JP6082856B1 - 静電容量型センサ - Google Patents

静電容量型センサ Download PDF

Info

Publication number
JP6082856B1
JP6082856B1 JP2016568450A JP2016568450A JP6082856B1 JP 6082856 B1 JP6082856 B1 JP 6082856B1 JP 2016568450 A JP2016568450 A JP 2016568450A JP 2016568450 A JP2016568450 A JP 2016568450A JP 6082856 B1 JP6082856 B1 JP 6082856B1
Authority
JP
Japan
Prior art keywords
dielectric layer
electrode
pressure
capacitive sensor
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016568450A
Other languages
English (en)
Other versions
JPWO2017057598A1 (ja
Inventor
智子 浅野
智子 浅野
伊藤 弘昭
弘昭 伊藤
高橋 渉
渉 高橋
田中 秀典
秀典 田中
敬介 川出
敬介 川出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority claimed from PCT/JP2016/078864 external-priority patent/WO2017057598A1/ja
Application granted granted Critical
Publication of JP6082856B1 publication Critical patent/JP6082856B1/ja
Publication of JPWO2017057598A1 publication Critical patent/JPWO2017057598A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

静電容量型センサ(1)は、エラストマー製の誘電層(20)と、誘電層(20)を厚さ方向に挟んで配置され各々に電極層(01X〜08X、01Y〜08Y)を有する一対の電極ユニット(30、40)と、を備え、電極層(01X〜08X、01Y〜08Y)が誘電層(20)を介して対向する部分に感圧部(D)が設定される。0MPaより大きく0.015MPa以下の圧力範囲において、静電容量型センサ(1)の感度は7.5×10−11F/MPa以上7.5×10−10F/MPa以下であり、誘電層(20)は次式(I)で示される圧力−ひずみ曲線を満足する。
=ε×S/(d×a)×{εrk/(1−k)−εr0} ・・・(I)

