KR100965105B1 - Method of preparating TiO2 Phosphor Composite as Photocatalyst by a sol-gel method - Google Patents

Method of preparating TiO2 Phosphor Composite as Photocatalyst by a sol-gel method Download PDF

Info

Publication number
KR100965105B1
KR100965105B1 KR1020080059848A KR20080059848A KR100965105B1 KR 100965105 B1 KR100965105 B1 KR 100965105B1 KR 1020080059848 A KR1020080059848 A KR 1020080059848A KR 20080059848 A KR20080059848 A KR 20080059848A KR 100965105 B1 KR100965105 B1 KR 100965105B1
Authority
KR
South Korea
Prior art keywords
titanium dioxide
phosphor
sol
tio
photocatalyst
Prior art date
Application number
KR1020080059848A
Other languages
Korean (ko)
Other versions
KR20100000377A (en
Inventor
김정식
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Priority to KR1020080059848A priority Critical patent/KR100965105B1/en
Publication of KR20100000377A publication Critical patent/KR20100000377A/en
Application granted granted Critical
Publication of KR100965105B1 publication Critical patent/KR100965105B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Luminescent Compositions (AREA)

Abstract

졸-겔(sol-gel) 방법에 의하여 축광체 분말에 이산화티타늄(TiO2)을 코팅시킴으로써 이산화티타늄/축광체 복합소재를 제조하는 방법이 개시된다. Disclosed is a method of manufacturing a titanium dioxide / phosphorescent composite material by coating titanium dioxide (TiO 2 ) on the phosphor body by a sol-gel method.

본 발명의 방법에 따라 제조된 이산화티타늄/축광체 복합소재는 축광체로부터 발광되는 빛에 의해 이산화티타늄이 여기되어 광반응이 일어날 수 있기 때문에 태양광이 차단된 어두운 조건 하에서도 축광체가 발광되는 일정시간 동안 광촉매반응이 지속가능한 우수한 광촉매 소재이다. 따라서 현재 상용화된 이산화티탄산 소재보다 더욱 광범위하게 활용될 수 있고 각종 유해물질 저감 장치, 수질 및 공기정화기 등에 유용하게 적용될 수 있다.The titanium dioxide / phosphorescent composite material prepared according to the method of the present invention has a constant light emitting phosphor even under dark conditions where sunlight is blocked because the titanium dioxide is excited by light emitted from the phosphor to cause a photoreaction. It is an excellent photocatalyst material that can sustain photocatalytic reaction for hours. Therefore, it can be utilized more widely than the current commercially available titanium dioxide material and can be usefully applied to various harmful substances reduction devices, water quality and air purifiers.

이산화티타늄, 졸-겔 방법, 광촉매, 발광재료, 분말코팅 Titanium dioxide, sol-gel method, photocatalyst, light emitting material, powder coating

Description

졸-겔 방법을 이용한 광촉매용 이산화티타늄 축광체 복합소재 제조방법 {Method of preparating TiO2 Phosphor Composite as Photocatalyst by a sol-gel method}Method of manufacturing titanium dioxide phosphorescent composite material for photocatalyst using sol-gel method {Method of preparating TiO2 Phosphor Composite as Photocatalyst by a sol-gel method}

본 발명은 졸-겔 방법을 이용하여 축광체 분말을 이산화티타늄(TiO2)으로 코팅시킴으로써 광촉매용 이산화티타늄/축광체 복합소재를 제조하는 방법에 관한 것이다. The present invention relates to a method for producing a photocatalyst titanium dioxide / phosphorescent composite material by coating the photoluminescent powder with titanium dioxide (TiO 2 ) using a sol-gel method.

이산화티타늄(TiO2)은 대표적인 광촉매 물질로서 자외선을 받으면 전자(electron)와 정공(hole)을 생성하여 강한 산화력을 지니게 되고. 수중과 공기 중에 존재하는 각종 환경오염물질을 무해한 이산화탄소와 물 등으로 분해시킨다. 또한, 빛을 받아도 자신은 변화하지 않고 화학적으로 매우 안정하기 때문에 반영구적으로 사용할 수 있으며, 광반응에 의해 생성되는 활성산소(O2 -)나 수산화기(OH-)는 염소(Cl2)나 오존(O3)보다 산화력이 높아 살균력이 뛰어나다. Titanium dioxide (TiO 2 ) is a representative photocatalyst material and generates strong electrons and holes when subjected to ultraviolet rays. It decomposes various environmental pollutants in water and air into harmless carbon dioxide and water. Further, active oxygen, and even if the light can be semi-permanently used because it is very stable chemically himself without change, generated by the photo-reaction (O 2 -) or hydroxyl groups (OH -) are chlorine (Cl 2) or ozone ( It has higher oxidizing power than O 3 ) and has excellent sterilizing power.

그러나 이산화티타늄은 단일성분의 물질로서 우수한 광촉매이나 wide bandgap semiconductor (3.2 eV for anatase phase)로서 UV-광(λ ≤ 390 nm)의 흡수에 의해 광촉매 반응이 일어나게 되기 때문에 태양광에 포함되어 있는 약 3~4%의 적은 양의 UV-광만 흡수한다. 또한 건축물의 외장재로서 상용되는 유리는 자외선을 잘 흡수하는 대표적인 물질이기 때문에 실내로 유입되는 태양광 중 자외선의 양은 극히 적어, 실내에서의 광촉매 효율은 더욱 낮아지기 때문에 사용에 많은 제한이 따르게 된다. 따라서 가시광원이나 빛이 차단된 어두운 조건에서도 광촉매 반응을 일으킬 수 있는 새로운 광촉매 재료를 만들 경우, 각종 환경정화 소재로서의 그 사용 용도는 매우 다양할 것으로 예상된다. Titanium dioxide, however, is a monocomponent material, and because it is a photocatalytic reaction caused by absorption of UV-light (λ ≤ 390 nm) as an excellent photocatalyst or wide bandgap semiconductor (3.2 eV for anatase phase), Absorb only a small amount of UV-light, ˜4%. In addition, glass commonly used as a building exterior material is a representative material that absorbs ultraviolet light well, so the amount of ultraviolet light in the room is extremely small, and thus the photocatalytic efficiency of the room is further lowered, resulting in many restrictions on use. Therefore, when a new photocatalyst material is produced that can cause a photocatalytic reaction even in dark conditions where visible light or light is blocked, its use as various environmental purification materials is expected to be very diverse.

형광체와 같은 발광물질은 태양광이나 실내조명등의 빛 에너지를 흡수하여 여기(excitation) 되고, 다시 낮은 에너지 상태로 탈여기(de-excitation)가 일어나면서 특정 파장의 빛을 방출하기 때문에 어두운 곳에서도 발광하는 특성을 지닌다. 특히, Alkaline earth aluminate계 형광체는 한번 빛을 흡수한 후에는 장시간 발광하는 특성을 지니기 때문에 따로 축광체로서 분류되고, CaAl2O4:(Eu2 +, Nd3 +), SrAl2O4:(Eu2+, Dy3 +), BaAl2O4:(Eu2 +, Dy3 +) 등이 이에 속하는 violet로부터 green의 넓은 발광 스펙트럼 범위의 대표적인 축광체들이다. Luminescent materials such as phosphors are excited by absorbing light energy such as sunlight or indoor lighting, and de-excitation in a low energy state to emit light of a specific wavelength. Has the property to In particular, Alkaline earth aluminate-based phosphors are classified as photoluminescent materials because they have the property of emitting light for a long time after absorbing light, and are classified as CaAl 2 O 4 : (Eu 2 + , Nd 3 + ) and SrAl 2 O 4 :( Eu 2+, Dy 3 +), BaAl 2 O 4: (Eu 2 +, Dy 3 +) , etc. are representative of the luminous body broad emission spectrum of the green range from violet belonging thereto.

