JP2003201473A - Zinc oxide-silica inorganic porous fluorescent body and method of producing the same - Google Patents

Zinc oxide-silica inorganic porous fluorescent body and method of producing the same

Info

Publication number
JP2003201473A
JP2003201473A JP2002312132A JP2002312132A JP2003201473A JP 2003201473 A JP2003201473 A JP 2003201473A JP 2002312132 A JP2002312132 A JP 2002312132A JP 2002312132 A JP2002312132 A JP 2002312132A JP 2003201473 A JP2003201473 A JP 2003201473A
Authority
JP
Japan
Prior art keywords
zinc
silica
inorganic porous
based inorganic
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002312132A
Other languages
Japanese (ja)
Inventor
Masatoshi Chikasawa
正敏 近澤
Masatada Fuji
正督 藤
Takashi Takei
孝 武井
Katsuyuki Tanabe
克幸 田辺
Atsushi Ukago
敦 鵜籠
Shigeru Kasuya
滋 糟谷
Kohei Mitsuhashi
幸平 三觜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP2002312132A priority Critical patent/JP2003201473A/en
Publication of JP2003201473A publication Critical patent/JP2003201473A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent body that is prepared by filling the pores in a silica porous body, e.g. a silica gel with fine particles of zinc oxide, particularly a fluorescent body having excellent properties, e.g. stability, handleability and the like and provide a method of producing the same. <P>SOLUTION: A solution of a zinc compound in ethanol or water is used to introduce zinc ions or zinc compounds into the pores formed on a silica inorganic porous body, e.g. a silica gel and they are incinerated with heat in an oxidative atmosphere whereby the pores are filled with zinc oxide. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリカゲル等のシ
リカ系無機多孔質体に酸化亜鉛微粒子を内包させた蛍光
体に関するものである。より詳しくは、安定性、ハンド
リング性等の粉体特性に優れ、かつ経済性にも優れた応
用範囲が広い無機蛍光体及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a phosphor in which fine particles of zinc oxide are included in a silica-based inorganic porous material such as silica gel. More specifically, the present invention relates to an inorganic phosphor having excellent powder properties such as stability and handling property and also being economical, and having a wide range of applications, and a method for producing the same.

【0002】[0002]

【従来の技術】[Prior art]

【特許文献1】 特許第3195054号公報[Patent Document 1] Japanese Patent No. 3195054

【特許文献2】 特開平5−117654号公報[Patent Document 2] Japanese Patent Laid-Open No. 5-117654

【特許文献3】 特開平5−209173号公報[Patent Document 3] Japanese Unexamined Patent Publication No. 5-209173

【特許文献4】 特開平5−310432号公報[Patent Document 4] Japanese Patent Laid-Open No. 5-310432

【特許文献5】 特開2001−233612号公報[Patent Document 5] Japanese Patent Laid-Open No. 2001-233612

【0003】無機蛍光体の代表的なものには、蛍光灯な
どに使用されているハロリン酸カルシウムをはじめ、ア
ルカリハライド、酸化物、酸素酸塩、フッ化物等の各種
化合物のものがあり、それらにMnやSbを賦活体とし
て添加した賦活型蛍光体もある。また、その蛍光体及び
製造方法に関しては、既に数多くの技術が知られてい
る。
Typical examples of inorganic phosphors include calcium halophosphates used in fluorescent lamps and various compounds such as alkali halides, oxides, oxyacid salts, and fluorides. There is also an activated phosphor in which Mn or Sb is added as an activator. Many techniques are already known for the phosphor and the manufacturing method.

【0004】それらの中で酸化亜鉛とシリカ系無機多孔
質体、特にシリカを含有する蛍光体としては、特許文献
1が開示する短い減衰時間を有するマンガンをドープし
た珪酸亜鉛に基づく蛍光材料に関するものがあり、その
蛍光材料は酸化亜鉛、シリカゲル及び炭酸マンガンから
なる水性懸濁液を乾燥させ、得られた乾燥物をオーブン
中で処理する方法で製造される。また、特許文献2に
は、低速電子線励起蛍光体として使用される発光輝度が
高くなるZnO:Zn蛍光体において、金属亜鉛粉末微
粒子の表面に、シリカを被着した金属亜鉛粉末を、Zn
O:Zn蛍光体に混合又は付着することが開示されてい
る。
Among them, a phosphor containing zinc oxide and a silica-based inorganic porous material, particularly silica, relates to a phosphor material based on manganese-doped zinc silicate having a short decay time disclosed in Patent Document 1. The fluorescent material is produced by drying an aqueous suspension of zinc oxide, silica gel and manganese carbonate and treating the resulting dried product in an oven. Further, in Patent Document 2, in a ZnO: Zn phosphor used as a slow-electron-beam-excited phosphor and having a high emission brightness, metal zinc powder coated with silica is added to the surface of fine particles of the metal zinc powder.
It is disclosed to be mixed or attached to an O: Zn phosphor.

【0005】このほかにも、特許文献3には、可溶性コ
バルト塩と可溶性亜鉛塩とを含む水溶液に沈澱剤を添加
し、共沈物を乾燥させた後、酸化珪素を混合し焼成した
CoO・ZnO・SiO2系青色顔料を青色発光蛍光体
の表面に付着してなる顔料付青色発光蛍光体、特許文献
4には、コロイダルシリカ及びコバルトと亜鉛を含む水
溶液にアルカリ水溶液を添加し、生成した共沈混合物を
乾燥し焼成した青色顔料を青色発光蛍光体の表面に付着
してなる顔料付青色発光蛍光体が開示されている。さら
に、最近では、ソーコナイト型結晶構造を有するマンガ
ン含有ケイ酸亜鉛を焼成して相転移させたウィレマイト
型結晶構造のマンガン含有ケイ酸亜鉛あるいはそのシリ
カ複合体からなる蛍光体が特許文献5に開示されてい
る。
In addition to this, in Patent Document 3, a precipitant is added to an aqueous solution containing a soluble cobalt salt and a soluble zinc salt, the coprecipitate is dried, and then silicon oxide is mixed and baked into CoO. A pigmented blue light emitting phosphor in which a ZnO.SiO 2 based blue pigment is adhered to the surface of a blue light emitting phosphor. In Patent Document 4, an alkaline aqueous solution is added to an aqueous solution containing colloidal silica and cobalt and zinc. A pigmented blue light-emitting phosphor is disclosed in which a blue pigment obtained by drying and firing a coprecipitation mixture is attached to the surface of the blue light-emitting phosphor. Further, recently, Patent Document 5 discloses a phosphor comprising a manganese-containing zinc silicate having a willemite-type crystal structure obtained by firing a manganese-containing zinc silicate having a sauconite-type crystal structure to cause a phase transition, or a silica composite thereof. ing.

【0006】[0006]

【発明が解決しようとする課題】以上のとおり、酸化亜
鉛とシリカとを含有する蛍光体及びその製造方法につい
ても、既に各種のものが提案されているが、それらの方
法は製造プロセスが煩雑であり、また特殊な限られた用
途においては使用が可能であっても、汎用の無機蛍光体
として使用するに至っていない。そのため粉体特性や経
済性に優れ、様々な用途において使用可能な無機蛍光体
の開発が嘱望されている。
As described above, various phosphors containing zinc oxide and silica and methods for producing the same have already been proposed. However, these methods require complicated production processes. In addition, even though it can be used for special limited applications, it has not yet been used as a general-purpose inorganic phosphor. Therefore, development of an inorganic phosphor that is excellent in powder properties and economical and can be used in various applications is desired.

【0007】このような事情に鑑み、本発明者らは従来
の製造方法にとらわれることなく、新たな手法にてシリ
カゲル等のシリカ系無機多孔質体を利用する蛍光体を製
造すべく鋭意研究を重ね、その結果開発に成功したのが
本発明である。したがって、本発明の課題は、安定性、
ハンドリング性等の粉体特性に優れ、さらに経済性にも
優れた応用範囲が広いシリカゲル等のシリカ系無機多孔
質体を利用する蛍光体及びその製造方法を提供すること
にある。
In view of such circumstances, the inventors of the present invention have conducted diligent research to produce a phosphor using a silica-based inorganic porous material such as silica gel by a new method without being restricted by the conventional production method. The present invention has been succeeded in repeated development as a result. Therefore, the problem of the present invention is stability,
It is an object of the present invention to provide a phosphor using a silica-based inorganic porous material such as silica gel, which has excellent powder characteristics such as handleability and is economical and has a wide range of applications, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明は、シリカ系無機
多孔質蛍光体及びその製造方法を提供するものであり、
そのうち前者は、シリカ系無機多孔質体の細孔内に酸化
亜鉛微粒子を内包したことを特徴とする。また、後者の
製造方法は、シリカ系無機多孔質体の細孔内に亜鉛イオ
ン又は亜鉛化合物を導入し、酸化雰囲気下で加熱焼成す
ることを特徴とするものである。
The present invention provides a silica-based inorganic porous phosphor and a method for producing the same.
The former is characterized in that zinc oxide fine particles are included in the pores of the silica-based inorganic porous material. The latter production method is characterized in that zinc ions or a zinc compound are introduced into the pores of the silica-based inorganic porous material and the mixture is heated and baked in an oxidizing atmosphere.