Description

本発明は、例えば、荷重分布センサやタッチセンサなどとして用いられる静電容量型センサに関する。
静電容量型センサの誘電層としては、樹脂、エラストマー、これらの発泡体などが用いられる。静電容量型センサを用いて小さい荷重を検出するためには、小荷重でも誘電層の厚さの変化が大きいこと、すなわち、誘電層の荷重入力方向のばね定数(=荷重変化量/変形量。以下、単に「ばね定数」と称する。)は小さい方が好ましい。このため、例えば特許文献1に開示されているように、小荷重検出用の誘電層としては、ソリッド体と比べてばね定数の小さい発泡体が用いられることが多い。
特開2015−007562号公報 特開2012−173100号公報 特開2010−223953号公報 実公平5−35303号公報 特開昭62−298736号公報 特許第4944190号公報
図21に、発泡ウレタンからなる従来の誘電層を厚さ方向に圧縮した時の、圧力−ひずみ曲線の一例を示す。図21中、縦軸は誘電層に加わる圧力、横軸は誘電層のひずみである。本明細書において誘電層の「ひずみ」とは、誘電層を厚さ方向に圧縮した時の、初期(無荷重状態)の厚さ方向の長さdに対する変形長さΔdの割合である(Δd/d)。圧力−ひずみ曲線は、いわゆるS−S(応力−ひずみ)曲線に対応する。
図21に示すように、従来の誘電層の圧力−ひずみ曲線は、変極点が二箇所ある。このため、圧力に対する変位の挙動が、圧力が小さい領域と大きい領域とで異なる。例えば、ひずみが小さい領域においては、圧力の立ち上がりが大きい。換言すると、圧力が小さい領域においては、ひずみが変化しにくい。つまり変位量が小さい。このように、従来の誘電層によると、圧力が小さい領域では静電容量の変化が小さいため、小荷重を正確に検出することができなかった。
この点、特許文献2には、厚さ方向に貫通する複数の貫通孔を有する発泡体製の誘電層が開示されている。貫通孔を形成することにより、誘電層全体のばね定数は小さくなるため、小荷重を検出しやすくなる。しかしながら、ばね定数が小さ過ぎると、ある荷重以上において誘電層が潰れきってしまい、それ以上の荷重を検出することができない。また、貫通孔が配置される分だけ誘電層全体としての比誘電率が小さくなる。このため、所望の静電容量を得ようとすると電極面積を大きくする必要がある。この場合、センサ全体における感圧部の数を少なくせざるを得なくなり、高分解能での測定が難しい。
一方、特許文献3には、ソリッド体からなる柱状の誘電層が開示されている。この場合も、誘電層のばね定数は小さくなるため、小荷重を検出しやすくなる。しかしながら、荷重が大きくなると誘電層が潰れてしまうため、大荷重を検出することは難しい。また、柱の高さが極めて小さいため、精度良く作製することが難しく、出力のばらつきを招くおそれがある。
また、特許文献6には、誘電体構造で分離された第一電極層と第二電極層とを有する静電容量型センサが開示されている。当該誘電体構造においては、第一電極層と第二電極層との間に空隙を形成するために、複数の誘電体要素を互いに離間して配置している。特許文献6に記載されているセンサは、触覚入力装置として用いられるものであり、誘電体要素が所定の荷重により潰れ、さらには倒れることにより、入力者に操作感(触覚フィードバック)を与えることを目的としている。特許文献6に記載されているセンサは、誘電体要素が潰れやすいため、小さな荷重から大きな荷重までを検出するための荷重センサとして不向きである。また、特許文献6の段落[0037]によると、当該センサは、圧力の上昇に伴い、信号強度が線形に上昇する局面と非線形に上昇する局面との二元的局面を有することが記載されている。この特徴は、「圧力に対する変位の挙動が、圧力が小さい領域と大きい領域とで異なる」という本発明の課題にほかならない。
本発明は、このような実情に鑑みてなされたものであり、荷重検出範囲が広く、特に小荷重を精度良く検出することができる静電容量型センサを提供することを課題とする。
上記課題を解決するため、本発明の静電容量型センサは、エラストマー製の誘電層と、該誘電層を厚さ方向に挟んで配置され各々に電極層を有する一対の電極ユニットと、を備え、該電極層が該誘電層を介して対向する部分に感圧部が設定される静電容量型センサであって、0MPaより大きく0.015MPa以下の圧力範囲において、該静電容量型センサの感度は7.5×10−11F/MPa以上7.5×10−10F/MPa以下であり、該誘電層は次式(I)で示される圧力−ひずみ曲線を満足することを特徴とする。
=ε×S/(d×a)×{εrk/(1−k)−εr0} ・・・(I)
k:誘電層が厚さ方向に圧縮された時のひずみ[−]
:ひずみkで圧縮された誘電層に加わる圧力[MPa]
S:感圧部における電極面積[m
:圧縮前の誘電層の厚さ[m]
a:静電容量型センサの感度[F/MPa]
ε:真空の誘電率[F/m]
εr0:圧縮前の誘電層の比誘電率[−]
εrk:ひずみkで圧縮された時の誘電層の比誘電率[−]
ここで、感圧部における電極面積とは、誘電層を挟んで対向する一対の電極層の面積の合計である。感圧部が複数ある場合には、そのうちの一つあたりの電極面積である。
本発明者は、より正確に小荷重を検出可能な誘電層について鋭意研究を重ね、誘電層に必要な理想の圧力−ひずみ曲線を求めた。以下に、上記式(I)で示される理想の圧力−ひずみ曲線の導出方法を説明する。
まず、ある圧力で誘電層を圧縮した場合、圧力をP[MPa]、ひずみをk[−]とすると、静電容量C[F]は、次式(a)で示される。
=εεrkS/d ・・・(a)
S:誘電層を挟んで対向する電極面積[m
ε:真空の誘電率[F/m]
εrk:ひずみkで圧縮された時の誘電層の比誘電率[−]
:ひずみkで圧縮された時の誘電層の厚さ[m]
ここで、圧縮前の無荷重状態の誘電層の厚さをd[m]とすると、d=d×(1−k)と表せるため、式(a)は次式(b)になる。
=εεrkS/{d×(1−k)} ・・・(b)
次に、センサとして理想的な圧力と静電容量との関係(圧力に対する静電容量の挙動)は、測定したい圧力範囲において、センサの感度が7.5×10−11F/MPa以上7.5×10−10F/MPa以下であり、かつ、圧力に対して静電容量が線形的に変化することである。これらを式で表すと、次式(c)になる。
=a×P+b ・・・(c)
a:センサの感度[F/MPa]
ここで、bは無荷重状態(ひずみk=0)の静電容量であるため、圧縮前の無荷重状態の誘電層の比誘電率をεr0[−]とすると、式(a)より、b=εεr0S/dと表せる。これを式(c)に代入すると、次式(d)になる。
=a×P+εεr0S/d ・・・(d)
式(b)、(d)より、次式(e)が導かれる。
εεrkS/{d×(1−k)}=a×P+εεr0S/d ・・・(e)
式(e)を変形すると、次式(f)になる。
=εεrkS/{d×(1−k)×a}−εεr0S/(d×a) ・・・(f)
式(f)式における定数項と変数項とを分けて表すと、上記式(I)になる。
=ε×S/(d×a)×{εrk/(1−k)−εr0} ・・・(I)
例えば、誘電層の比誘電率がひずみkによらず一定である場合には、εrk=εr0を式(f)に代入して、次式(g)を得る。
=εεr0S/{d×(1−k)×a}−εεr0S/(d×a)
=εεr0S/(d×a)×1/(1−k)−εεr0S/(d×a) ・・・(g)
式(g)の定数項εεr0S/(d×a)をα、−εεr0S/(d×a)をβとおくと、次式(II)になる(β=−α)。
=α×1/(1−k)+β ・・・(II)
したがって、誘電層の比誘電率がひずみkによらず一定である場合には、上記式(I)は式(II)で表される。
図1に、式(I)で示される圧力−ひずみ曲線のモデル図を示す。図1中、縦軸は誘電層に加わる圧力(P)、横軸は誘電層のひずみ(k)である。図1に示すように、式(I)で示される圧力−ひずみ曲線は、従来の誘電層において見られたような、圧力が小さい領域における立ち上がり部分を有さず、広い圧力範囲において単調に増加する。したがって、式(I)の圧力−ひずみ曲線を満足する静電容量型センサは、小荷重から大荷重に至る広範囲の領域で、圧力に対して静電容量が線形的に変化する挙動を示す。すなわち、圧力が小さい領域においても、静電容量の変化が大きいため、小荷重を正確に検出することができる。
誘電層が式(I)を満足するかどうかの判断は、以下のように行えばよい。まず、0MPaより大きく0.015MPa以下の範囲の複数の圧力で誘電層を圧縮し、個々の圧力に対するひずみを測定する。また、測定されたひずみにおける誘電層の比誘電率を測定する。さらに、誘電層の厚さ方向両面に電極層を配置してセンサを構成し、圧力の変化量に対する静電容量の変化量に基づいてセンサの感度を算出する。次に、測定されたひずみ(k)および誘電層の比誘電率(εrk)、センサの感度(a)、電極面積(S)などを式(I)に代入して、ひずみ(k)に対する圧力(P)を計算する。そして、ひずみが同じ値である圧力の実測値(P)と計算値(P)とを用いて、次式(III)により一致度を算出する。
一致度=圧力の実測値(P)/圧力の計算値(P) ・・・(III)
ここで、実測値と計算値とが完全に一致すれば、一致度は1になる。両者が乖離すればするほど一致度は1より大きい値または小さい値になる。本発明においては、一致度が0.3以上3.0以下であれば、圧力の実測値と計算値とが一致するとみなす。したがって、複数のひずみの値について算出された一致度のうち、最大値および最小値の両方が0.3以上3.0以下の範囲内である場合には、誘電層は式(I)を満足すると判断する。
式(I)において、誘電層の比誘電率εr0、εrkは、誘電層の材質および形状により変化する。また、センサの感度aは、誘電層の形状、比誘電率に依存すると考えられる。このため、誘電層の材質および形状、電極面積などを調整することにより、式(I)の圧力−ひずみ曲線を満足させることができる。例えば、誘電層が比較的ばね定数が大きいソリッド体、または高密度の発泡体から形成した場合でも、形状などを工夫して式(I)の圧力−ひずみ曲線を満足させることにより、繰り返し荷重が加わってもへたりにくく、かつ、小荷重を正確に検出可能な静電容量型センサを実現することができる。
式(I)で示される圧力−ひずみ曲線のモデル図である。 第一実施形態の静電容量型センサの透過上面図である。 同静電容量型センサの斜視分解図である。 誘電層の突起部一つ分の上下方向断面図である。 第二実施形態の静電容量型センサにおける誘電層の斜視分解図である。 同誘電層を構成する第二誘電層の一部分の上下方向断面図である。 第三実施形態の静電容量型センサにおける誘電層の斜視図である。 同誘電層の突条一つ分の上下方向断面図である。 実施例1〜6および比較例1の誘電層において実測された圧力−ひずみ曲線のグラフである。 実施例1の誘電層の圧力−ひずみ曲線の計算線と実測値とを示すグラフである。 実施例2の誘電層の圧力−ひずみ曲線の計算線と実測値とを示すグラフである。 実施例3の誘電層の圧力−ひずみ曲線の計算線と実測値とを示すグラフである。 実施例4の誘電層の圧力−ひずみ曲線の計算線と実測値とを示すグラフである。 実施例5の誘電層の圧力−ひずみ曲線の計算線と実測値とを示すグラフである。 実施例6の誘電層の圧力−ひずみ曲線の計算線と実測値とを示すグラフである。 比較例1の誘電層の圧力−ひずみ曲線の計算線と実測値とを示すグラフである。 実施例1〜6および比較例1の誘電層の一致度を、実測された圧力に対してプロットしたグラフである。 実施例1〜3の静電容量型センサの出力を示すグラフである。 実施例4〜6の静電容量型センサの出力を示すグラフである。 比較例1の静電容量型センサの出力を示すグラフである。 従来の誘電層の圧力−ひずみ曲線のモデル図である。 第四実施形態の静電容量型センサの斜視分解図である。 図22におけるXXIII−XXIII方向の断面模式図である。 第四実施形態の静電容量型センサにおける第二誘電層の一部分の上下方向断面図である。 第五実施形態の静電容量型センサの斜視分解図である。 第六実施形態の静電容量型センサにおける誘電層の斜視分解図である。 同誘電層を構成する第二誘電層の一部分の上下方向断面図である。 実施例7〜9の誘電層の比誘電率の測定装置の概略図である。 実施例7〜9の誘電層の変位量の測定装置の概略図である。 実施例7〜9および比較例1の誘電層において実測された圧力−ひずみ曲線のグラフである。 実施例7の誘電層の圧力−ひずみ曲線の計算線と実測値とを示すグラフである。 実施例8の誘電層の圧力−ひずみ曲線の計算線と実測値とを示すグラフである。 実施例9の誘電層の圧力−ひずみ曲線の計算線と実測値とを示すグラフである。 実施例7〜9の誘電層の一致度を、実測された圧力に対してプロットしたグラフである。 実施例7〜9の静電容量型センサの出力を示すグラフである。
1:静電容量型センサ、10:コネクタ、20:誘電層、21:平板部、22:突起部、23:第三誘電層、30:第一電極ユニット、31:第一基材、32:第一複合ユニット、33:第一電極ユニット、34:第一誘電層、35:平板部、36:細線部、40:第二電極ユニット、41:第二基材、42:第二複合ユニット、43:第二電極ユニット、44:第二誘電層、45:平板部、46:細線部、50:誘電層、51:第一誘電層、52:第二誘電層、53:誘電層、54:第一誘電層、55:第二誘電層、60:誘電層、61:平板部、62:波形部、510:平板部、511:帯状柱部、520:平板部、521:帯状柱部、540:平板部、541:細線部、550:平板部、551:細線部、620:突条、01X〜08X:第一電極層、01x〜08x:第一配線層、01Y〜08Y:第二電極層、01y〜08y:第二配線層、D:感圧部。
次に、本発明の静電容量型センサの実施の形態について説明する。
<第一実施形態>
次に、本発明の静電容量型センサの実施の形態について説明する。以下の図においては、上下方向が本発明の誘電層の厚さ方向に対応している。
[静電容量型センサの構成]
