JP6083003B2 - COMPOSITE HOLLOW PARTICLE, PROCESS FOR PRODUCING THE SAME, AND FLUORESCENT MATERIAL - Google Patents

COMPOSITE HOLLOW PARTICLE, PROCESS FOR PRODUCING THE SAME, AND FLUORESCENT MATERIAL Download PDF

Info

Publication number
JP6083003B2
JP6083003B2 JP2015540568A JP2015540568A JP6083003B2 JP 6083003 B2 JP6083003 B2 JP 6083003B2 JP 2015540568 A JP2015540568 A JP 2015540568A JP 2015540568 A JP2015540568 A JP 2015540568A JP 6083003 B2 JP6083003 B2 JP 6083003B2
Authority
JP
Japan
Prior art keywords
zinc
silica
particles
hollow particles
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015540568A
Other languages
Japanese (ja)
Other versions
JPWO2015050243A1 (en
Inventor
正督 藤
正督 藤
尊拡 石野
尊拡 石野
白井 孝
孝 白井
千加 高井
千加 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Application granted granted Critical
Publication of JP6083003B2 publication Critical patent/JP6083003B2/en
Publication of JPWO2015050243A1 publication Critical patent/JPWO2015050243A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • C09K11/595Chalcogenides with zinc or cadmium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Planar Illumination Modules (AREA)
  • Silicon Compounds (AREA)
  • Led Device Packages (AREA)

Description

本発明は、シリカ殻からなる中空粒子と蛍光体粒子とを複合させた複合材中空粒子およびその製造方法、その複合材中空粒子を用いた蛍光材料に関するものである。  The present invention relates to a composite hollow particle in which hollow particles made of silica shells and phosphor particles are combined, a method for producing the composite hollow particle, and a fluorescent material using the composite hollow particle.

中空粒子は低密度、高比表面積、物質内包能等、中実粒子と異なる種々の特徴を有することから、軽量材、断熱材、光学材、医療分野等の幅広い分野で応用されている。近年、特に粒子径50〜100nm程度の中空粒子、そのなかでもシリカの中空粒子の研究開発が活発になされている。シリカ自体が透明性を有すること、粒子径が可視光波長以下であること、さらに内部が空洞であり、光の吸収が少ないため、高光透過性を有する。また個々の粒子内部が空洞のため、空気とシリカ殻との界面の面積が増加することに加えて、多数粒子の凝集内部に粒子界面があるため、光の散乱が起こりやく、優れた光透過性と光散乱性を併せて有する。このようなシリカ中空粒子およびその製造方法については、例えば、特許文献1に開示されている。  Since hollow particles have various characteristics such as low density, high specific surface area, and ability to enclose substances, they are applied in a wide range of fields such as lightweight materials, heat insulating materials, optical materials, and medical fields. In recent years, research and development of hollow particles having a particle diameter of about 50 to 100 nm, especially silica hollow particles, has been actively conducted. Since the silica itself has transparency, the particle diameter is less than or equal to the visible light wavelength, and the inside is a cavity and has little light absorption, it has high light transmittance. In addition, since the inside of each particle is hollow, the area of the interface between the air and the silica shell increases, and because the particle interface is inside the aggregate of many particles, light scattering does not easily occur and excellent light transmission And light scattering properties. Such silica hollow particles and the production method thereof are disclosed in, for example, Patent Document 1.

蛍光体粒子として、酸化亜鉛(ZnO)微粒子が知られている。酸化亜鉛微粒子の発光メカニズムは諸説あるが、酸化亜鉛のウルツ鉱型結晶中の酸素欠陥に起因していると説明されることが多い。特に粒子径により蛍光強度あるいは蛍光ピーク波長が変わると言われている。  Zinc oxide (ZnO) fine particles are known as phosphor particles. Although there are various theories on the light emission mechanism of zinc oxide fine particles, it is often explained that it is caused by oxygen defects in the wurtzite crystal of zinc oxide. In particular, it is said that the fluorescence intensity or the fluorescence peak wavelength changes depending on the particle diameter.

酸化亜鉛微粒子の製造方法については、特許文献2に開示され、カルボン酸亜鉛塩とアルコールとの混合液を、アンモニアを含有及び/又は発生する物質と混合及び/又は接触させて、その混合液を加水分解して酸化亜鉛超微粒子を生成し、その後、アンモニアを留去することにより、実質的にアルカリを含有しない酸化亜鉛超微粒子ができるとしている。  A method for producing zinc oxide fine particles is disclosed in Patent Document 2, in which a mixed solution of zinc carboxylate and alcohol is mixed with and / or brought into contact with a substance containing and / or generating ammonia, and the mixed solution is used. It is said that zinc oxide ultrafine particles containing substantially no alkali can be formed by hydrolyzing to produce zinc oxide ultrafine particles and then distilling off ammonia.

一方、特許文献3には、亜鉛化合物のエタノール又は水等の溶液を用いて、シリカゲル等のシリカ系無機多孔質体の細孔内に亜鉛イオン又は亜鉛化合物を導入し、酸化雰囲気下で加熱焼成して、多孔質体の細孔内に酸化亜鉛微粒子を内包させる技術を開示している。  On the other hand, in Patent Document 3, zinc ions or a zinc compound is introduced into pores of a silica-based inorganic porous material such as silica gel using a solution of a zinc compound such as ethanol or water, and heated and fired in an oxidizing atmosphere. Thus, a technique for enclosing zinc oxide fine particles in the pores of a porous body is disclosed.

特許第4654428号公報Japanese Patent No. 4654428 特開平10−120419号公報JP-A-10-120419 特開2003−201473号公報JP 2003-201447 A

上記シリカ中空粒子の特徴を活かし、シリカ中空粒子の殻に蛍光体粒子を担持させることにより、蛍光を発光し、透過散乱させる、発光効率の高い光学材料を作製することができると期待される。  Taking advantage of the characteristics of the silica hollow particles, it is expected that an optical material with high luminous efficiency that emits fluorescence and transmits and scatters fluorescence can be produced by supporting phosphor particles in the shell of the silica hollow particles.

また、シリカ中空粒子の殻に蛍光体粒子を担持させる際では、室温付近の温度下でかつ直接、シリカ中空粒子のシリカ殻の表面に蛍光体粒子を担持できることが望ましい。  Further, when the phosphor particles are supported on the shell of the silica hollow particles, it is desirable that the phosphor particles can be supported on the surface of the silica shell of the silica hollow particles directly at a temperature near room temperature.

なお、特許文献2には、アンモニアを触媒として加水分解することで200℃以下の低温で酸化亜鉛微粒子が作成できることは開示されているが、酸化亜鉛微粒子とシリカ微粒子との複合材を作製することは開示されていない。また、特許文献3では、シリカゲル等の多孔質材の細孔内の亜鉛化合物を酸化亜鉛にするため、400℃以上の加熱が必要であるとしている。  Although Patent Document 2 discloses that zinc oxide fine particles can be produced at a low temperature of 200 ° C. or lower by hydrolysis using ammonia as a catalyst, a composite material of zinc oxide fine particles and silica fine particles is produced. Is not disclosed. Moreover, in patent document 3, in order to make the zinc compound in the pores of porous materials, such as a silica gel, into a zinc oxide, it is supposed that the heating of 400 degreeC or more is required.

本発明は、上記点に鑑み、シリカ中空粒子と蛍光体粒子とを複合させた複合材中空粒子を提供することを第1の目的とする。また、本発明は、室温付近の温度下でかつ直接、シリカ中空粒子のシリカ殻の表面に蛍光体粒子を担持させることができる複合材中空粒子の製造方法を提供することを第2の目的とする。また、本発明は、複合材中空粒子を用いた蛍光材料や、その蛍光材料を用いた応用品を提供することを他の目的とする。  In view of the above points, the first object of the present invention is to provide composite hollow particles in which silica hollow particles and phosphor particles are combined. The second object of the present invention is to provide a method for producing a composite hollow particle capable of supporting phosphor particles on the surface of a silica shell of a silica hollow particle directly at a temperature around room temperature. To do. Another object of the present invention is to provide a fluorescent material using composite hollow particles and an applied product using the fluorescent material.

本発明者らは、シリカ中空粒子に亜鉛源を溶解した溶液を含浸させ、濾過後の粒子をアルカリ含有溶液に加えることにより、上記課題を解決しうることを見出した。すなわち、本発明によれば、以下の複合材およびその製造方法が提供される。  The present inventors have found that the above problem can be solved by impregnating silica hollow particles with a solution in which a zinc source is dissolved and adding the particles after filtration to an alkali-containing solution. That is, according to the present invention, the following composite material and the manufacturing method thereof are provided.

本発明の第1の特徴は、シリカ殻からなるシリカ中空粒子と、シリカ殻の外表面と内表面の少なくとも一方に担持された亜鉛含有結晶粒子とを備えるシリカと亜鉛含有結晶の複合材で構成された複合材中空粒子である。この亜鉛含有結晶粒子は、CuKα線によるX線回折パターンにおいて、2θ=(32°、35°、36°)の第1角度群、2θ=(9°、18°、27°、36°)の第2角度群、2θ=(10°、15°、17°、20°、21°、25°、28°、32°、36°)の第3角度群および2θ=(32°、34°、38°)の第4角度群のいずれか1つ以上の角度群に回折ピークを有する。  A first feature of the present invention is constituted by a composite material of silica and zinc-containing crystal, comprising silica hollow particles composed of silica shells, and zinc-containing crystal particles supported on at least one of an outer surface and an inner surface of the silica shell. Composite hollow particles. This zinc-containing crystal particle has a first angle group of 2θ = (32 °, 35 °, 36 °) and 2θ = (9 °, 18 °, 27 °, 36 °) in an X-ray diffraction pattern by CuKα rays. The second angle group, 2θ = (10 °, 15 °, 17 °, 20 °, 21 °, 25 °, 28 °, 32 °, 36 °) and the third angle group and 2θ = (32 °, 34 °, 38 °) has a diffraction peak in any one or more of the fourth angle group.