【0009】そして、本発明では、酸化雰囲気の下で加
熱焼成により亜鉛イオン又は亜鉛化合物を酸化せしめる
ものであり、その際共存する有機鎖や陰イオン基を分解
し、シリカゲル等のシリカ系無機多孔質体の細孔を利用
してシリカ系無機多孔質体中に酸化亜鉛微粒子(ナノ粒
子)を分散した状態で存在させることにより、酸化亜鉛
の有する蛍光作用を効率良く発現するものである。
Further, in the present invention, zinc ions or zinc compounds are oxidized by heating and baking in an oxidizing atmosphere, at which time coexisting organic chains and anionic groups are decomposed, and silica-based inorganic porous materials such as silica gel are used. By allowing the zinc oxide fine particles (nanoparticles) to exist in a dispersed state in the silica-based inorganic porous body by utilizing the pores of the porous body, the fluorescent effect of zinc oxide is efficiently exhibited.

【0010】また、得られるシリカ系無機多孔質蛍光体
は、微細なナノ粒子である酸化亜鉛微粒子がそれより大
きなシリカ系無機多孔質蛍光体内に内包されているので
安定性、ハンドリング性等に優れている。その結果、該
多孔質蛍光体は、従来の蛍光体に比較し、製造が容易で
あり経済性に優れるため、オプトエレクトロニクス材料
のみならず特殊塗料、インキ、絵の具、化粧品、紙等の
汎用の無機蛍光体として利用できるという利点がある。
Further, the obtained silica-based inorganic porous phosphor is excellent in stability, handleability, etc. because zinc oxide fine particles which are fine nanoparticles are contained in a larger silica-based inorganic porous phosphor. ing. As a result, the porous phosphor is easier to manufacture and more economical than conventional phosphors, and is therefore a general-purpose inorganic material for not only optoelectronic materials but also special paints, inks, paints, cosmetics, and paper. It has the advantage that it can be used as a phosphor.

【0011】[0011]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて詳細に説明するが、本発明は、それによって何ら限
定されるものではなく、特許請求の範囲の記載によって
特定されるものであることはいうまでもない。本発明
は、前述のとおりシリカ系無機多孔質体の細孔内に酸化
亜鉛微粒子を内包したことを特徴とする酸化亜鉛−シリ
カ系無機多孔質蛍光体及びその製造方法であり、その製
造方法は、シリカ系無機多孔質体の細孔内に亜鉛イオン
又は亜鉛化合物を導入し、酸化雰囲気下で加熱焼成する
ことを特徴とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the present invention will be described in detail below, but the present invention is not limited thereby and is specified by the description of the scope of claims. Needless to say. The present invention is a zinc oxide-silica inorganic porous phosphor and a method for producing the same, characterized in that zinc oxide fine particles are included in the pores of the silica-based inorganic porous body as described above, and the method for producing the same. It is characterized in that zinc ions or a zinc compound are introduced into the pores of the silica-based inorganic porous material and heated and baked in an oxidizing atmosphere.

【0012】本発明で使用するシリカ系無機多孔質体に
ついては、亜鉛化合物溶液を細孔内に内包できるもので
れば特に制限されることなく使用可能であり、シリカゲ
ルやメソポーラスシリカ、その他の多孔質シリカ又は珪
酸塩などを用いることができる。珪酸塩としては、ゼオ
ライトや珪酸カルシウム、層状珪酸塩などが使用でき
る。
The silica-based inorganic porous material used in the present invention can be used without particular limitation as long as it can enclose the zinc compound solution in the pores, and silica gel, mesoporous silica, and other porous materials can be used. Silica or silicate can be used. As the silicate, zeolite, calcium silicate, layered silicate or the like can be used.

【0013】それらのなかでも、シリカゲルは、細孔分
布がシャープで、かつ種々の細孔径をもつものが比較的
簡便に調製できるばかりでなく、屈折率が比較的低い物
質であるため、蛍光発光のために必要な励起光の吸収が
少なく、また内包された酸化亜鉛から発した蛍光も吸収
しにくいため、より効率的な蛍光体とすることができ、
本発明で用いるシリカ系無機多孔質体としては最適であ
る。
Among them, silica gel has a sharp pore distribution and various pore diameters, and can be prepared relatively easily, and since it has a relatively low refractive index, it emits fluorescence. The absorption of the excitation light required for is low, and since the fluorescence emitted from the encapsulated zinc oxide is also difficult to be absorbed, a more efficient phosphor can be obtained,
It is most suitable as the silica-based inorganic porous material used in the present invention.

【0014】また、使用されるシリカ系無機多孔質体の
粒径や平均細孔径については、亜鉛化合物溶液を細孔内
に内包できるものでれば特に制限されることはなく、蛍
光体の用途に応じて、適宜選択すればよい。ただ、細孔
径に関しては、小さすぎる場合、亜鉛化合物の導入に長
時間を要したり、亜鉛化合物を導入して焼成し蛍光体と
した際に、その発光が弱くなるといった傾向が認められ
る。したがって、使用するシリカ系無機多孔質体は、窒
素吸着測定による平均細孔径が1nm以上、より望まし
くは3nm以上であることがよい。
The particle size and average pore size of the silica-based inorganic porous material used are not particularly limited as long as the zinc compound solution can be included in the pores, and the use of the phosphor It may be appropriately selected according to However, with respect to the pore size, when the pore size is too small, it tends to take a long time to introduce the zinc compound, or when the zinc compound is introduced and fired to form a phosphor, its emission tends to be weak. Therefore, the silica-based inorganic porous material to be used preferably has an average pore diameter of 1 nm or more, more preferably 3 nm or more as measured by nitrogen adsorption.

【0015】そのシリカ系無機多孔質体の平均細孔径の
上限については、内包された酸化亜鉛微粒子がナノ状態
を維持でき、本発明の酸化亜鉛−シリカ系無機多孔質蛍
光体の特徴である、酸化亜鉛バルク体の蛍光よりも高エ
ネルギー(短波長)側で発光を示すような範囲であれば
よい。ただ、細孔径が大きすぎる場合、亜鉛化合物導入
後の焼成の際に、焼成温度や焼成時間などの焼成条件に
よっては、酸化亜鉛微粒子の成長が促進され、大きな酸
化亜鉛粒子となってしまう傾向も認められる。この場
合、酸化亜鉛バルク体と同じような蛍光波長を示す蛍光
体となってしまい、本発明の蛍光体の特徴が発現しない
こともあるので、より望ましくは、使用するシリカ系無
機多孔質体の平均細孔径は、500nm以下であるのが
よい。
Regarding the upper limit of the average pore diameter of the silica-based inorganic porous material, the zinc oxide fine particles contained therein can maintain the nano state, which is a feature of the zinc oxide-silica-based inorganic porous fluorescent material of the present invention. The range may be such that light is emitted on the higher energy (shorter wavelength) side than the fluorescence of the zinc oxide bulk material. However, if the pore size is too large, during the firing after the introduction of the zinc compound, depending on the firing conditions such as the firing temperature and the firing time, the growth of the zinc oxide fine particles is promoted, and there is a tendency that the zinc oxide particles become large. Is recognized. In this case, since it becomes a phosphor having a fluorescence wavelength similar to that of the zinc oxide bulk body, the characteristics of the phosphor of the present invention may not be expressed. Therefore, more desirably, the silica-based inorganic porous body used is The average pore diameter is preferably 500 nm or less.

【0016】本発明で使用されるシリカゲル等のシリカ
系無機多孔質体は、上述のとおり細孔を有するため、空
気中の水分や有機物を吸着しやすいという性質がある。
そのため使用に際しては200℃程度の温度で予め乾燥
して、細孔内に吸着している水分や有機物を取り除いて
おくことが望ましく、この操作を真空下で行なうことが
より望ましい。こうすることにより、亜鉛化合物を効率
よく細孔内に導入することが可能となる。
Since the silica-based inorganic porous material such as silica gel used in the present invention has pores as described above, it has a property of easily adsorbing moisture and organic substances in the air.
Therefore, in use, it is desirable to dry in advance at a temperature of about 200 ° C. to remove water and organic substances adsorbed in the pores, and it is more desirable to carry out this operation under vacuum. By doing so, it becomes possible to efficiently introduce the zinc compound into the pores.

【0017】シリカ系無機多孔質体の細孔内に亜鉛イオ
ン又は亜鉛化合物を導入する際の手法についても特に限
定されないが、可溶性亜鉛塩の溶液に、シリカ系無機多
孔質体を浸漬する方法が最も簡便であり、特に真空下で
浸漬する方法がより効率よく亜鉛化合物を細孔内に導入
することができ好適である。その際、浸漬する溶液の溶
媒については亜鉛塩が溶解すればよく、水や各種の有機
溶媒等が使用でき、特に制限はないが、亜鉛塩が溶解し
やすく、かつ入手が容易で扱いやすい液体である水やエ
タノールが適しているといえる。
The method for introducing zinc ions or zinc compounds into the pores of the silica-based inorganic porous material is not particularly limited, but a method of immersing the silica-based inorganic porous material in a solution of a soluble zinc salt is available. The simplest method is preferable, and the method of immersing in a vacuum is particularly preferable because the zinc compound can be introduced into the pores more efficiently. At that time, as for the solvent of the solution to be immersed, it suffices that the zinc salt be dissolved, water and various organic solvents can be used, and there is no particular limitation, but the zinc salt is easily dissolved, and the liquid that is easily available and easy to handle It can be said that water and ethanol are suitable.