まず、本実施形態の静電容量型センサの構成について説明する。図2に、本実施形態の静電容量型センサの透過上面図を示す。図3に、同静電容量型センサの斜視分解図を示す。図4に、同静電容量型センサを構成する誘電層の突起部一つ分の上下方向断面図を示す。なお、説明の便宜上、図3においては、突起部を誇張して示している。
図2、図3に示すように、静電容量型センサ1は、誘電層20と、第一電極ユニット30と、第二電極ユニット40と、コネクタ10と、を備えている。
誘電層20は、ソリッド体のシリコーンゴム製である。誘電層20は、平板部21と、多数の突起部22と、を有している。平板部21は、正方形のシート状を呈している。図4に示すように、平板部21の厚さL1は1mmである。多数の突起部22は、平板部21の上面に突設されている。多数の突起部22は、平板部21の上面全体に略均一に配置されている。多数の突起部22は、全て同じ形状、大きさを有している。すなわち、突起部22は、平板部21に向かって広がる円錐台状を呈している。図4に示すように、突起部22の上底の直径L2は1.8mm、下底の直径L3は2.2mm、高さL4は0.7mmである。
第一電極ユニット30は、誘電層20の上側に配置されている。第一電極ユニット30は、第一基材31と、8本の第一電極層01X〜08Xと、8本の第一配線層01x〜08xと、を有している。
第一基材31は、熱可塑性ポリウレタン(TPU)製であって、長方形のシート状を呈している。第一基材31の厚さは、0.2mmである。第一基材31の下面には、8本の第一電極層01X〜08Xおよび8本の第一配線層01x〜08xが配置されている。また、第一基材31の下面側には、第一電極層01X〜08Xおよび第一配線層01x〜08xを下側から被覆するように、図示しない第一保護層が配置されている。第一保護層は、シリコーンゴム製であって、第一基材31の大きさと略同じ長方形のシート状を呈している。第一保護層の厚さは0.03mmである。
8本の第一電極層01X〜08Xは、各々、アクリルゴムおよび導電性カーボンブラックを含んでいる。第一電極層01X〜08Xは、各々、幅20mmの帯状を呈している。第一電極層01X〜08Xは、各々、左右方向に延在している。第一電極層01X〜08Xは、前後方向に2mmの間隔で離間して互いに平行に配置されている。
8本の第一配線層01x〜08xは、各々、アクリルゴムおよび銀粉末を含んでいる。8本の第一配線層01x〜08xは、各々、線状を呈しており、8本の第一電極層01X〜08Xと、コネクタ10と、を電気的に接続している。コネクタ10は、図示しない制御装置に電気的に接続されている。
第二電極ユニット40は、誘電層20の下側に配置されている。第二電極ユニット40の構成は、第一電極ユニット30の構成と同じである。すなわち、第二電極ユニット40は、第二基材41と、8本の第二電極層01Y〜08Yと、8本の第二配線層01y〜08yと、を有している。
第二基材41は、TPU製であって、長方形のシート状を呈している。第二基材41の厚さは、0.2mmである。第二基材41の上面には、8本の第二電極層01Y〜08Yおよび8本の第二配線層01y〜08yが配置されている。また、第二基材41の上面側には、第二電極層01Y〜08Yおよび第二配線層01y〜08yを上側から被覆するように、図示しない第二保護層が配置されている。第二保護層は、シリコーンゴム製であって、第二基材41の大きさと略同じ長方形のシート状を呈している。第二保護層の厚さは0.03mmである。
8本の第二電極層01Y〜08Yは、各々、アクリルゴムおよび導電性カーボンブラックを含んでいる。第二電極層01Y〜08Yは、各々、幅20mmの帯状を呈している。第二電極層01Y〜08Yは、各々、前後方向に延在している。第二電極層01Y〜08Yは、左右方向に2mmの間隔で離間して互いに平行に配置されている。
8本の第二配線層01y〜08yは、各々、アクリルゴムおよび銀粉末を含んでいる。8本の第二配線層01y〜08yは、各々、線状を呈しており、8本の第二電極層01Y〜08Yと、コネクタ10と、を電気的に接続している。
第一基材31および第二基材41の周縁部は、所定の間隔でスポット融着されている。すなわち、第一基材31と第二基材41とは、袋状に貼り合わされている。上方から見て、第一電極層01X〜08Xと第二電極層01Y〜08Yとは格子状に並んでいる。第一電極層01X〜08Xと第二電極層01Y〜08Yとが重複する部分には、複数の感圧部Dが設定されている。感圧部Dは、合計64個設定されている。感圧部D一つあたりの電極面積は、400mmである。
[静電容量型センサの動き]
次に、本実施形態の静電容量型センサ1の動きについて説明する。まず、静電容量型センサ1に荷重が加わる前(初期状態)に、第一電極層01X〜08Xおよび第二電極層01Y〜08Yに電圧を印加して、感圧部Dごとに静電容量Cを算出する。続いて、静電容量型センサ1に荷重が加わった後も同様に、感圧部Dごとに静電容量Cを算出する。荷重が加わった部分の感圧部Dにおいては、第一電極層と第二電極層との距離が小さくなる。これにより、当該感圧部Dの静電容量Cは、大きくなる。この静電容量Cの変化量ΔCに基づいて、感圧部Dごとの面圧が算出される。このようにして、荷重分布を測定することができる。
詳細は後の実施例において説明するが、0MPaより大きく0.015MPa以下の圧力範囲において、静電容量型センサ1の感度は3.5×10−10F/MPaである。また、当該圧力範囲における複数のひずみの値について、上記式(III)により算出された一致度のうち、最大値は1.3、最小値は0.6である。したがって、0MPaより大きく0.015MPa以下の圧力範囲において、誘電層20は上記式(I)で示される圧力−ひずみ曲線を満足している。
[静電容量型センサの作用効果]
次に、本実施形態の静電容量型センサ1の作用効果について説明する。0MPaより大きく0.015MPa以下の圧力範囲において、本実施形態の静電容量型センサ1は所定の感度を有し、誘電層20は上記式(I)で示される圧力−ひずみ曲線を満足している。このため、静電容量型センサ1は、圧力が小さい領域においても、圧力に対して静電容量が線形的に変化する挙動を示す。したがって、静電容量型センサ1によると、小荷重を正確に検出することができる。
誘電層20は、比較的ばね定数が大きいソリッド体からなる。このため、繰り返し荷重が加わってもへたりにくい。また、誘電層20は、平板部21と、該平板部の表面に突設される複数の突起部22と、を有している。圧力が加わると、最初に突起部22が圧縮され、その後に平板部21が圧縮される。このため、大荷重の場合には、圧力を受ける面積が増加して、その分だけ圧力が分散される。これにより、誘電層20への負荷が減少し、へたりが抑制される。突起部22は、平板部21に向かって広がる円錐台状を呈している。このため、突起部22は平板部21から引き裂かれて脱離しにくく、座屈しにくい。よって、誘電層20は耐久性に優れる。また、圧力が大きくなるにつれ、突起部22が潰れて、感圧部Dにおける空気層が少なくなる。これにより、比誘電率が大きくなるため、静電容量が大きくなる。したがって、静電容量型センサ1によると、大荷重を感度よく検出することができる。
<第二実施形態>
本実施形態の静電容量型センサと第一実施形態の静電容量型センサとは、誘電層の構成のみが相違する。したがって、ここでは相違点を中心に説明する。図5に、本実施形態の静電容量型センサを構成する誘電層の斜視分解図を示す。図6に、同誘電層を構成する第二誘電層の一部分の上下方向断面図を示す。なお、説明の便宜上、図5においては、帯状柱部を誇張して示している。
図5に示すように、誘電層50は、第一誘電層51と第二誘電層52とからなる。第一誘電層51と第二誘電層52とは、上下方向に積層されている。下側の第二誘電層52は、ソリッド体のシリコーンゴム製である。第二誘電層52は、平板部520と多数の帯状柱部521とを有している。平板部520は、正方形のシート状を呈している。図6に示すように、平板部520の厚さL1は0.3mmである。多数の帯状柱部521は、平板部520の上面に配置されている。多数の帯状柱部521は、各々、四角柱状を呈しており、左右方向に延在している。多数の帯状柱部521は、前後方向に所定の間隔で離間して互いに平行に配置されている。帯状柱部521の大きさは、全て同じである。すなわち、図6に示すように、帯状柱部521の高さL2は1mm、幅L3は1mm、隣接する帯状柱部521同士の間隔L4は6mmである。
上側の第一誘電層51の構成は、第二誘電層52の構成と同じである。すなわち、第一誘電層51は、ソリッド体のシリコーンゴム製であり、平板部510と多数の帯状柱部511とを有している。
第一誘電層51は、第二誘電層52に対して面方向(前後左右方向)に90°回転させた状態で配置されている。よって、誘電層50を上側または下側から見た場合に、第一誘電層51の多数の帯状柱部511と、第二誘電層52の多数の帯状柱部521と、は井桁状に配置されている。
詳細は後の実施例において説明するが、0MPaより大きく0.015MPa以下の圧力範囲において、本実施形態の静電容量型センサの感度は2.4×10−10F/MPaである。また、当該圧力範囲における複数のひずみの値について、上記式(III)により算出された一致度のうち、最大値は1.5、最小値は0.8である。したがって、0MPaより大きく0.015MPa以下の圧力範囲において、誘電層50は上記式(I)で示される圧力−ひずみ曲線を満足している。
このように、0MPaより大きく0.015MPa以下の圧力範囲において、本実施形態の静電容量型センサは所定の感度を有し、誘電層50は上記式(I)で示される圧力−ひずみ曲線を満足している。このため、本実施形態の静電容量型センサによると、小荷重を正確に検出することができる。また、誘電層50を構成する第一誘電層51および第二誘電層52は、いずれも、比較的ばね定数が大きいソリッド体からなる。このため、誘電層50は、繰り返し荷重が加わってもへたりにくい。
誘電層50は、厚さ方向に積層される第一誘電層51と第二誘電層52とからなり、第一誘電層51および第二誘電層52は、いずれも、平板部510、520と、平板部510、520の表面に互いに離間して平行に配置される複数の帯状柱部511、521と、を有し、誘電層50を厚さ方向に透過して見た場合に、第一誘電層51および第二誘電層52は、第一誘電層51の複数の帯状柱部511と、第二誘電層52の複数の帯状柱部521と、が井桁状になるよう配置されている。本実施形態の誘電層50は、線状ではなく点状に圧縮される。このため、帯状柱部511、521の幅が比較的大きくても、小荷重で圧縮される。したがって、所望の感度を維持しつつ、帯状柱部511、521、ひいては誘電層50の耐久性を向上させることができる。また、誘電層50は、使用時に加わるせん断力に対しても耐久性が高い。さらに、誘電層50は、プレス加工、射出成形などにより、比較的容易に製造することができる。
<第三実施形態>
本実施形態の静電容量型センサと第一実施形態の静電容量型センサとは、誘電層の構成のみが相違する。したがって、ここでは相違点を中心に説明する。図7に、本実施形態の静電容量型センサを構成する誘電層の斜視図を示す。図8に、同誘電層の突条一つ分の上下方向断面図を示す。なお、説明の便宜上、図7においては、波形部を誇張して示している。
図7に示すように、誘電層60は、発泡ウレタン製である。誘電層60は、平板部61と、波形部62と、を有している。平板部61は、正方形のシート状を呈している。図8に示すように、平板部61の厚さL1は1.1mmである。波形部62は、平板部61の上面に配置されている。波形部62は、多数の突条620から形成されている。多数の突条620は、各々、山型状の断面を有しており、前後方向に延在している。多数の突条620は、左右方向に互いに平行に配置されている。突条620の頂部は曲面状を呈しており、隣接する突条620同士は曲面にて連続している。突条620の大きさは、全て同じである。すなわち、図8に示すように、突条620の高さL2は1.65mm、幅L3は7mmである。
詳細は後の実施例において説明するが、0MPaより大きく0.015MPa以下の圧力範囲において、本実施形態の静電容量型センサの感度は5.3×10−10F/MPaである。また、当該圧力範囲における複数のひずみの値について、上記式(III)により算出された一致度のうち、最大値は1.9、最小値は0.6である。したがって、0MPaより大きく0.015MPa以下の圧力範囲において、誘電層60は上記式(I)で示される圧力−ひずみ曲線を満足している。
このように、0MPaより大きく0.015MPa以下の圧力範囲において、本実施形態の静電容量型センサは所定の感度を有し、誘電層60は上記式(I)で示される圧力−ひずみ曲線を満足している。このため、本実施形態の静電容量型センサによると、小荷重を正確に検出することができる。また、誘電層60は、比較的ばね定数が小さい発泡体からなる。このため、本実施形態の静電容量型センサは、より小荷重を検出しやすい。
誘電層60は、平板部61と、平板部61の表面に互いに平行に配置される複数の突条620からなる波形部62と、を有している。突条620の頂部は曲面状を呈し、隣接する突条620同士は曲面にて連続している。これにより、感度と耐久性とを両立することができる。
<第四実施形態>
本実施形態の静電容量型センサと第一実施形態の静電容量型センサとの主な相違点は、誘電層の構成および製造方法である。したがって、ここでは相違点を中心に説明する。図22に、本実施形態の静電容量型センサの斜視分解図を示す。図23に、図22におけるXXIII−XXIII方向の断面模式図を示す。図24に、第二誘電層の一部分の上下方向断面図を示す。説明の便宜上、図22においては、誘電層の細線部を点線で示している。図23は、第一複合ユニットおよび第二複合ユニットの積層状態の断面を示している。
図22、図23に示すように、静電容量型センサ1は、第一複合ユニット32と、第二複合ユニット42と、コネクタ10と、を備えている。第一複合ユニット32と第二複合ユニット42とは、上下方向に積層されている。