本発明の第1の特徴により、上記した第1の目的が達成される。本発明の第1の特徴の複合材中空粒子は、光透過性および光散乱性が高いシリカ中空粒子に、蛍光体である亜鉛含有結晶粒子が担持されているので、発光輝度の高い蛍光材料としての利用が可能である。  The first object described above is achieved by the first feature of the present invention. The composite hollow particle of the first feature of the present invention is a fluorescent material having high light emission luminance because zinc-containing crystal particles, which are phosphors, are supported on silica hollow particles having high light transmission and light scattering properties. Can be used.

本発明の第2の特徴は、第1工程と、第2工程と、第3工程とを順に行うことで、複合材中空粒子を得る複合材中空粒子の製造方法である。第1工程では、細孔を有するシリカ殻からなるシリカ中空粒子と、亜鉛源を水または有機溶媒に溶解した亜鉛源含有溶液と、アルカリ源と溶媒とを混合させたアルカリ含有混合液とを用意する。第2工程では、シリカ中空粒子に亜鉛源含有溶液とアルカリ含有混合液の一方の液体を含浸させて、一方の液体が細孔からシリカ中空粒子の内部に入り込んだ粒子を得る。第3工程では、亜鉛源含有溶液とアルカリ含有混合液の他方の液体と、第2工程で得られた粒子とを混合および撹拌する。これにより、亜鉛源とアルカリ源を反応させてシリカ殻の外表面と内表面の少なくとも一方に亜鉛含有結晶粒子を生成する。  The second feature of the present invention is a method for producing composite hollow particles that obtains composite hollow particles by sequentially performing a first step, a second step, and a third step. In the first step, prepared are silica hollow particles comprising silica shells having pores, a zinc source-containing solution in which a zinc source is dissolved in water or an organic solvent, and an alkali-containing mixed liquid in which an alkali source and a solvent are mixed. To do. In the second step, silica hollow particles are impregnated with one liquid of a zinc source-containing solution and an alkali-containing mixed solution, and particles in which one liquid enters the inside of the silica hollow particles through pores are obtained. In the third step, the other liquid of the zinc source-containing solution and the alkali-containing mixed solution and the particles obtained in the second step are mixed and stirred. Thereby, a zinc source and an alkali source are reacted to generate zinc-containing crystal particles on at least one of the outer surface and the inner surface of the silica shell.

本発明の第2の特徴によれば、第3工程の混合および撹拌を室温付近の温度下で行うことで、亜鉛含有結晶粒子を生成でき、生成した亜鉛含有結晶粒子をシリカ中空粒子のシリカ殻の表面に直接担持させることができる。  According to the second aspect of the present invention, the zinc-containing crystal particles can be generated by mixing and stirring in the third step at a temperature near room temperature, and the generated zinc-containing crystal particles are converted into silica shells of silica hollow particles. Can be directly supported on the surface of the substrate.

本発明の第3の特徴は、本発明の第1の特徴の複合材中空粒子を用いた蛍光材料である。  The third feature of the present invention is a fluorescent material using the composite hollow particles of the first feature of the present invention.

本発明の第4の特徴は、本発明の第3の特徴の蛍光材料を用いた導光板式フラットパネル照明である。  A fourth feature of the present invention is light guide plate type flat panel illumination using the fluorescent material of the third feature of the present invention.

本発明の第5の特徴は、蛍光材料を内包した発光ダイオード照明である。  A fifth feature of the present invention is light-emitting diode illumination including a fluorescent material.

本発明の第6の特徴は、光を照射する光源と、前記光源から照射された光によって発光する蛍光体とを備え、前記光源の光と前記蛍光体が発光した光の両方を照射する照明装置である。この照明装置において、蛍光体は、本発明の第3の特徴の蛍光材料で構成される。  A sixth feature of the present invention is an illumination that includes a light source that emits light and a phosphor that emits light by the light emitted from the light source, and that emits both the light from the light source and the light emitted from the phosphor. Device. In this illuminating device, the phosphor is made of the fluorescent material according to the third feature of the present invention.

シリカ中空粒子の殻に細孔有(A、B)と無(C)のtプロットを示す図である。It is a figure which shows t plot of pore presence (A, B) and absence (C) in the shell of a silica hollow particle. 原料であるシリカ中空粒子のSEM像(透過電子モード)を示す図である。It is a figure which shows the SEM image (transmission electron mode) of the silica hollow particle which is a raw material. 図2Aの模式図である。It is a schematic diagram of FIG. 2A. 本発明の、シリカ中空粒子の殻表面に亜鉛含有結晶ナノ粒子を担持した複合材中空粒子のSEM像(透過電子モード)である。It is a SEM image (transmission electron mode) of the composite material hollow particle which carry | supported the zinc containing crystal | crystallization nanoparticle on the shell surface of the silica hollow particle of this invention. 図3Aの模式図である。It is a schematic diagram of FIG. 3A. 本発明の、シリカ中空粒子の殻表面に亜鉛含有結晶ナノ粒子を担持した複合材中空粒子の合成条件を変えた場合の各サンプルのX線回折パターン(XRD)を示す図である。It is a figure which shows the X-ray-diffraction pattern (XRD) of each sample at the time of changing the synthetic | combination conditions of the composite material hollow particle which carry | supported the zinc containing crystal | crystallization nanoparticle on the shell surface of the silica hollow particle of this invention. 図3に示す各サンプルのフォトルミネッセンス(PL)特性を示す図である。It is a figure which shows the photoluminescence (PL) characteristic of each sample shown in FIG. NaOH×1/2、撹拌時間30minのサンプルの発光状態を示す図である。It is a figure which shows the light emission state of the sample of NaOH * 1/2 and stirring time 30min. 励起波長350nmの光を照射した、亜鉛含有結晶担持シリカ中空粒子と亜鉛含有結晶担持シリカ中実粒子の蛍光色を示す図である。It is a figure which shows the fluorescence color of the zinc containing crystal carrying | support silica hollow particle and the zinc containing crystal carrying | support silica solid particle which irradiated the light of excitation wavelength 350nm. 励起波長350nmの光を照射した、亜鉛含有結晶担持シリカ中空粒子と亜鉛含有結晶担持シリカ中実粒子の蛍光強度の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the fluorescence intensity of the zinc containing crystal carrying | support silica hollow particle and zinc containing crystal carrying | support silica solid particle which irradiated the light of excitation wavelength 350nm. 本発明の一実施形態における照明装置の構成を示す断面図である。It is sectional drawing which shows the structure of the illuminating device in one Embodiment of this invention. 図9−1A中の複合材中空粒子の断面図である。It is sectional drawing of the composite material hollow particle in FIGS. 9-1A. 図9−1A中の複合材中空粒子における光の透過および散乱を示す概念図である。It is a conceptual diagram which shows the permeation | transmission and scattering of the light in the composite material hollow particle in FIG. 9-1A. 比較例1における照明装置の構成を示す断面図である。It is sectional drawing which shows the structure of the illuminating device in the comparative example 1. 図9−2A中の複合材中実粒子における光の透過および散乱を示す概念図である。FIG. 9B is a conceptual diagram illustrating light transmission and scattering in the composite solid particles in FIG. 9-2A. 本発明の他の実施形態における照明装置の断面図である。It is sectional drawing of the illuminating device in other embodiment of this invention. 図10−1A中の保持部の拡大図である。It is an enlarged view of the holding | maintenance part in FIG. 10-1A. 図10−1B中の複合材中空粒子の断面図である。It is sectional drawing of the composite material hollow particle in FIG. 10-1B. 図10−1Cに対する変形例である複合材中空粒子の断面図である。It is sectional drawing of the composite material hollow particle which is a modification with respect to FIG. 10-1C. 比較例2における照明装置の保持部の断面図である。It is sectional drawing of the holding | maintenance part of the illuminating device in the comparative example 2. 本発明の複合材中空粒子の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the composite material hollow particle of this invention.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明の複合材中空粒子は、粒子径30〜2000nmのシリカ中空粒子の殻の外表面もしくは内表面の少なくとも一方に亜鉛含有結晶ナノ粒子が被着したものである。亜鉛含有結晶ナノ粒子の粒径は1nm〜20nmであることが蛍光を放出する点から特に好ましく、本発明の亜鉛含有結晶粒子はピーク波長が500〜600nmの蛍光を放出する。シリカ中空粒子は球状、回転楕円体状、または立方体状のいずれかの形態である。ここで、「球状」とは、球に限らず面で囲まれた球に似た形状をいい、「回転楕円体状」とは、回転楕円体に限らず面で囲まれた回転楕円体に似た形状をいい、「立方体状」とは、立方体に限らず面で囲まれた立方体に似た形状をいう。そして、このような球状、回転楕円体状、または立方体状を有するシリカ殻からなる中空粒子は、例えば、乾燥粉末状態で球状、回転楕円体状、または立方体状の形態の炭酸カルシウム粒子あるいはポリスチレン等の高分子材をコア材として用いることによって製造される。すなわち、コア材の表面にシリカ殻を形成した後、コア材を除去することによって製造される。シリカ殻形成後のコア材の除去は酸処理あるいは加熱等により行う(例えば、特許文献1参照)。なお、中空粒子の平均粒子径は、回転楕円体状の場合は、長径と短径の平均、立方体状の場合は、一辺の長さを言う。  The composite hollow particles of the present invention are those in which zinc-containing crystalline nanoparticles are deposited on at least one of the outer surface or inner surface of the shell of silica hollow particles having a particle diameter of 30 to 2000 nm. The particle size of the zinc-containing crystal nanoparticles is particularly preferably 1 nm to 20 nm from the viewpoint of emitting fluorescence, and the zinc-containing crystal particles of the present invention emit fluorescence having a peak wavelength of 500 to 600 nm. Silica hollow particles are in the form of a sphere, a spheroid, or a cube. Here, “spherical” means not only a sphere but also a shape similar to a sphere surrounded by a surface, and “spheroid” means not only a spheroid but also a spheroid surrounded by a surface. It refers to a similar shape, and the “cubic shape” is not limited to a cube, but a shape similar to a cube surrounded by a face. The hollow particles made of silica shells having such a spherical shape, spheroid shape, or cubic shape are, for example, calcium carbonate particles, polystyrene, etc. in the form of a spherical shape, spheroid shape, or cubic shape in a dry powder state. The polymer material is used as a core material. That is, it is manufactured by forming a silica shell on the surface of the core material and then removing the core material. The removal of the core material after the formation of the silica shell is performed by acid treatment or heating (for example, see Patent Document 1). The average particle diameter of the hollow particles is the average of the major axis and the minor axis in the case of a spheroid, and the length of one side in the case of a cube.