TiO2 광촉매 소재에 대한 연구 동향은 (1)광촉매 반응성의 향상과 (2)가시광선 하에서도 광촉매 반응을 일으키는 새로운 광촉매 재료 개발로 나누어져 주로 진 행되고 있다. 첫 번째의 경우는 Pt, Rd, Ag, Au 등의 귀금속을 소량 도핑, 실리카나 지올라이트 등의 다공성 지지대에 TiO2 초미세 분말을 균일하게 분산시키거나, SiO2, ZrO2, (Sr,La)TiO3 등의 산화물과 접합시키는 방법 등으로 광촉매 반응성을 향상시키고 있다.The research trend of TiO 2 photocatalyst material is mainly divided into (1) improvement of photocatalytic reactivity and (2) development of new photocatalyst material which causes photocatalytic reaction even under visible light. In the first case, a small amount of noble metals such as Pt, Rd, Ag, Au, etc. are doped, and TiO 2 ultrafine powder is uniformly dispersed in a porous support such as silica or zeolite, or SiO 2 , ZrO 2 , (Sr, La Photocatalytic reactivity is improved by bonding with oxides such as TiO 3 + δ and the like.

두 번째로, 가시광에 민감하게 반응하는 다이(dye)를 사용하거나 금속 이온 주입 방법, RF 마그네트론 스퍼터링 증착(magnetron sputtering deposition) 방법 등을 사용하여 TiO2를 제조함으로써 가시광선 하에서도 광촉매 반응이 일부 일어나도록 유도하고 있다. Secondly, some photocatalytic reactions occur under visible light, either by using a die that is sensitive to visible light, or by fabricating TiO 2 using metal ion implantation, RF magnetron sputtering deposition, or the like. To induce.

그러나 photosensitizing dye는 열적 안정성이 부족하여 사용이 극히 제한적이고, V, Cr, Mn, Fe, Ni과 같은 천이 금속이온 강제주입 방법이나 RF 마그네트론 스퍼터링 증착 방법들은 높은 제조단가와 낮은 광반응 효율과 같은 한계로 실용화의 어려움이 있다.However, photosensitizing dyes are extremely limited in use due to their lack of thermal stability, and transition metal ion forced injection methods such as V, Cr, Mn, Fe, and Ni or RF magnetron sputter deposition methods have limitations such as high manufacturing cost and low photoreaction efficiency. There is a difficulty in practical use.

본 발명의 목적은 발광 특성을 지닌 축광체 분말에 이산화티타늄을 졸-겔 방법으로 코팅시킨 새로운 개념의 이산화티타늄/축광체 광촉매 복합소재를 제조하는 방법을 제공하는 것이다. SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a titanium dioxide / phosphor photocatalyst composite material of a novel concept in which a photoluminescent powder having luminescent properties is coated with titanium dioxide by a sol-gel method.

상기와 같은 목적을 달성하기 위하여, In order to achieve the above object,

본 발명의 일 측면에 따르면,According to one aspect of the invention,

i) 함수에탄올에 티타늄 전구체를 0.05~0.3 M로 혼합하여 Ti-졸을 제조하는 단계;i) preparing a Ti-sol by mixing titanium precursor with 0.05 to 0.3 M in hydrous ethanol;

ii) Ti-졸에 축광체 분말을 첨가, 혼합하여 축광체의 표면에 이산화티타늄을 코팅하는 단계; 및ii) adding and mixing the phosphor powder to the Ti-sol to coat titanium dioxide on the surface of the phosphor; And

iii) 이산화티타늄이 코팅된 축광체를 분리한 후 400~500℃에서 2~5시간 동안 열처리하는 단계를 포함하는,iii) separating the titanium dioxide-coated phosphor, and then heat-treating at 400 to 500 ° C. for 2 to 5 hours.

축광체의 표면에 이산화티타늄(TiO2)이 균일하게 코팅된 광촉매용 복합소재의 제조방법을 제시할 수 있다. It is possible to provide a method for preparing a composite material for photocatalyst, in which titanium dioxide (TiO 2 ) is uniformly coated on the surface of the phosphor.

또한, 본 발명의 다른 일 측면에 따르면, 상기 방법에 의하여 제조되는, 축 광체의 표면에 이산화티타늄(TiO2)이 균일하게 코팅된 광촉매용 복합소재를 제시할 수 있다. In addition, according to another aspect of the present invention, it is possible to provide a photocatalyst composite material coated with titanium dioxide (TiO 2 ) uniformly coated on the surface of the phosphor, which is manufactured by the method.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 광촉매용 복합소재의 제조방법에서는 우선 축광체 재료 - 형광체는 빛을 받으면 여기되어 스스로 발광하는 특성을 지니는데, 이러한 발광이 일정시간 지속되는 소재를 축광체라 한다 - CaAl2O4:Eu2 +,Nd3 +를 제조하기 위해서 출발원료로서 CaCO3:Al2O3: Eu2O3:Nd2O3를 0.97:1.0:0.005:0.01의 몰비로 칭량하여 3wt%의 B2O3 분말과 에탄올 용액을 함께 혼합하고 볼밀로 24시간 동안 혼합하였다. In the method for producing a composite material for a photocatalyst of the present invention, first, a phosphorescent material-a phosphor is excited when it receives light, and emits light by itself. A material for which such light emission lasts for a certain time is called a phosphorescent material-CaAl 2 O 4 : Eu 2 +, CaCO 3 as the starting material for the preparation of a Nd 3 +: Al 2 O 3 : Eu 2 O 3: Nd 2 O 3 to 0.97: 1.0: 0.005: 0.01 molar ratio was weighed into the B 2 O 3 3wt% of The powder and ethanol solution were mixed together and mixed with a ball mill for 24 hours.

상기 광촉매용 복합소재의 제조방법에서는 CaAl2O4:Eu 계, SrAl2O4:Eu 계, BaAl2O4:Eu 계, ZnS:Cu 계, CaAl12O19:Eu 계, SrAl12O19:Eu 계, BaAl12O19:Eu 계, BaMgAl10O17:Eu 계, SrMgAl10O17:Eu 계, BaMg2Al16O27:Eu 등의 축광체를 제한없이 사용할 수 있으며, 상기 축광체의 구체적인 예로서는 CaAl2O4:Eu2+,Nd3+, SrAl2O4:Eu2 +,Dy3 +, BaAl2O4:Eu2 +,Dy3 +, CaAl12O19:Eu2 + 계, SrAl12O19:Eu2 + 등이 있다.In the production process of the composite material for the photocatalytic CaAl 2 O 4: Eu-based, SrAl 2 O 4: Eu-based, BaAl 2 O 4: Eu type, ZnS: Cu-based, CaAl 12 O 19: Eu-based, SrAl 12 O 19 : Eu system, BaAl 12 O 19 : Eu system, BaMgAl 10 O 17 : Eu system, SrMgAl 10 O 17 : Eu system, BaMg 2 Al 16 O 27 : Luminescent body such as Eu can be used without limitation, specific examples of CaAl 2 O 4: Eu 2+, Nd 3+, SrAl 2 O 4: Eu 2 +, Dy 3 +, BaAl 2 O 4: Eu 2 +, Dy 3 +, CaAl 12 O 19: Eu 2 + system, SrAl 12 O 19: Eu 2 + and the like.