第一複合ユニット32は、第一電極ユニット33と、第一誘電層34と、を有している。第一誘電層34は、第一電極ユニット33の下側に積層されている。第一電極ユニット33は、第一基材31と、8本の第一電極層01X〜08Xと、8本の第一配線層01x〜08xと、を有している。これらの構成は、第一実施形態と同じであるため、説明を省略する。但し、本実施形態においては、第一電極層01X〜08Xの幅は14mm、隣接する電極層同士の間隔は14mmである。
第一誘電層34は、平板部35と、多数の細線部36と、を有している。平板部35は、シリコーンゴム製であって、第一基材31の大きさと略同じ長方形のシート状を呈している。平板部35は、第一電極層01X〜08Xおよび第一配線層01x〜08xを下側から被覆するように、第一基材31の下側に積層されている。平板部35の厚さは0.03mmである。平板部35は、第一実施形態の第一保護層に相当する。多数の細線部36は、シリコーンゴム製であって、平板部35の下面に配置されている。多数の細線部36は、各々、線状を呈しており、前後方向に延在している。多数の細線部36は、左右方向に所定の間隔で離間して互いに平行に配置されている。多数の細線部36は、第一電極層01X〜08Xと直交するように配置されている。多数の細線部36は、全て同じ形状、大きさを有している。すなわち、細線部36は、台形状の断面を有し、細線部36の高さL2は0.09mm、幅L3は0.4mm、隣接する細線部36同士の間隔L4は2.4mmである(図24参照)。
第一電極ユニット33と第一誘電層34とは、印刷法により一体的に製造されている。すなわち、第一複合ユニット32は、第一基材31の下面に、第一電極層01X〜08X、第一配線層01x〜08x、平板部35、多数の細線部36をこの順にスクリーン印刷して、製造されている。
第二複合ユニット42の構成は、第一複合ユニット32の構成と同じである。すなわち、第二複合ユニット42は、第二電極ユニット43と、第二誘電層44と、を有している。第二誘電層44は、第二電極ユニット43の上側に積層されている。第二電極ユニット43は、第二基材41と、8本の第二電極層01Y〜08Yと、8本の第二配線層01y〜08yと、を有している。これらの構成は、第一実施形態と同じであるため、説明を省略する。但し、本実施形態においては、第二電極層01Y〜08Yの幅は14mm、隣接する電極層同士の間隔は14mmである。
第二誘電層44の構成は、第一誘電層34の構成と同じである。すなわち、第二誘電層44は、平板部45と、多数の細線部46と、を有している。平板部45は、第二電極層01Y〜08Yおよび第二配線層01y〜08yを上側から被覆するように、第二基材41の上側に積層されている。図24に示すように、平板部45の厚さL1は0.03mmである。平板部45は、第一実施形態の第二保護層に相当する。多数の細線部46は、平板部45の上面に配置されている。多数の細線部46は、各々、線状を呈しており、左右方向に延在している。多数の細線部46は、前後方向に所定の間隔で離間して互いに平行に配置されている。多数の細線部46は、第二電極層01Y〜08Yと直交するように配置されている。多数の細線部46は、全て同じ形状、大きさを有している。すなわち、細線部46は、図24に示すように、台形状の断面を有し、細線部46の高さL2は0.09mm、幅L3は0.4mm、隣接する細線部46同士の間隔L4は2.4mmである。
第二電極ユニット43と第二誘電層44とは、印刷法により一体的に製造されている。すなわち、第二複合ユニット42は、第二基材41の上面に、第二電極層01Y〜08Y、第二配線層01y〜08y、平板部45、多数の細線部46をこの順にスクリーン印刷して、製造されている。
静電容量型センサ1の誘電層は、第一誘電層34および第二誘電層44の積層体である。静電容量型センサ1を上側または下側から見た場合に、第一誘電層34の細線部36と第二誘電層44の細線部36とは、井桁状に配置されており、交差する部分で当接している。
第一基材31および第二基材41の周縁部は、所定の間隔でスポット融着されている。すなわち、第一基材31と第二基材41とは、袋状に貼り合わされている。第一電極層01X〜08Xと第二電極層01Y〜08Yとが重複する感圧部D一つあたりの電極面積は、196mmである(前出図2参照)。
詳細は後の実施例において説明するが、0MPaより大きく0.015MPa以下の圧力範囲において、静電容量型センサ1の感度は7.5×10−10F/MPaである。また、当該圧力範囲における複数のひずみの値について、上記式(III)により算出された一致度のうち、最大値は1.7、最小値は0.9である。したがって、0MPaより大きく0.015MPa以下の圧力範囲において、誘電層34、44は上記式(I)で示される圧力−ひずみ曲線を満足している。
このように、0MPaより大きく0.015MPa以下の圧力範囲において、静電容量型センサ1は所定の感度を有し、誘電層34、44は上記式(I)で示される圧力−ひずみ曲線を満足している。このため、静電容量型センサ1によると、小荷重を正確に検出することができる。
第一誘電層34は、スクリーン印刷法により第一電極ユニット33と一体的に製造されている。第二誘電層44についても同じである。これにより、誘電層を薄く軽量にすることができる。誘電層を薄くすると、柔軟性を確保しつつセンサの感度を大きくすることができる。このため、ばね定数が比較的大きく硬い材料であっても誘電層の材料として使用することができ、材料選択の幅が広がる。硬い材料を使用すると、圧縮が抑制されへたりにくくなるため、耐久性が向上する。また、印刷法によると、電極層、配線層など同じ一連の工程で誘電層を製造することができる。これにより、電極ユニットと別体で製造する場合と比較して、製造が容易になり、大量生産に適している。加えて、部品点数が少なくなり、誘電層と電極ユニットとを固定する工程も削減することができる。
第一誘電層34の平板部35と細線部36とは、共にシリコーンゴム製である。第二誘電層44についても同じである。平板部35と細線部36とが同じ材質であるため、密着性が高く、使用時に細線部36が剥がれにくく切断しにくい。よって、第一誘電層34、第二誘電層44は耐久性に優れる。第一誘電層34は細線部36を有し、第二誘電層44も細線部46を有している。これにより、平板部のみから形成した場合と比較して、柔軟性が向上し、小荷重を検出しやすい。
<第五実施形態>
本実施形態の静電容量型センサと第四実施形態の静電容量型センサとは、誘電層として第三誘電層が追加されている点のみが相違する。したがって、ここでは相違点を中心に説明する。図25に、本実施形態の静電容量型センサの斜視分解図を示す。説明の便宜上、図25においては、誘電層の細線部を点線で示している。
図25に示すように、静電容量型センサ1は、第一複合ユニット32と、第二複合ユニット42と、第三誘電層23と、コネクタ10と、を備えている。第三誘電層23は、第一複合ユニット32と第二複合ユニット42との間に介装されている。第三誘電層23は、TPU製であって、第一基材31および第二基材41の大きさと略同じ長方形のシート状を呈している。第三誘電層23の厚さは、0.2mmである。静電容量型センサ1の誘電層は、第一誘電層34、第二誘電層44、および第三誘電層23の積層体である。第三誘電層23は、平板部の概念に含まれる。
詳細は後の実施例において説明するが、0MPaより大きく0.015MPa以下の圧力範囲において、静電容量型センサ1の感度は3.8×10−10F/MPaである。また、当該圧力範囲における複数のひずみの値について、上記式(III)により算出された一致度のうち、最大値は1.2、最小値は0.6である。したがって、0MPaより大きく0.015MPa以下の圧力範囲において、誘電層34、23、44は上記式(I)で示される圧力−ひずみ曲線を満足している。
このように、0MPaより大きく0.015MPa以下の圧力範囲において、静電容量型センサ1は所定の感度を有し、誘電層34、23、44は上記式(I)で示される圧力−ひずみ曲線を満足している。このため、静電容量型センサ1によると、小荷重を正確に検出することができる。
第三誘電層23は、シリコーンゴムと比較して硬いTPUからなる。第三誘電層23を介装させることにより、静電容量型センサ1の形状保持性が向上し、しわが生じにくく、取り扱い性が向上する。また、第三誘電層23はTPU製であるのに対して、細線部36、46はシリコーンゴム製である。両者はすべりやすいため、接触時のせん断力による細線部36、46の剥離などは生じにくい。一方、第三誘電層23は、第一電極ユニット33の第一基材31、および第二電極ユニット43の第二基材41と同じ材質である。このため、第三誘電層23、第一基材31、第二基材41の周囲をスポット融着して、容易に固定することができる。
例えば、測定対象物が小さい場合、それが細線部36同士の隙間に入り込んでしまい、荷重を正確に検出できない場合がある。しかし、本実施形態のように、対向する細線部36、46の間に平板状の第三誘電層23を介装させると、測定対象物の細線部間への埋入を抑制し、検出精度を向上させることができる。また、第三誘電層23を介装させる分だけ静電容量が小さくなる。これを利用して、静電容量を調整することができる。
例えば、電極層が長い場合などには、電気抵抗の増加を抑制するために、配線層を電極層の長手方向に延長して配置する場合がある。この場合、配線層が積層される分だけ厚さが大きくなる。よって、平板部35により配線層が充分に被覆されていないと、対向する配線層同士が接触して導通するおそれがある。しかし、本実施形態のように、対向する細線部36、46の間に平板状の第三誘電層23を介装させると、仮に配線層の被覆が充分にされていない場合でも、導通を抑制することができる。
<第六実施形態>
本実施形態の静電容量型センサと第一実施形態の静電容量型センサとの主な相違点は、誘電層の構成である。したがって、ここでは相違点を中心に説明する。図26に、本実施形態の静電容量型センサにおける誘電層の斜視分解図を示す。図27に、同誘電層を構成する第二誘電層の一部分の上下方向断面図を示す。
図26に示すように、誘電層53は、第一誘電層54と第二誘電層55とからなる。第一誘電層54と第二誘電層55とは、上下方向に積層されている。第一誘電層54は、平板部540と、多数の細線部541と、を有している。平板部540は、TPU製であって、第一電極ユニット30を構成する第一基材31の大きさと略同じ長方形のシート状を呈している。平板部540の厚さは0.2mmである。多数の細線部541は、シリコーンゴム製であって、平板部540の下面に配置されている。多数の細線部541は、各々、線状を呈しており、前後方向に延在している。多数の細線部541は、左右方向に所定の間隔で離間して互いに平行に配置されている。多数の細線部541は、第一電極層01X〜08Xと直交するように配置されている。多数の細線部541は、全て同じ形状、大きさを有している。すなわち、細線部541は、台形状の断面を有し、細線部541の高さL2は0.11mm、幅L3は0.4mm、隣接する細線部541同士の間隔L4は2.4mmである(図27参照)。多数の細線部541は、平板部540の下面にスクリーン印刷されている。
第二誘電層55の構成は、第一誘電層54の構成と同じである。すなわち、第二誘電層55は、平板部550と、多数の細線部551と、を有している。図27に示すように、平板部550の厚さL1は0.2mmである。多数の細線部551は、平板部550の上面に配置されている。多数の細線部551は、各々、線状を呈しており、左右方向に延在している。多数の細線部551は、前後方向に所定の間隔で離間して互いに平行に配置されている。多数の細線部551は、第二電極層01Y〜08Yと直交するように配置されている。細線部551は、全て同じ形状、大きさを有している。すなわち、細線部551は、図27に示すように、台形状の断面を有し、細線部551の高さL2は0.11mm、幅L3は0.4mm、隣接する細線部551同士の間隔L4は2.4mmである。多数の細線部551は、平板部550の上面にスクリーン印刷されている。誘電層53を上側または下側から見た場合に、第一誘電層54の細線部541と第二誘電層55の細線部551とは、井桁状に配置されており、交差する部分で当接している。
本実施形態においては、第一電極層01X〜08Xの幅は14mm、隣接する電極層同士の間隔は14mmである。第一電極層01X〜08Xと第二電極層01Y〜08Yとが重複する感圧部D一つあたりの電極面積は、196mmである(前出図2参照)。
詳細は後の実施例において説明するが、0MPaより大きく0.015MPa以下の圧力範囲において、本実施形態の静電容量型センサの感度は4.5×10−10F/MPaである。また、当該圧力範囲における複数のひずみの値について、上記式(III)により算出された一致度のうち、最大値は1.3、最小値は0.5である。したがって、0MPaより大きく0.015MPa以下の圧力範囲において、誘電層53は上記式(I)で示される圧力−ひずみ曲線を満足している。
このように、0MPaより大きく0.015MPa以下の圧力範囲において、本実施形態の静電容量型センサは所定の感度を有し、誘電層53は上記式(I)で示される圧力−ひずみ曲線を満足している。このため、本実施形態の静電容量型センサによると、小荷重を正確に検出することができる。
第一誘電層54は、平板部540の下面に多数の細線部541をスクリーン印刷して製造されている。第二誘電層55についても同じである。第四、第五実施形態とは異なり、電極ユニットとは別体の基材上に細線部を印刷する。このため、印刷時の下層による制限がなくなり、誘電層の厚さや材質の選択の幅が広がると共に製造が容易になる。また、下層の凹凸に影響されずに、細線部を寸法精度良く均一に印刷することができる。
<その他の形態>
以上、本発明の静電容量型センサの実施の形態について説明した。しかしながら、実施の形態は上記形態に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