前記シリカ殻からなる中空粒子のシリカ殻の厚みtは、2〜25nmであることが中空構造の強度を保持する点から好ましい。また、シリカ中空粒子の殻に細孔があり、細孔径は0.5nm〜10nm、平均細孔径が2nm以下の細孔(以下、平均細孔径が2nm以下の場合をマイクロ孔という。)、殻密度が1.5g/cm以上であることが好ましい。ここでいう殻密度ρは下記式(1)、(2) から求められる。殻厚tは透過型電子顕微鏡による計測、比表面積Sは窒素ガス吸着によりBET式を適用して求めたものである。Mは中空粒子重量、rは中空粒子コア半径である。細孔の有無は、図1に示すように、tプロットを用いて調べることができる。プロットが1本の直線で近似できるものは無細孔であり、プロットが2直線で近似でき、原点に近い側で直線が下に折れているものはマイクロ孔を持つと判断できる。The thickness t of the silica shell of the hollow particles made of the silica shell is preferably 2 to 25 nm from the viewpoint of maintaining the strength of the hollow structure. The hollow silica particle shell has pores, the pore diameter is 0.5 nm to 10 nm, the average pore diameter is 2 nm or less (hereinafter, the average pore diameter is 2 nm or less is referred to as micropore), and the shell. The density is preferably 1.5 g / cm 3 or more. The shell density ρ S here is obtained from the following formulas (1) and (2). The shell thickness t is measured by a transmission electron microscope, and the specific surface area S is obtained by applying the BET equation by nitrogen gas adsorption. M is the weight of the hollow particles, and r is the radius of the hollow particle core. The presence or absence of pores can be examined using a t plot as shown in FIG. A plot that can be approximated by a single straight line is non-porous, and a plot can be approximated by two straight lines, and if the straight line is bent downward on the side close to the origin, it can be determined that the micropore is present.

なお、平均細孔径は、例えば、BJH法を用いた窒素ガス吸着等温線から求められる。シリカ中空粒子の平均粒子径および亜鉛含有結晶粒子の平均粒子径は、例えば、走査型電子顕微鏡の観察写真(SEM像)から求められる。 In addition, an average pore diameter is calculated | required from the nitrogen gas adsorption isotherm using BJH method, for example. The average particle diameter of the silica hollow particles and the average particle diameter of the zinc-containing crystal particles are determined from, for example, a scanning electron microscope observation photograph (SEM image).

本発明の複合材中空粒子の製造方法は、シリカ中空粒子に、亜鉛源を水または有機溶媒に溶解した溶液を含浸し、濾過して得られた粒子をアルカリ含有混合液に混合し、撹拌して得られるシリカ中空粒子の殻表面に亜鉛含有結晶ナノ粒子が担持された複合材中空粒子の製造方法である。  The method for producing a composite hollow particle of the present invention comprises impregnating silica hollow particles with a solution obtained by dissolving a zinc source in water or an organic solvent, mixing the particles obtained by filtration into an alkali-containing mixture, and stirring. This is a method for producing composite hollow particles in which zinc-containing crystalline nanoparticles are supported on the surface of silica hollow particles obtained in this manner.

すなわち、本発明の複合材中空粒子の製造方法は、図11に示すように、第1工程と、第2工程と、第3工程とを順に行うことで、複合材中空粒子を得る。第1工程では、原料として、細孔を有するシリカ殻からなるシリカ中空粒子と、亜鉛源を水または有機溶媒に溶解した亜鉛源含有溶液と、アルカリ源と溶媒とを混合させたアルカリ含有混合液とを用意する。第2工程では、シリカ中空粒子に亜鉛源含有溶液を含浸させた後、濾過して粒子を得る。第3工程では、第2工程で得られた粒子とアルカリ含有混合液とを混合および撹拌する。  That is, as shown in FIG. 11, the method for producing a composite hollow particle of the present invention obtains composite hollow particles by sequentially performing a first step, a second step, and a third step. In the first step, silica-containing hollow particles composed of silica shells having pores, a zinc source-containing solution in which a zinc source is dissolved in water or an organic solvent, and an alkali-containing mixed solution in which an alkali source and a solvent are mixed as raw materials. And prepare. In the second step, silica hollow particles are impregnated with a zinc source-containing solution and then filtered to obtain particles. In the third step, the particles obtained in the second step and the alkali-containing mixed solution are mixed and stirred.

シリカ中空粒子に亜鉛源を水または有機溶媒に溶解した溶液を含浸し、濾過して得られた粒子をアルカリ含有混合液と混合することによって、生成した亜鉛含有結晶をシリカ中空粒子に被着させるが、シリカ中空粒子に含浸する亜鉛源‐有機溶媒混合液を作製するに際しては、亜鉛源として、塩化亜鉛(ZnCl)、硫酸亜鉛(ZnSO)、硝酸亜鉛(Zn(NO)、酢酸亜鉛(Zn(OAc))、硫化亜鉛(ZnS)、水酸化亜鉛(Zn(OH))等が使用できるが、なかでも汎用性の点より無水酢酸亜鉛が好ましい。一方、有機溶媒としては、シリカ中空粒子と生成した亜鉛含有結晶粒子とが溶媒中で分散性がよいことが必要であり、例えばアルコール類、グリコール類、グリコールエステル類、アセトン等のケトン類、もしくはこれら2種類以上の混合溶媒が挙げられるが、中でもアルコール類が好ましく、エタノールが特に好ましい。Silica hollow particles are impregnated with a solution prepared by dissolving a zinc source in water or an organic solvent, and the particles obtained by filtration are mixed with an alkali-containing mixed solution to adhere the generated zinc-containing crystals to the silica hollow particles. However, when preparing the zinc source-organic solvent mixed liquid impregnated in the silica hollow particles, as the zinc source, zinc chloride (ZnCl 2 ), zinc sulfate (ZnSO 4 ), zinc nitrate (Zn (NO 3 ) 2 ), Zinc acetate (Zn (OAc) 2 ), zinc sulfide (ZnS), zinc hydroxide (Zn (OH) 2 ), and the like can be used. Among them, anhydrous zinc acetate is preferable from the viewpoint of versatility. On the other hand, as the organic solvent, it is necessary that the silica hollow particles and the generated zinc-containing crystal particles have good dispersibility in the solvent. For example, alcohols, glycols, glycol esters, ketones such as acetone, or These two or more kinds of mixed solvents can be mentioned, among which alcohols are preferable, and ethanol is particularly preferable.

前記濾過して得られた粒子をアルカリ含有混合液に混合する場合、アルカリは酢酸亜鉛を亜鉛含有結晶に変化させる役割であり、アルカリ源として水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化アンモニウム(NHOH)、水酸化リチウム(LiOH)は好適に用いられ、アルカリ源との混合液の溶媒にはアルコールが好ましく、エタノールが特に好ましい。水酸化ナトリウムとエタノールとの混合液の場合、エタノール中に含まれる水酸化ナトリウムの量は5g/L〜50g/Lが好ましく、シリカ中空粒子と亜鉛源を含むアルカリ含有混合液を室温付近(20〜40℃)で混合撹拌する時間が1分〜120分であることが好ましく、5分〜60分であることが特に好ましい。なお、アルカリ含有混合液の溶媒として水を用いても良い。また、アルカリ含有混合液は、アルカリ源が溶媒に溶けている状態に限らず、アルカリ源が溶媒に溶けていない状態であってもよい。When the particles obtained by filtration are mixed with an alkali-containing mixed solution, alkali serves to change zinc acetate into zinc-containing crystals. Sodium hydroxide (NaOH), potassium hydroxide (KOH), Ammonium hydroxide (NH 4 OH) and lithium hydroxide (LiOH) are preferably used, and an alcohol is preferable as a solvent of a mixed solution with an alkali source, and ethanol is particularly preferable. In the case of a mixed solution of sodium hydroxide and ethanol, the amount of sodium hydroxide contained in ethanol is preferably 5 g / L to 50 g / L, and an alkali-containing mixed solution containing silica hollow particles and a zinc source is used at around room temperature (20 The time for mixing and stirring at ˜40 ° C. is preferably 1 minute to 120 minutes, and particularly preferably 5 minutes to 60 minutes. In addition, you may use water as a solvent of an alkali containing liquid mixture. Moreover, the alkali-containing liquid mixture is not limited to a state in which the alkali source is dissolved in the solvent, and may be in a state in which the alkali source is not dissolved in the solvent.

また本発明では、シリカ中空粒子を、亜鉛源を水または有機溶媒に溶解した溶液に含浸する際に、シリカ中空粒子の殻にマイクロ孔を持つことから、前記亜鉛源含有溶液が孔を通じて内部の空洞に入りこむ。シリカ中空粒子と亜鉛源との溶液をろ過後の粒子をアルカリ含有溶液と混合した際に、殻内の亜鉛源と殻外から拡散するアルカリ源が、シリカ中空粒子の殻付近で化学反応することによって、殻内表面または外表面に亜鉛含有結晶粒子が被着するものである。この反応は、室温付近の温度下で起きる。また、この反応は、上記手順と逆であっても可能であり、シリカ中空粒子を、アルカリ含有溶液に含浸し、アルカリを殻内に入り込ませ、濾過後の粒子を亜鉛源含有溶液に混合することによって、シリカ中空粒子の殻付近で亜鉛含有結晶となる。シリカ中空粒子の殻が無孔の場合には溶液が中空内部へ入りこまない。反対に、細孔が大きくなると、入りこんだ亜鉛源またはアルカリ含有溶液が再度浸み出してしまう。したがって、マイクロ孔を殻に有する中空粒子を用いることが本発明の複合材中空粒子を製造するうえで好ましい。  Further, in the present invention, when the silica hollow particles are impregnated with a solution in which the zinc source is dissolved in water or an organic solvent, the shell of the silica hollow particles has micropores. Get into the cavity. When the solution of silica hollow particles and zinc source is mixed with the alkali-containing solution after filtration, the zinc source in the shell and the alkali source diffusing from outside the shell must chemically react near the shell of the silica hollow particle. By this, zinc-containing crystal particles are deposited on the inner surface or outer surface of the shell. This reaction occurs at temperatures near room temperature. In addition, this reaction can be reversed to the above procedure. Silica hollow particles are impregnated in an alkali-containing solution, alkali is introduced into the shell, and the filtered particles are mixed into the zinc source-containing solution. As a result, zinc-containing crystals are formed near the shell of the silica hollow particles. When the silica hollow particle shell is non-porous, the solution does not enter the hollow interior. On the other hand, when the pores become large, the zinc source or alkali-containing solution that has entered will ooze again. Therefore, it is preferable to use hollow particles having micropores in the shell in producing the composite hollow particles of the present invention.

このように、本発明の複合材中空粒子の製造方法によれば、室温付近の温度下でかつ直接、シリカ中空粒子の表面に亜鉛含有結晶ナノ粒子を担持させることができる。  Thus, according to the method for producing composite hollow particles of the present invention, zinc-containing crystalline nanoparticles can be supported on the surface of silica hollow particles directly at a temperature near room temperature.

なお、上記説明では、第2工程において、シリカ中空粒子に亜鉛源含有溶液を含浸させて、亜鉛源含有溶液を細孔を通じてシリカ中空粒子の内部に入り込ませて、亜鉛源含有溶液がシリカ中空粒子の内部に込んだ粒子を得た後、この粒子を濾過して第3工程を行ったが、この粒子を濾過せずに第3工程を行ってもよい。ただし、濾過せずに第3工程を行うと、シリカ中空粒子の殻付近だけでなく、シリカ中空粒子の外側においても、上記した化学反応が生じてしまう。このため、第2工程では、濾過することが好ましい。  In the above description, in the second step, the silica source particles are impregnated with the zinc source-containing solution, and the zinc source-containing solution enters the inside of the silica hollow particles through the pores. After obtaining the particles contained in the inside, the third step was performed by filtering the particles. However, the third step may be performed without filtering the particles. However, if the third step is performed without filtering, the above-described chemical reaction occurs not only near the shell of the silica hollow particles but also outside the silica hollow particles. For this reason, it is preferable to filter in a 2nd process.

また、第3工程の撹拌後では、撹拌後の懸濁液を濾過し、濾過して得られた複合材中空粒子を乾燥させずに使用したり、乾燥させて使用したりすることができる。また、撹拌後の懸濁液をそのまま使用してもよい。  In addition, after the stirring in the third step, the suspension after stirring is filtered, and the composite hollow particles obtained by filtering can be used without being dried or can be used after being dried. Further, the suspension after stirring may be used as it is.

本発明の複合材中空粒子は、ナノメートルサイズ(1nm〜20nm)の亜鉛含有結晶粒子がシリカ中空粒子の殻外表面および/または内表面に担持されており、当該シリカ中空粒子への入射光が殻外表面での光散乱に加えて、殻内表面からの光散乱が重畳され、蛍光強度が増大される。その結果、光透過性および光散乱性が高く、かつピーク波長が500nm〜600nmの蛍光を発するので、例えば、青色発光ダイオード(LED)と併用することにより、白色光あるいはこれに近い波長の光を放つことができる。このように、本発明の複合材中空粒子は、高光散乱性蛍光材料として用いることが可能である。  In the composite hollow particle of the present invention, nanometer-sized (1 nm to 20 nm) zinc-containing crystal particles are supported on the outer surface and / or inner surface of the silica hollow particle, and incident light on the silica hollow particle is incident on the hollow particle. In addition to light scattering on the outer surface of the shell, light scattering from the inner surface of the shell is superimposed, increasing the fluorescence intensity. As a result, it emits fluorescence having a high light transmittance and light scattering and a peak wavelength of 500 nm to 600 nm. For example, when used in combination with a blue light emitting diode (LED), white light or light with a wavelength close to this can be obtained. Can be released. Thus, the composite hollow particle of the present invention can be used as a highly light-scattering fluorescent material.

したがって、本発明の高光散乱性蛍光材料を用いて、図9−1Aに示す導光板式フラットパネル照明に応用することができる。上記効果により、図9−2Aに示す比較例1の中実粒子の蛍光強度に比較して20%〜40%高い輝度が得られる。一方、図10−1Aに示すように、中実粒子の黄色蛍光材料の代わりに本発明の高光散乱性蛍光材料を内包した、高輝度あるいは省エネルギーのLED照明に応用することができる。この場合も、蛍光粒子担持のシリカ中実粒子に比較して本発明の蛍光粒子担持のシリカ中空粒子は20%〜40%高い輝度が得られる。  Therefore, it can apply to the light-guide plate type flat panel illumination shown to FIGS. 9-1A using the highly light-scattering fluorescent material of this invention. Due to the above effect, a luminance of 20% to 40% higher than the fluorescence intensity of the solid particles of Comparative Example 1 shown in FIG. 9-2A can be obtained. On the other hand, as shown in FIG. 10-1A, the present invention can be applied to high-intensity or energy-saving LED lighting including the high-light-scattering fluorescent material of the present invention instead of the solid yellow fluorescent material. In this case as well, the silica hollow particles carrying the fluorescent particles of the present invention have a brightness of 20% to 40% higher than the solid silica particles carrying the fluorescent particles.

図9−1Aに示す本発明の一実施形態における照明装置10は、青色LED11と、導光板12と、光散乱板13とを備えている。青色LED11は、青色の光を照射する光源である。導光板12は、表面12aと裏面12bを有し、平面方向端部12cから内部に入射した光源の光を表面12aから均一に放出する板である。導光板12の裏面12bには反射板14が設けられている。導光板12の平面方向端部12cに光源11が配置される。光散乱板13は、導光板12の表面12a上に配置されている。光散乱板13は、蛍光体として本発明の複合材中空粒子15を用いた蛍光材料16を透明板17の表面上に塗布したものである。  The lighting apparatus 10 according to the embodiment of the present invention illustrated in FIG. 9-1A includes a blue LED 11, a light guide plate 12, and a light scattering plate 13. The blue LED 11 is a light source that emits blue light. The light guide plate 12 has a front surface 12a and a back surface 12b, and is a plate that uniformly emits light from the light source incident inside from the planar end portion 12c from the front surface 12a. A reflector 14 is provided on the back surface 12 b of the light guide plate 12. The light source 11 is disposed at the planar end 12 c of the light guide plate 12. The light scattering plate 13 is disposed on the surface 12 a of the light guide plate 12. The light scattering plate 13 is obtained by applying a fluorescent material 16 using the composite hollow particles 15 of the present invention as a phosphor on the surface of a transparent plate 17.

複合材中空粒子15は、図9−1Bに示すように、シリカ中空粒子15aの外表面に亜鉛含有結晶15bが担持されている。なお、亜鉛含有結晶15bは、シリカ中空粒子15aの外表面と内表面の両方に担持されていてもよく、シリカ中空粒子15aの内表面のみに担持されていてもよい。  As shown in FIG. 9-1B, the composite hollow particle 15 has a zinc-containing crystal 15b supported on the outer surface of the silica hollow particle 15a. The zinc-containing crystal 15b may be supported on both the outer surface and the inner surface of the silica hollow particle 15a, or may be supported only on the inner surface of the silica hollow particle 15a.

この照明装置10では、導光板12の平面方向端部12cから入射された光源11の光は、導光板12の内部を進行し、反射板14に反射することにより、導光板12の表面12aから均一に放出される。導光板12の表面12aから放出された光は、光散乱板13を通過する。このとき、複合材中空粒子15は、青色LED11から照射された光によって励起して蛍光を発する。このため、照明装置10は、青色LED11が照射した光と、複合材中空粒子15が発光した光の両方を照射する。この結果、照明装置10は、白色光あるいはこれに近い波長の光を照射する。  In this illuminating device 10, the light of the light source 11 incident from the planar end portion 12 c of the light guide plate 12 travels inside the light guide plate 12 and is reflected by the reflection plate 14, whereby the light from the surface 12 a of the light guide plate 12. It is released uniformly. The light emitted from the surface 12 a of the light guide plate 12 passes through the light scattering plate 13. At this time, the composite hollow particles 15 are excited by the light emitted from the blue LED 11 to emit fluorescence. For this reason, the illuminating device 10 irradiates both the light emitted from the blue LED 11 and the light emitted from the composite hollow particles 15. As a result, the illumination device 10 irradiates white light or light having a wavelength close thereto.

図9−2Aに示す比較例1の照明装置100は、図9−1Aに示す照明装置10において、光散乱板13の蛍光材料16として、図9−2Bに示すように、シリカ中実粒子に亜鉛含有結晶を担持させた複合材中実粒子18を用いたものである。  The illumination device 100 of Comparative Example 1 shown in FIG. 9-2A is a silica solid particle as shown in FIG. 9-2B as the fluorescent material 16 of the light scattering plate 13 in the illumination device 10 shown in FIG. 9-1A. The composite material solid particles 18 carrying the zinc-containing crystals are used.

比較例1の照明装置100と図9−1Aの照明装置10を比較すると、比較例1の照明装置100では、図9−2Bに示すように、複合材中実粒子18を透過する透過光が減衰してしまう。これに対して、複合材中空粒子15は、図9−1Cに示すように、複合材中実粒子18よりも光透過性および光散乱性が高いので、複合材中実粒子18の蛍光強度に比較して20%〜40%高い輝度が得られる。このため、図9−1Aの照明装置10によれば、比較例1の照明装置100よりも白色光の輝度が向上する。  When comparing the illumination device 100 of the comparative example 1 with the illumination device 10 of FIG. 9-1A, in the illumination device 100 of the comparative example 1, as shown in FIG. It will attenuate. On the other hand, as shown in FIG. 9-1C, the composite material hollow particles 15 have higher light transmission and light scattering properties than the composite material solid particles 18, so that the fluorescence intensity of the composite material solid particles 18 is increased. In comparison, 20% to 40% higher luminance is obtained. For this reason, according to the illuminating device 10 of FIG. 9-1A, the brightness | luminance of white light improves rather than the illuminating device 100 of the comparative example 1. FIG.

図10−1Aに示す本発明の他の施形態における照明装置20は、砲弾型のLED照明である。この照明装置20は、青色LED21と、リードフレーム22と、カバー23とを備えている。リードフレーム22は、青色LED21を保持する保持部22aを有しており、青色LED21を保持する保持部材と、青色LED21に電気的に接続された電気配線部材とを兼ねている。カバー23は、透明材料で構成され、青色LED21およびリードフレーム22の保持部22aを覆っている。 Lighting apparatus 20 according to another implementation of the invention shown in FIG. 10-1A is a bullet-shaped LED lighting. The lighting device 20 includes a blue LED 21, a lead frame 22, and a cover 23. The lead frame 22 has a holding portion 22 a that holds the blue LED 21, and serves as a holding member that holds the blue LED 21 and an electric wiring member that is electrically connected to the blue LED 21. The cover 23 is made of a transparent material and covers the blue LED 21 and the holding portion 22 a of the lead frame 22.

図10−1Bに示すように、保持部22aは、凹形状であり、凹形状の底部に青色LED21が配置されている。さらに、青色LED21の周囲に蛍光体として本発明の複合材中空粒子15を用いた蛍光材料が配置されている。この複合材中空粒子15は、図10−1Cに示すように、シリカ中空粒子15aの内表面に亜鉛含有結晶15bが担持されている。この場合、複合材中空粒子15は、黄色の発光を示す。なお、亜鉛含有結晶15bは、図10−1Dにしめすように、シリカ中空粒子15aの外表面のみに担持されていてもよく、シリカ中空粒子15aの外表面と内表面の両方に担持されていてもよい。シリカ中空粒子15aの外表面に亜鉛含有結晶15bが担持されている場合、複合材中空粒子15は、黄緑色の発光を示す。  As shown to FIG. 10-1B, the holding | maintenance part 22a is concave shape, and blue LED21 is arrange | positioned at the concave bottom part. Further, a fluorescent material using the composite hollow particle 15 of the present invention as a phosphor is disposed around the blue LED 21. As shown in FIG. 10-1C, the composite hollow particle 15 has a zinc-containing crystal 15b supported on the inner surface of the silica hollow particle 15a. In this case, the composite material hollow particles 15 emit yellow light. As shown in FIG. 10-1D, the zinc-containing crystal 15b may be supported only on the outer surface of the silica hollow particle 15a, or may be supported on both the outer surface and the inner surface of the silica hollow particle 15a. Also good. When the zinc-containing crystal 15b is supported on the outer surface of the silica hollow particle 15a, the composite hollow particle 15 emits yellowish green light.

この照明装置20においても、青色LED21が照射した光と、複合材中空粒子15が発光した光の両方を照射する。この結果、照明装置10は、白色光あるいはこれに近い波長の光を照射する。  Also in this illuminating device 20, it irradiates both the light which blue LED21 irradiated, and the light which the composite material hollow particle 15 light-emitted. As a result, the illumination device 10 irradiates white light or light having a wavelength close thereto.

図10−2に示す比較例2の照明装置200は、保持部22aの内部の蛍光材料として、比較例1の照明装置100と同様に、複合材中実粒子18を用いたものである。  The illuminating device 200 of the comparative example 2 shown to FIGS. 10-2 uses the composite material solid particle 18 like the illuminating device 100 of the comparative example 1 as a fluorescent material inside the holding | maintenance part 22a.

複合材中空粒子15は、複合材中実粒子18よりも光透過性および光散乱性が高いので、複合材中実粒子18の蛍光強度に比較して20%〜40%高い輝度が得られる。このため、図10−1Aの照明装置20によれば、比較例2の照明装置200よりも白色光の輝度が向上する。  Since the composite hollow particles 15 have higher light transmission and light scattering properties than the composite solid particles 18, a brightness 20% to 40% higher than the fluorescence intensity of the composite solid particles 18 can be obtained. For this reason, according to the illuminating device 20 of FIG. 10-1A, the brightness | luminance of white light improves rather than the illuminating device 200 of the comparative example 2. FIG.

以下、本発明を実施例に基づいてさらに説明するが、本発明はこれら実施例に限定されるものではない。  EXAMPLES Hereinafter, although this invention is further demonstrated based on an Example, this invention is not limited to these Examples.

実施例及び比較例で合成に用いた中空シリカ粒子のパラメータを表1に示す。  Table 1 shows the parameters of the hollow silica particles used in the synthesis in Examples and Comparative Examples.

(実施例1〜14、比較例1〜2)
本実験では、表1に示すように、粒子径約100nm、立方体状、比表面積180m/gのシリカ中空粒子を用いた。まず、分液漏斗と真空ポンプに接続したセパラブルフラスコに200mgの前記中空粒子を入れ、マントルヒーターで200℃に加熱し、減圧下で2時間乾燥させた。その後、室温に冷却した中空粒子に、2.29g(0.0125mol)の無水酢酸亜鉛(和光純薬工業製)を150mLのエタノール(99.5%、和光純薬工業製)に溶解させた酢酸亜鉛‐エタノール溶液を加えて、マグネチックスターラーで15分撹拌した。
(Examples 1-14, Comparative Examples 1-2)
In this experiment, as shown in Table 1, hollow silica particles having a particle diameter of about 100 nm, a cubic shape, and a specific surface area of 180 m 2 / g were used. First, 200 mg of the hollow particles were placed in a separable flask connected to a separatory funnel and a vacuum pump, heated to 200 ° C. with a mantle heater, and dried under reduced pressure for 2 hours. Thereafter, 2.29 g (0.0125 mol) of anhydrous zinc acetate (manufactured by Wako Pure Chemical Industries) was dissolved in 150 mL of ethanol (99.5%, manufactured by Wako Pure Chemical Industries) in the hollow particles cooled to room temperature. A zinc-ethanol solution was added and stirred with a magnetic stirrer for 15 minutes.

前記撹拌した懸濁液を孔径0.1μmのオムニポアメンブレン(Millipore社製)を用いてアスピレータによる吸引濾過を行った。得られた粒子をビーカーに移し、0.25g(0.00625mol)、0.5g(0.0125mol)、1.0g(0.025mol)、2.0g(0.05mol)、4.0g(0.1mol)の水酸化ナトリウム(和光純薬工業製)を50mLのエタノールに溶解させた水酸化ナトリウム‐エタノール溶液を加えてマグネチックスターラーで5分、30分、および60分撹拌した。水酸化ナトリウム量5種類、撹拌時間3種類(水酸化ナトリウム0.25gの場合のみ120分を含めた4種類)、計16種類のサンプルである。撹拌後の懸濁液に再度減圧濾過を行い、得られた粒子を室温下で24時間真空乾燥させて、シリカ/亜鉛含有結晶複合材中空粒子を得た。  The stirred suspension was subjected to suction filtration with an aspirator using an omnipore membrane (manufactured by Millipore) having a pore diameter of 0.1 μm. The obtained particles were transferred to a beaker, and 0.25 g (0.00625 mol), 0.5 g (0.0125 mol), 1.0 g (0.025 mol), 2.0 g (0.05 mol), 4.0 g (0 0.1 mol) of sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) in 50 mL of ethanol was added, and the mixture was stirred for 5 minutes, 30 minutes, and 60 minutes with a magnetic stirrer. There are 16 types of samples, 5 types of sodium hydroxide, 3 types of stirring time (4 types including 120 minutes only in the case of 0.25 g of sodium hydroxide). The suspension after stirring was filtered again under reduced pressure, and the resulting particles were vacuum-dried at room temperature for 24 hours to obtain silica / zinc-containing crystal composite hollow particles.

合成した複合材中空粒子の形状評価として、走査電子顕微鏡(SEM)による観察(JSM‐7600F/JEOL社製)、定性評価としてCuKα線による粉末X線回折(XRD)測定(UltimaIV/Rigaku社製)、また蛍光特性の評価は分光蛍光光度計(FP6500/JASCO社製)により行った。  As a shape evaluation of the composite composite hollow particles, observation by a scanning electron microscope (SEM) (manufactured by JSM-7600F / JEOL), and as a qualitative evaluation, powder X-ray diffraction (XRD) measurement by CuKα rays (manufactured by Ultimate IV / Rigaku) In addition, the fluorescence characteristics were evaluated by a spectrofluorometer (FP6500 / manufactured by JASCO).

図2A、2Bに原料となるシリカ中空粒子、図3A、3Bに合成したシリカ/亜鉛含有結晶複合材中空粒子のSEM像(透過電子モード像)およびその模式図をそれぞれ示す。図2A、2Bから、原料となるシリカ中空粒子が立方体状で粒子径が約100nm、殻厚が約10nmであることが分かる。一方、図3A、3Bから、中空シリカの粒子の殻表面に数nmの大きさの微粒子が付着していることが分かる。本実施例では、酢酸亜鉛‐エタノール溶液に原料のシリカ中空粒子を含浸した後、一度濾過し、その後水酸化ナトリウム‐エタノール溶液を加えた反応させたので、亜鉛イオンの分布がシリカの殻の外表面および内表面に集中し、微粒子が殻表面に選択的に析出したものと考えられる。  2A and 2B show a silica hollow particle as a raw material, and FIGS. 3A and 3B show a SEM image (transmission electron mode image) and a schematic diagram of the synthesized silica / zinc-containing crystal composite hollow particle, respectively. 2A and 2B, it can be seen that the hollow silica particles used as a raw material have a cubic shape, a particle diameter of about 100 nm, and a shell thickness of about 10 nm. On the other hand, it can be seen from FIGS. 3A and 3B that fine particles having a size of several nanometers are attached to the shell surface of the hollow silica particles. In this example, after impregnating the silica hollow particles of the raw material into the zinc acetate-ethanol solution, it was filtered once, and then reacted by adding the sodium hydroxide-ethanol solution, so that the zinc ion distribution was outside the silica shell. It is considered that the fine particles are concentrated on the surface and inner surface and are selectively deposited on the shell surface.