볼밀 혼합 후 에탄올을 제거하기 위하여 130℃에서 24시간 건조시킨 다음 최종적으로 혼합분말을 알루미나보트에 넣고 (95%Ar+5%H2)의 환원분위기 중에서 반응 온도 1400℃에서 3시간 동안 열처리하였다. After the ball mill mixing, the mixture was dried at 130 ° C. for 24 hours, and finally mixed powder was placed in an alumina boat and heat-treated at a reaction temperature of 1400 ° C. for 3 hours in a reducing atmosphere of (95% Ar + 5% H 2 ).

본 발명자는 상기와 같이 제조된 축광체 분말에 졸-겔 방법을 사용하여 이산화티타늄을 코팅시켜 이산화티타늄/축광체 광촉매 복합소재를 제조하였다.  The present inventors coated the titanium dioxide on the photoluminescent powder prepared as described above using a sol-gel method to produce a titanium dioxide / photoluminescent photocatalyst composite material.

상기 제조방법에서는 우선, 티타늄 전구체로서 TBOT (Tetrabutyl titanate, (C4H9O)4Ti)를 0.05~0.3 M이 되도록 함수에탄올에 혼합한 후 교반시킨다. 상기 함수에탄올은 크게 제한되지 않지만, 물과 에탄올을 부피비로 1:3~6로 혼합한 것을 이용할 수 있다. 상기 농도의 범위에서 코팅층이 적절한 두께로 형성될 수 있으며, 너무 낮으면 Ti의 코팅층이 너무 얇거나 적고, 너무 높으면 코팅층이 너무 두터워져서 오히려 광분해 효과가 떨어지게 된다.In the above method, first, TBOT (Tetrabutyl titanate, (C 4 H 9 O) 4 Ti) as a titanium precursor is mixed with hydrous ethanol such that 0.05 to 0.3 M, followed by stirring. The hydrous ethanol is not particularly limited, but a mixture of water and ethanol in a volume ratio of 1: 3 to 6 may be used. The coating layer may be formed to an appropriate thickness in the range of the concentration, if it is too low, the coating layer of Ti is too thin or too small, if too high, the coating layer is too thick, rather the photolysis effect is reduced.

상기 티타늄 전구체로는 졸-겔 방법에 의하여 이산화티타늄 막을 코팅시킬 수 있는 것이라면 제한 없이 사용될 수 있으며, 예컨대, TiCl4, Ti(OCH2CH3)4, Ti(OCH(CH3)2)4, ((CH3)2CHO)2Ti(C5H7O2)2, Ti(OC2H5)4, Ti(OCH3)4, Ti(C5H7O2)2, 등을 들 수 있다. The titanium precursor may be used without limitation as long as it can coat the titanium dioxide film by a sol-gel method, for example, TiCl 4 , Ti (OCH 2 CH 3 ) 4 , Ti (OCH (CH 3 ) 2 ) 4 , ((CH 3 ) 2 CHO) 2 Ti (C 5 H 7 O 2 ) 2 , Ti (OC 2 H 5 ) 4 , Ti (OCH 3 ) 4 , Ti (C 5 H 7 O 2 ) 2 , and the like. Can be.

이렇게 제조된 Ti-졸 용액은 그대로 코팅공정에 사용할 수도 있지만, 대기 중에서 24~72시간, 바람직하게는 48시간 동안 그대로 두어 시효(aging)시킨 후 사용하는 것이 코팅 정도와 균일성 면에서 더 좋다(도 9 참조). The Ti-sol solution thus prepared may be used in a coating process as it is, but it is better to use it after aging after leaving it in the air for 24 to 72 hours, preferably 48 hours, in terms of coating degree and uniformity ( 9).

코팅 공정에서는 Ti-졸에 축광체 분말을 첨가시키고 교반함으로써 축광체 분말 표면에 Ti-졸이 코팅되게 한다. 이때 Ti-졸의 온도는 40~60℃, pH는 6~8로 유지하는 것이 좋다.In the coating process, the Ti-sol is coated on the surface of the phosphor body by adding and stirring the phosphor body to the Ti-sol. At this time, the temperature of the Ti-sol is preferably maintained at 40 ~ 60 ℃, pH 6 ~ 8.

한편, 코팅 공정에서의 수분 흡수에 의한 축광체의 열화를 최소화하기 위해서는 Ti-졸과 축광체의 혼합시간을 30초 내지 2분, 바람직하게는 1분 내외로 짧게 하는 것이 좋다. On the other hand, in order to minimize deterioration of the photoluminescent body due to moisture absorption in the coating process, the mixing time of the Ti-sol and the photoluminescent body may be shortened to about 30 seconds to 2 minutes, preferably about 1 minute.

이어, Ti-졸이 코팅된 축광체를 여과공정을 통하여 수용액과 분말을 분리시키고, 약 60℃에서 24시간 동안 진공 건조시켜 잔류 알코올과 수분을 제거한 후, 최종적으로 코팅된 Ti-졸이 광촉매 특성을 지닌 anatase TiO2 상으로 결정화되도록 400~500℃에서 2~5시간 정도의 열처리 과정을 거친다. 상기 열처리 온도가 500℃를 초과하는 경우에는 코팅된 TiO2와 축광체(예, CaAl2O4:Eu2+,Nd3+)가 반응하여 중간화합물(예, CaTiO3)을 생성하게 되어 초과온도에 따라 광분해 반응이 더 이상 증가되지 않으며, 열처리 온도가 400℃ 미만이 되거나 열처리시간이 너무 짧으면, 코팅층이 anatase-TiO2 상으로 충분히 결정화되지 않는 문제가 있다. 바람직하게는, 450℃에서 3시간 열처리한다(도 5 참조)Subsequently, the aqueous solution and the powder were separated from the Ti-sol coated phosphor by filtration and vacuum dried at about 60 ° C. for 24 hours to remove residual alcohol and water. It undergoes heat treatment for 2 ~ 5 hours at 400 ~ 500 ℃ to crystallize into anatase TiO 2 phase. When the heat treatment temperature exceeds 500 ° C, the coated TiO 2 reacts with a photoluminescent body (eg, CaAl 2 O 4 : Eu 2+ , Nd 3+ ) to generate an intermediate compound (eg, CaTiO 3 ). The photolysis reaction no longer increases with temperature, and if the heat treatment temperature is less than 400 ° C. or the heat treatment time is too short, the coating layer is anatase-TiO 2. There is a problem that the phase is not sufficiently crystallized. Preferably, heat treatment is performed at 450 ° C. for 3 hours (see FIG. 5).

본 발명의 범주에는 상기 방법에 의하여 제조된 축광체-이산화티타늄 광촉매용 복합소재도 포함된다. The scope of the present invention also includes a composite material for photoluminescent-titanium dioxide photocatalyst prepared by the above method.

빛을 받으면 장시간 동안 발광하는 물질인 축광체(예컨대, Ca-, Ba-, Sr-희토류 알루미네이트 계 축광체 등)에 광촉매 물질인 이산화티타늄을 코팅시키면 빛이 차단된 어두운 상태에서도 축광체에서 발광되는 빛을 흡수하여 이산화티타늄이 지속적으로 광분해 반응을 일으키게 되고, 태양광과 같은 광원이 존재하는 상태에서도 광원에서 나오는 빛 이외에 축광체에서 발광된 빛에 의해서도 이산화티타늄이 흡수 여기되어 광반응을 더 촉진시킬 수 있게 된다. 또한, 이산화티타늄이 크기가 다른 에너지 갭을 지닌 또 다른 산화물 등과 이종접합을 하게 되면 에너지 띠 굽힘 현상(energy band bending)이 일어나 이산화티타늄의 광흡수 에너지대 크기가 감소되어 가시광원에서도 광반응이 일어날 수 있기 때문에 자외선 광원 대신에 백열전구와 같은 가시광원을 사용해도 되는 장점이 있다.When a photocatalytic material is coated with titanium dioxide, a photoluminescent material (e.g., Ca-, Ba-, Sr-rare earth alumina-based photoluminescent material) that emits light for a long time upon receiving light, the light is emitted from the photoluminescent material even in a dark state where light is blocked. Titanium dioxide continuously causes photolysis reaction by absorbing light, and even in the presence of light source such as sunlight, titanium dioxide is absorbed and excited by light emitted from photoluminescent body to promote photoreaction. You can do it. In addition, the heterojunction of titanium dioxide with another oxide having a different energy gap causes energy band bending, which reduces the light absorption energy band size of the titanium dioxide, thereby causing photoreaction in the visible light source. In this case, there is an advantage that a visible light source such as an incandescent lamp may be used instead of an ultraviolet light source.