[誘電層]
誘電層としては、比誘電率が比較的大きいエラストマーまたは熱可塑性エラストマーを用いるとよい。例えば、比誘電率が2.5以上(測定周波数25kHz)のものが好適である。このようなエラストマーとしては、ウレタンゴム、シリコーンゴム、ニトリルゴム、水素化ニトリルゴム、アクリルゴム、天然ゴム、イソプレンゴム、エチレン−プロピレン共重合ゴム、ブチルゴム、スチレン−ブタジエンゴム、フッ素ゴム、エピクロルヒドリンゴム、クロロプレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレンなどが挙げられる。また、熱可塑性エラストマーとしては、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、フッ素系、ニトリル系、スチレン系などが挙げられる。なかでも、比誘電率と柔軟性との両方を満足するという理由から、ウレタンゴム、シリコーンゴム、ヒドリンゴム、アクリルゴムが好適である。また、誘電層が複数の層から構成される場合には、各々の層の材質は同じでも異なっていてもよい。
エラストマーまたは熱可塑性エラストマーは、ソリッド体、発泡体のいずれであってもよい。本明細書における「発泡ウレタン」は、ウレタンゴムの発泡体に含まれる。例えば、柔軟性に優れるという観点では、発泡体が好適である。また、エラストマーとして、ポリロタキサンなどの環動分子を介した架橋構造を有するものを採用してもよい。環動分子は、環状分子と直鎖状分子とを持つ。環状分子は、直鎖状分子に沿って移動することができる。エラストマーのポリマー鎖の少なくとも一部は、環状分子と架橋する。環状分子の移動に伴い、架橋点が移動するため、伸縮を繰り返しても、応力が架橋点に集中しにくい。したがって、環動分子を介した架橋構造を有するエラストマーによると、柔軟性と耐へたり性とを両立した誘電層を実現することができる。
誘電層の形状、厚さなどの寸法は、材質に応じて、静電容量型センサの感度が所定の範囲内になり、かつ、上記式(I)で示される圧力−ひずみ曲線を満足するように、適宜決定すればよい。例えば、人の足圧分布や体圧分布(赤ちゃんから成人まで)を測定するという用途、および、センサの装着性、携帯性、設置のしやすさなどを考慮すると、誘電層の厚さを、0.1mm以上にすることが望ましい。より好適な厚さは、0.2mm以上、0.4mm以上、0.5mm以上である。また、誘電層の厚さを、5.0mm以下、さらには3.0mm以下にすることが望ましい。ここで、誘電層の厚さとは、複数の層が積層されている場合にはその合計の厚さである。
また、上記第四、第五実施形態においては、それ以外の実施形態における電極ユニットの保護層を誘電層の平板部として機能させた。本発明の静電容量型センサにおいては、電極層間に配置されているエラストマー層を、以下のように扱うこととする。すなわち、原則として、電極層間に配置されているエラストマー層は誘電層とみなされる。しかし、電極ユニットとは別に製造された誘電層があり、かつ、一つの電極ユニットにおける当該エラストマー層の厚さが当該誘電層の厚さの1/10より小さい場合には、当該エラストマー層は誘電層とみなされない。例えば、上記第六実施形態においては、一対の電極ユニットの各々に0.03mmの保護層(エラストマー層)が配置されているが、電極ユニットとは別に製造された厚さ0.62mmの誘電層53があり、かつ、一つの電極ユニットにおける保護層の厚さが誘電層53の厚さの1/10より小さいため、一対の電極ユニットのいずれにおいても保護層を誘電層とみなしていない。
上記第一〜第三実施形態においては、平板部に突起部、波形部、または帯状柱部を組み合わせた形態を示した。しかしながら、平板部のみの形態、すなわち、平板状の誘電層であってもよい。誘電層は、少なくとも平板部を有することが望ましい。また、突起部、波形部、帯状柱部などは、上記実施形態に示したように、平板部の厚さ方向一面にのみ配置されていてもよいが、平板部の厚さ方向両面に配置されていてもよい。
誘電層は、電極ユニットとは別体で製造してもよく、電極ユニットと一体的に製造してもよい。前者の方法としては、プレス加工法、射出成形法、スクリーン印刷法、メタルマスク印刷法、切削加工法などが挙げられる。後者の方法としては、スクリーン印刷法、メタルマスク印刷法、インクジェット印刷法、液状射出成形法(ディスペンス法)などが挙げられる。
エラストマーおよび熱可塑性エラストマーの原料形態は、固形状または液状である。固形状の場合には、プレス加工法を用いたり、溶剤を加えて液状にしてスクリーン印刷法などを用いることができる。一方、液状の場合には、溶剤を加える必要がない。よって、溶剤の乾燥工程を経ることなくそのまま架橋工程で架橋することができ、工程を簡素化することができる。液状のエラストマーとしては、液状シリコーンゴム、液状エチレン−プロピレンゴム、液状エチレン−プロピレン−ジエンゴム、液状アクリルゴム、液状イソプレンゴム、液状ブタジエンゴム、液状クロロプレンゴム、液状スチレン−ブタジエンゴム、液状ニトリルゴム、液状ウレタンゴム、液状ブチルゴムなどが挙げられる。また、液状のエラストマーは、熱だけでなく紫外線などの光によっても架橋することができるため、比較的短時間に架橋体を得ることができる。
上記第一実施形態においては、平板部に向かって広がる円錐台状の突起部を配置した。この場合、突起部の上底は、平面ではなく曲面であってもよい。また、円錐の傾きは直線的でなくてもよい。例えば、上底や下底付近の傾きを他の部分の傾きより徐々に小さくして、上底や下底付近をR形状にしてもよい。R形状にすることにより、突起部の耐久性が向上する。また、突起部の形状は、円錐台状に限定されず、例えば、角錐台状、円錐状、角錐状などでもよい。角錐台状の場合も、上底は平面でも曲面でもよい。複数の突起部は、第一実施形態に示したように、平板部の表面に所定の間隔で離間して配置してもよく、間隔をあけずに突起部同士が連続するように配置してもよい。複数の突起部を連続して配置することにより、いわゆるプロファイル加工品のように、表面全体に凹凸を付与することができる。
上記第二実施形態においては、平板部の表面に複数の帯状柱部が配置された二つの誘電層(第一誘電層および第二誘電層)を積層して使用した。しかしながら、第一誘電層および第二誘電層のいずれか一方を使用してもよい。また、帯状柱部の形状も、四角柱状に限定されず、例えば、円柱状、円筒状などでもよい。
上記第四〜第六実施形態においては、平板部に多数の細線部が形成された誘電層を使用した。細線部の配置形態、数、寸法などは特に限定されない。上記第四〜第六実施形態においては、細線部を、平板部を介して隣接する電極層と直交するように配置したが、隣接する電極層と平行に配置してもよい。特に、第四、第五実施形態のように、電極層に重ねて誘電層を印刷する場合には、電極層に平行に配置すると、印刷時に下層の凹凸による影響が少なくなり、細線部を精度良く印刷することができる。例えば、電極層が長い場合などには、電気抵抗の増加を抑制するために、配線層を電極層の長手方向に延長して配置する場合がある。この場合、電極層と配線層とが積層されるため、凹凸が大きくなる。また、配線層と誘電層の細線部とが重複する所と重複しない所とで、誘電層の厚さが異なることにより、センサの感度が変化するおそれがある。このような場合には、細線部を電極層に平行に配置するとよい。
細線部の数や寸法は、電極層との関係などを考慮して、測定対象に応じて所望の感度が得られるよう適宜決定すればよい。小さい物の荷重を検出するためには、細線部をできるだけ密に形成するとよい。例えば、上記第四、第五実施形態において、細線部の幅を0.3mm、隣接する細線部同士の間隔を1.1mmに変更することにより、より小さな物の荷重を検出できるようになる。
上記第四、第五実施形態のように、誘電層と電極ユニットとを一体的に製造して、電極層の保護層を誘電層の平板部として機能させることができる。この場合、細線部を保護層(平板部)と同じ材質にすると、密着性が向上し、誘電層、ひいてはセンサの耐久性を向上させることができる。一方、第六実施形態のように、誘電層と電極ユニットとを別体で製造する場合、誘電層の平板部を電極ユニットの基材と同じ材質にすると、平板部と基材とを熱融着により容易に固定することができる。また、上記第五実施形態において追加した第三誘電層についても、電極ユニットの基材と同じ材質にすることにより、基材との熱融着により固定が容易になる。
上記第五実施形態においては、第一誘電層を有する第一複合ユニットと、第二誘電層を有する第二複合ユニットと、の間に第三誘電層を介装した。しかし、一方に複合ユニットを配置し、他方に電極ユニットを配置して、それらの間に平板状の誘電層を介装させてもよい。また、第六実施形態の第一誘電層と第二誘電層との間にさらに誘電層を配置してもよい。
[第一電極ユニット、第二電極ユニット]
上記実施形態においては、基材に電極層などを形成して電極ユニットとした。しかしながら、誘電層に直接電極層などを形成して電極ユニットとしてもよい。すなわち、誘電層の厚さ方向の両面に、各々、電極層、配線層、保護層などを形成して、電極ユニットとしてもよい。また、上記実施形態においては、電極ユニットに保護層を含めたが、保護層は必ずしも必要ではない。また、電極ユニットにおける電極層および配線層の配置形態は、特に限定されない。すなわち、電極層を任意の大きさ、形状で配置して、一対の電極ユニットを積層方向に透過して見た場合に、誘電層を挟んで電極層が重複することにより、少なくとも一つの感圧部を設定できればよい。
基材としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリエチレンなどの樹脂フィルム、シリコーンゴム、ブチルゴム、アクリロニトリル−ブタジエン共重合ゴム、エチレン―プロピレン共重合ゴムなどのエラストマーシート、ポリウレタン系、ポリエステル系、ポリアミド系、ポリスチレン系、ポリオレフィン系、ポリ塩化ビニル系などの熱可塑性エラストマーからなるシート、および当該熱可塑性エラストマー、PET、ナイロンなどからなる伸縮布などが好適である。
保護層としては、柔軟性や引張永久歪みなどを考慮して、ウレタンゴム、アクリルゴム、シリコーンゴム、エチレン−プロピレン共重合ゴム、天然ゴム、スチレン−ブタジエン共重合ゴム、アクリロニトリル−ブタジエン共重合ゴム、ニトリルゴム、水素化ニトリルゴム、エピクロロヒドリンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレンなどが好適である。
電極層は、誘電層の変形に追従しやすいという観点から、柔軟で伸縮性を有することが望ましい。例えば、エラストマーおよび導電材を含んで、電極層を形成するとよい。電極層は、エラストマー中に導電材が分散されている態様の他、導電材からなる層とエラストマーからなる層とが積層されている態様でもよい。後者の態様においては、エラストマーの一部が導電材層に含浸していてもよい。
エラストマーとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、エチレン−プロピレン共重合ゴム、天然ゴム、スチレン−ブタジエン共重合ゴム、アクリロニトリル−ブタジエン共重合ゴム(ニトリルゴム)、エピクロロヒドリンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレンなどが好適である。導電材としては、銀、金、銅、ニッケル、ロジウム、パラジウム、クロム、チタン、白金、鉄、およびこれらの合金などからなる金属粒子、酸化亜鉛、酸化チタンなどからなる金属酸化物粒子、チタンカーボネートなどからなる金属炭化物粒子、銀、金、銅、白金、およびニッケルなどからなる金属ナノワイヤ、導電性カーボンブラック、カーボンナノチューブ、グラファイト、およびグラフェンなどの導電性炭素材料の中から、適宜選択すればよい。これらの一種を単独で、あるいは二種以上を混合して用いることができる。
配線層も、柔軟で伸縮性を有することが望ましい。例えば、エラストマーおよび導電材を含んで、配線層を構成するとよい。配線層は、電極層と電気的に接続されていればよく、電極層の一端部に接続する他、電極層の一端部から所定の長さで延在させて電極層に積層してもよい。
エラストマーとしては、電極層と同様に、ウレタンゴム、アクリルゴム、シリコーンゴム、エチレン−プロピレン共重合ゴム、天然ゴム、スチレン−ブタジエン共重合ゴム、ニトリルゴム、エピクロロヒドリンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレンなどが好適である。導電材としては、電極層と同様に、金属粒子、金属酸化物粒子、金属炭化物粒子、金属ナノワイヤ、および導電性炭素材料の中から、適宜選択すればよい。これらの一種を単独で、あるいは二種以上を混合して用いることができる。
[静電容量型センサ]
上記実施形態の静電容量型センサにおいては、0MPaより大きく0.015MPa以下の圧力範囲において、感度が7.5×10−11F/MPa以上7.5×10−10F/MPa以下であり、誘電層は式(I)を満足する。したがって、測定圧力範囲に0.015MPa以下の荷重領域を含めると、本発明の効果を存分に発揮することができる。なお、本発明の静電容量型センサを、当該圧力範囲より大きい圧力を測定するために使用できることは言うまでもない。
上述したように、誘電層が式(I)を満足するかどうかの判断は、式(III)により算出される一致度が0.3以上3.0以下か否かによりなされる。一致度が0.5以上2.0以下であるとより好適である。一致度が0.5以上2.0以下であると、測定圧力範囲内で感度が一定に近づくため、静電容量から圧力を換算する検量線が実際の現象と合致しやすくなり、測定精度がより向上する。
静電容量型センサは、上記実施形態のまま使用してもよいが、外装カバーに収容して使用してもよい。外装カバーに収容すると、センサが人の体に接触した時の違和感を低減することができる他、安全性、防汚性、意匠性が向上する。外装カバーの材質としては、塩化ビニル、TPUなどの樹脂およびエラストマー、ポリウレタンやポリエステルなどの弾性繊維を用いた伸縮布、エラストマーと伸縮布との積層体などが好適である。