【0018】また、使用する溶媒に対する亜鉛化合物の
溶解度についてみると、溶解度が高いほうが濃度の高い
亜鉛化合物溶液を調製でき、1回の処理でシリカ系無機
多孔質体の細孔内に導入できる亜鉛イオン又は亜鉛化合
物量を多くすることができる。しかし、溶解度が高すぎ
ると、亜鉛化合物溶液の濃度は高くできるものの、亜鉛
イオン又は亜鉛化合物の導入率が低くなる傾向にある。
この場合、使用した亜鉛化合物のうちの極僅かしかシリ
カ系無機多孔質体の細孔内に導入することができないこ
とになる。したがって、使用する溶媒は、使用する亜鉛
化合物の溶解度が適切な範囲であることが望ましく、特
にアルコールは一般的な亜鉛化合物の溶解度が1〜20
g/L程度で、使用する亜鉛化合物をより効率よくシリ
カ系無機多孔質体の細孔内に導入できる点で、最も望ま
しいものである。
Regarding the solubility of the zinc compound in the solvent used, a zinc compound solution having a higher solubility can be prepared with a higher solubility, and zinc which can be introduced into the pores of the silica-based inorganic porous material by one treatment. The amount of ionic or zinc compounds can be increased. However, if the solubility is too high, the concentration of the zinc compound solution can be increased, but the introduction rate of zinc ions or zinc compounds tends to be low.
In this case, only a very small amount of the zinc compound used can be introduced into the pores of the silica-based inorganic porous material. Therefore, it is desirable that the solvent used has a solubility of the zinc compound used in an appropriate range, and particularly alcohol has a solubility of a general zinc compound of 1 to 20.
It is the most desirable in that the zinc compound to be used can be introduced into the pores of the silica-based inorganic porous material more efficiently at about g / L.

【0019】シリカ系無機多孔質体の細孔内に酸化亜鉛
微粒子を形成するために使用する可溶性亜鉛塩について
は、溶媒に溶解し、加熱により酸化亜鉛を形成するもの
であれば特に制限されることなく各種の亜鉛塩が使用可
能である。それには、酢酸亜鉛、硫酸亜鉛、硝酸亜鉛、
塩化亜鉛等の各種の可溶性塩があり、それら化合物を溶
解する溶媒にあわせて溶解しやすいものを適宜選択すれ
ばよい。中でも酢酸亜鉛は、導入後の焼成に際して酸化
による分解温度が低く焼成に要するエネルギーを低く押
さえられ、また焼成に際して有害ガスも発生しないばか
りでなく、比較的分子サイズが小さいことからより効率
よくシリカ系無機多孔質体の細孔内に亜鉛を導入するこ
とができ好適である。
The soluble zinc salt used to form the zinc oxide fine particles in the pores of the silica-based inorganic porous material is not particularly limited as long as it dissolves in a solvent and forms zinc oxide by heating. Various zinc salts can be used without any. It includes zinc acetate, zinc sulfate, zinc nitrate,
There are various types of soluble salts such as zinc chloride, and those which are easily dissolved may be appropriately selected according to the solvent in which these compounds are dissolved. Among them, zinc acetate is more efficient because it has a low decomposition temperature due to oxidation during firing after introduction and can suppress energy required for firing to a low level, does not generate harmful gas during firing, and has a relatively small molecular size. It is preferable because zinc can be introduced into the pores of the inorganic porous body.

【0020】また、亜鉛化合物の導入量に関しては、蛍
光体として求められる特性に応じて適宜調節することが
できる。具体的には、亜鉛化合物の導入量を増やして、
シリカ系無機多孔質体の細孔内に内包される酸化亜鉛微
粒子の粒子数を多くすることにより、蛍光発光強度を高
めることができる。さらに、亜鉛化合物の導入量を調節
して、内包される酸化亜鉛微粒子のサイズをコントロー
ルすることにより、所望の蛍光波長を有する蛍光体とす
ることもできる。
The amount of the zinc compound introduced can be appropriately adjusted according to the characteristics required of the phosphor. Specifically, by increasing the amount of zinc compound introduced,
The fluorescence emission intensity can be increased by increasing the number of zinc oxide fine particles included in the pores of the silica-based inorganic porous material. Furthermore, by adjusting the amount of zinc compound introduced to control the size of the zinc oxide fine particles to be encapsulated, a phosphor having a desired fluorescence wavelength can be obtained.

【0021】細孔内に導入された亜鉛化合物は、イオン
あるいは分子状態であると考えられるが、それらは酸化
雰囲気下で加熱焼成して酸化亜鉛にする必要がある。加
熱焼成は大気中でよいが、大気中より酸素濃度の高い雰
囲気であれば、酸化反応が進みやすくなおよい。その際
の加熱温度は、使用する亜鉛化合物の種類によって適宜
調節することが望ましい。
The zinc compound introduced into the pores is considered to be in an ionic or molecular state, but they must be heated and calcined in an oxidizing atmosphere to form zinc oxide. The heating and firing may be performed in the air, but an atmosphere having a higher oxygen concentration than that in the air is more preferable because the oxidation reaction easily proceeds. It is desirable that the heating temperature at that time be appropriately adjusted according to the type of zinc compound used.

【0022】具体的には、使用する亜鉛化合物が分解し
酸化物に変化する温度以上が良い。一般に工業薬品とし
て用いられる亜鉛化合物の分解温度は、300℃以上で
あることを考慮すると、本発明においては、焼成の温度
を300℃以上とすることがより好適である。使用する
亜鉛化合物の種類別に、より具体的に述べると、酢酸亜
鉛を用いた場合には350℃以上、硫酸亜鉛を用いた場
合には700℃以上、塩化亜鉛を用いた場合には750
℃以上とすることが望ましい。
Specifically, the temperature is preferably higher than the temperature at which the zinc compound used is decomposed and converted into an oxide. Considering that the decomposition temperature of a zinc compound generally used as an industrial chemical is 300 ° C. or higher, in the present invention, the firing temperature is more preferably 300 ° C. or higher. More specifically, each type of zinc compound used is 350 ° C. or higher when zinc acetate is used, 700 ° C. or higher when zinc sulfate is used, and 750 ° C. when zinc chloride is used.
It is desirable to set the temperature above ℃.

【0023】また、焼成温度の上限については、特段の
制約はなく、焼成装置の種類や、焼成に供する亜鉛化合
物を導入したシリカ系無機多孔質体の重量、焼成時間等
を勘案して、導入した亜鉛化合物がより効率よく酸化亜
鉛の状態に変化するように調節すればよい。ただし、8
00℃を超えると、使用するシリカ系無機多孔質体の焼
結が進み、蛍光体としての性状や粉体としての性状を維
持できない恐れもあるので、より望ましくは800℃以
下での焼成がよい。
The upper limit of the firing temperature is not particularly limited, and is introduced in consideration of the type of firing apparatus, the weight of the silica-based inorganic porous material into which the zinc compound used for firing is introduced, the firing time, and the like. The zinc compound may be adjusted so as to more efficiently change into a zinc oxide state. However, 8
If the temperature exceeds 00 ° C, the silica-based inorganic porous material to be used may be sintered, and the properties as a phosphor or powder may not be maintained. Therefore, it is more preferable to fire at 800 ° C or lower. .

【0024】このようにして作製された酸化亜鉛−シリ
カ系無機多孔質蛍光体は、亜鉛内包量の増加に伴って比
表面積、平均細孔径、細孔容積が減少する傾向が見られ
る。これはシリカゲル細孔内に酸化亜鉛が入り込んだこ
とを示唆している。本発明の酸化亜鉛−シリカ系無機多
孔質蛍光体は、350〜550nm付近に発光ピークを
有しており、酸化亜鉛バルク体の発光領域500〜60
0nmに比較し短波長で、高エネルギーの蛍光を発す
る。
In the zinc oxide-silica based inorganic porous phosphor thus produced, the specific surface area, average pore diameter and pore volume tend to decrease as the amount of zinc contained increases. This suggests that zinc oxide has entered the silica gel pores. The zinc oxide-silica based inorganic porous phosphor of the present invention has an emission peak in the vicinity of 350 to 550 nm, and the emission region 500 to 60 of the zinc oxide bulk body.
It emits high-energy fluorescence at a shorter wavelength than 0 nm.

【0025】また、本発明においては、使用するシリカ
系無機多孔質体の細孔径及び/または酸化亜鉛の内包量
を調節することによって、蛍光波長を350〜550n
mの範囲でコントロールすることができる。すなわち、
平均細孔径の大きいシリカ系無機多孔質体を使用するこ
とにより、蛍光発光ピークをより長波長側にシフトさせ
ることができる。この現象については、シリカ系無機多
孔質体の細孔内に内包されている酸化亜鉛の粒径が大き
くなり、酸化亜鉛バルク体により近くなることに起因し
ていると本発明者らは考えている。
In the present invention, the fluorescence wavelength is adjusted to 350 to 550 n by adjusting the pore size of the silica-based inorganic porous material used and / or the amount of zinc oxide included.
It can be controlled in the range of m. That is,
By using a silica-based inorganic porous material having a large average pore diameter, the fluorescence emission peak can be shifted to the longer wavelength side. The present inventors believe that this phenomenon is caused by the fact that the particle size of zinc oxide contained in the pores of the silica-based inorganic porous material is increased and is closer to the zinc oxide bulk material. There is.