상기한 바와 같이, 본 발명에서 졸-겔 방법으로 축광체를 이산화티타늄으로 코팅시킨 복합재료의 경우, (1) 이산화티타늄과 다른 에너지 갭을 지닌 축광체 산화물과 이종접합을 하게 되면 에너지 띠 굽힘 현상이 일어나 이산화티탄의 광흡수 에너지 크기가 감소되어 가시광선에서도 광반응이 일어날 수 있기 때문에 자외선 광원 대신에 백열전구를 사용해도 되는 장점이 있고, (2) 축광체는 다른 광원으로부터 빛을 흡수한 후 다시 특정 파장의 빛을 발광하고 이 축광체에 의해 발광된 빛을 다시 이산화티타늄이 흡수하게 됨으로써 이산화티타늄의 광반응 효율을 극대화하게 되며, (3) 또한 빛을 받은 축광체가 어두운 암시야 상태에서도 일정 기간 동안 발광하기 때문에 축광체와 접합된 이산화티타늄은 어두운 상태에서도 야광 빛을 흡수하여 광촉매 반응이 지속될 수 있다. As described above, in the present invention, in the case of the composite material in which the phosphor is coated with titanium dioxide by the sol-gel method, (1) energy band bending occurs when heterojunction is performed with the phosphor oxide having a different energy gap from titanium dioxide. Because of this, the light absorption energy of titanium dioxide is reduced, so that photoreaction may occur even in visible light, so that an incandescent lamp may be used instead of an ultraviolet light source, and (2) the photoluminescent body absorbs light from another light source. By emitting light of a specific wavelength and absorbing the light emitted by the photoluminescent member again, titanium dioxide maximizes the photoreaction efficiency of the titanium dioxide, and (3) the lighted photoluminescent member is constant even in the dark dark field state. Because it emits light for a period of time, the titanium dioxide bonded to the phosphors absorbs luminous light even in the dark, thereby photocatalytic reaction. This can last.

나아가, 본 발명에 의한 축광체-이산화티타늄 복합소재의 경우, 주거지/사무 실 공기청정기, 자동차 실내 공기정화기, 소각로 유해가스 정화장치, 폐수 정화처리 장치, 에어컨, 오염방지용 설비 등에 적용 가능함으로, 현재 상용화된 이산화티타늄 분말 재료보다 활용도가 더욱 다양하게 된다.Furthermore, in the case of the phosphor-titanium dioxide composite material according to the present invention, the present invention is applicable to residential / office air purifiers, automobile indoor air purifiers, incinerator noxious gas purifiers, wastewater purification apparatuses, air conditioners, pollution prevention facilities, and the like. More versatile use than commercially available titanium dioxide powder materials.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

실시예Example 1: 졸-겔 방법에 의한  1: by sol-gel method 축광체의Photoluminescent 이산화티타늄 코팅 Titanium Dioxide Coating

CaAl2O4:Eu2 +,Nd3 + 축광체 재료를 제조하기 위해서 출발원료로서 CaCO3: Al2O3: Eu2O3: Nd2O3를 0.97:1.0:0.005:0.01의 몰비로 칭량하여 3wt%의 B2O3 분말과 에탄올 용액을 함께 혼합하고 볼밀로 24시간동안 혼합하였다. 혼합 후 에탄올을 제거하기 위하여 130℃에서 24시간 건조시킨 다음 최종적으로 혼합분말을 알루미나보트에 넣고 (95%Ar+5%H2)의 환원분위기 중에서 반응온도 1400℃에서 3시간동안 열처리하였다. CaCO 3 : Al 2 O 3 : Eu 2 O 3 : Nd 2 O 3 as a starting material to prepare CaAl 2 O 4 : Eu 2 + , Nd 3 + phosphorescent material at a molar ratio of 0.97: 1.0: 0.005: 0.01 Weighed, 3 wt% of B 2 O 3 powder and ethanol solution were mixed together and mixed with a ball mill for 24 hours. After mixing, the mixture was dried for 24 hours at 130 ° C. to remove ethanol, and finally the mixed powder was placed in an alumina boat and heat-treated at a reaction temperature of 1400 ° C. for 3 hours in a reducing atmosphere of (95% Ar + 5% H 2 ).

상기와 같이 제조된 축광체 분말을 다음과 같이 TiO2로 코팅시켜 이산화티타 늄/축광체 복합분말을 제조하였다. 함수에탄올(물:에탄올 = 1:5)에 티타늄 전구체인 TBOT (Tetrabutyl titanate, ((C4H9O)4Ti, ACROS)를 0.08 ~ 0.25 몰농도(M)로 혼합한 후 교반하여 Ti-졸을 제조하였다. The photoluminescent powder prepared as described above was coated with TiO 2 to prepare a titanium dioxide / phosphorescent composite powder. Titanium precursor TBOT (Tetrabutyl titanate, ((C 4 H 9 O) 4 Ti, ACROS)) was mixed with hydrous ethanol (water: ethanol = 1: 5) at 0.08∼0.25 molarity (M), followed by stirring The sol was prepared.

상기 제조된 Ti-졸 용액은 대기 중에서 48시간 동안 시효(aging)시킨 후 축광체 분말을 첨가, 1분 정도 혼합하여 축광체 표면에 Ti-졸이 코팅되게 하였다. 상기 시효 및 코팅 과정에서의 Ti-졸의 온도는 50℃, pH는 7로 유지하였다. The Ti-sol solution prepared above was aged for 48 hours in air, and then phosphorescent powder was added and mixed for about 1 minute to allow Ti-sol to be coated on the surface of the phosphor. The temperature of the Ti-sol in the aging and coating process was maintained at 50 ℃, pH 7.

이어, 상기 Ti-졸이 코팅된 축광체를 여과공정을 통하여 수용액과 분말을 분리하고, 약 60℃에서 24시간 동안 진공 건조시켜 잔류 알코올과 수분을 제거하였다. 최종적으로 코팅된 Ti-졸이 광촉매 특성을 지닌 anatase TiO2 상으로 결정화되도록 약 450℃에서 3시간동안 열처리하였다. 도 1에 졸-겔 방법을 이용하여 이산화티타늄/축광체 복합재료를 제조하는 순서도를 나타내었다.Subsequently, the Ti-sol-coated phosphor was separated from the aqueous solution and the powder through a filtration process, and vacuum-dried at about 60 ° C. for 24 hours to remove residual alcohol and water. Finally, the coated Ti-sol was heat-treated at about 450 ° C. for 3 hours to crystallize into anatase TiO 2 phase having photocatalytic properties. 1 shows a flow chart for preparing a titanium dioxide / phosphorescent composite using the sol-gel method.