以下、実施例を挙げて本発明をより具体的に説明する。まず、材質、形状、寸法などが異なる10種類の誘電層を製造した。表1に、製造した10種類の誘電層の詳細を示す。また、表2および表3に、各誘電層におけるひずみに対する比誘電率の値を示す。
Figure 0006082856
Figure 0006082856
Figure 0006082856
[実施例1]
実施例1の誘電層は、上記第一実施形態における誘電層20と同じである(前出図3、図4参照)。すなわち、実施例1の誘電層は平板部と多数の突起部とからなる。平板部は、縦120mm、横120mm、厚さ(L1)1mmの正方形シート状を呈している。円錐台状の突起部の上底の直径(L2)は1.8mm、下底の直径(L3)は2.2mm、高さ(L4)は0.7mmである。
[実施例2]
実施例2の誘電層は、上記第二実施形態における誘電層50と平板部の厚さを除いて同じである(前出図5、図6参照)。すなわち、実施例2の誘電層は、上下方向に積層された第一誘電層と第二誘電層とからなる。第一誘電層および第二誘電層は、いずれも平板部と多数の帯状柱部とからなる。平板部は、縦120mm、横120mm、厚さ(L1)0.15mmの正方形シート状を呈している。多数の帯状柱部の高さ(L2)は1mm、幅(L3)は1mm、隣接する帯状柱部同士の間隔(L4)は、6mmである。
[実施例3]
実施例3の誘電層は、上記第二実施形態における誘電層50と同じである(前出図5、図6参照)。すなわち、実施例3の誘電層は、上下方向に積層された第一誘電層と第二誘電層とからなる。第一誘電層および第二誘電層は、いずれも平板部と多数の帯状柱部とからなる。平板部は、縦120mm、横120mm、厚さ(L1)0.3mmの正方形シート状を呈している。多数の帯状柱部の高さ(L2)は1mm、幅(L3)は1mm、隣接する帯状柱部同士の間隔(L4)は、6mmである。
[実施例4]
実施例4の誘電層は、上記第三実施形態における誘電層60と平板部の厚さおよび突条の寸法を除いて同じである(前出図7、図8参照)。すなわち、実施例4の誘電層は、平板部と波形部とからなる。平板部は、縦120mm、横120mm、厚さ(L1)1.7mmの正方形シート状を呈している。波形部を形成する多数の突条は、上記第三実施形態における突条620よりもなだらかな山型状の断面を有しており、隣接する突条同士は曲面にて連続している。突条の高さ(L2)は1.0mm、幅(L3)は7mmである。
[実施例5]
実施例5の誘電層は、上記第三実施形態における誘電層60と同じである(前出図7、図8参照)。すなわち、実施例5の誘電層は、平板部と波形部とからなる。平板部は、縦120mm、横120mm、厚さ(L1)1.1mmの正方形シート状を呈している。波形部を形成する多数の突条の高さ(L2)は1.65mm、幅(L3)は7mmである。
[実施例6]
実施例6の誘電層は、発泡ヒドリンゴム製であり、平板状を呈している。実施例6の誘電層の大きさは、縦120mm、横120mm、厚さ2.10mmである。
[実施例7]
実施例7の誘電層は、上記第四実施形態における誘電層と同じである(前出図22〜図24参照)。すなわち、実施例7の誘電層は、第一複合ユニットにおける第一誘電層と、第二複合ユニットにおける第二誘電層と、の積層体である。第一誘電層および第二誘電層は、各々、平板部と多数の細線部とからなる。平板部は、縦900mm、横700mm、厚さ(L1)0.03mmの長方形シート状を呈している。多数の細線部の高さ(L2)は0.09mm、幅(L3)は0.4mm、隣接する細線部同士の間隔(L4)は、2.4mmである。
[実施例8]
実施例8の誘電層は、上記第五実施形態における誘電層と同じである(前出図25参照)。すなわち、実施例8の誘電層は、第一複合ユニットにおける第一誘電層と、第二複合ユニットにおける第二誘電層と、これらの間に配置された第三誘電層と、の積層体である。第一誘電層および第二誘電層は、各々、平板部と多数の細線部とからなる。平板部は、縦900mm、横700mm、厚さ(L1)0.03mmの長方形シート状を呈している。多数の細線部の高さ(L2)は0.09mm、幅(L3)は0.4mm、隣接する細線部同士の間隔(L4)は、2.4mmである(前出図24参照)。第三誘電層は、縦900mm、横700mm、厚さ0.2mmの長方形シート状を呈している。
[実施例9]
実施例9の誘電層は、上記第六実施形態における誘電層53と同じである(前出図26、図27参照)。すなわち、実施例9の誘電層は、上下方向に積層された第一誘電層と第二誘電層とからなる。第一誘電層および第二誘電層は、各々、平板部と多数の細線部とからなる。平板部は、縦900mm、横700mm、厚さ(L1)0.2mmの長方形シート状を呈している。多数の細線部の高さ(L2)は0.11mm、幅(L3)は0.4mm、隣接する細線部同士の間隔(L4)は、2.4mmである。
[比較例1]
比較例1の誘電層は、発泡ウレタン製であり、平板状を呈している。比較例1の誘電層の大きさは、縦120mm、横120mm、厚さ3.00mmである。
表1中、センサの感度aは、以下のようにして測定した。まず、実施例1〜6、9および比較例1については、上記実施形態と同様に、各誘電層の上面に第一電極ユニット、下面に第二電極ユニットを配置して、静電容量型センサを作製した。実施例7、8については、第一、第二誘電層に電極ユニットが一体化されている。このため、実施例7については、第一複合ユニットと第二複合ユニットとを積層したものを、実施例8については第一複合ユニットと第三誘電層と第二複合ユニットとを積層したものを、静電容量型センサとして使用した。それから、質量0.3kg、86mm角の正方形板状の金属錘を複数個準備した。金属錘の一面には、樹脂板が配置されている。当該一面は、幅20mmの帯状の電極層4本に重なる(感圧部は4×4=16個)。次に、金属錘を、樹脂板が配置されている一面を下にして静電容量型センサに載せ、中央4か所の感圧部の静電容量を測定した。続いて、金属錘の個数を増加して圧力を変化させながら、同4か所の静電容量を測定した。測定された4か所の静電容量の平均値を算出し、当該平均値をその圧力に対する静電容量とした。そして、圧力の変化量に対する静電容量の変化量からセンサの感度aを算出した。
式(I)の定数項の算出に必要な真空の誘電率εは、8.85×10−12[F/m]とした。表2に示した比誘電率は、実施例1〜6、比較例1については、誘電層をサンプルホルダー(ソーラトロン社製、12962A型)に設置し、誘電率測定インターフェイス(同社製、1296型)および周波数応答アナライザー(同社製、1255B型)を併用して測定した。比誘電率は、誘電層に与えるひずみを変化させながら測定した。測定周波数は25kHz、測定電圧は1Vとした。
実施例7〜9については、誘電層の厚さが小さいため、電極ユニットが一体化された状態で以下のようにして比誘電率を測定した。図28に、比誘電率の測定装置の概略図を示す。図28に示すように、測定対象の試料71はアクリル樹脂製の台座70の上に配置されている。試料71は、誘電層の上下両側に電極ユニットが一体化されている積層体(静電容量型センサ)であり、感圧部1つが含まれる。試料71の上下電極層は、各々、誘電率測定装置75に接続されている。誘電率測定装置75としては、上述した誘電率測定インターフェイスおよび周波数応答アナライザーを使用した(測定周波数25kHz、測定電圧1V)。試料71の上面には、試料71への圧力負荷面積を一定にするための第一アクリル板72が配置され、さらにその上には第二アクリル板73が配置されている。第二アクリル板73は、後述する変位量の測定と圧力付加条件を同じにするために配置した。これにより、試料71には0.00027MPaの圧力が加わっている。この状態(錘74を載せない状態)を誘電層のひずみ0として、第二アクリル板73の上に種々の質量の錘74を載せ、誘電層に加わる圧力を増加させながら比誘電率を測定した。得られた圧力−比誘電率のデータに、後述するレーザ変位計により得られた圧力−ひずみのデータを組み合わせて、ひずみ−比誘電率のデータを得た。
実施例9については、一対の電極ユニットの保護層が誘電層に積層された状態で比誘電率を測定した。このため、測定された比誘電率は、誘電層のみの比誘電率とは異なる。したがって、測定された比誘電率を補正して、誘電層の比誘電率として使用した。補正式としては、次式(i)を使用した。上記表3には、次式(i)により算出したεr2を、補正した誘電層の比誘電率εrk’として示す。補正式は、以下の手法により導出した。
まず、積層されている保護層と誘電層とを直列接続されたコンデンサとみなすと、全体の静電容量Cは保護層の静電容量Cと誘電層の静電容量Cとから次式(h)で表すことができる。
1/C=1/C+1/C+1/C ・・・(h)
式(h)に、平板コンデンサの関係式C=εεS/dを代入して整理すると、次式(i)が得られる。
εr2=d/(d/ε−2×d/εr1) ・・・(i)
ここで、εは全体の比誘電率(測定された誘電率)、εr1は保護層の比誘電率(3.2)、εr2は誘電層の比誘電率、dは全体(保護層+誘電層+保護層)の厚さ、dは保護層の厚さ(0.03mm:一定値とみなす)、dは誘電層の厚さである。前述した通りdは、初期厚さをd、ひずみをkとすると、d=d×(1−k)で表される。
10種類の誘電層について、荷重に対する変位量を測定し、圧力−ひずみ曲線を作成した。実施例1〜6および比較例1については、ロードセルを使用した。実施例7〜9については、比誘電率の測定と同様に、電極ユニットが一体化された状態で以下のようにして変位量を測定した。図29に、変位量の測定装置の概略図を示す。図29中、図28と同じ部材は同じ符号で示す。図29に示すように、試料71の上面には、下から順に第一アクリル板72、第二アクリル板73が配置されている。第二アクリル板73は透明であり、その右端下面には、レーザ変位計77から照射されるレーザ光(図中点線で示す)を受光する受光部76が配置されている。図示しないが、レーザー変位計77は、センサヘッド(KEYENCE社製「LK−G10」)、コントローラ(同社製「LK−G3000V」)、電源供給装置(同社製「MS2−H50」)から構成されている。錘74を載せない初期状態において、試料71には0.00027MPaの圧力が加わっている。この状態を誘電層のひずみ0として、第二アクリル板73の上に種々の質量の錘74を載せ、誘電層に加わる圧力を増加させながら変位量を測定した。なお、試料71には、誘電層の他に電極層を形成するためのTPU製の基材が含まれるが、当該基材の変位は無いものとみなし、測定された変位量は全て誘電層の変位量とした。
図9に、実施例1〜6および比較例1の誘電層において実測された圧力−ひずみ曲線をまとめて示す。図30に、実施例7〜9および比較例1の誘電層において実測された圧力−ひずみ曲線をまとめて示す。図9、図30に示すように、比較例の誘電層の圧力−ひずみ曲線には変極点が二箇所あるのに対して、実施例の誘電層の圧力−ひずみ曲線は、ほぼ単調に増加している。
次に、10種類の誘電層について、式(I)により圧力−ひずみ曲線(計算線)を作成し、図9、図30に示した実測の圧力−ひずみ曲線とを比較した。図10に、実施例1の誘電層における計算線と実測値とを合わせて示す。図11に、実施例2の誘電層における計算線と実測値とを合わせて示す。図12に、実施例3の誘電層における計算線と実測値とを合わせて示す。図13に、実施例4の誘電層における計算線と実測値とを合わせて示す。図14に、実施例5の誘電層における計算線と実測値とを合わせて示す。図15に、実施例6の誘電層における計算線と実測値とを合わせて示す。図16に、比較例1の誘電層における計算線と実測値とを合わせて示す。図31に、実施例7の誘電層における計算線と実測値とを合わせて示す。図32に、実施例8の誘電層における計算線と実測値とを合わせて示す。図33に、実施例9の誘電層における計算線と実測値とを合わせて示す。
図10〜図15、図31〜図33に示すように、実施例の誘電層によると、0.015MPa以下の荷重領域において、実測された圧力−ひずみ曲線は、計算された式(I)の圧力−ひずみ曲線に近似していることがわかる。
さらに、各誘電層が式(I)を満足するか否かを判断するため、式(III)により一致度を算出した。図17に、実施例1〜6および比較例1の誘電層の一致度を、実測された圧力に対してプロットしたグラフを示す。図34に、実施例7〜9の誘電層の一致度を、実測された圧力に対してプロットしたグラフを示す。図17、図34に示すように、実施例の誘電層の一致度は、0.015MPa以下の圧力範囲において、0.3以上3.0以下の範囲内、さらには0.5以上2.0以下の範囲内であった。一方、比較例の誘電層の一致度は3.0を大幅に超えた。これにより、実施例の誘電層は、式(I)で示される圧力−ひずみ曲線を満足することが確認された。
次に、10種類の誘電層を用いて静電容量型センサを作製し、荷重に対するセンサの出力を測定した。静電容量型センサの構成は、誘電層に応じた上記実施形態と同じである。作製した静電容量型センサについては、使用した誘電層の番号に対応させて、実施例1〜9、比較例1と番号付けした。図18に、実施例1〜3の静電容量型センサの出力をグラフで示す。図19に、実施例4〜6の静電容量型センサの出力をグラフで示す。図20に、比較例1の静電容量型センサの出力をグラフで示す。図35に、実施例7〜9の静電容量型センサの出力をグラフで示す。
図20に示すように、式(I)で示される圧力−ひずみ曲線を満足しない比較例の静電容量型センサにおいては、0.002MPa付近までの静電容量の値が小さく、変化も少ない。これに対して、図18、図19、図35に示すように、実施例の静電容量型センサにおいては、圧力に対して静電容量がほぼ線形的に変化しており、0.002MPa以下の小荷重を精度良く測定できることが確認された。