【0026】使用するシリカ系無機多孔質体の平均細孔
径と蛍光波長との関係について具体例を挙げると、シリ
カ系無機多孔質体として平均細孔径が7.8nm、39
nmのシリカゲルを使用し、亜鉛内包量を約45mg/
gとした場合、7.8nmのものでは430nm付近に
蛍光ピークが出現するのに対して、39nmのものでは
440nm付近に蛍光ピークが現れる。つまり、平均細
孔径が小さい方が蛍光波長はより短波長側となり、逆に
平均細孔径が大きいほうが長波長側に蛍光ピークを有す
ることとなる。
Specific examples of the relationship between the average pore diameter of the silica-based inorganic porous material used and the fluorescence wavelength are given below. As the silica-based inorganic porous material, the average pore diameter is 7.8 nm and 39.
nm silica gel is used, and the zinc inclusion amount is about 45 mg /
In the case of g, a fluorescence peak appears near 430 nm in the case of 7.8 nm, whereas a fluorescence peak appears near 440 nm in the case of 39 nm. That is, the smaller the average pore diameter is, the shorter the fluorescence wavelength is, and the larger the average pore diameter is, the larger the fluorescence wavelength is on the long wavelength side.

【0027】さらに、亜鉛化合物の導入量を調節し、シ
リカ系無機多孔質体の細孔内に内包される酸化亜鉛量を
コントロールすることによっても、任意の蛍光発光ピー
クを有する蛍光体を作製することができる。亜鉛化合物
の導入量を調節するには、シリカ系無機多孔質体に亜鉛
化合物を導入する際の両者の量比を変えてやればよい。
つまり、亜鉛化合物の導入を、シリカ系無機多孔質体を
可溶性亜鉛塩の溶液に浸漬することにより行う場合は、
可溶性亜鉛塩の溶液の濃度を上げたり、シリカ系無機多
孔質体に対する可溶性亜鉛塩の溶液の量を増やすことに
よって、亜鉛化合物の導入量を多くすることができる。
Further, by adjusting the amount of the zinc compound introduced and controlling the amount of zinc oxide contained in the pores of the silica-based inorganic porous material, a phosphor having an arbitrary fluorescence emission peak is produced. be able to. The amount of the zinc compound introduced can be adjusted by changing the ratio of the two amounts when the zinc compound is introduced into the silica-based inorganic porous material.
That is, when the introduction of the zinc compound is performed by immersing the silica-based inorganic porous body in the solution of the soluble zinc salt,
The amount of the zinc compound introduced can be increased by increasing the concentration of the solution of the soluble zinc salt or by increasing the amount of the solution of the soluble zinc salt in the silica-based inorganic porous material.

【0028】亜鉛導入量と蛍光波長との関係について具
体例を挙げると、比表面積が約489m2/g、細孔容
積が1.48mL/g、平均細孔径が13.6nmのシ
リカゲルをシリカ系無機多孔質体に使用し、それに対し
て亜鉛内包量を、29.0mg/g、56.8mg/g
としたものの蛍光測定におけるピーク波長は、それぞれ
約420nm、470nmとなる。
As a specific example of the relationship between the amount of zinc introduced and the fluorescence wavelength, silica gel having a specific surface area of about 489 m 2 / g, a pore volume of 1.48 mL / g and an average pore diameter of 13.6 nm is used as a silica-based material. It is used for inorganic porous materials, and the zinc inclusion amount is 29.0 mg / g, 56.8 mg / g
However, the peak wavelengths in the fluorescence measurement are about 420 nm and 470 nm, respectively.

【0029】つまり、酸化亜鉛の内包量が多い場合はよ
り長波長側、逆に内包量が少ない場合はより短波長側の
蛍光を発する蛍光体を得ることができる。この現象につ
いても、先に述べた細孔径の場合と同様に、シリカ系無
機多孔質体の細孔内に内包されている酸化亜鉛の粒径に
関連しており、酸化亜鉛内包量が多い際にはその粒径は
大きくなり、内包量が少ない際には粒径が小さくなるこ
とに起因すると本発明者らは考えている。
That is, when the inclusion amount of zinc oxide is large, it is possible to obtain a fluorescent substance which emits fluorescence on the longer wavelength side, and conversely, when the inclusion amount of zinc oxide is small, a fluorescent substance which emits fluorescence on the shorter wavelength side can be obtained. This phenomenon is also related to the particle size of zinc oxide contained in the pores of the silica-based inorganic porous material, as in the case of the pore size described above, and when the zinc oxide inclusion amount is large. The inventors believe that this is because the particle size becomes large and the particle size becomes small when the amount of inclusion is small.

【0030】また、平均細孔径の異なる2種以上のシリ
カ系無機多孔質体を混合して使用することにより、2以
上の蛍光ピークをもつような蛍光体としたり、各々の細
孔径に起因する蛍光波長の平均的な波長位置にピークを
有する蛍光体とすることもできる。そのほかにも、細孔
分布が広範にわたるようなシリカ系無機多孔質体を使用
すれば、蛍光スペクトル(蛍光波長の分布)も広範にわ
たるような蛍光体を得ることもできる。
Further, by mixing and using two or more kinds of silica-based inorganic porous materials having different average pore diameters, a phosphor having two or more fluorescence peaks can be obtained, or the phosphors can be caused by the respective pore diameters. It is also possible to use a phosphor having a peak at an average wavelength position of the fluorescence wavelength. In addition, if a silica-based inorganic porous material having a wide pore distribution is used, it is possible to obtain a phosphor having a wide fluorescence spectrum (distribution of fluorescence wavelength).

【0031】本発明によれば、簡単な工程で酸化亜鉛微
粒子をシリカゲルなどの無機多孔質体の細孔に内包でき
る。その結果、酸化亜鉛微粒子は、より粒子径の大きな
シリカゲル等の多孔質体の細孔に内包され、安定性、ハ
ンドリング性等の粉体特性に優れたものとなり、経済性
にも優れた応用範囲が広い無機蛍光体を製造することが
できる。こうして得られた蛍光体は、オプトエレクトロ
ニクス分野をはじめ、特殊塗料、インキ、絵の具、樹
脂、化粧品、紙の機能性填料や顔料等として幅広い用途
において有効に活用でき、産業上の利用価値が高いとい
う特徴を有している。
According to the present invention, zinc oxide fine particles can be encapsulated in the pores of an inorganic porous material such as silica gel by a simple process. As a result, the zinc oxide fine particles are encapsulated in the pores of a porous material such as silica gel having a larger particle diameter, and have excellent powder properties such as stability and handling properties, and are also economically applicable. Inorganic phosphors having a wide range can be manufactured. The phosphor thus obtained can be effectively used in a wide range of applications including optoelectronics fields, special paints, inks, paints, resins, cosmetics, functional fillers and pigments for paper, and has a high industrial utility value. It has features.

【0032】[0032]

【実施例】本発明について、実施例をあげて更に具体的
に説明するが、本発明は、該実施例によって何等限定さ
れるものではなく、特許請求の範囲の記載によって特定
されるものであることはいうまでもない。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples and is specified by the description of the claims. Needless to say.

【0033】[実施例1]シリカゲル(富士シリシア化学
社製SYLOSPHERE、粒径3〜5μmの球状粒
子、比表面積486m2/g)を200℃で4時間真空
加熱乾燥させ、シリカゲル孔内に存在する水分や有機物
を除去した。得られたシリカゲル試料2.0gを、真空
雰囲気において500mlのビーカーに入れ、その中に
酢酸亜鉛のエタノール溶液(酢酸亜鉛量で1.0g/
L)500mlを添加し、試料を浸漬させた。
[Example 1] Silica gel (SYLOSPHERE manufactured by Fuji Silysia Chemical Ltd., spherical particles having a particle size of 3 to 5 µm, specific surface area 486 m 2 / g) was vacuum-dried at 200 ° C for 4 hours to be present in the silica gel pores. Water and organic substances were removed. 2.0 g of the obtained silica gel sample was placed in a 500 ml beaker in a vacuum atmosphere, and an ethanol solution of zinc acetate (1.0 g / zinc acetate was added).
L) 500 ml was added and the sample was immersed.

【0034】得られたシリカゲル試料分散懸濁液を24
時間撹拌して、シリカゲル孔内へ酢酸亜鉛吸着を行なっ
た。この試料分散液を窒素ガスで加圧ろ過した後、蒸留
水で試料を洗浄してシリカゲル外表面に吸着している酢
酸亜鉛を除去した。得られた亜鉛導入シリカゲル試料を
乾燥後、加熱炉で400℃、4時間焼成し、酢酸亜鉛に
由来するシリカゲル中に含まれる有機鎖を燃焼酸化させ
て、酸化亜鉛−シリカ系無機多孔質蛍光体を得た。
The resulting silica gel sample dispersion suspension was added to 24
After stirring for a period of time, zinc acetate was adsorbed into the silica gel pores. This sample dispersion liquid was filtered under pressure with nitrogen gas, and then the sample was washed with distilled water to remove zinc acetate adsorbed on the outer surface of the silica gel. The obtained zinc-introduced silica gel sample is dried and then fired in a heating furnace at 400 ° C. for 4 hours to burn and oxidize the organic chains contained in the silica gel derived from zinc acetate to give a zinc oxide-silica inorganic porous phosphor. Got

【0035】[実施例2及び3]酢酸亜鉛エタノール溶液
中の酢酸亜鉛の濃度を、それぞれ2.0g/L、5.0
g/Lとした以外は、実施例1と同様にして酸化亜鉛−
シリカ系無機多孔質蛍光体を得た。
[Examples 2 and 3] The concentrations of zinc acetate in the zinc acetate ethanol solution were 2.0 g / L and 5.0, respectively.
Zinc oxide-in the same manner as in Example 1 except that g / L was used.
A silica-based inorganic porous phosphor was obtained.

【0036】[実施例4]シリカゲル(富士シリシア化学
社製SYLOSPHERE、粒径3〜5μmの球状粒
子、比表面積486m2/g)を200℃で4時間真空
加熱乾燥させ、シリカゲル孔内に存在する水分や有機物
を除去した。得られたシリカゲル試料2.0gを、真空
雰囲気において500mlのビーカーに入れ、その中に
酢酸亜鉛水溶液(酢酸亜鉛量で7.5g/L)500
mlを添加し、試料を浸漬させた。
Example 4 Silica gel (SYLOSPHERE manufactured by Fuji Silysia Chemical Ltd., spherical particles having a particle size of 3 to 5 μm, specific surface area of 486 m 2 / g) was vacuum-dried at 200 ° C. for 4 hours to be present in the silica gel pores. Water and organic substances were removed. 2.0 g of the obtained silica gel sample was placed in a 500 ml beaker in a vacuum atmosphere, and 500 g of zinc acetate aqueous solution (7.5 g / L in terms of zinc acetate) was placed therein.
ml was added and the sample was immersed.

【0037】得られたシリカゲル試料分散懸濁液を24
時間撹拌して、シリカゲル孔内へ酢酸亜鉛吸着を行なっ
た。この試料分散液を窒素ガスで加圧ろ過した後、蒸留
水で試料を洗浄してシリカゲル外表面に吸着している酢
酸亜鉛を除去した。得られた亜鉛導入シリカゲル試料を
乾燥後、加熱炉で400℃、4時間焼成し、酢酸亜鉛に
由来するシリカゲル中に含まれる有機鎖を燃焼酸化させ
て酸化亜鉛−シリカ系無機多孔質蛍光体を得た。
The resulting silica gel sample dispersion suspension was added to 24
After stirring for a period of time, zinc acetate was adsorbed into the silica gel pores. This sample dispersion liquid was filtered under pressure with nitrogen gas, and then the sample was washed with distilled water to remove zinc acetate adsorbed on the outer surface of the silica gel. The obtained zinc-introduced silica gel sample was dried and then baked in a heating furnace at 400 ° C. for 4 hours to burn and oxidize the organic chains contained in the silica gel derived from zinc acetate to obtain a zinc oxide-silica-based inorganic porous phosphor. Obtained.

【0038】[実施例5]シリカゲル(富士シリシア化学
社製CARiACT Q−10、粒径 100μmの球
状粒子、比表面積269m2/g)を200℃で4時間
真空加熱乾燥させ、シリカゲル孔内に存在する水分や有
機物を除去した。その後、真空雰囲気において500m
lのビーカーにシリカゲル試料2.0gを移し、その中
に酢酸亜鉛のエタノール溶液(酢酸亜鉛量で1.0g/
L)500 mlを添加し、試料を浸漬させた。
Example 5 Silica gel (CARiACT Q-10 manufactured by Fuji Silysia Chemical Ltd., spherical particles having a particle size of 100 μm, specific surface area of 269 m 2 / g) was vacuum-dried at 200 ° C. for 4 hours to be present in the silica gel pores. The water and organic matter that existed were removed. After that, 500m in a vacuum atmosphere
A 2.0 g silica gel sample was transferred to a 1-liter beaker, and an ethanol solution of zinc acetate (1.0 g / zinc acetate was added).
L) 500 ml was added and the sample was immersed.

【0039】得られたシリカゲル試料分散懸濁液を24
時間撹拌して、シリカゲル孔内へ酢酸亜鉛吸着を行なっ
た。この試料分散液を窒素ガスで加圧ろ過した後、蒸留
水で試料を洗浄してシリカゲル外表面に吸着している酢
酸亜鉛を除去した。得られたシリカゲル試料を乾燥後、
加熱炉で400℃、4時間焼成し、酢酸亜鉛に由来する
シリカゲル中に含まれる有機鎖を燃焼酸化させて、酸化
亜鉛−シリカ系無機多孔質蛍光体を得た。
The resulting silica gel sample dispersion suspension was added to 24
After stirring for a period of time, zinc acetate was adsorbed into the silica gel pores. This sample dispersion liquid was filtered under pressure with nitrogen gas, and then the sample was washed with distilled water to remove zinc acetate adsorbed on the outer surface of the silica gel. After drying the obtained silica gel sample,
It was baked at 400 ° C. for 4 hours in a heating furnace, and the organic chain contained in the silica gel derived from zinc acetate was burned and oxidized to obtain a zinc oxide-silica based inorganic porous phosphor.

【0040】[実施例6]酢酸亜鉛エタノール溶液中の酢
酸亜鉛の濃度を5.0g/Lとした以外は、実施例5と
同様にして酸化亜鉛−シリカ系無機多孔質蛍光体を得
た。
Example 6 A zinc oxide-silica based inorganic porous phosphor was obtained in the same manner as in Example 5 except that the concentration of zinc acetate in the zinc acetate ethanol solution was 5.0 g / L.

【0041】[実施例7]シリカゲル(富士シリシア化学
社製CARiACT Q−10、粒径 32〜150μ
mの球状粒子、比表面積260m2/g)を200℃で
4時間真空加熱乾燥させ、シリカゲル孔内に存在する水
分や有機物を除去した。その後、1000mlのビーカ
ーにシリカゲル試料4.0gを移し、その中に酢酸亜鉛
水溶液(酢酸亜鉛量で9.0g/L)500 mlを添
加し、試料を浸漬させた。
Example 7 Silica gel (CARiACT Q-10 manufactured by Fuji Silysia Chemical Ltd., particle size 32 to 150 μm)
m spherical particles and a specific surface area of 260 m 2 / g) were vacuum dried at 200 ° C. for 4 hours to remove water and organic substances existing in the silica gel pores. Thereafter, 4.0 g of the silica gel sample was transferred to a 1000 ml beaker, and 500 ml of an aqueous zinc acetate solution (9.0 g / L in terms of zinc acetate) was added to the beaker to immerse the sample.

【0042】得られたシリカゲル試料分散懸濁液を24
時間撹拌して、シリカゲル孔内へ酢酸亜鉛吸着を行なっ
た。この試料分散液をろ過した後、蒸留水で試料を洗浄
してシリカゲル外表面に吸着している酢酸亜鉛を除去し
た。得られたシリカゲル試料を乾燥後、加熱炉で400
℃、4時間焼成し、酢酸亜鉛に由来するシリカゲル中に
含まれる有機鎖を燃焼酸化させて、酸化亜鉛−シリカ系
無機多孔質蛍光体を得た。
The resulting silica gel sample dispersion suspension was added to 24
After stirring for a period of time, zinc acetate was adsorbed into the silica gel pores. After filtering this sample dispersion, the sample was washed with distilled water to remove the zinc acetate adsorbed on the outer surface of the silica gel. After drying the obtained silica gel sample, 400 in a heating furnace
The mixture was baked at 4 ° C. for 4 hours, and the organic chain contained in the silica gel derived from zinc acetate was burned and oxidized to obtain a zinc oxide-silica inorganic porous phosphor.

【0043】[実施例8]酢酸亜鉛水溶液中の酢酸亜鉛の
濃度を100g/Lとした以外は、実施例7と同様にし
て酸化亜鉛−シリカ系無機多孔質蛍光体を得た。
Example 8 A zinc oxide-silica based inorganic porous phosphor was obtained in the same manner as in Example 7 except that the concentration of zinc acetate in the zinc acetate aqueous solution was 100 g / L.

【0044】[実施例9]シリカゲル(富士シリシア化学
社製CARiACT G−10、平均粒径 3μmの破
砕状粒子、比表面積376m2/g)を200℃で4時
間真空加熱乾燥させ、シリカゲル孔内に存在する水分や
有機物を除去した。その後、1000mlのビーカーに
シリカゲル試料4.0gを移し、その中に酢酸亜鉛水溶
液(酢酸亜鉛量で49g/L)500 mlを添加し、
試料を浸漬させた。
Example 9 Silica gel (CARiACT G-10 manufactured by Fuji Silysia Chemical Ltd., crushed particles having an average particle size of 3 μm, specific surface area of 376 m 2 / g) was vacuum-dried at 200 ° C. for 4 hours, and the silica gel pores were dried. The water and organic substances existing in the water were removed. Then, 4.0 g of the silica gel sample was transferred to a 1000 ml beaker, and 500 ml of an aqueous zinc acetate solution (49 g / L in terms of zinc acetate) was added to the beaker.
The sample was immersed.

【0045】得られたシリカゲル試料分散懸濁液を24
時間撹拌して、シリカゲル孔内へ酢酸亜鉛吸着を行なっ
た。この試料分散液をろ過した後、蒸留水で試料を洗浄
してシリカゲル外表面に吸着している酢酸亜鉛を除去し
た。得られたシリカゲル試料を乾燥後、加熱炉で400
℃、4時間焼成し、酢酸亜鉛に由来するシリカゲル中に
含まれる有機鎖を燃焼酸化させて、酸化亜鉛−シリカ系
無機多孔質蛍光体を得た。
The obtained silica gel sample dispersion suspension was added to 24
After stirring for a period of time, zinc acetate was adsorbed into the silica gel pores. After filtering this sample dispersion, the sample was washed with distilled water to remove the zinc acetate adsorbed on the outer surface of the silica gel. After drying the obtained silica gel sample, 400 in a heating furnace
The mixture was baked at 4 ° C. for 4 hours, and the organic chain contained in the silica gel derived from zinc acetate was burned and oxidized to obtain a zinc oxide-silica inorganic porous phosphor.

【0046】[実施例10]シリカゲル(富士シリシア化
学社製CARiACT Q−30、粒径 100μmの
球状粒子、比表面積111m2/g)を200℃で4時
間真空加熱乾燥させ、シリカゲル孔内に存在する水分や
有機物を除去した。その後、真空雰囲気において500
mlのビーカーにシリカゲル試料2.0gを移し、その
中に酢酸亜鉛のエタノール溶液(酢酸亜鉛量で5.0g
/L)500 mlを添加し、試料を浸漬させた。
Example 10 Silica gel (CARiACT Q-30, manufactured by Fuji Silysia Chemical Ltd., spherical particles having a particle size of 100 μm, specific surface area 111 m 2 / g) was vacuum-dried at 200 ° C. for 4 hours, and was present in the silica gel pores. The water and organic matter that existed were removed. Then, in a vacuum atmosphere, 500
Transfer 2.0 g of the silica gel sample to a beaker of ml, and add ethanol solution of zinc acetate (5.0 g of zinc acetate in the solution).
/ L) 500 ml was added and the sample was immersed.

【0047】得られたシリカゲル試料分散懸濁液を24
時間撹拌して、シリカゲル孔内へ酢酸亜鉛吸着を行なっ
た。この試料分散液を窒素ガスで加圧ろ過した後、蒸留
水で試料を洗浄してシリカゲル外表面に吸着している酢
酸亜鉛を除去した。得られたシリカゲル試料を乾燥後、
加熱炉で400℃、4時間焼成し、酢酸亜鉛に由来する
シリカゲル中に含まれる有機鎖を燃焼酸化させて、酸化
亜鉛−シリカ系無機多孔質蛍光体を得た。
The obtained silica gel sample dispersion suspension was added to 24
After stirring for a period of time, zinc acetate was adsorbed into the silica gel pores. This sample dispersion liquid was filtered under pressure with nitrogen gas, and then the sample was washed with distilled water to remove zinc acetate adsorbed on the outer surface of the silica gel. After drying the obtained silica gel sample,
It was baked at 400 ° C. for 4 hours in a heating furnace, and the organic chain contained in the silica gel derived from zinc acetate was burned and oxidized to obtain a zinc oxide-silica based inorganic porous phosphor.

【0048】[実施例11]酢酸亜鉛エタノール溶液中の
酢酸亜鉛の濃度を2.0g/Lとした以外は、実施例5
と同様にして酸化亜鉛−シリカ系無機多孔質蛍光体を得
た。
Example 11 Example 5 except that the concentration of zinc acetate in the ethanol solution of zinc acetate was 2.0 g / L.
A zinc oxide-silica based inorganic porous phosphor was obtained in the same manner as in.

【0049】[作製蛍光体等の各種物性評価]実施例で作
製した酸化亜鉛−シリカ系無機多孔質蛍光体等に関し各
種の物性測定を行った。具体的には、各実施例で作製し
た酸化亜鉛−シリカ系無機多孔質蛍光体及び実施例で使
用したシリカゲルに関し、亜鉛内包量、比表面積、平均
細孔径及び細孔容積を測定した。また、それらに加えて
実施例で作製した酸化亜鉛−シリカ系無機多孔質蛍光体
のうち一部について、電子顕微鏡観察及び蛍光測定を行
った。それらの結果は電子顕微鏡観察及び蛍光測定を除
き表1に示した。
[Evaluation of various physical properties of manufactured phosphor, etc.] Various physical properties of the zinc oxide-silica based inorganic porous phosphor manufactured in the examples were measured. Specifically, with respect to the zinc oxide-silica-based inorganic porous phosphor produced in each example and the silica gel used in the examples, the zinc inclusion amount, the specific surface area, the average pore diameter and the pore volume were measured. In addition, in addition to them, some of the zinc oxide-silica-based inorganic porous phosphors produced in the examples were subjected to electron microscope observation and fluorescence measurement. The results are shown in Table 1 except for electron microscope observation and fluorescence measurement.

【0050】[0050]

【表1】 [Table 1]

【0051】これらの物性評価に使用した測定装置は、
以下のものである。 亜鉛内包量の測定:原子吸光分光測定(セイコー電子工
業社製、SAS7500) 比表面積及び平均細孔径測定:窒素吸着測定(島津製作
所製、GEMINI2360) 表面性状観察及び粒径測定:走査型電子顕微鏡(日本電
子社製、JSM-6100) 蛍光測定:蛍光分光測定(日立製作所製、F-4010) 紫外光吸収端測定:DR−UV測定(島津製作所製、UV
-3100)
The measuring device used for the evaluation of these physical properties is
It is as follows. Measurement of zinc content: Atomic absorption spectrophotometry (Seiko Denshi Kogyo, SAS7500) Specific surface area and average pore size measurement: Nitrogen adsorption measurement (Shimadzu, GEMINI2360) Surface observation and particle size measurement: Scanning electron microscope ( JEOL, JSM-6100) Fluorescence measurement: Fluorescence spectrophotometry (Hitachi, F-4010) UV absorption edge measurement: DR-UV measurement (Shimadzu, UV
-3100)

【0052】[比表面積、平均細孔径、細孔容積等の測
定結果]表1によれば、使用するシリカ系無機多孔質体
が同じものについてみると、亜鉛内包量は酢酸亜鉛溶液
の濃度の上昇と共に増加しており、酢酸亜鉛溶液の濃度
を変化させることにより、亜鉛内包量を調節できること
がわかる。また、水溶液を使用した実施例4は、エタノ
ール溶液を使用した実施例3より亜鉛濃度は高いにもか
かわらず亜鉛内包量が低く、溶媒に水を使用すると、エ
タノールを使用した場合より亜鉛内包の効率は低下する
といえる。さらに、比表面積、平均細孔径、細孔容積
は、酸化亜鉛内包前のシリカゲルに比し、酸化亜鉛が内
包された酸化亜鉛−シリカ系無機多孔質蛍光体の方が減
少しており、かつその内包量の増加に伴ってより減少し
ている。
[Measurement Results of Specific Surface Area, Average Pore Diameter, Pore Volume, etc.] According to Table 1, when the same silica-based inorganic porous material is used, the amount of zinc inclusion depends on the concentration of the zinc acetate solution. It increases with an increase, and it can be seen that the amount of zinc inclusion can be adjusted by changing the concentration of the zinc acetate solution. In addition, Example 4 using an aqueous solution has a lower zinc encapsulation amount than Example 3 using an ethanol solution, although the zinc content is low. It can be said that efficiency decreases. Furthermore, the specific surface area, the average pore diameter, the pore volume, compared with the silica gel before inclusion of zinc oxide, zinc oxide encapsulated zinc oxide-silica-based inorganic porous phosphor is reduced, and It decreases more as the amount of inclusion increases.

【0053】[電子顕微鏡観察]実施例3において、酢酸
亜鉛エタノール溶液(酢酸亜鉛濃度を5g/L)を用い
て作製した酸化亜鉛−シリカ系無機多孔質蛍光体と、そ
の蛍光体作製に使用したシリカゲルのSYLOSPHE
REとを走査型電子顕微鏡にて比較観察したところ、酸
化亜鉛内包前後でのシリカゲルの粒子の形状、粒径には
変化は見られず、酸化亜鉛内包シリカゲルの表面、外部
には酸化亜鉛粒子は観察されなかった。この事実及び前
記した比表面積、平均細孔径及び細孔容積が、いずれも
酸化亜鉛の内包量の増加に伴って減少している事実よ
り、ほぼ全ての酸化亜鉛がシリカゲル細孔内に存在して
いると判断できる。
[Electron Microscope Observation] In Example 3, a zinc oxide-silica based inorganic porous phosphor prepared using a zinc acetate ethanol solution (zinc acetate concentration: 5 g / L) and the phosphor were prepared. SYLOSPHE of silica gel
As a result of comparative observation with RE with a scanning electron microscope, no change was found in the shape and particle size of the silica gel particles before and after inclusion of zinc oxide, and zinc oxide particles were observed on the surface of the zinc oxide-encapsulated silica gel and outside. Not observed. From this fact and the fact that the specific surface area, the average pore diameter, and the pore volume described above all decrease with an increase in the inclusion amount of zinc oxide, almost all zinc oxide is present in the silica gel pores. You can judge that

【0054】[蛍光特性の評価]蛍光分光測定装置を使用
して、蛍光測定を行なった。励起波長は250nm(光
源:キセノンランプ)、測定波長範囲は300〜600
nm、試料は固体用セルに装填し、圧粉体状にしたもの
を用いた。測定結果を図1ないし5に示す。いずれの試
料も酸化亜鉛バルク体の蛍光波長領域である500〜6
00nmよりも短波長の蛍光を発していることがわか
る。
[Evaluation of Fluorescence Property] Fluorescence measurement was performed using a fluorescence spectrometer. Excitation wavelength is 250 nm (light source: xenon lamp), measurement wavelength range is 300 to 600
nm, the sample was loaded in a cell for solid and made into a powder compact. The measurement results are shown in FIGS. All samples are in the fluorescent wavelength region of zinc oxide bulk body, which is 500 to 6
It can be seen that it emits fluorescence with a wavelength shorter than 00 nm.

【0055】使用したシリカゲルが同じで、亜鉛導入量
の異なる実施例1〜3で作製した蛍光体の測定結果(図
1)についてみると、亜鉛導入量の比較的少ない実施例
1及び2の蛍光体では、430nm付近に発光ピークが
出現するのに対して、亜鉛導入量の多い実施例3の試料
では、470nm付近に発光のピークが出現する。ま
た、実施例5と6(図2)、又は実施例7と8(図3)
とを比較しても、亜鉛内包量の多い方がより長波長側に
蛍光波長を有することがわかる。
Looking at the measurement results (FIG. 1) of the phosphors produced in Examples 1 to 3 in which the silica gel used was the same and the amount of zinc introduced was different, the fluorescence of Examples 1 and 2 in which the amount of zinc introduced was relatively small. In the body, an emission peak appears near 430 nm, whereas in the sample of Example 3 in which the amount of zinc introduced is large, an emission peak appears near 470 nm. Also, Examples 5 and 6 (FIG. 2) or Examples 7 and 8 (FIG. 3)
Comparing with the above, it can be seen that the one having a larger amount of zinc inclusion has the fluorescence wavelength on the longer wavelength side.

【0056】亜鉛導入量がほぼ等しく、使用したシリカ
ゲルの平均細孔径の異なる実施例10(図5)及び実施
例11(図6)の蛍光測定結果を見ると、使用したシリ
カゲルの平均細孔径が小さい実施例11では430nm
付近に蛍光ピークが出現するのに対して、平均細孔径が
大きい実施例10では、実施例2よりも長波長側の44
0nm付近に蛍光ピークを有することがわかる。このこ
とは、使用するシリカ系無機多孔質体の平均細孔径によ
り蛍光波長の調節ができることを表している。
Looking at the fluorescence measurement results of Example 10 (FIG. 5) and Example 11 (FIG. 6) in which the amounts of zinc introduced were almost the same and the average pore sizes of the silica gel used were different, it was found that the average pore size of the silica gel used was 430 nm for small Example 11
In contrast to the appearance of a fluorescence peak in the vicinity, in Example 10 having a large average pore diameter, 44 on the longer wavelength side than Example 2 was used.
It can be seen that it has a fluorescence peak near 0 nm. This means that the fluorescence wavelength can be controlled by the average pore diameter of the silica-based inorganic porous material used.

【0057】[0057]

【発明の効果】本発明の酸化亜鉛−シリカ系無機多孔質
蛍光体は、無機蛍光体としてこれまでにない優れた特性
を有している。すなわち、微細粒子の酸化亜鉛がそれよ
り大きく、安定なシリカ系無機多孔質内に内包されてお
り、その結果、蛍光体は、安定性、ハンドリング性等の
粉体特性に優れたものとなっており、かつ、経済性にも
優れた応用範囲が広いものとなっている。
Industrial Applicability The zinc oxide-silica based inorganic porous phosphor of the present invention has excellent properties as never before available as an inorganic phosphor. That is, the zinc oxide fine particles are larger than that, and are encapsulated in a stable silica-based inorganic porous material, and as a result, the phosphor has excellent powder characteristics such as stability and handling property. In addition, it has a wide range of applications with excellent economical efficiency.

【0058】また、その製造方法は、含浸、焼成という
簡単な工程で酸化亜鉛微粒子をシリカゲルなどのシリカ
系無機多孔質体の細孔内に内包させるという経済性に優
れた方法である。そして、得られた無機蛍光体はオプト
エレクトロニクス分野をはじめ、特殊塗料、インキ、絵
の具、樹脂、化粧品、紙の機能性填料や顔料等として有
効に活用することが期待でき、産業上の利用価値が高い
という特徴を有している。
Further, the production method is an economical method in which zinc oxide fine particles are included in the pores of a silica-based inorganic porous material such as silica gel by a simple process of impregnation and firing. And the obtained inorganic phosphor can be expected to be effectively used as a functional filler or pigment in the optoelectronic field, special paints, inks, paints, resins, cosmetics, paper, etc., and has industrial utility value. It has the characteristic of being expensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1、2、3で作製した蛍光体、及びシ
リカゲル(SYLOSPHERE)における蛍光の波長
と強度を測定した結果を示すグラフである。
FIG. 1 is a graph showing the results of measuring the wavelength and intensity of fluorescence in a phosphor prepared in Examples 1, 2, and 3 and silica gel (SYLOSPHERE).

【図2】 実施例5、6で作製した蛍光体、及び使用し
たシリカゲル(CARiACT Q−10)における蛍
光の波長と強度を測定した結果を示すグラフである。
FIG. 2 is a graph showing the results of measuring the wavelength and intensity of fluorescence in the phosphors produced in Examples 5 and 6 and the silica gel (CARiACT Q-10) used.

【図3】 実施例7、8で作製した蛍光体、及び使用し
たシリカゲル(CARiACT Q−10)における蛍光
波長と強度を測定した結果を示すグラフである。
FIG. 3 is a graph showing the results of measuring the fluorescence wavelength and intensity of the phosphors produced in Examples 7 and 8 and the silica gel (CARiACT Q-10) used.

【図4】 実施例9で作製した蛍光体、及び使用したシ
リカゲル(CARiACT G−10)における蛍光波長
と強度を測定した結果を示すグラフである。
FIG. 4 is a graph showing the results of measuring the fluorescence wavelength and intensity of the phosphor prepared in Example 9 and the silica gel (CARiACT G-10) used.

【図5】 実施例10で作製した蛍光体、及び使用した
シリカゲル(CARiACT Q−30)における蛍光波
長と強度を測定した結果を示すグラフである。
FIG. 5 is a graph showing the results of measuring the fluorescence wavelength and intensity of the phosphor prepared in Example 10 and the silica gel (CARiACT Q-30) used.

【図6】 実施例11で作製した蛍光体、及び使用した
シリカゲル(CARiACT Q−10)における蛍光波
長と強度を測定した結果を示すグラフである。
FIG. 6 is a graph showing the results of measuring the fluorescence wavelength and intensity of the phosphor prepared in Example 11 and the silica gel (CARiACT Q-10) used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武井 孝 神奈川県相模原市上溝1517−2 (72)発明者 田辺 克幸 東京都西多摩郡日の出町平井8−1 日鉄 鉱業株式会社内 (72)発明者 鵜籠 敦 東京都西多摩郡日の出町平井8−1 日鉄 鉱業株式会社内 (72)発明者 糟谷 滋 東京都西多摩郡日の出町平井8−1 日鉄 鉱業株式会社内 (72)発明者 三觜 幸平 東京都西多摩郡日の出町平井8−1 日鉄 鉱業株式会社内 Fターム(参考) 4H001 CA02 CC05 XA08 XA30    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Takei             1517-2 Kamimizo, Sagamihara City, Kanagawa Prefecture (72) Inventor Katsuyuki Tanabe             8-1, Hirai, Hinode-cho, Nishitama-gun, Tokyo             Mining Co., Ltd. (72) Inventor Atsushi Ugo             8-1, Hirai, Hinode-cho, Nishitama-gun, Tokyo             Mining Co., Ltd. (72) Inventor Shigeru Kasuya             8-1, Hirai, Hinode-cho, Nishitama-gun, Tokyo             Mining Co., Ltd. (72) Inventor Kohei Mikami             8-1, Hirai, Hinode-cho, Nishitama-gun, Tokyo             Mining Co., Ltd. F-term (reference) 4H001 CA02 CC05 XA08 XA30

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 シリカ系無機多孔質体の細孔内に酸化亜
鉛微粒子を内包したことを特徴とする酸化亜鉛−シリカ
系無機多孔質蛍光体。
1. A zinc oxide-silica based inorganic porous phosphor, characterized in that zinc oxide fine particles are included in the pores of the silica based inorganic porous body.
【請求項2】 シリカ系無機多孔質体がシリカゲルであ
る請求項1に記載の酸化亜鉛−シリカ系無機多孔質蛍光
体。
2. The zinc oxide-silica based inorganic porous phosphor according to claim 1, wherein the silica based inorganic porous body is silica gel.
【請求項3】 シリカ系無機多孔質体の窒素吸着測定に
よる平均細孔径が1nm以上である請求項1又は2に記
載の酸化亜鉛−シリカ系無機多孔質蛍光体。
3. The zinc oxide-silica based inorganic porous phosphor according to claim 1 or 2, wherein the silica based inorganic porous body has an average pore diameter of 1 nm or more as measured by nitrogen adsorption.
【請求項4】 シリカ系無機多孔質体の細孔内に亜鉛イ
オン又は亜鉛化合物を導入し、酸化雰囲気下で加熱焼成
することを特徴とする酸化亜鉛−シリカ系無機多孔質蛍
光体の製造方法。
4. A method for producing a zinc oxide-silica based inorganic porous phosphor, which comprises introducing zinc ions or a zinc compound into the pores of the silica based inorganic porous material, and heating and firing in an oxidizing atmosphere. .
【請求項5】 シリカ系無機多孔質体の細孔内への亜鉛
イオン又は亜鉛化合物の導入が、該多孔質体を可溶性亜
鉛塩の溶液に浸漬することによりなされるものである請
求項4に記載の酸化亜鉛−シリカ系無機多孔質蛍光体の
製造方法。
5. The method according to claim 4, wherein the zinc ion or the zinc compound is introduced into the pores of the silica-based inorganic porous material by immersing the porous material in a solution of a soluble zinc salt. A method for producing the described zinc oxide-silica based inorganic porous phosphor.
【請求項6】 シリカ系無機多孔質体がシリカゲルであ
る請求項4又は5に記載の酸化亜鉛−シリカ系無機多孔
質蛍光体の製造方法。
6. The method for producing a zinc oxide-silica based inorganic porous phosphor according to claim 4, wherein the silica based inorganic porous body is silica gel.
【請求項7】 可溶性亜鉛塩の溶液がエタノール又は水
を溶媒とするものである請求項4、5又は6に記載の酸
化亜鉛−シリカ系無機多孔質蛍光体の製造方法。
7. The method for producing a zinc oxide-silica inorganic porous phosphor according to claim 4, 5 or 6, wherein the solution of the soluble zinc salt uses ethanol or water as a solvent.
【請求項8】 可溶性亜鉛塩が酢酸亜鉛である請求項4
ないし7のいずれか1項に記載の酸化亜鉛−シリカ系無
機多孔質蛍光体の製造方法。
8. The soluble zinc salt is zinc acetate.
8. A method for producing a zinc oxide-silica based inorganic porous phosphor according to any one of items 1 to 7.
【請求項9】 加熱焼成が300℃以上の温度で行われ
る請求項4ないし8のいずれか1項に記載の酸化亜鉛−
シリカ系無機多孔質蛍光体の製造方法。
9. The zinc oxide according to claim 4, wherein the heating and firing is performed at a temperature of 300 ° C. or higher.
A method for producing a silica-based inorganic porous phosphor.
【請求項10】 シリカ系無機多孔質体の細孔径及び/
又は酸化亜鉛微粒子の内包量を変化させることにより、
蛍光波長を調節することを特徴とする、請求項4ないし
9のいずれか1項に記載の酸化亜鉛−シリカ系無機多孔
質蛍光体の製造方法。
10. A pore diameter of a silica-based inorganic porous material and / or
Or by changing the inclusion amount of zinc oxide fine particles,
The method for producing a zinc oxide-silica based inorganic porous phosphor according to any one of claims 4 to 9, wherein the fluorescence wavelength is adjusted.
JP2002312132A 2001-10-31 2002-10-28 Zinc oxide-silica inorganic porous fluorescent body and method of producing the same Pending JP2003201473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312132A JP2003201473A (en) 2001-10-31 2002-10-28 Zinc oxide-silica inorganic porous fluorescent body and method of producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-335102 2001-10-31
JP2001335102 2001-10-31
JP2002312132A JP2003201473A (en) 2001-10-31 2002-10-28 Zinc oxide-silica inorganic porous fluorescent body and method of producing the same

Publications (1)

Publication Number Publication Date
JP2003201473A true JP2003201473A (en) 2003-07-18

Family

ID=27666742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312132A Pending JP2003201473A (en) 2001-10-31 2002-10-28 Zinc oxide-silica inorganic porous fluorescent body and method of producing the same

Country Status (1)

Country Link
JP (1) JP2003201473A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236898A (en) * 2005-02-28 2006-09-07 Fuji Electric Holdings Co Ltd Organic light-emitting element possessing color conversion filter substrate and color conversion filter
JP2008506801A (en) * 2004-07-16 2008-03-06 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Luminescent silicon oxide flakes
JP2010155958A (en) * 2008-02-18 2010-07-15 Toyota Central R&D Labs Inc Monodispersed spherical inorganic phosphor and method for manufacturing the same, and regular array body
WO2013078460A1 (en) * 2011-11-24 2013-05-30 Saint-Gobain Ceramics & Plastics, Inc. Luminescent material and a process of forming the same
WO2015050243A1 (en) * 2013-10-03 2015-04-09 国立大学法人名古屋工業大学 Composite material hollow particles and method for manufacturing same, and fluorescent material
WO2015186504A1 (en) * 2014-06-06 2015-12-10 日本電気硝子株式会社 Light emitting device, wavelength conversion member and method for producing wavelength conversion member
CN111420652A (en) * 2020-04-22 2020-07-17 安徽锦华氧化锌有限公司 Preparation method of active zinc oxide capable of promoting degradation of dye wastewater

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506801A (en) * 2004-07-16 2008-03-06 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Luminescent silicon oxide flakes
JP2006236898A (en) * 2005-02-28 2006-09-07 Fuji Electric Holdings Co Ltd Organic light-emitting element possessing color conversion filter substrate and color conversion filter
JP2010155958A (en) * 2008-02-18 2010-07-15 Toyota Central R&D Labs Inc Monodispersed spherical inorganic phosphor and method for manufacturing the same, and regular array body
WO2013078460A1 (en) * 2011-11-24 2013-05-30 Saint-Gobain Ceramics & Plastics, Inc. Luminescent material and a process of forming the same
CN103930518A (en) * 2011-11-24 2014-07-16 圣戈本陶瓷及塑料股份有限公司 Luminescent material and a process of forming the same
US8871115B2 (en) 2011-11-24 2014-10-28 Saint-Gobain Ceramics & Plastics, Inc. Process of forming a luminescent material
WO2015050243A1 (en) * 2013-10-03 2015-04-09 国立大学法人名古屋工業大学 Composite material hollow particles and method for manufacturing same, and fluorescent material
JP6083003B2 (en) * 2013-10-03 2017-02-22 国立大学法人 名古屋工業大学 COMPOSITE HOLLOW PARTICLE, PROCESS FOR PRODUCING THE SAME, AND FLUORESCENT MATERIAL
WO2015186504A1 (en) * 2014-06-06 2015-12-10 日本電気硝子株式会社 Light emitting device, wavelength conversion member and method for producing wavelength conversion member
JP2016012711A (en) * 2014-06-06 2016-01-21 日本電気硝子株式会社 Light-emitting device, wavelength conversion member, and method of manufacturing wavelength conversion member
CN111420652A (en) * 2020-04-22 2020-07-17 安徽锦华氧化锌有限公司 Preparation method of active zinc oxide capable of promoting degradation of dye wastewater

Similar Documents

Publication Publication Date Title
Dash et al. Photoluminescence and photocatalytic properties of europium doped ZnO nanoparticles
JP6004528B2 (en) Method for producing porous silica-encapsulated particles and porous silica
Chan et al. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste‐water
Gao et al. CaMoO4/CaWO4 heterojunction micro/nanocomposites with interface defects for enhanced photocatalytic activity
Wolski et al. The effect of the preparation procedure on the morphology, texture and photocatalytic properties of ZnO
KR100965105B1 (en) Method of preparating TiO2 Phosphor Composite as Photocatalyst by a sol-gel method
JP2007169452A (en) Fluorescent substance and production method thereof, as well as light emitting device
KR20200061826A (en) Beads for air purification, method for preparing the same, and filter using the same
JP5356497B2 (en) Submicron barium and magnesium aluminates, methods for their production, and use as phosphors
CN108927140B (en) Rare earth doped bismuth vanadate material with up-conversion single red light emission and photocatalysis dual-function characteristics and preparation method and application thereof
JP2003201473A (en) Zinc oxide-silica inorganic porous fluorescent body and method of producing the same
Tian et al. Tunable luminescence of silver-exchanged SOD zeolite thermally treated under mild conditions
CN113214833B (en) Europium-doped porous metal oxide and halide perovskite color-changing luminescent composite material and preparation method and application thereof
JP4783315B2 (en) Photocatalyst dispersion
CN104971710B (en) A kind of photochemical catalyst with luminescent properties and its production and use
JP4741895B2 (en) Coated phosphor and use thereof
JP6165937B2 (en) Method for producing porous silica-encapsulated particles
JP2013527277A (en) Borate base red light emitting material and method for preparing the same
RU2383579C1 (en) Method to produce luminiscent nano-structured composite ceramic material
CN108745405A (en) Carbonitride/nitrogen mixes hollow mesoporous carbon/bismuth oxide ternary Z-type photochemical catalyst and preparation method thereof
JP2005132964A (en) Nitrogen-doped zinc oxide-silica-based inorganic porous fluorescent substance and method for producing the same
KR100853855B1 (en) Visible-Ray Photocatalyst and Preparation Method The Same
RU2364614C1 (en) Luminescent nanostructural composition ceramic material
CN210237528U (en) Long afterglow luminous particle with rod-shell structure
Li et al. New insight into modulated up-conversion luminescent silica nanotubes as efficient adsorbents for colored effluents

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050620

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A131 Notification of reasons for refusal

Effective date: 20080311

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080708

Free format text: JAPANESE INTERMEDIATE CODE: A02