실험예Experimental Example 1 :  One : 축광체Phosphor -이산화티타늄 복합 시료의 특성 분석Analysis of Titanium Dioxide Composite Sample

TiO2의 전구체 물질인 TBOT의 농도를 0.167 M로 고정하여 제조된 본 발명의 TiO2-축광체 복합재료의 열처리 온도에 따른 XRD 스펙트라(spectra)를 도 2에 나타낸다. 이에 따르면, 열처리 온도가 350℃ 이상이 되면 광촉매 특성을 지닌 anatase 상이 생성되었다(JCPDS 21-1272). XRD spectra according to the heat treatment temperature of the TiO 2 -photoluminescent composite material of the present invention prepared by fixing the concentration of TBOT, a precursor material of TiO 2 , to 0.167 M are shown in FIG. 2. According to this, when the heat treatment temperature is higher than 350 ℃ to produce anatase phase having a photocatalytic property (JCPDS 21-1272).

도 3은 열처리온도를 450℃로 고정하고 TBOT의 함량을 변화시켜(0.08 ∼ 0.25M) 제조한 TiO2-축광체 분말에 대한 XRD분석 결과이다. 이에 따르면, 전구체인 TBOT의 함량이 증가될수록 TiO2에 해당되는 피크 세기가 증가되며, 이는 코팅된 TiO2의 양이 증가됨을 나타낸다.3 is an XRD analysis result of TiO 2 -photoluminescent powder prepared by fixing the heat treatment temperature at 450 ℃ and varying the content of TBOT (0.08 ~ 0.25M). According to this, the peak intensity corresponding to TiO 2 increases as the content of the precursor TBOT increases, indicating that the amount of coated TiO 2 increases.

도 4a는 TiO2-축광체 분말을 TEM으로 관찰한 사진으로서, 축광체 분말 표면에 밝게 나타나는 미세한 분말층이 불규칙하게 분포되었음을 보여준다. 도 4b는 도 4a의 TEM사진의 밝은 부분(분말 표면부분)에 대해서 측정한 EDS spectrum이다. 4.5~5.0 keV 영역에서 Ti 원소에 해당되는 피크가 나타나며, 이는 축광체 표면의 밝은 부분이 TiO2 코팅층임을 나타낸다.Figure 4a is a photograph of the TiO 2 -photoluminescent powder by TEM, showing that the fine powder layer appears brightly on the surface of the photoluminescent powder irregularly distributed. FIG. 4B is an EDS spectrum measured for the bright part (powder surface part) of the TEM photograph of FIG. 4A. The peak corresponding to the Ti element appears in the 4.5 ~ 5.0 keV region, indicating that the bright portion of the phosphor surface is a TiO 2 coating layer.

실험예Experimental Example 2 :  2 : 축광체Phosphor -이산화티타늄 복합재료의 광분해 반응 및 분석-Decomposition and Analysis of Titanium Dioxide Composites

본 발명에서 제조된 축광체-이산화티타늄 복합재료의 광분해 반응을 메틸렌블루(methylene blue (MB), C16H18CIN3S) 수용액의 표백상태를 측정함으로서 실시하였다. Photolysis reaction of the phosphor-titanium dioxide composite material prepared in the present invention was carried out by measuring the bleaching state of an aqueous solution of methylene blue (MB), C 16 H 18 CIN 3 S.

메틸렌블루 용액(0.05 wt% in water)을 증류수에 희석시켜 1.6×10-5 mol/cm3 의 수용액으로 만들고, 피펫을 이용하여 약 20ml 정도 채취하여서 28×60mm 크기의 clear glass vial 용기에 담고, 빛이 차단된 암실에서 0.5∼0.8 g의 축광체-이산화티타늄 복합분말을 섞는다. 이어, 60W-mercury lamp (UV-radiation, 자외선)와 100W-white light lamp (Visible radiation, 가시광선)로 조사(irradiation)시킨 다. 이렇게 메틸렌블루 용액을 주어진 시간동안 조사시킨 다음, UV/Vis 광원이 조사되기 시작한 후 일정 시간이 경과될 때마다(예: 1시간 경과된 후) 약 2ml 정도를 채취하여 원심분리(centrifugation)하고 Cuvet 용기에 담아 UV/Vis spectrometer를 사용하여 흡수 스펙트럼(absorption spectrum)을 측정하였다. Dilute methylene blue solution (0.05 wt% in water) to distilled water to make an aqueous solution of 1.6 × 10 -5 mol / cm 3 , collect about 20ml using a pipette and place it in a clear glass vial container of size 28 × 60mm. Mix 0.5-0.8 g of phosphorescent-titanium dioxide composite powder in a dark room with no light. Subsequently, irradiation is performed with a 60 W-mercury lamp (UV-radiation) and a 100 W white light lamp (Visible radiation). The methylene blue solution is irradiated for a given time, and then, after a certain time elapses after the UV / Vis light source is irradiated (e.g. after 1 hour), about 2ml is collected, centrifuged and centrifuged. The absorption spectrum was measured in a container using a UV / Vis spectrometer.

도 5는 전구체 TBOT의 농도를 0.167M로 고정시켜 제조된 TiO2-축광체 분말에 대해서 열처리온도에 따른 광분해 특성을 가시광원(UV-light는 filtering 됨) 하에서 측정한 결과이다. 450℃에서 열처리된 시편의 광분해 반응이 가장 우수하게 나타났으며, 그 이상의 온도 500℃에서는 더 이상 증가되지 않는다. 이는 도 2의 XRD 패턴에서 알 수 있듯이 약 450℃에서 광촉매 특성을 지닌 anatase-TiO2-형상의 결정화도가 완성되는 온도영역이기 때문인 것으로 판단된다. 5 is a result of measuring the photolysis characteristics according to the heat treatment temperature for the TiO 2 -photoluminescent powder prepared by fixing the concentration of the precursor TBOT to 0.167M under a visible light source (UV-light filtered). The photodegradation reaction of the specimens heat-treated at 450 ° C. was the best, and further increased at temperatures above 500 ° C. As can be seen from the XRD pattern of FIG. 2, it is determined that the crystallization degree of the anatase-TiO 2 -form having the photocatalytic property is completed at about 450 ° C.

가시광선 광원 하에서 전구체 TBOT의 양을 변화시키고 450℃에서 각각 열처리된 TiO2-축광체 분말에 대해서 광분해 특성을 측정한 결과를 도 6에 나타내었다. 이에 따르면, 상용 TiO2 분말(P-25, Degussa)은 거의 반응하지 않았으나, 본 발명에서 제조된 TiO2-축광체 분말은 광분해 반응이 잘 일어남을 알 수 있고, 전구체인 TBOT 농도가 0.167M 첨가된 시료가 가장 높은 광분해 특성을 나타내고 있다. 특히, 0.167M에서는 가시광선 3.5시간 조사 후 70%에 가까운 분해율을 보였으며, 5.5시간 조사 후 거의 모든 분해가 다 이루어졌음을 알 수 있다. Figure 6 shows the results of measuring the photolysis characteristics of the TiO 2 -photoluminescent powders of which the amount of precursor TBOT was changed under a visible light source and heat-treated at 450 ° C., respectively. According to this, commercial TiO 2 Although the powder (P-25, Degussa) hardly reacted, the TiO 2 -photoluminescent powder prepared in the present invention can be seen that the photolysis reaction occurs well, and the sample with the added concentration of 0.167M of precursor TBOT is the highest photolysis. The characteristics are shown. In particular, at 0.167M, the decomposition rate was nearly 70% after 3.5 hours of visible light irradiation, and almost all of the decomposition was completed after 5.5 hours of irradiation.

도 7은 UV-light 광원을 사용하여 상용 TiO2 분말과 전구체 TBOT 0.167M이 첨가된 TiO2-축광체 분말에 대한 광분해 특성을 측정한 데이터를 비교한 그래프이다. P-25는 UV-광이 조사된 후 초기 2.5시간까지 빠른 속도로 반응을 하며, 5.5시간 전에 거의 모든 분해가 이루어졌다. 이에 반해 전구체 TBOT가 0.167M 첨가된 TiO2-축광체 분말의 경우, 초기 광분해 속도가 상용 P-25 TiO2 분말보다 느리며, 이는 똑같은 양의 메틸렌블루용액에 대해서 코팅된 TiO2의 양이 상용 TiO2 분말보다 상대적으로 크게 적고, 따라서 반응에 관계될 수 있는 전체 비표면적이 낮기 때문에 일어나는 차이라고 생각된다.FIG. 7 is a graph comparing photodegradation characteristics of commercial TiO 2 powder and TiO 2 -photoluminescent powder to which precursor TBOT 0.167M was added using a UV-light light source. P-25 reacts as fast as the initial 2.5 hours after UV-irradiation, almost all of the decomposition was done 5.5 hours ago. In contrast, the TiO 2 -phosphorescent powder with 0.167M of precursor TBOT added, the initial photolysis rate was slower than that of commercial P-25 TiO 2 powder, which is equivalent to the amount of TiO 2 coated for commercial methylene blue solution. It is thought to be a difference which occurs because it is relatively much smaller than 2 powders, and thus the total specific surface area that can be involved in the reaction is low.

도 8은 전구체 TBOT의 양을 달리하여 제조된 시료들의 발광 스펙트럼이다. TiO2가 코팅되어진 시료는 순수한 축광체 분말에 비하여 낮은 발광치를 보이며, TBOT의 양이 증가될수록 코팅되는 TiO2의 양이 많아지게 되어 발광강도는 감소함을 알 수 있다. 그러나, TiO2 층이 코팅되더라도 축광체가 일정한 정도의 발광특성을 유지하며, 이는 축광체로부터 발광되는 빛이 표면에 코팅된 TiO2를 여기시켜 광분해 반응을 촉진시킨다는 것을 나타낸다. 도 7에서 설명되었듯이 전구체 TBOT의 농도가 0.167M 이상이 되면 오히려 광분해율이 떨어지게 되며, 그 이유는 TiO2를 코팅층이 증가되면 축광체로부터 발광되는 빛의 세기가 감소하기 때문인 것으로 해석될 수 있다. 따라서 코팅층 TiO2의 양과 축광체로부터 발광되는 빛의 세기가 서로 보완관계를 유지할 수 있는 적정 TBOT 농도(0.167M)에서 가장 높은 광분해 특성이 나타날 수 있음을 알 수 있다. 8 is an emission spectrum of samples prepared by varying the amount of precursor TBOT. Samples coated with TiO 2 showed lower emission values than pure phosphorescent powders, and as the amount of TBOT increased, the amount of coated TiO 2 increased and the emission intensity decreased. However, even when the TiO 2 layer is coated, the photoluminescent body maintains a certain degree of luminescence property, which indicates that light emitted from the photoluminescent material excites TiO 2 coated on the surface to promote the photolysis reaction. As illustrated in FIG. 7, when the concentration of the precursor TBOT is more than 0.167M, the photodegradation rate is lowered, which may be interpreted as the intensity of light emitted from the photoluminescent body decreases when the TiO 2 coating layer is increased. . Therefore, it can be seen that the highest photolysis property can be seen at an appropriate TBOT concentration (0.167M) in which the amount of the coating layer TiO 2 and the intensity of light emitted from the photoluminescent body can maintain a complementary relationship with each other.

TiO2-축광체 복합재료가 가시광원 하에서 광반응을 일으키는 또 다른 메카니즘으로서 서로 다른 에너지 밴드 갭을 가진 두 가지 산화물 사이의 이종접합(heterojunction)에 따른 흡수파장대의 확대현상을 들 수 있다. 문헌이나 논문에 의하면, 이종접합 CdS/TiO2, Bi2S3/TiO2이 가시광원 파장 대에서도 광분해 반응이 잘 일어난다는 사실을 보고하였다. 본 발명에서는 서로 다른 에너지 밴드 갭을 가진 TiO2와 축광체 (CaAl2O4:Eu2 +,Nd3 +, SrAl2O4:Eu2 +,Dy3 +, etc.)가 접합하게 되면 접합계면에서 에너지밴드 구조가 변형되어 가시광 하에서도 광분해 반응이 가능하다. Another mechanism by which TiO 2 -phosphorescent composites cause photoreactions under visible light is the expansion of the absorption band due to heterojunction between two oxides with different energy band gaps. According to the literature and the paper, the heterojunction CdS / TiO 2 , Bi 2 S 3 / TiO 2 reported that the photodegradation reaction occurs well even in the visible light wavelength range. In the present invention, when TiO 2 and phosphorescent materials (CaAl 2 O 4 : Eu 2 + , Nd 3 + , SrAl 2 O 4 : Eu 2 + , Dy 3 + , etc.) having different energy band gaps are bonded together, The energy band structure is deformed at the interface, so that photolysis reaction is possible even under visible light.

도 9는 전구체 TBOT의 농도를 0.167M로 고정하고, 시효시간(aging time)을 0~72시간 변화시킨 Ti-졸을 CaAl2O4:Eu2 +,Nd3 + 분말에 각각 코팅시킨 후, 450℃에서 열처리된 TiO2-축광체 분말에 대해서 가시광선 광원 하에서 광분해 특성을 측정한 결과를 나타낸다. Ti-졸의 시효시간이 48시간이 될 때까지 광분해율이 시효시간에 따라 증가하고, 그 이상이 지나면 더 이상 증가되지 않는 경향을 나타내고 있다. 따라서 Ti-졸의 시효처리는 TiO2-축광체의 광분해율을 향상시키며, 적정 시효기간은 48시간 정도임을 알 수 있다. FIG. 9 shows that Ti-sol having a precursor TBOT concentration of 0.167 M and a aging time of 0 to 72 hours was coated on CaAl 2 O 4 : Eu 2 + and Nd 3 + powder, respectively. The results of measurement of photodegradation characteristics of the TiO 2 -photoluminescent powder heat-treated at 450 ° C. under a visible light source are shown. The photodegradation rate increases with the aging time until the aging time of the Ti-sol reaches 48 hours, and after that time, it does not increase any more. Therefore, the aging treatment of the Ti-sol improves the photodegradation rate of the TiO 2 -photoluminescent body, and the optimum aging period is about 48 hours.

본 발명에 의해 제조된 광촉매 복합소재는 에너지밴드가 서로 다른 축광체 물질과 이산화티타늄을 이종접합시킴으로서 접합계면의 에너지밴드 구조가 변형되 어 실내 조명등과 같은 가시광선 하에서도 광촉매 반응이 일어날 수 있어서 광촉매 반응 효율이 증대된다. 또한 빛이 차단된 어두운 조건에서도 일정 시간동안 축광체에서 발광되는 빛에 의해 이산화티타늄이 일부 여기될 수 있기 때문에 광촉매 반응이 지속적으로 일어날 수 있다. The photocatalyst composite material prepared by the present invention is a heterogeneous bonding of photoluminescent materials and titanium dioxide having different energy bands, thereby deforming the energy band structure of the bonding interface, so that the photocatalytic reaction may occur even under visible light such as indoor lighting. The reaction efficiency is increased. In addition, the photocatalytic reaction may occur continuously in a dark condition in which light is blocked because some titanium dioxide may be excited by light emitted from the phosphor.

이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였으나, 본 발명은 상기 실시예에 한정되는 것이 아니라 다양한 형태로 구현될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above embodiments, but may be embodied in various forms, and those skilled in the art to which the present invention pertains. It will be appreciated that the present invention may be embodied in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

도 1은 본 발명의 일 실시예에 따라 졸-겔 방법을 이용하여 이산화티타늄/축광체 복합재료를 제조하는 순서도이다.1 is a flow chart of manufacturing a titanium dioxide / phosphorescent composite using a sol-gel method according to an embodiment of the present invention.

도 2는 Ti-졸 TBOT의 농도를 0.167M로 고정하여 제조된 TiO2-축광체 복합재료의 열처리 온도에 따른 XRD 패턴이다. 2 is an XRD pattern according to the heat treatment temperature of the TiO 2 -photoluminescent composite prepared by fixing the concentration of Ti-sol TBOT to 0.167M.

도 3은 Ti-졸 TBOT의 농도를 0.08 ∼ 0.25M로 변화시켜 제조한 TiO2-축광체 분말을 450 ℃로 열처리한 TiO2-축광체 복합재료의 XRD 패턴이다.Figure 3 is a TiO 2 sol prepared by changing the concentration of Ti- TBOT to 0.08 ~ 0.25M - an XRD pattern of the luminous body composite material - a TiO 2 powder with a heat treatment the luminous body 450 ℃.

도 4a는 TiO2-축광체 분말을 TEM으로 관찰한 사진이고, 도 4b는 TEM사진의 밝은 부분(분말 표면부분)에 대해서 측정한 EDS spectrum이다. 4A is a photograph of a TiO 2 -photoluminescent powder observed by TEM, and FIG. 4B is an EDS spectrum measured for a bright part (powder surface part) of the TEM photograph.

도 5는 Ti-전구체 TBOT의 양을 0.167M로 고정시켜 제조된 TiO2-축광체 분말에 대해서 열처리온도에 따른 광분해 특성(노출시간에 따른 흡수상수)을 가시광원 하에서 측정한 결과이다.5 is a result of measuring the photodegradation characteristics (absorption constant with exposure time) according to the heat treatment temperature for the TiO 2 -photoluminescent powder prepared by fixing the amount of Ti- precursor TBOT to 0.167M under a visible light source.

도 6은 가시광원 하에서 Ti-전구체 TBOT의 양을 변화시키고 450℃에서 각각 열처리된 TiO2-축광체 분말에 대해서 광분해 특성(노출시간에 따른 흡수상수)을 측정한 결과이다. FIG. 6 shows the results of measuring photodegradation characteristics (absorption coefficient according to exposure time) of TiO 2 -phosphorescent powders which were changed in the amount of Ti-precursor TBOT under visible light and heat-treated at 450 ° C., respectively.

도 7은 자외선 광원을 사용하여 상용 TiO2 분말(P-25)과 본 발명에서 Ti-전구체 TBOT 0.167M이 첨가된 TiO2-축광체 분말에 대해서 광분해 특성(노출시간에 따른 흡수상수)을 측정한 데이터를 비교한 결과이다. FIG. 7 shows photodegradation characteristics (absorption coefficient according to exposure time) for commercial TiO 2 powder (P-25) and TiO 2 -luminescent powder to which Ti-precursor TBOT 0.167M is added in the present invention using an ultraviolet light source. This is the result of comparing one data.

도 8은 Ti-전구체 TBOT의 양을 달리하여 제조된 TiO2-축광체 분말 시료들의 발광 스펙트럼(파장에 따른 빛의 세기)이다.8 is an emission spectrum (light intensity according to wavelength) of TiO 2 -photoluminescent powder samples prepared by varying the amount of Ti precursor precursor TBOT.

도 9는 Ti-sol의 시효시간(aging time)에 따른 TiO2-축광체 분말의 visible-light 광원 하에서 광분해 특성을 측정한 결과이다.9 is a result of measuring the photolysis characteristics of the TiO 2 -photoluminescent powder under visible-light light source according to the aging time (Ti-sol).

Claims (7)

i) 함수에탄올에 티타늄 전구체를 0.05~0.3 M로 혼합하여 Ti-졸을 제조하는 단계;i) preparing a Ti-sol by mixing titanium precursor with 0.05 to 0.3 M in hydrous ethanol; ii) Ti-졸에 축광체 분말을 첨가, 혼합하여 축광체의 표면에 이산화티타늄을 코팅하는 단계; 및ii) adding and mixing the phosphor powder to the Ti-sol to coat titanium dioxide on the surface of the phosphor; And iii) 이산화티타늄이 코팅된 축광체를 분리한 후 400~500℃에서 2~5시간 동안 열처리하는 단계를 포함하는,iii) separating the titanium dioxide-coated phosphor, and then heat-treating at 400 to 500 ° C. for 2 to 5 hours. 축광체의 표면에 이산화티타늄(TiO2)이 균일하게 코팅된 광촉매용 복합소재의 제조방법.Method of manufacturing a composite material for a photocatalyst is uniformly coated with titanium dioxide (TiO 2 ) on the surface of the phosphor. 제1항에 있어서, 상기 티타늄 전구체는 TiCl4, Ti(OCH2CH3)4, Ti(OCH(CH3)2)4, ((CH3)2CHO)2Ti(C5H7O2)2, Ti(OC2H5)4, Ti(OCH3)4 및 Ti(C5H7O2)2로 구성되는 군으로부터 선택되는 광촉매용 복합소재의 제조방법.The method of claim 1, wherein the titanium precursor is TiCl 4 , Ti (OCH 2 CH 3 ) 4 , Ti (OCH (CH 3 ) 2 ) 4 , ((CH 3 ) 2 CHO) 2 Ti (C 5 H 7 O 2 ) 2 , Ti (OC 2 H 5 ) 4 , Ti (OCH 3 ) 4 And Ti (C 5 H 7 O 2 ) 2 A method for producing a composite material for a photocatalyst selected from the group consisting of. 제1항에 있어서, 상기 축광체는 CaAl2O4:Eu 계, SrAl2O4:Eu 계, BaAl2O4:Eu 계, ZnS:Cu계, CaAl12O19:Eu 계, SrAl12O19:Eu 계, BaAl12O19:Eu 계, BaMgAl10O17:Eu 계, SrMgAl10O17:Eu 계 및 BaMg2Al16O27:Eu 계로 구성되는 군으로부터 선택되는 광촉매용 복합소재의 제조방법.According to claim 1, wherein the phosphor is CaAl 2 O 4 : Eu system, SrAl 2 O 4 : Eu system, BaAl 2 O 4 : Eu system, ZnS: Cu system, CaAl 12 O 19 : Eu system, SrAl 12 O 19 : Eu-based, BaAl 12 O 19 : Eu-based, BaMgAl 10 O 17 : Eu-based, SrMgAl 10 O 17 : Eu-based and BaMg 2 Al 16 O 27 : Eu-based composite material for the photocatalyst selected from the group consisting of Way. 제1항에 있어서, 단계 ii) 이전에 Ti-졸을 대기 중에서 24~72 시간 시효(aging)시키는 단계를 더 포함하는, 광촉매용 복합소재의 제조방법.The method according to claim 1, further comprising aging the Ti-sol in the atmosphere for 24 to 72 hours before step ii). 제1항에 있어서, 단계 ii)의 코팅 시간은 30 초 내지 1분인, 광촉매용 복합소재의 제조방법.The method of claim 1, wherein the coating time of step ii) is 30 seconds to 1 minute. 제1항에 있어서, 단계 iii)에서 이산화티타늄이 코팅된 축광체의 열처리 이전에 이산화티타늄이 코팅된 축광체의 잔류 알코올과 수분을 건조하는 단계를 더 포함하는, 광촉매용 복합소재의 제조방법.The method according to claim 1, further comprising the step of drying the residual alcohol and water of the titanium dioxide-coated phosphor, before the heat treatment of the titanium dioxide-coated phosphor, in step iii). 제1항의 방법에 의하여 제조된, 축광체의 표면에 이산화티타늄(TiO2)이 균일 하게 코팅된 광촉매용 복합소재.A composite material for photocatalyst prepared by the method of claim 1, wherein titanium dioxide (TiO 2 ) is uniformly coated on the surface of the phosphor.
KR1020080059848A 2008-06-24 2008-06-24 Method of preparating TiO2 Phosphor Composite as Photocatalyst by a sol-gel method KR100965105B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080059848A KR100965105B1 (en) 2008-06-24 2008-06-24 Method of preparating TiO2 Phosphor Composite as Photocatalyst by a sol-gel method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080059848A KR100965105B1 (en) 2008-06-24 2008-06-24 Method of preparating TiO2 Phosphor Composite as Photocatalyst by a sol-gel method

Publications (2)

Publication Number Publication Date
KR20100000377A KR20100000377A (en) 2010-01-06
KR100965105B1 true KR100965105B1 (en) 2010-06-22

Family

ID=41810775

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080059848A KR100965105B1 (en) 2008-06-24 2008-06-24 Method of preparating TiO2 Phosphor Composite as Photocatalyst by a sol-gel method

Country Status (1)

Country Link
KR (1) KR100965105B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10793772B1 (en) 2020-03-13 2020-10-06 Accelovant Technologies Corporation Monolithic phosphor composite for sensing systems
KR102289498B1 (en) * 2021-02-25 2021-08-12 주식회사 에이피씨테크 Mask to which photoluminescent photocatalytic reactor is applied
KR20220058023A (en) 2020-10-30 2022-05-09 (주) 세라컴 A Photocatalytic Filter Having Light Scatterer
US11353369B2 (en) 2020-11-05 2022-06-07 Accelovant Technologies Corporation Optoelectronic transducer module for thermographic temperature measurements
US11359976B2 (en) 2020-10-23 2022-06-14 Accelovant Technologies Corporation Multipoint surface temperature measurement system and method thereof
KR20230147773A (en) 2022-04-13 2023-10-24 주식회사 에이피씨테크 Method for preparing photoluminescent photocatalyst hybrid beads and photoluminescent photocatalyst hybrid beads prepared thereby
KR20240045392A (en) 2022-09-29 2024-04-08 현대자동차주식회사 Phosphor-transition metal-photocatalyst hybrid composite material, method for preparing the same, and filter using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101979494B1 (en) 2017-03-20 2019-05-16 고려대학교 산학협력단 Antibacterial structure using photocatalyst and method thereof
CN109046386A (en) * 2018-08-24 2018-12-21 秦天 Manganese doped zinc sulphide/redox graphene composite material and preparation method and application
KR102517269B1 (en) * 2021-05-07 2023-04-03 주식회사 에이피씨테크 Manufacturing method for graphitic carbon nitride-phosphors composite photocatalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454592B1 (en) 1996-03-29 2005-02-24 가부시키가이샤 티오테크노 Photocatalyst and its manufacturing method
KR100823976B1 (en) 2007-01-30 2008-04-22 서울시립대학교 산학협력단 Composite material for photocatalyst, and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454592B1 (en) 1996-03-29 2005-02-24 가부시키가이샤 티오테크노 Photocatalyst and its manufacturing method
KR100823976B1 (en) 2007-01-30 2008-04-22 서울시립대학교 산학협력단 Composite material for photocatalyst, and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10793772B1 (en) 2020-03-13 2020-10-06 Accelovant Technologies Corporation Monolithic phosphor composite for sensing systems
US11236267B2 (en) 2020-03-13 2022-02-01 Accelovant Technologies Corporation Fiber optic measuring device with monolithic phosphor composite
US11359976B2 (en) 2020-10-23 2022-06-14 Accelovant Technologies Corporation Multipoint surface temperature measurement system and method thereof
KR20220058023A (en) 2020-10-30 2022-05-09 (주) 세라컴 A Photocatalytic Filter Having Light Scatterer
US11353369B2 (en) 2020-11-05 2022-06-07 Accelovant Technologies Corporation Optoelectronic transducer module for thermographic temperature measurements
KR102289498B1 (en) * 2021-02-25 2021-08-12 주식회사 에이피씨테크 Mask to which photoluminescent photocatalytic reactor is applied
KR20230147773A (en) 2022-04-13 2023-10-24 주식회사 에이피씨테크 Method for preparing photoluminescent photocatalyst hybrid beads and photoluminescent photocatalyst hybrid beads prepared thereby
KR20240045392A (en) 2022-09-29 2024-04-08 현대자동차주식회사 Phosphor-transition metal-photocatalyst hybrid composite material, method for preparing the same, and filter using the same

Also Published As

Publication number Publication date
KR20100000377A (en) 2010-01-06

Similar Documents

Publication Publication Date Title
KR100965105B1 (en) Method of preparating TiO2 Phosphor Composite as Photocatalyst by a sol-gel method
EP2248586B1 (en) Visible light response-type photocatalyst powder, visible light response-type photocatalyst material using the visible light response-type photocatalyst powder, photocatalyst coating material, and photocatalyst product
KR102129422B1 (en) Beads for air purification, method for preparing the same, and filter using the same
WO2007088891A1 (en) Photocatalyst material and, containing the same, photocatalyst composition and photocatalyst product
EP2726572A1 (en) Luminescent material particles comprising a coating and lighting unit comprising such luminescent material
KR20170026966A (en) Photocatalyst beads, Filter having the photocatalyst beads, and method of fabricating the same
EP3178649A1 (en) Photocatalyst functional film and method for manufacturing same
Samsudin et al. Investigation on Structural and Optical Properties of Willemite Doped Mn2+ Based Glass‐Ceramics Prepared by Conventional Solid‐State Method
CN104971710B (en) A kind of photochemical catalyst with luminescent properties and its production and use
Priya et al. Synthesis of intense red light-emitting β-Ca2SiO4: Eu3+ phosphors for near UV-excited light-emitting diodes utilizing agro-food waste materials
CN100582046C (en) Photocatalysis thin film with illumination and purifying coupling function and manufacture method thereof
KR100823976B1 (en) Composite material for photocatalyst, and manufacturing method thereof
JP4883913B2 (en) Photocatalyst and method for producing the same
CN115231830B (en) Silicon dioxide/rare earth pyrosilicate composite material and application thereof in ultraviolet-resistant glass
US11733162B2 (en) Ultraviolet detection material and ultraviolet detection device
KR20030055123A (en) Titanium oxide, and photocatalyst and photocatalyst coating composition using the same
CN109731567B (en) Photocatalyst with luminescence property, preparation method and application thereof
RU2364614C1 (en) Luminescent nanostructural composition ceramic material
KR20220168069A (en) N-doped composite photocatalyst and preparation method thereof
EP2677017A1 (en) Method for producing fluorescent substance
US20240116030A1 (en) Phosphor-transition metal-photocatalyst hybrid composite material, method for preparing the same, and filter using the same
US20230364539A1 (en) Composite for air purification, method of manufacturing the same, and filter including the same
KR102034758B1 (en) Method for Preparating phosphorescent phosphor paint conjugated with photocatalyst reacting in visible light
RU2508938C1 (en) Titanium oxide based photocatalyst and method for production thereof
KR20230092660A (en) Method for manufacturing phosphor-photocatalyst composite material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130610

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140610

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150611

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160503

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180530

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190926

Year of fee payment: 10