Claims (9)

  1. エラストマー製の誘電層と、該誘電層を厚さ方向に挟んで配置され各々に電極層を有する一対の電極ユニットと、を備え、該電極層が該誘電層を介して対向する部分に感圧部が設定される静電容量型センサであって、
    0MPaより大きく0.015MPa以下の圧力範囲において、該静電容量型センサの感度は7.5×10−11F/MPa以上7.5×10−10F/MPa以下であり、該誘電層は次式(I)で示される圧力−ひずみ曲線を満足することを特徴とする静電容量型センサ。
    =ε×S/(d×a)×{εrk/(1−k)−εr0} ・・・(I)
    k:誘電層が厚さ方向に圧縮された時のひずみ[−]
    :ひずみkで圧縮された誘電層に加わる圧力[MPa]
    S:感圧部における電極面積[m
    :圧縮前の誘電層の厚さ[m]
    a:静電容量型センサの感度[F/MPa]
    ε:真空の誘電率[F/m]
    εr0:圧縮前の誘電層の比誘電率[−]
    εrk:ひずみkで圧縮された時の誘電層の比誘電率[−]
  2. 前記誘電層は、ウレタンゴム、シリコーンゴム、ヒドリンゴム、アクリルゴムから選ばれる一種からなる請求項1に記載の静電容量型センサ。
  3. 前記誘電層は、発泡体からなる請求項1または請求項2に記載の静電容量型センサ。
  4. 前記誘電層は、平板部と、該平板部の表面に突設される突起部と、を有する請求項1ないし請求項3のいずれかに記載の静電容量型センサ。
  5. 前記突起部は、前記平板部に向かって広がる円錐台状を呈する請求項4に記載の静電容量型センサ。
  6. 前記誘電層は、平板部と、該平板部の表面に互いに平行に配置される複数の突条からなる波形部と、を有する請求項1ないし請求項3のいずれかに記載の静電容量型センサ。
  7. 前記突条の頂部は曲面状を呈し、隣接する該突条同士は曲面にて連続する請求項6に記載の静電容量型センサ。
  8. 前記誘電層は、厚さ方向に積層される第一誘電層と第二誘電層とからなり、
    該第一誘電層および該第二誘電層は、いずれも、平板部と、該平板部の表面に互いに離間して平行に配置される複数の帯状柱部と、を有し、
    該誘電層を厚さ方向に透過して見た場合に、該第一誘電層および該第二誘電層は、該第一誘電層の複数の該帯状柱部と、該第二誘電層の複数の該帯状柱部と、が井桁状になるよう配置される請求項1ないし請求項3のいずれかに記載の静電容量型センサ。
  9. 前記誘電層の厚さ方向一方側に配置される前記電極ユニットを第一電極ユニット、該誘電層の厚さ方向他方側に配置される前記電極ユニットを第二電極ユニットとして、
    該第一電極ユニットにおいて、前記電極層は互いに平行に並ぶ複数の第一電極層からなり、該第二電極ユニットにおいて、前記電極層は互いに平行に並ぶ複数の第二電極層からなり、
    該第一電極ユニット、前記誘電層、および該第二電極ユニットを積層方向に透過して見た場合に、複数の該第一電極層と複数の該第二電極層とは、互いに交差する方向に延在し、複数の該第一電極層と複数の該第二電極層とが重複する部分に複数の前記感圧部が設定される請求項1ないし請求項8のいずれかに記載の静電容量型センサ。
JP2016568450A 2015-09-30 2016-09-29 静電容量型センサ Expired - Fee Related JP6082856B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015193530 2015-09-30
JP2015193530 2015-09-30
PCT/JP2016/078864 WO2017057598A1 (ja) 2015-09-30 2016-09-29 静電容量型センサ