合成したシリカ/亜鉛含有結晶複合材中空粒子のXRDパターンを図4に示す。ここで、NaOH×1、NaOH×0.5、NaOH×0.25、NaOH×2、NaOH×4は、水酸化ナトリウムの使用量が各々1.0g、0.5g、0.25g、2.0g、4.0gであること、時間は水酸化ナトリウム‐エタノール溶液を加えた撹拌時間を表している。また、「ZnO(Wako)」と「Zn(OAc)」は各々参照として、和光純薬製試薬の酸化亜鉛と無水酢酸亜鉛を合成物と同条件で測定したものである。FIG. 4 shows an XRD pattern of the synthesized silica / zinc-containing crystal composite hollow particles. Here, NaOH x1, NaOH x0.5, NaOH x0.25, NaOH x2, and NaOH x4 are used in amounts of sodium hydroxide of 1.0 g, 0.5 g, 0.25 g, and 2. The time of 0 g and 4.0 g represents the stirring time of adding the sodium hydroxide-ethanol solution. In addition, “ZnO (Wako)” and “Zn (OAc) 2 ” are obtained by measuring zinc oxide and anhydrous zinc acetate, which are Wako Pure Chemicals reagents, under the same conditions as the synthesized product, respectively.

合成したすべてのサンプルにおいて、原料である無水酢酸亜鉛のピークは消失し、酸化亜鉛のピークが認められる。2θ=32、35、36(第1角度群)にあるピークが酸化亜鉛のピークである。ただし、これら酸化亜鉛のピークはブロード化しており、亜鉛含有結晶の微粒子化による影響と考えられる。なお、(NaOH×1、60min)と(NaOH×0.5、60min)については、9°、18°、27°、および36°(第2角度群)に鋭いピークがあり、その角度が倍数になっているので、層状亜鉛含有結晶ができている可能性が示唆される。また、サンプルのうち、例えば、(NaOH×1/4、5min)においては、10°、15°、17°、20°、21°、25°、28°、32°、36°(第3角度群)にピークがある。(NaOH×1/2、5min)においては、2θ=32°、34°、38°(第4角度群)にピークがある。  In all the synthesized samples, the peak of anhydrous zinc acetate as a raw material disappears and the peak of zinc oxide is observed. The peaks at 2θ = 32, 35, 36 (first angle group) are the zinc oxide peaks. However, the peaks of these zinc oxides are broadened, which is considered to be due to the fine particles of zinc-containing crystals. In addition, (NaOH × 1, 60 min) and (NaOH × 0.5, 60 min) have sharp peaks at 9 °, 18 °, 27 °, and 36 ° (second angle group), and the angle is a multiple. Therefore, the possibility that a layered zinc-containing crystal is formed is suggested. Also, among the samples, for example, (NaOH × 1/4, 5 min), 10 °, 15 °, 17 °, 20 °, 21 °, 25 °, 28 °, 32 °, 36 ° (third angle) Group) has a peak. In (NaOH × 1/2, 5 min), there are peaks at 2θ = 32 °, 34 °, and 38 ° (fourth angle group).

合成したサンプルのフォトルミネッセンス(PL)特性を図5に示す。励起光の波長は350nmである。いずれのサンプルも蛍光ピーク波長は550〜560nmで大きな差異は見られず、黄緑色〜黄色の発光を示すことが分かった。また、XRD測定における34°付近のピークが広がっているほうが蛍光の強度が大きくなっていると考えられる。NaOH×1/4のサンプルに関しては、蛍光強度は大きいが、SEM像による確認ではシェル上への亜鉛含有結晶の担持が非常に少なかった。これは水酸化ナトリウムの濃度が薄いことによって、亜鉛含有結晶の生成に時間がかかり、合成時に亜鉛イオンがシェル外に拡散してしまったと考えられる。また、NaOH×2、NaOH×4のサンプルに関しては、SEMによってシリカシェル上への亜鉛含有結晶の担持が確認されたものの、XRD測定によって結晶性が非常に低いことが分かった。また、PL測定結果でもそれぞれ蛍光強度が低いことが分かった。さらにNaOH×2、NaOH×4のサンプルは、残留した水酸化ナトリウムの影響か、大気中で保管した場合に潮解性のような現象がみられ、粉末としての操作性に優れないことが分かった。  The photoluminescence (PL) characteristics of the synthesized sample are shown in FIG. The wavelength of the excitation light is 350 nm. It was found that any sample showed a fluorescence peak wavelength of 550 to 560 nm and showed no significant difference, and emitted yellowish green to yellow light. In addition, it is considered that the fluorescence intensity increases as the peak near 34 ° in the XRD measurement spreads. With respect to the sample of NaOH × 1/4, the fluorescence intensity was large, but the confirmation by the SEM image showed that the loading of the zinc-containing crystal on the shell was very small. This is probably because the low concentration of sodium hydroxide took time to produce zinc-containing crystals, and zinc ions diffused out of the shell during synthesis. Further, regarding the NaOH × 2 and NaOH × 4 samples, although the support of zinc-containing crystals on the silica shell was confirmed by SEM, it was found that the crystallinity was very low by XRD measurement. Moreover, it was found that the fluorescence intensity was low in each PL measurement result. Furthermore, it was found that the NaOH x 2 and NaOH x 4 samples were not excellent in operability as a powder because of the effects of residual sodium hydroxide or phenomena such as deliquescence when stored in the atmosphere. .

NaOH×1/2、撹拌時間30minのサンプルの発光状態を示す写真を図6に示す。励起光の波長は365nmであり、容器は石英製である。写真のように黄緑〜黄色の発光を示すことが分かった。
表2は合成に用いた無水酢酸亜鉛、水酸化ナトリウムの量及びそのモル比、水酸化ナトリウムとそれを溶解させるアルコールの量比、撹拌時間の組み合わせおよびサンプル評価結果をまとめたものである。物性欄にはSEM観察によるシリカ中空粒子と亜鉛含有結晶ナノ粒子の複合化の確認結果(○は良好、少しでも複合化しているものは△、全く複合化していないものは×で表記)、XRD測定による亜鉛含有結晶のピーク(2θ=(9°、18°、27°、36°)及び、2θ=(10°、15°、17°、20°、21°、25°、28°、32°、36°)及び、2θ=(32°、34°、38°)及び、酸化亜鉛のピークのいずれか)の有無(有りは○、無しは×で表記)、PL測定による蛍光強度(特に強いものは◎、強いものは○、弱いものは△、全く蛍光を示さないものは×に大別した)である。なお、NaOH×2、60min(比較例1)、及び、NaOH×4、60min(比較例2)の条件で合成したサンプルについては、NaOH由来と思われる潮解性が強く、粉末としての操作性に優れないことが分かった。この潮解性のために、NaOH×2、60minのPL測定、及びNaOH×4、60minのXRD測定とPL測定は実行できなかった。
The photograph which shows the light emission state of the sample of NaOH * 1/2 and stirring time 30min is shown in FIG. The wavelength of the excitation light is 365 nm, and the container is made of quartz. As shown in the photograph, it was found that yellow-yellow to yellow light was emitted.
Table 2 summarizes the amount of anhydrous zinc acetate and sodium hydroxide used in the synthesis and the molar ratio thereof, the amount ratio of sodium hydroxide and the alcohol in which it is dissolved, the combination of stirring time, and the sample evaluation results. In the physical property column, the confirmation result of the composite of the silica hollow particle and the zinc-containing crystal nanoparticle by SEM observation (○ is good, △ indicates that it is composited even a little, and × indicates that it is not composited at all), XRD Peaks of zinc-containing crystals as measured (2θ = (9 °, 18 °, 27 °, 36 °) and 2θ = (10 °, 15 °, 17 °, 20 °, 21 °, 25 °, 28 °, 32 (°, 36 °) and 2θ = (32 °, 34 °, 38 °) and any of the peaks of zinc oxide) (existence is indicated by ○, absence is indicated by ×), fluorescence intensity by PL measurement (especially The strong ones are categorized as ◎, the strong ones are 弱 い, the weak ones are Δ, and the ones that do not show fluorescence at all are X). In addition, about the sample synthesize | combined on the conditions of NaOH * 2, 60min (comparative example 1) and NaOH * 4, 60min (comparative example 2), the deliquescence considered to be derived from NaOH is strong, and it is easy to operate as a powder. It turns out that it is not excellent. Due to this deliquescence, PL measurement of NaOH × 2, 60 min and XRD measurement and PL measurement of NaOH × 4, 60 min could not be performed.

(実施例15〜18、比較例3〜6)
実施例1〜14で用いたシリカ中空粒子より密度が小さく、細孔径が大きいシリカ中空粒子(密度約1.5g/cmで平均細孔径約1.5nm)、および密度約2.2g/cm で細孔無しのシリカ中空粒子を用いた比較例3〜6を表3に示す。シリカ中空粒子の殻に細孔がない場合は亜鉛含有結晶が殻表面に形成されないことがわかる。
(Examples 15-18, Comparative Examples 3-6)
Silica hollow particles having a smaller density and larger pore diameter than the silica hollow particles used in Examples 1 to 14 (density about 1.5 g / cm3Average pore diameter of about 1.5 nm), and density of about 2.2 g / cm 3Table 3 shows Comparative Examples 3 to 6 using silica hollow particles having no pores. It can be seen that when the silica hollow particle shell has no pores, no zinc-containing crystals are formed on the shell surface.

(実施例19〜34)
亜鉛源として硝酸亜鉛、塩化亜鉛、硫化亜鉛、硫酸亜鉛を用いた(硫化亜鉛、硫酸亜鉛を亜鉛源とする時のみ溶媒を水とする)実施例19〜34を表4に示す。溶媒をアルコールの代わりに水とした硫化亜鉛、硫酸亜鉛でもシリカ/亜鉛含有結晶複合材が形成された。
(Examples 19 to 34)
Table 19 shows Examples 19 to 34 in which zinc nitrate, zinc chloride, zinc sulfide, and zinc sulfate were used as the zinc source (the solvent was water only when zinc sulfide and zinc sulfate were used as the zinc source). Silica / zinc-containing crystal composites were formed even with zinc sulfide and zinc sulfate in which the solvent was water instead of alcohol.

(実施例35〜46)
アルカリとして水酸化カリウム、水酸化リチウム、アンモニア水を用いた実施例35〜46を表5に示す。水酸化ナトリウム以外に水酸化リチウム等でもシリカ/亜鉛含有結晶複合材が形成されることがわかった。
(Examples 35 to 46)
Table 5 shows Examples 35 to 46 using potassium hydroxide, lithium hydroxide, and aqueous ammonia as the alkali. It was found that a silica / zinc-containing crystal composite material was formed with lithium hydroxide or the like in addition to sodium hydroxide.

(実施例47〜62)
溶媒として、エタノールの代わりに2−プロパノール、アセトン、エチレングリコール、ジグライムを用いた実施例47〜62を表6に示す。エタノール以外の汎用性の高い溶媒でもシリカ/亜鉛含有結晶複合材が形成されることがわかった。
(Examples 47 to 62)
Examples 47 to 62 using 2-propanol, acetone, ethylene glycol, and diglyme instead of ethanol as the solvent are shown in Table 6. It was found that a silica / zinc-containing crystal composite material can be formed even with a versatile solvent other than ethanol.

(実施例63〜66)
上記実施例1〜62とは逆にアルカリを中空粒子に含浸させ、濾過した後に亜鉛源溶液を加える手法を用いた実施例63〜66を表7に示す。アルカリを先に中空粒子に含浸させた場合でも、シリカ中空粒子の殻付近で亜鉛含有結晶が形成可能であることがわかる。
(Examples 63 to 66)
Table 7 shows Examples 63 to 66 using a method of adding a zinc source solution after impregnating the hollow particles with alkali and filtering after conversely to Examples 1 to 62 above. It can be seen that even when the hollow particles are impregnated with alkali first, zinc-containing crystals can be formed in the vicinity of the shell of the silica hollow particles.

本発明の亜鉛含有結晶を担持したシリカ中空粒子(Hollow-ZnO)と同亜鉛含有結晶を担持したシリカ中実粒子(DenseーZnO)の蛍光色と蛍光強度を比較した。図7に示すようにアセトンに各粒子を分散させ、励起波長350nmの光を照射したところ、亜鉛含有結晶担持シリカ中空粒子は黄緑色の蛍光を放ち、亜鉛含有結晶担持シリカ中実粒子は黄色の蛍光を放った。次に、励起波長350nmの光で照射した際の蛍光特性を測定した結果を図8に示す。亜鉛含有結晶担持シリカ中空粒子(Hollow-ZnO)と亜鉛含有結晶担持シリカ中実粒子(Dense-ZnO)の蛍光強度の波長依存性はほぼ同じであるが、強度は亜鉛含有結晶担持シリカ中空粒子が亜鉛含有結晶担持中実粒子に対して全波長域で約2倍となり、中空粒子の光透過性と光散乱性が高いことによると推測できる。 The fluorescence color and fluorescence intensity of the silica hollow particles (Hollow-ZnO) carrying the zinc-containing crystals of the present invention and the silica solid particles (Dense-ZnO) carrying the zinc-containing crystals were compared. As shown in FIG. 7, when each particle is dispersed in acetone and irradiated with light having an excitation wavelength of 350 nm, the zinc-containing crystal-supported silica hollow particles emit yellow-green fluorescence, and the zinc-containing crystal-supported silica solid particles are yellow. Fluorescence was emitted. Next, FIG. 8 shows the results of measurement of fluorescence characteristics when irradiated with light having an excitation wavelength of 350 nm. The wavelength dependence of the fluorescence intensity of zinc-containing crystal-supported silica hollow particles (Hollow-ZnO) and zinc-containing crystal-supported silica solid particles (Dense-ZnO) is almost the same. It can be assumed that the solid particles carrying zinc-containing crystals are about twice as large in the entire wavelength region, and that the light transmittance and light scattering properties of the hollow particles are high.

本発明のシリカ/亜鉛含有結晶複合材中空粒子は蛍光材料に利用できる。  The silica / zinc-containing crystal composite hollow particles of the present invention can be used as a fluorescent material.

Claims (15)

シリカ殻からなるシリカ中空粒子と、
前記シリカ殻の外表面と内表面の少なくとも一方に担持された亜鉛含有結晶粒子とを備え、
前記シリカ中空粒子の平均粒子径は30〜2000nmであり、
前記亜鉛含有結晶粒子の平均粒子径は1〜20nmであり、
前記亜鉛含有結晶粒子は、CuKα線によるX線回折パターンにおいて、θ=(9°、18°、27°、36°)の度群、2θ=(10°、15°、17°、20°、21°、25°、28°、32°、36°)の度群および2θ=(32°、34°、38°)の度群のいずれか1つ以上の角度群に回折ピークを有する、シリカと亜鉛含有結晶の複合材で構成された複合材中空粒子。
Silica hollow particles made of silica shell,
Comprising zinc-containing crystal particles supported on at least one of an outer surface and an inner surface of the silica shell,
The silica hollow particles have an average particle size of 30 to 2000 nm,
The zinc-containing crystal particles have an average particle size of 1 to 20 nm,
Said zinc-containing crystal grains, in X-ray diffraction pattern by CuKα line, 2 θ = (9 °, 18 °, 27 °, 36 °) angles group, 2θ = (10 °, 15 °, 17 °, 20 °, 21 °, 25 °, 28 °, 32 °, angles groups 36 °) and 2θ = (32 °, 34 ° , diffraction peaks at any one or more angles groups aNGLE groups 38 °) Composite hollow particles composed of a composite of silica and zinc-containing crystals.
前記複合材から放出される蛍光のピーク波長が500〜600nmである請求項1に記載の複合材中空粒子。   The composite hollow particle according to claim 1, wherein a peak wavelength of fluorescence emitted from the composite material is 500 to 600 nm. 前記シリカ殻は細孔を有し、前記細孔の平均細孔径が2nm以下である請求項1または2に記載の複合材中空粒子。   The composite hollow particle according to claim 1, wherein the silica shell has pores, and an average pore diameter of the pores is 2 nm or less. 前記亜鉛含有結晶粒子は、前記シリカ殻の外表面と内表面のうち少なくとも内表面に担持されている請求項1ないしのいずれか1つに記載の複合材中空粒子。 The composite hollow particle according to any one of claims 1 to 3 , wherein the zinc-containing crystal particles are supported on at least an inner surface of an outer surface and an inner surface of the silica shell. シリカ殻からなるシリカ中空粒子と、
前記シリカ殻の外表面と内表面の少なくとも一方に担持された亜鉛含有結晶粒子とを備え、
前記シリカ中空粒子の平均粒子径は30〜2000nmであり、
前記亜鉛含有結晶粒子の平均粒子径は1〜20nmであり、
前記亜鉛含有結晶粒子は、CuKα線によるX線回折パターンにおいて、2θ=(32°、35°、36°)の第1角度群、2θ=(9°、18°、27°、36°)の第2角度群、2θ=(10°、15°、17°、20°、21°、25°、28°、32°、36°)の第3角度群および2θ=(32°、34°、38°)の第4角度群のいずれか1つ以上の角度群に回折ピークを有する、シリカと亜鉛含有結晶の複合材で構成された複合材中空粒子の製造方法であって、
細孔を有するシリカ殻からなり、平均粒子径が30〜2000nmであるシリカ中空粒子と、亜鉛源を水または有機溶媒に溶解した亜鉛源含有溶液と、アルカリ源と溶媒とを混合させたアルカリ含有混合液とを用意する第1工程と、
前記シリカ中空粒子に前記亜鉛源含有溶液と前記アルカリ含有混合液の一方の液体を含浸させて、前記一方の液体が前記細孔から前記シリカ中空粒子の内部に入り込んだ粒子を得る第2工程と、
前記亜鉛源含有溶液と前記アルカリ含有混合液の他方の液体と、前記第2工程で得られた粒子とを混合および撹拌して、前記亜鉛源と前記アルカリ源を反応させて前記シリカ殻の外表面と内表面の少なくとも一方に亜鉛含有結晶粒子を生成する第3工程とを行うことで、前記複合材中空粒子を得る複合材中空粒子の製造方法。
Silica hollow particles made of silica shell,
Comprising zinc-containing crystal particles supported on at least one of an outer surface and an inner surface of the silica shell,
The silica hollow particles have an average particle size of 30 to 2000 nm,
The zinc-containing crystal particles have an average particle size of 1 to 20 nm,
The zinc-containing crystal particles have a first angle group of 2θ = (32 °, 35 °, 36 °) and 2θ = (9 °, 18 °, 27 °, 36 °) in an X-ray diffraction pattern by CuKα rays. The second angle group, 2θ = (10 °, 15 °, 17 °, 20 °, 21 °, 25 °, 28 °, 32 °, 36 °) and the third angle group and 2θ = (32 °, 34 °, 38 °) is a method for producing a composite hollow particle composed of a composite material of silica and zinc-containing crystal having a diffraction peak in any one or more of the fourth angle group,
Ri Do silica shell having pores having an average particle diameter were mixed with 30~2000nm der Ru silica hollow particles, and zinc source containing solution a source of zinc dissolved in water or an organic solvent, an alkali source and a solvent A first step of preparing an alkali-containing liquid mixture;
A second step of impregnating the silica hollow particles with one of the zinc source-containing solution and the alkali-containing mixed liquid to obtain particles in which the one liquid has entered the silica hollow particles from the pores; ,
The zinc source-containing solution, the other liquid of the alkali-containing mixed solution, and the particles obtained in the second step are mixed and stirred to react the zinc source and the alkali source so that the outside of the silica shell. The manufacturing method of the composite hollow particle which obtains the said composite hollow particle by performing the 3rd process which produces | generates a zinc containing crystal particle in at least one of the surface and an inner surface.
前記第3工程の混合および撹拌を20〜40℃の温度下で行う請求項に記載の複合材中空粒子の製造方法。 The method for producing composite hollow particles according to claim 5 , wherein the mixing and stirring in the third step are performed at a temperature of 20 to 40 ° C. 前記シリカ中空粒子として、平均細孔径が2nm以下である細孔を有する前記シリカ殻からなるものを用いる請求項またはに記載の複合材中空粒子の製造方法。 The method for producing composite hollow particles according to claim 5 or 6 , wherein the hollow silica particles are made of the silica shell having pores having an average pore diameter of 2 nm or less. 前記亜鉛源含有溶液の亜鉛源として、無水酢酸亜鉛、硝酸亜鉛、塩化亜鉛、硫化亜鉛および硫酸亜鉛のいずれか1つ以上のものを用いる請求項ないしのいずれか1つに記載の複合材中空粒子の製造方法。 The composite material according to any one of claims 5 to 7 , wherein any one or more of anhydrous zinc acetate, zinc nitrate, zinc chloride, zinc sulfide, and zinc sulfate is used as a zinc source of the zinc source-containing solution. A method for producing hollow particles. 前記アルカリ含有混合液のアルカリ源として、水酸化ナトリウム、水酸化カリウム、水酸化リチウムおよびアンモニアのいずれか1つ以上のものを用い、前記アルカリ含有混合液の溶媒として、エタノール、2−プロパノール、アセトン、エチレングリコール、ジグライムおよび水のいずれか1つ以上のものを用いる請求項ないしのいずれか1つに記載の複合材中空粒子の製造方法。 One or more of sodium hydroxide, potassium hydroxide, lithium hydroxide and ammonia is used as an alkali source of the alkali-containing mixed solution, and ethanol, 2-propanol, acetone is used as a solvent of the alkali-containing mixed solution. The method for producing composite hollow particles according to any one of claims 5 to 8 , wherein at least one of ethylene glycol, diglyme and water is used. 前記アルカリ含有混合液のアルカリ源および溶媒として、水酸化ナトリウムおよびエタノールを用いるとともに、エタノール中に含まれる水酸化ナトリウムの量を5g/L〜50g/Lとし、
前記第3工程の混合および撹拌の時間を1分〜120分とする請求項ないしのいずれか1つに記載の複合材中空粒子の製造方法。
While using sodium hydroxide and ethanol as the alkali source and solvent of the alkali-containing mixture, the amount of sodium hydroxide contained in the ethanol is 5 g / L to 50 g / L,
The method for producing composite hollow particles according to any one of claims 5 to 8 , wherein the mixing and stirring time in the third step is 1 minute to 120 minutes.
シリカと亜鉛含有結晶の複合材で構成された複合材中空粒子を用いた蛍光材料であって
前記複合材中空粒子は、
シリカ殻からなるシリカ中空粒子と、
前記シリカ殻の外表面と内表面の少なくとも一方に担持された亜鉛含有結晶粒子とを備え、
前記シリカ中空粒子の平均粒子径は30〜2000nmであり、
前記亜鉛含有結晶粒子の平均粒子径は1〜20nmであり、
前記亜鉛含有結晶粒子は、CuKα線によるX線回折パターンにおいて、2θ=(32°、35°、36°)の第1角度群、2θ=(9°、18°、27°、36°)の第2角度群、2θ=(10°、15°、17°、20°、21°、25°、28°、32°、36°)の第3角度群および2θ=(32°、34°、38°)の第4角度群のいずれか1つ以上の角度群に回折ピークを有する蛍光材料。
A fluorescent material using the composite hollow particles made of a composite of silica and zinc-containing crystals,
The composite hollow particles are
Silica hollow particles made of silica shell,
Comprising zinc-containing crystal particles supported on at least one of an outer surface and an inner surface of the silica shell,
The silica hollow particles have an average particle size of 30 to 2000 nm,
The zinc-containing crystal particles have an average particle size of 1 to 20 nm,
The zinc-containing crystal particles have a first angle group of 2θ = (32 °, 35 °, 36 °) and 2θ = (9 °, 18 °, 27 °, 36 °) in an X-ray diffraction pattern by CuKα rays. The second angle group, 2θ = (10 °, 15 °, 17 °, 20 °, 21 °, 25 °, 28 °, 32 °, 36 °) and the third angle group and 2θ = (32 °, 34 °, 38 °) a fluorescent material having a diffraction peak in one or more angle groups of the fourth angle group.
請求項11に記載の蛍光材料を用いた導光板式フラットパネル照明。 Light guide plate type flat panel illumination using the fluorescent material according to claim 11 . 請求項11に記載の蛍光材料を内包した発光ダイオード照明。 Light emitting diode illumination including the fluorescent material according to claim 11 . 光を照射する光源と、
前記光源から照射された光によって発光する蛍光体とを備え、
前記光源の光と前記蛍光体が発光した光の両方を照射する照明装置であって、
前記蛍光体は、請求項11に記載の蛍光材料で構成されていることを特徴とする照明装置。
A light source that emits light;
A phosphor that emits light by light emitted from the light source,
An illumination device that irradiates both light from the light source and light emitted from the phosphor,
The said fluorescent substance is comprised with the fluorescent material of Claim 11 , The illuminating device characterized by the above-mentioned.
前記光源は、青色発光ダイオードであることを特徴とする請求項14に記載の照明装置。 The lighting device according to claim 14 , wherein the light source is a blue light emitting diode.
JP2015540568A 2013-10-03 2014-10-03 COMPOSITE HOLLOW PARTICLE, PROCESS FOR PRODUCING THE SAME, AND FLUORESCENT MATERIAL Expired - Fee Related JP6083003B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013207983 2013-10-03
JP2013207983 2013-10-03
JP2014129753 2014-06-25
JP2014129753 2014-06-25
PCT/JP2014/076536 WO2015050243A1 (en) 2013-10-03 2014-10-03 Composite material hollow particles and method for manufacturing same, and fluorescent material

Publications (2)

Publication Number Publication Date
JP6083003B2 true JP6083003B2 (en) 2017-02-22
JPWO2015050243A1 JPWO2015050243A1 (en) 2017-03-09

Family

ID=52778826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015540568A Expired - Fee Related JP6083003B2 (en) 2013-10-03 2014-10-03 COMPOSITE HOLLOW PARTICLE, PROCESS FOR PRODUCING THE SAME, AND FLUORESCENT MATERIAL

Country Status (2)

Country Link
JP (1) JP6083003B2 (en)
WO (1) WO2015050243A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110060A (en) * 2015-12-15 2017-06-22 シャープ株式会社 Light-emitting structure and light-emitting device using the same
EP3632849B1 (en) 2017-05-31 2022-07-06 JGC Catalysts and Chemicals Ltd. Hollow particles and cosmetics containing them
US10991856B2 (en) 2017-12-21 2021-04-27 Lumileds Llc LED with structured layers and nanophosphors
TW202104544A (en) * 2019-05-21 2021-02-01 日商Dic股份有限公司 Method for producing light-emitting particles, light-emitting particles, light-emitting particle dispersion, ink composition, and light-emitting element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201473A (en) * 2001-10-31 2003-07-18 Nittetsu Mining Co Ltd Zinc oxide-silica inorganic porous fluorescent body and method of producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201473A (en) * 2001-10-31 2003-07-18 Nittetsu Mining Co Ltd Zinc oxide-silica inorganic porous fluorescent body and method of producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014054967; YAO, K. X. et al.: 'Simultaneous Chemical Modification and Structural Transformation of Stober Silica Spheres for Integr' Chem. Mater. Vol. 24, 2012, p. 140-148 *
JPN6014054970; 化学大辞典編集委員会: 化学大辞典6 , 1979, p. 696-697, 共立出版株式会社 *

Also Published As

Publication number Publication date
JPWO2015050243A1 (en) 2017-03-09
WO2015050243A1 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6017385B2 (en) Luminescent body and core-shell luminous body precursor
US10066163B2 (en) Morphologically and size uniform monodisperse particles and their shape-directed self-assembly
JP6083003B2 (en) COMPOSITE HOLLOW PARTICLE, PROCESS FOR PRODUCING THE SAME, AND FLUORESCENT MATERIAL
Dutta et al. Dual function of rare earth doped nano Bi 2 O 3: white light emission and photocatalytic properties
Duan et al. Hybrids based on lanthanide ions activated yttrium metal–organic frameworks: functional assembly, polymer film preparation and luminescence tuning
Hou et al. One-dimensional luminescent materials derived from the electrospinning process: preparation, characteristics and application
Xu et al. General and facile method to fabricate uniform Y 2 O 3: Ln 3+(Ln 3+= Eu 3+, Tb 3+) hollow microspheres using polystyrene spheres as templates
Li et al. Core–shell structured Gd 2 O 3: Ln@ m SiO 2 hollow nanospheres: synthesis, photoluminescence and drug release properties
Han et al. Novel preparation and near-infrared photoluminescence of uniform core-shell silver sulfide nanoparticle@ mesoporous silica nanospheres
Tao et al. Synthesis of corundum-type In 2 O 3 porous spheres and their photocatalytic properties
Gao et al. Facile fabrication and photoluminescence properties of rare-earth-doped Gd 2 O 3 hollow spheres via a sacrificial template method
Lv et al. Synthesis of porous upconverting luminescence α-NaYF 4: Ln 3+ microspheres and their potential applications as carriers
Zhao et al. Facile synthesis of upconversion luminescent mesoporous Y 2 O 3: Er microspheres and metal enhancement using gold nanoparticles
Engku Ali et al. Effect of sintering temperatures on structural and optical properties of ZnO-Zn 2 SiO 4 composite prepared by using amorphous SiO 2 nanoparticles
Srivastava et al. Rare earth free bright and persistent white light emitting zinc gallo-germanate nanosheets: technological advancement to fibers with enhanced quantum efficiency
JP6359066B2 (en) Potassium fluoride manganate for manganese-activated bifluoride phosphor raw material and method for producing manganese-activated bifluoride phosphor using the same
Mou et al. Synthesis and luminescent properties of monodisperse SiO 2@ SiO 2: Eu (DBM) 3 phen microspheres with core-shell structure by sol–gel method
Nguyen et al. Preparation and characterization of hollow silica nanocomposite functionalized with UV absorbable molybdenum cluster
CN107057698B (en) La/Eu-ordered mesoporous zinc oxide composite material and preparation method thereof
Song et al. Wet-chemical preparation of barium magnesium orthophosphate, Ba 2 Mg (PO 4) 2: Eu 2+, nanorod phosphor with enhanced optical and photoluminescence properties
JP2009269790A (en) Long filamentous metal titanate and its producing method
Jin et al. Retracted Article: Facile fabrication of water-dispersible AgInS 2 quantum dots and mesoporous AgInS 2 nanospheres with visible photoluminescence
KR102108378B1 (en) Method for producing porous titanium oxide fine particle and porous fine titanium oxide fine particles
JP5299889B2 (en) COMPOSITE MATERIAL, LIGHT EMITTING MATERIAL, FUNCTIONAL MATERIAL, COMPOSITE MATERIAL MANUFACTURING METHOD, AND COMPOSITE MATERIAL THIN FILM MANUFACTURING METHOD
Caiut et al. Luminescent terbium doped aluminate particles: Properties and surface modification with asparagine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6083003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees