07-04 Afx, Inc. Tissue ablation apparatus with a sliding ablation instrument and method
US20030163128A1 (en) * 2000-12-29 2003-08-28 Afx, Inc. Tissue ablation system with a sliding ablating device and method
KR100480288B1 (ko) * 2001-09-26 2005-04-06 삼성전자주식회사 평면형 애벌랜치 포토다이오드
US6817999B2 (en) 2002-01-03 2004-11-16 Afx, Inc. Flexible device for ablation of biological tissue
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
US6929642B2 (en) 2002-06-28 2005-08-16 Ethicon, Inc. RF device for treating the uterus
US7101369B2 (en) * 2004-04-29 2006-09-05 Wisconsin Alumni Research Foundation Triaxial antenna for microwave tissue ablation
JP2005312807A (ja) * 2004-04-30 2005-11-10 Olympus Corp エネルギー治療装置
DK1851477T3 (da) * 2005-02-14 2012-09-24 Illinois Tool Works Prop og fremgangsmåde til tilvejebringelse af en sådan prop i et rør
NZ567630A (en) 2005-10-21 2010-11-26 Australian Lock Pty Ltd Improvements in ironmongery
US7423608B2 (en) * 2005-12-20 2008-09-09 Motorola, Inc. High impedance electromagnetic surface and method
US7627376B2 (en) 2006-01-30 2009-12-01 Medtronic, Inc. Intravascular medical device
WO2008073916A2 (en) 2006-12-12 2008-06-19 Cytyc Corporation Method and apparatus for verifying occlusion of fallopian tubes
US9980774B2 (en) 2008-10-21 2018-05-29 Microcube, Llc Methods and devices for delivering microwave energy
JP6083928B2 (ja) 2008-10-21 2017-02-22 マイクロキューブ, エルエルシー 身体組織にエネルギーに印加する方法および装置
US9993293B2 (en) 2008-11-10 2018-06-12 Microcube, Llc Methods and devices for applying energy to bodily tissues
CN108542496B (zh) 2012-03-31 2021-12-07 微立方有限责任公司 用于微波应用的返回功率

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101832551B1 (ko) 2012-03-29 2018-02-26 미츠비시 마테리알 가부시키가이샤 볼 엔드밀

Also Published As

Publication number Publication date
US20100137857A1 (en) 2010-06-03
US8968287B2 (en) 2015-03-03
CN102245119A (zh) 2011-11-16
WO2010048335A1 (en) 2010-04-29
JP2012506300A (ja) 2012-03-15
CN102245119B (zh) 2017-06-06
EP2349045A1 (en) 2011-08-03
EP2349045B1 (en) 2014-07-16
EP2349045A4 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
US11684418B2 (en) Methods and devices for applying energy to bodily tissues
JP6789255B2 (ja) 身体組織にエネルギーを印加する方法および装置
JP6083928B2 (ja) 身体組織にエネルギーに印加する方法および装置
US20220000553A1 (en) Methods and devices for applying energy to bodily tissues
CN108542496B (zh) 用于微波应用的返回功率
US20140358140A1 (en) Microwave treatment devices and methods
US8262703B2 (en) Medical device including member that deploys in a spiral-like configuration and method
US20240000505A1 (en) Methods and devices for applying energy to bodily tissues
WO2022051654A1 (en) Microwave catheters for high-power thermal ablation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131007

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140106

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141204

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170124

R150 Certificate of patent or registration of utility model

Ref document number: 6083928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250