Publications (2)

Publication Number Publication Date
JP6082856B1 true JP6082856B1 (ja) 2017-02-15
JPWO2017057598A1 JPWO2017057598A1 (ja) 2017-10-05

Family

ID=58043355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016568450A Expired - Fee Related JP6082856B1 (ja) 2015-09-30 2016-09-29 静電容量型センサ

Country Status (1)

Country Link
JP (1) JP6082856B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115752817A (zh) * 2022-11-15 2023-03-07 宁波韧和科技有限公司 电容式压力阵列传感器、其制备方法以及智能床垫

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617838B2 (ja) * 1986-06-18 1994-03-09 工業技術院長 圧力分布測定用ゴム板
JP4565359B2 (ja) * 2008-08-08 2010-10-20 東海ゴム工業株式会社 静電容量型面圧分布センサ
JP4650538B2 (ja) * 2008-08-08 2011-03-16 東海ゴム工業株式会社 静電容量型センサ
JP4944190B2 (ja) * 2006-04-20 2012-05-30 プレッシャー プロファイル システムズ,インコーポレイテッド 再構成可能な触覚センサ入力装置
JP5603265B2 (ja) * 2011-02-21 2014-10-08 東海ゴム工業株式会社 静電容量型センサ
JP5622405B2 (ja) * 2009-02-26 2014-11-12 住友理工株式会社 静電容量型感圧センサおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617838B2 (ja) * 1986-06-18 1994-03-09 工業技術院長 圧力分布測定用ゴム板
JP4944190B2 (ja) * 2006-04-20 2012-05-30 プレッシャー プロファイル システムズ,インコーポレイテッド 再構成可能な触覚センサ入力装置
JP4565359B2 (ja) * 2008-08-08 2010-10-20 東海ゴム工業株式会社 静電容量型面圧分布センサ
JP4650538B2 (ja) * 2008-08-08 2011-03-16 東海ゴム工業株式会社 静電容量型センサ
JP5622405B2 (ja) * 2009-02-26 2014-11-12 住友理工株式会社 静電容量型感圧センサおよびその製造方法
JP5603265B2 (ja) * 2011-02-21 2014-10-08 東海ゴム工業株式会社 静電容量型センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115752817A (zh) * 2022-11-15 2023-03-07 宁波韧和科技有限公司 电容式压力阵列传感器、其制备方法以及智能床垫

Also Published As

Publication number Publication date
JPWO2017057598A1 (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2017057598A1 (ja) 静電容量型センサ
KR102081892B1 (ko) 압저항(piezo-resistive) 전극을 구비한 저항성 압력 센서
TWI617954B (zh) 一種壓力感測輸入裝置
JP6030841B2 (ja) 静電容量型センサ
JP5448423B2 (ja) 触覚センサおよびその製造方法
JP5694856B2 (ja) 柔軟電極構造、および柔軟電極構造を有する電極を備えるトランスデューサ
JP5622405B2 (ja) 静電容量型感圧センサおよびその製造方法
US20130009653A1 (en) Position detecting sensor, position detecting device, and position detecting method
JP5815369B2 (ja) 静電容量型センサ
CN205080530U (zh) 压力感测输入装置
CN110987031B (zh) 一种柔性触觉传感器
JP5486417B2 (ja) 入力インターフェイス装置
KR101717062B1 (ko) 고감도 터치 압력 검출 장치
JP2020071061A (ja) 弾性体および感圧素子
JP6082856B1 (ja) 静電容量型センサ
JP2019124506A (ja) 静電容量型センサ
JP2012181084A (ja) 静電容量型面状センサおよびその製造方法
WO2021065177A1 (ja) 静電容量型検知センサ、静電容量型検知センサモジュールおよび静電容量型検知センサを用いた状態判定方法
JP6182228B2 (ja) 足圧検出装置
WO2017126306A1 (ja) 足圧検出装置
KR101870590B1 (ko) 변형가능한 멤브레인 및 이를 포함하는 힘 감지 커패시터 소자
KR101990196B1 (ko) 스트레인 및 압력 동시측정 센서 및 이의 제조방법
EP3781909B1 (en) High-resistance sensor and method for using same
JP6823101B2 (ja) 静電容量検出装置および静電容量検出装置群
JP2006184098A (ja) 感圧センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161122

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6082856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees