JP6078898B2 - Absorption system - Google Patents

Absorption system Download PDF

Info

Publication number
JP6078898B2
JP6078898B2 JP2011260291A JP2011260291A JP6078898B2 JP 6078898 B2 JP6078898 B2 JP 6078898B2 JP 2011260291 A JP2011260291 A JP 2011260291A JP 2011260291 A JP2011260291 A JP 2011260291A JP 6078898 B2 JP6078898 B2 JP 6078898B2
Authority
JP
Japan
Prior art keywords
absorption
temperature
cold
hot water
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011260291A
Other languages
Japanese (ja)
Other versions
JP2013113497A (en
Inventor
大作 長
大作 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011260291A priority Critical patent/JP6078898B2/en
Publication of JP2013113497A publication Critical patent/JP2013113497A/en
Application granted granted Critical
Publication of JP6078898B2 publication Critical patent/JP6078898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、複数の吸収式冷凍機を備えた吸収式システムに関する。   The present invention relates to an absorption system including a plurality of absorption refrigerators.

従来、複数の吸収式冷凍機を備えた吸収式システムでは、省エネルギー対策のため、冷温水設定温度(目標温度)と冷温水入口温度との温度差、及び冷温水の流量から冷房負荷を判断して吸収式冷凍機の運転台数を制御する台数制御を行うものが知られている(例えば、特許文献1参照)。また、一の吸収式冷凍機において、冷房負荷(バーナの加熱量)の割合に応じて冷温水の流量を制御する冷温水変流量制御を行うことで、吸収式冷凍機で生成された冷温水を熱負荷へと送水する冷温水ポンプの省エネルギーを実現したものが知られている(例えば、特許文献2参照)。   Conventionally, in an absorption system equipped with a plurality of absorption chillers, the cooling load is judged from the temperature difference between the cold / hot water set temperature (target temperature) and the cold / hot water inlet temperature and the flow of the cold / hot water for energy saving measures. A device that controls the number of operating absorption refrigerators is known (for example, see Patent Document 1). Moreover, in one absorption chiller, cold / hot water generated by the absorption chiller is performed by performing cold / hot water variable flow control that controls the flow of cold / hot water according to the ratio of the cooling load (burner heating amount). The thing which realized the energy saving of the cold / hot water pump which supplies water to a heat load is known (for example, refer patent document 2).

特開2010−255880号公報JP 2010-255880 A 特開平4−80567号公報Japanese Patent Laid-Open No. 4-80567

ところで、さらなる省エネルギー対策を実施するべく、上記2つの台数制御及び冷温水変流量制御を組み合わせることが望まれている。
しかしながら、冷温水変流量制御では、冷温水入口温度が一定に保たれるため、冷温水入口温度に基づいて制御する台数制御を組み合わせることができなかった。
本発明は、上述した事情に鑑みてなされたものであり、台数制御及び冷温水流量制御を併用可能な吸収式システムを提供することを目的とする。
By the way, in order to implement further energy saving measures, it is desired to combine the two unit control and the cold / hot water variable flow rate control.
However, in the cold / hot water variable flow rate control, since the cold / hot water inlet temperature is kept constant, it has been impossible to combine the number control for controlling based on the cold / hot water inlet temperature.
This invention is made | formed in view of the situation mentioned above, and it aims at providing the absorption type system which can use unit number control and cold / hot water flow rate control together.

上記目的を達成するために、本発明は、再生器、凝縮器、蒸発器及び吸収器を備えた複数の吸収式冷凍機と、これら複数の吸収式冷凍機を集中制御する集中制御装置とを備えた吸収式システムにおいて、各吸収式冷凍機は、周波数可変に制御されて当該吸収式冷凍機が備える蒸発器の冷温水の流量を制御する冷温水ポンプと、前記冷温水の冷温水入口温度が一定となるように、前記冷温水ポンプの周波数を制御する制御装置とを備え、前記集中制御装置は、運転中の前記吸収式冷凍機の吸収式冷凍機負荷を運転中の前記吸収式冷凍機が備える蒸発器の冷温水入口温度と冷温水出口温度の差、及び、当該冷温水の流量から算出し、この吸収式冷凍機負荷から吸収式システム負荷を算出し、この吸収式システム負荷に応じて前記吸収式冷凍機の運転台数を増減し、前記吸収式システム負荷に応じた前記吸収式冷凍機の運転台数の増減に関わらず、冷房時には運転中の前記吸収式冷凍機の冷温水出口温度が所定温度以上で所定時間継続した場合、暖房時には運転中の前記吸収式冷凍機の冷温水出口温度が所定温度以下で所定時間継続した場合には、前記吸収式冷凍機の運転台数を増加させることを特徴とする。 In order to achieve the above object, the present invention includes a plurality of absorption chillers including a regenerator, a condenser, an evaporator, and an absorber, and a central control device that centrally controls the plurality of absorption chillers. In each of the absorption refrigeration systems, each absorption chiller is controlled by a variable frequency so as to control a flow rate of cold / hot water in an evaporator provided in the absorption chiller, and a cold / hot water inlet temperature of the cold / hot water. And a control device that controls the frequency of the cold / hot water pump so that the absorption refrigeration load during operation of the absorption chiller load of the absorption chiller during operation is maintained. Calculate from the difference between the cold / hot water inlet temperature of the evaporator and the cold / hot water outlet temperature of the evaporator and the flow rate of the cold / hot water, calculate the absorption system load from this absorption chiller load, Depending on the luck of the absorption refrigerator To increase or decrease the number, the despite the increase or decrease of the number of operating absorption the absorption refrigerator according to the system load, the predetermined time continues hot and cold water outlet temperature of the absorption refrigerator in operation is less than the predetermined temperature during cooling In this case, when the cold / hot water outlet temperature of the absorption chiller during operation is kept below a predetermined temperature for a predetermined time during heating, the number of operating absorption chillers is increased.

上記構成において、前記集中制御装置は、100%負荷時の冷凍能力の割合に応じて前記吸収式冷凍機の運転台数を制御してもよい。   The said structure WHEREIN: The said centralized control apparatus may control the operation number of the said absorption refrigerator according to the ratio of the refrigerating capacity at the time of 100% load.

上記構成において、前記集中制御装置は、前記吸収式システム負荷が所定時間所定負荷以上になった場合に、前記吸収式冷凍機の運転台数を増加させてもよい。   In the above configuration, the centralized control device may increase the number of operating absorption chillers when the absorption system load becomes equal to or higher than a predetermined load for a predetermined time.

上記構成において、各吸収式冷凍機は、前記再生器として高温再生器及び低温再生器を備え、前記集中制御装置は、前記吸収式冷凍機の高温再生器温度が所定時間以上所定温度になった場合に、前記吸収式冷凍機の運転台数を増加させてもよい。   In the above configuration, each absorption refrigerator includes a high-temperature regenerator and a low-temperature regenerator as the regenerator, and the central control device has a high-temperature regenerator temperature of the absorption refrigerating machine that is a predetermined temperature for a predetermined time or more. In this case, the number of operating absorption chillers may be increased.

上記構成において、各吸収式冷凍機は、再生器として高温再生器及び低温再生器を備え、前記集中制御装置は、前記吸収式システム負荷が所定時間所定負荷以上になった場合に、或いは、前記吸収式冷凍機の高温再生器温度が所定時間以上所定温度になった場合に、前記吸収式冷凍機の運転台数を増加させてもよい。   In the above configuration, each absorption chiller includes a high-temperature regenerator and a low-temperature regenerator as regenerators, and the central control device is configured such that when the absorption system load exceeds a predetermined load for a predetermined time, or When the high-temperature regenerator temperature of the absorption chiller reaches a predetermined temperature for a predetermined time or more, the number of operating the absorption chillers may be increased.

本発明によれば、集中制御装置は、運転中の吸収式冷凍機の吸収式冷凍機負荷から吸収式システム負荷を算出し、この吸収式システム負荷に応じて吸収式冷凍機の運転台数を制御するため、台数制御及び冷温水流量制御を併用可能となり、さらなる省エネルギー化を実現できる。   According to the present invention, the central control device calculates the absorption system load from the absorption refrigerator load of the operating absorption refrigerator, and controls the number of absorption refrigerators in accordance with the absorption system load. Therefore, unit control and cold / hot water flow rate control can be used in combination, and further energy saving can be realized.

本発明の実施の形態に係る吸収式冷凍機を示す回路図である。It is a circuit diagram which shows the absorption refrigerator which concerns on embodiment of this invention. 吸収式システムを模式的に示す構成図である。It is a block diagram which shows an absorption system typically. 台数制御テーブルを示す図である。It is a figure which shows a number control table. 吸収式システムの台数制御の一例を示す説明図である。It is explanatory drawing which shows an example of the number control of an absorption system. 吸収式システムの台数制御の他の例を示す説明図である。It is explanatory drawing which shows the other example of the number control of an absorption system.

以下、図面を参照して本発明の実施の形態について説明する。
図1は、本実施の形態に係る吸収式冷凍機を示す回路図である。
吸収式冷凍機100は、例えば、冷媒に水、吸収液に臭化リチウム(LiBr)溶液を用いた二重効用吸収式冷凍機である。この吸収式冷凍機100は、高温再生器1、低温再生器2、凝縮器3、蒸発器4、吸収器5、高温熱交換器6、及び低温熱交換器7等が配管接続され、吸収液及び冷媒の循環サイクルが構成されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a circuit diagram showing an absorption refrigerator according to the present embodiment.
The absorption refrigerator 100 is a double-effect absorption refrigerator using, for example, water as a refrigerant and a lithium bromide (LiBr) solution as an absorption liquid. This absorption refrigerator 100 has a high temperature regenerator 1, a low temperature regenerator 2, a condenser 3, an evaporator 4, an absorber 5, a high temperature heat exchanger 6, a low temperature heat exchanger 7 and the like connected by piping, And a refrigerant circulation cycle.

高温再生器1には、吸収液ポンプ11により、冷媒が吸収液に吸収された稀釈吸収液(以下、稀液と言う。)を吸収器5から導く稀液管20が接続されている。高温再生器1内には、吸収液ポンプ11によって吸収器5から稀液管20を介して導かれた稀液が収容されており、この稀液の液面を検知する液面検知器15が設けられている。この稀液は、例えば都市ガスを燃料とするバーナ8によって加熱されるようになっている。バーナ8は、燃料に点火する点火器9と、燃料量を制御して熱源量を可変にする燃料制御弁10とを備えて構成されている。高温再生器1には、排ガスを排気する排気管16が設けられている。   Connected to the high-temperature regenerator 1 is a diluted liquid pipe 20 that guides a diluted absorbent (hereinafter referred to as a diluted liquid) in which the refrigerant is absorbed into the absorbent by an absorbent pump 11 from the absorber 5. In the high-temperature regenerator 1, a rare liquid guided from the absorber 5 through the rare liquid pipe 20 by the absorbent liquid pump 11 is accommodated, and a liquid level detector 15 for detecting the liquid level of the rare liquid is provided. Is provided. This rare liquid is heated by, for example, a burner 8 using city gas as fuel. The burner 8 includes an igniter 9 that ignites the fuel, and a fuel control valve 10 that controls the amount of fuel and makes the amount of heat source variable. The high temperature regenerator 1 is provided with an exhaust pipe 16 for exhausting exhaust gas.

また、高温再生器1には、稀液が加熱されることで生じた冷媒蒸気を凝縮器3へと導く冷媒蒸気管21と、冷媒蒸気が分離されて濃度が高くなった中間液を低温再生器2へと導く吸収液管22とが接続されている。冷媒蒸気管21は、第1冷媒蒸気管21Aと第2冷媒蒸気管21Bとに分岐され、第1冷媒蒸気管21Aは、低温再生器2を伝熱管として経由し、凝縮器3に接続されている。第2冷媒蒸気管21Bは、開閉弁31を備え、吸収器5に接続されている。吸収液管22は、第1吸収液管22Aと第2吸収液管22Bとに分岐され、第1吸収液管22Aには高温熱交換器6が設けられ、第2吸収液管22Bは開閉弁32を備え、吸収器5に接続されている。   The high-temperature regenerator 1 is also provided with a refrigerant vapor pipe 21 that guides the refrigerant vapor generated by heating the dilute liquid to the condenser 3, and an intermediate liquid whose concentration has been increased by separating the refrigerant vapor at a low temperature. An absorption liquid pipe 22 leading to the vessel 2 is connected. The refrigerant vapor pipe 21 is branched into a first refrigerant vapor pipe 21A and a second refrigerant vapor pipe 21B. The first refrigerant vapor pipe 21A is connected to the condenser 3 via the low-temperature regenerator 2 as a heat transfer pipe. Yes. The second refrigerant vapor pipe 21 </ b> B includes an on-off valve 31 and is connected to the absorber 5. The absorption liquid pipe 22 is branched into a first absorption liquid pipe 22A and a second absorption liquid pipe 22B, the high temperature heat exchanger 6 is provided in the first absorption liquid pipe 22A, and the second absorption liquid pipe 22B is an on-off valve. 32 and connected to the absorber 5.

低温再生器2には、第1冷媒蒸気管23Aを流通する冷媒蒸気によって中間液が加熱されることで生じた冷媒蒸気を凝縮器3へと流入させるエリミネータ36が仕切壁の上部に設けられている。また、低温再生器2には、冷媒蒸気が分離された濃縮吸収液(以下、濃液と言う。)を吸収器5へと導く吸収液管23が接続されている。この吸収液管23は、低温熱交換器7を備え、吸収器5内の上部に設けられた散布器5Aに接続されている。   The low temperature regenerator 2 is provided with an eliminator 36 for allowing the refrigerant vapor generated by heating the intermediate liquid by the refrigerant vapor flowing through the first refrigerant vapor pipe 23 </ b> A to flow into the condenser 3. Yes. The low temperature regenerator 2 is connected to an absorption liquid pipe 23 that guides the concentrated absorption liquid (hereinafter referred to as a concentrated liquid) from which the refrigerant vapor has been separated to the absorber 5. The absorption liquid pipe 23 includes a low-temperature heat exchanger 7 and is connected to a spreader 5 </ b> A provided at an upper portion in the absorber 5.

凝縮器3には、この凝縮器3の下部から蒸発器4へ延出し、途中にU字部を備えた冷媒管25が接続され、重力の作用により冷媒管25を介して流下する凝縮器3内の液冷媒が蒸発器4内に流入するようになっている。また、凝縮器3内には、冷却水が流通する冷却水管26が伝熱管として配置されている。
蒸発器4には、凝縮器3から流入した冷媒が溜まる冷媒溜まり4Bが形成され、この冷媒溜まり4Bから上部に設けられた散布器4Aへと液冷媒を循環させる冷媒ポンプ12を備えた冷媒管27が接続されている。蒸発器4内には、冷温水管(供給管)28が伝熱管として配置され、この冷温水管28を介して、ブライン(例えば、冷水又は温水)が熱負荷300(例えば空気調和装置)(図2参照)に循環供給される。
The condenser 3 is connected to a refrigerant pipe 25 extending from the lower part of the condenser 3 to the evaporator 4 and having a U-shaped portion in the middle, and flows down through the refrigerant pipe 25 by the action of gravity. The liquid refrigerant inside flows into the evaporator 4. In the condenser 3, a cooling water pipe 26 through which the cooling water flows is arranged as a heat transfer pipe.
The evaporator 4 is formed with a refrigerant reservoir 4B in which the refrigerant flowing in from the condenser 3 is accumulated, and a refrigerant pipe including a refrigerant pump 12 that circulates the liquid refrigerant from the refrigerant reservoir 4B to the sprayer 4A provided in the upper part. 27 is connected. In the evaporator 4, a cold / hot water pipe (supply pipe) 28 is disposed as a heat transfer pipe, and the brine (for example, cold water or hot water) is supplied through the cold / hot water pipe 28 to a heat load 300 (for example, an air conditioner) (FIG. 2). ).

蒸発器4及び吸収器5の内部は高真空に保持されている。蒸発器4と吸収器5との間は仕切壁37Aで仕切られており、仕切壁37Aの上部には、蒸発器4において散布器4Aから冷温水管28に散布されて蒸発した冷媒蒸気が吸収器5へと流入するエリミネータ37Bが設けられている。
吸収器5の下部には、蒸発器4からの冷媒蒸気が散布器5Aから散布された濃液に吸収された稀液が溜まる稀液溜まり5Bが形成されている。この稀液溜まり5Bには、冷媒溜まり4Bから延出して開閉弁33が設けられた分岐管30と、上記稀液管20とが接続されている。吸収器5内には、冷却水が流通する冷却水管26が伝熱管として配置されている。この冷却水管26は、この吸収器5内を経由して上記凝縮器3内を経由するように配設されている。冷却水管26には冷却水ポンプ13が、冷温水管28にはインバータ(不図示)により周波数可変に制御される冷温水ポンプ14が設けられている。
The inside of the evaporator 4 and the absorber 5 is maintained at a high vacuum. The evaporator 4 and the absorber 5 are partitioned by a partition wall 37A. On the partition wall 37A, the refrigerant vapor that has been sprayed and evaporated from the sprayer 4A to the cold / hot water pipe 28 in the evaporator 4 is absorbed by the absorber. An eliminator 37 </ b> B that flows into 5 is provided.
Below the absorber 5, a rare liquid reservoir 5 </ b> B is formed in which the refrigerant vapor from the evaporator 4 accumulates the rare liquid absorbed in the concentrated liquid sprayed from the sprayer 5 </ b> A. The dilute liquid reservoir 5B is connected to a branch pipe 30 that extends from the refrigerant reservoir 4B and is provided with an on-off valve 33, and the dilute liquid pipe 20. In the absorber 5, a cooling water pipe 26 through which cooling water flows is arranged as a heat transfer pipe. The cooling water pipe 26 is disposed so as to pass through the inside of the condenser 3 through the inside of the absorber 5. The cooling water pipe 26 is provided with a cooling water pump 13, and the cold / hot water pipe 28 is provided with a cold / hot water pump 14 that is controlled to be variable in frequency by an inverter (not shown).

吸収式冷凍機100には、冷温水管28の蒸発器4入口側に設けられて冷温水入口温度を検出する冷温水入口温度センサ51と、冷温水管28の蒸発器4出口側に設けられて冷温水出口温度を検出する冷温水出口温度センサ52と、冷却水管26の吸収器5入口側に設けられて冷却水入口温度を検出する冷却水入口温度センサ53と、高温再生器1に設けられて高温再生器温度Thを検出する高温再生器温度センサ54と、冷温水管28に設けられて冷温水流量fを検出する冷温水流量計55が設けられている。   The absorption refrigerator 100 has a cold / hot water inlet temperature sensor 51 that is provided on the evaporator 4 inlet side of the cold / hot water pipe 28 to detect the cold / hot water inlet temperature, and a cold / hot water pipe 28 that is provided on the evaporator 4 outlet side of the cold / hot water pipe 28. A cold water outlet temperature sensor 52 that detects the water outlet temperature, a cooling water inlet temperature sensor 53 that is provided on the inlet side of the absorber 5 of the cooling water pipe 26 to detect the cooling water inlet temperature, and a high temperature regenerator 1 are provided. A high temperature regenerator temperature sensor 54 that detects the high temperature regenerator temperature Th and a cold / hot water flow meter 55 that is provided in the cold / hot water pipe 28 and detects the cold / hot water flow rate f are provided.

また、吸収式冷凍機100には、当該吸収式冷凍機100の制御を行う制御装置60が設けられている。この制御装置60は、図示しない計時手段を備え、吸収式冷凍機100運転のための後述する集中制御装置70(図2参照)からの運転信号、液面検知器15により検出される高温再生器1における吸収液の液面の高さ、温度センサ51〜54により検出される冷温水、冷却水、及び高温再生器1の温度、冷温水流量計55により検出される冷温水流量等を取得する。そして、制御装置60は、取得した値に基づいて、点火器9の点火制御、燃料制御弁10の開閉及び開度制御、ポンプ11〜13の制御、冷温水ポンプ14のインバータのインバータ制御等を実行する。   The absorption refrigerator 100 is provided with a control device 60 that controls the absorption refrigerator 100. The control device 60 includes a timing unit (not shown), an operation signal from a centralized control device 70 (see FIG. 2) to be described later for operating the absorption chiller 100, and a high-temperature regenerator detected by the liquid level detector 15. 1, the temperature of the absorbing liquid at 1, the temperature of the cold / hot water detected by the temperature sensors 51 to 54, the temperature of the high-temperature regenerator 1, the flow of cold / hot water detected by the cold / hot water flow meter 55, etc. . Then, the control device 60 performs ignition control of the igniter 9, opening / closing and opening control of the fuel control valve 10, control of the pumps 11 to 13, inverter control of the inverter of the cold / hot water pump 14 based on the acquired value. Run.

吸収式冷凍機100は、制御装置60の制御により、冷温水管28から冷水を取り出す冷房運転と、冷温水管28から温水を取り出す暖房運転とに運転モードが切り替えられる。
冷房運転時には、冷温水管28を介して熱負荷300に循環供給されるブライン(例えば冷水)の蒸発器4出口側温度が所定の設定温度、例えば7℃になるように吸収式冷凍機100に投入される熱量が制御装置60により制御される。具体的には、制御装置60は、ポンプ11〜14を起動し、バーナ8で燃料を燃焼させ、冷温水出口温度センサ52が検出するブラインの温度が所定の7℃となるようにバーナ8の火力を制御する。なお、冷房運転時には、開閉弁31〜33は閉じられる。
The absorption refrigerator 100 is controlled by the control device 60 so that the operation mode is switched between a cooling operation in which cold water is extracted from the cold / hot water pipe 28 and a heating operation in which hot water is extracted from the cold / hot water pipe 28.
During the cooling operation, the absorption-type refrigerator 100 is charged so that the temperature at the outlet side of the evaporator 4 of brine (for example, cold water) circulated and supplied to the heat load 300 through the cold / hot water pipe 28 becomes a predetermined set temperature, for example, 7 ° C. The amount of heat generated is controlled by the control device 60. Specifically, the control device 60 starts the pumps 11 to 14, burns fuel with the burner 8, and controls the burner 8 so that the brine temperature detected by the cold / hot water outlet temperature sensor 52 becomes a predetermined 7 ° C. Control firepower. In the cooling operation, the on-off valves 31 to 33 are closed.

この場合、高温再生器1内の吸収液は、バーナ8により加熱され、濃縮して中間液と冷媒蒸気とに分離する。この中間液は、吸収液管22,22Aを流通して高温熱交換器6を経由し、吸収器5から流出する稀液によって冷却された後、低温再生器2に入る。高温再生器1で発生した冷媒蒸気は、冷媒蒸気管21,21Aを流通して低温再生器2を経由し、低温再生器2に供給された中間液を加熱して、凝縮して液冷媒となって凝縮器3に入る。高温再生器1からの冷媒蒸気によって加熱された低温再生器2の中間液は、濃縮して濃液と冷媒蒸気とに分離する。この冷媒蒸気は、エリミネータ36を通って凝縮器3に入る。   In this case, the absorbing liquid in the high-temperature regenerator 1 is heated by the burner 8 and concentrated to separate into an intermediate liquid and refrigerant vapor. The intermediate liquid flows through the absorption liquid tubes 22 and 22 </ b> A, passes through the high-temperature heat exchanger 6, is cooled by the dilute liquid flowing out from the absorber 5, and then enters the low-temperature regenerator 2. The refrigerant vapor generated in the high-temperature regenerator 1 flows through the refrigerant vapor pipes 21 and 21A, passes through the low-temperature regenerator 2, heats the intermediate liquid supplied to the low-temperature regenerator 2, condenses, and forms a liquid refrigerant. And enters the condenser 3. The intermediate liquid of the low temperature regenerator 2 heated by the refrigerant vapor from the high temperature regenerator 1 is concentrated and separated into concentrated liquid and refrigerant vapor. This refrigerant vapor enters the condenser 3 through the eliminator 36.

低温再生器2から凝縮器3に入った冷媒蒸気は、冷却水管26内を流通する冷却水によって冷却されて液冷媒となる。この液冷媒及び高温再生器1からの液冷媒は、冷媒管25を流通して蒸発器4に入り、一部蒸発しながらも冷媒溜まり4Bに溜まる。冷媒溜まり4Bに溜まった液冷媒は、冷媒ポンプ12によって冷媒管27を流通して蒸発器4内の散布器4Aに供給され、散布器4Aから冷温水管28の表面に散布される。このとき、冷媒は気化熱により、冷温水管28内を流通する温水の熱を奪い取り、温水が冷却されて冷水となる。この冷水は、熱負荷300に供給されて冷房等の冷却運転が行われる。蒸発器4で蒸発した冷媒蒸気は、エリミネータ37Bを通って吸収器5に入る。   The refrigerant vapor that has entered the condenser 3 from the low-temperature regenerator 2 is cooled by the cooling water flowing through the cooling water pipe 26 and becomes liquid refrigerant. The liquid refrigerant and the liquid refrigerant from the high-temperature regenerator 1 flow through the refrigerant pipe 25 and enter the evaporator 4, and accumulate in the refrigerant pool 4 </ b> B while partially evaporating. The liquid refrigerant accumulated in the refrigerant pool 4B is supplied to the spreader 4A in the evaporator 4 through the refrigerant pipe 27 by the refrigerant pump 12, and is spread from the spreader 4A to the surface of the cold / hot water pipe 28. At this time, the refrigerant takes heat of the hot water flowing through the cold / hot water pipe 28 by the heat of vaporization, and the hot water is cooled to become cold water. The cold water is supplied to the heat load 300 and a cooling operation such as cooling is performed. The refrigerant vapor evaporated in the evaporator 4 enters the absorber 5 through the eliminator 37B.

一方で、低温再生器2で濃縮された濃液は、吸収液管23を流通して低温熱交換器7を経由し、吸収液ポンプ11によって吸収器5から流出した稀液によって冷却された後、吸収器5内の散布器5Aに供給され、散布器5Aから冷却水管26の表面に散布される。吸収器5では、蒸発器4で発生した冷媒蒸気が濃液に吸収され、濃度の低下した稀液となって稀液溜まり5Bに溜まる。なお、冷媒蒸気が濃液に吸収される際に発生する熱は、冷却水管26内を流通する冷却水により冷却される。
吸収器5の稀液溜まり5Bに溜まった稀液は、吸収液ポンプ11によって稀液管20から流出される。この稀液は、稀液管20を流通して低温熱交換器7を経由し、吸収液管23を流通する濃液によって加熱された後、高温熱交換器6を経由し、第1吸収液管22Aを流通する中間液によって加熱され、高温再生器1に入る。
On the other hand, after the concentrated liquid concentrated in the low-temperature regenerator 2 is cooled by the diluted liquid flowing out of the absorber 5 by the absorption liquid pump 11 through the absorption liquid pipe 23 and passing through the low-temperature heat exchanger 7. , Supplied to the spreader 5A in the absorber 5, and sprayed from the spreader 5A to the surface of the cooling water pipe 26. In the absorber 5, the refrigerant vapor generated in the evaporator 4 is absorbed by the concentrated liquid and becomes a diluted liquid having a reduced concentration, and is stored in the diluted liquid pool 5B. The heat generated when the refrigerant vapor is absorbed by the concentrated liquid is cooled by the cooling water flowing through the cooling water pipe 26.
The dilute liquid accumulated in the dilute liquid reservoir 5 </ b> B of the absorber 5 is discharged from the dilute liquid pipe 20 by the absorption liquid pump 11. The diluted liquid flows through the diluted liquid pipe 20 and passes through the low-temperature heat exchanger 7 and is heated by the concentrated liquid flowing through the absorbing liquid pipe 23 and then passes through the high-temperature heat exchanger 6 and passes through the first absorbing liquid. The high temperature regenerator 1 is heated by the intermediate liquid flowing through the pipe 22A.

暖房運転時には、冷温水管28を介して熱負荷300に循環供給されるブライン(例えば温水)の蒸発器4出口側温度が所定の設定温度、例えば55℃になるように吸収式冷凍機100Aに投入される熱量が制御装置60により制御される。具体的には、制御装置60は、ポンプ11,13,14だけを起動し、バーナ8で燃料を燃焼させ、冷温水出口温度センサ52が計測するブラインの温度が所定の55℃となるようにバーナ8の火力を制御する。なお、暖房運転時には、開閉弁31,32は開かれ、開閉弁33は閉じられる。   During heating operation, the evaporator 4 outlet side temperature of brine (for example, hot water) circulated and supplied to the heat load 300 through the cold / hot water pipe 28 is charged into the absorption refrigeration machine 100A so as to be a predetermined set temperature, for example, 55 ° C. The amount of heat generated is controlled by the control device 60. Specifically, the control device 60 activates only the pumps 11, 13, and 14, burns fuel with the burner 8, and the brine temperature measured by the cold / hot water outlet temperature sensor 52 becomes a predetermined 55 ° C. The heating power of the burner 8 is controlled. During the heating operation, the on-off valves 31 and 32 are opened and the on-off valve 33 is closed.

この場合、高温再生器1内の吸収液は、バーナ8により加熱され、濃縮して中間液と冷媒蒸気とに分離する。この中間液は、吸収液管22,22Bを流通して吸収器5に入って稀液溜まり5Bに溜まり、冷媒蒸気は、冷媒蒸気管21を流通し、主に流路抵抗の小さい第2冷媒蒸気管21Bを流通して吸収器5に入る。吸収器5に入った冷媒蒸気は、エリミネータ37Bを通って蒸発器4に入り、冷温水管28を流通する冷水により冷却されて液冷媒となって冷媒溜まり4Bに溜まる。このとき、冷温水管28を流通する冷水は、蒸発器4に入った冷媒蒸気によって加熱されて温水となる。この温水は、熱負荷300に供給されて暖房等の暖房運転が行われる。冷媒溜まり4Bに溜まった冷媒は、冷媒管27及び分岐管30を流通して吸収器5に入って稀液溜まり5Bに溜まる。稀液溜まり5Bでは、冷媒が中間液に吸収されて濃度の低下した稀液となり、この稀液は、吸収液ポンプ11によって稀液管20を流通して高温再生器1に供給される。
なお、本実施の形態の吸収式冷凍機100は、蒸発器4で凝縮した冷媒が冷媒管27、分岐管30を流通して吸収器5に入るように構成されているが、開閉弁33を閉じ、蒸発器4で凝縮して冷媒溜まり4Bに溜まった冷媒を冷媒溜まり4Bからオーバーフローさせて吸収器5に入るように構成することもできる。
In this case, the absorbing liquid in the high-temperature regenerator 1 is heated by the burner 8 and concentrated to separate into an intermediate liquid and refrigerant vapor. The intermediate liquid flows through the absorption liquid pipes 22 and 22B, enters the absorber 5 and accumulates in the dilute liquid pool 5B, and the refrigerant vapor flows through the refrigerant vapor pipe 21 and is mainly a second refrigerant having a small channel resistance. The gas enters the absorber 5 through the steam pipe 21B. The refrigerant vapor entering the absorber 5 enters the evaporator 4 through the eliminator 37B, is cooled by cold water flowing through the cold / hot water pipe 28, becomes liquid refrigerant, and accumulates in the refrigerant pool 4B. At this time, the cold water flowing through the cold / hot water pipe 28 is heated by the refrigerant vapor entering the evaporator 4 to become hot water. This hot water is supplied to the heat load 300 and a heating operation such as heating is performed. The refrigerant accumulated in the refrigerant reservoir 4B flows through the refrigerant pipe 27 and the branch pipe 30, enters the absorber 5, and accumulates in the rare liquid reservoir 5B. In the dilute liquid reservoir 5B, the refrigerant is absorbed by the intermediate liquid to become a dilute liquid having a reduced concentration, and this dilute liquid is circulated through the dilute liquid pipe 20 by the absorbing liquid pump 11 and supplied to the high temperature regenerator 1.
The absorption refrigerator 100 according to the present embodiment is configured such that the refrigerant condensed in the evaporator 4 flows through the refrigerant pipe 27 and the branch pipe 30 and enters the absorber 5. The refrigerant that is closed and condensed in the evaporator 4 and accumulated in the refrigerant reservoir 4B can overflow from the refrigerant reservoir 4B and enter the absorber 5.

また、制御装置60は、冷温水入口温度が一定となるように、冷温水ポンプ14の周波数を制御することで、冷温水ポンプ14の運転能力を抑制し、省エネルギー化を図る冷温水変流量制御を行う。   In addition, the control device 60 controls the frequency of the cold / hot water pump 14 so that the cold / hot water inlet temperature is constant, thereby suppressing the operation capacity of the cold / hot water pump 14 to reduce energy consumption. I do.

図2は、上記吸収式冷凍機100を複数備える吸収式システム200を模式的に示す構成図である。
吸収式システム200は、例えば、複数(例えば、5台)の吸収式冷凍機100と、集中制御装置70とを備えた吸収式システムで、例えば、渡り配線による通信配線71で接続されて構成されている。ここで、吸収式冷凍機100に吸収式冷凍機100A〜100Eと符号を付して各々を区別し、また吸収式冷凍機100が備える構成部品についても、吸収式冷凍機100A〜100Eに対応してA〜Eの符号を付して各々を区別して表記するものとする。
なお、本実施形態では、集中制御装置70と各吸収式冷凍機100A〜100Eとを接続する通信配線71を渡り配線としているが、これに限らず、集中制御装置70から各吸収式冷凍機100A〜100Eへと個別に通信配線71を接続するものとしても構わない。
FIG. 2 is a configuration diagram schematically showing an absorption system 200 including a plurality of the absorption chillers 100.
The absorption system 200 is, for example, an absorption system including a plurality of (for example, five) absorption refrigerators 100 and a centralized control device 70, and is configured to be connected by, for example, a communication wiring 71 using a transition wiring. ing. Here, the absorption refrigeration machine 100 is distinguished from the absorption refrigeration machines 100A to 100E by reference numerals, and the components provided in the absorption refrigeration machine 100 also correspond to the absorption refrigeration machines 100A to 100E. The symbols A to E are attached and distinguished from each other.
In the present embodiment, the communication wiring 71 that connects the central control device 70 and each absorption chiller 100A to 100E is a crossover wiring. However, the present invention is not limited to this, and each absorption chiller 100A from the central control device 70 is used. The communication wiring 71 may be individually connected to ˜100E.

吸収式システム200では、吸収式冷凍機100A〜100Eの冷温水管28A〜28Eから供給された冷温水は、送水管301を介して熱負荷300に送水される。
吸収式冷凍機100A〜100Eには、上述したように、冷温水入口温度センサ51A〜51Eと、冷温水出口温度センサ52A〜52Eと、冷温水流量計55A〜55Eと、高温再生器1A〜1Eと、この高温再生器1A〜1Eの温度を検出する高温再生器温度センサ54A〜54Eと、バーナ8A〜8Eと、このバーナ8A〜8Eの燃焼制御を始めとする吸収式冷凍機100A〜100Eの運転制御および、集中制御装置70への通信を行う制御装置60A〜60Eとがそれぞれ備えられ、各吸収式冷凍機100A〜100Eより、機種や、定格能力や、冷温水温度や、高温再生器温度、冷温水流量などのデータが、通信配線71を通じて集中制御装置70へ送信される。
In the absorption system 200, the cold / hot water supplied from the cold / hot water pipes 28 </ b> A to 28 </ b> E of the absorption refrigerators 100 </ b> A to 100 </ b> E is supplied to the heat load 300 through the water supply pipe 301.
As described above, the absorption refrigerators 100A to 100E include the cold / hot water inlet temperature sensors 51A to 51E, the cold / hot water outlet temperature sensors 52A to 52E, the cold / hot water flow meters 55A to 55E, and the high temperature regenerators 1A to 1E. And high temperature regenerator temperature sensors 54A to 54E for detecting the temperatures of the high temperature regenerators 1A to 1E, burners 8A to 8E, and absorption refrigerators 100A to 100E including combustion control of the burners 8A to 8E. Control devices 60A to 60E that perform operation control and communication with the centralized control device 70 are provided, and from each absorption chiller 100A to 100E, the model, rated capacity, cold / hot water temperature, and high temperature regenerator temperature are provided. Data such as the flow rate of cold / hot water is transmitted to the central control device 70 through the communication wiring 71.

なお、本実施の形態では、吸収式冷凍機100Aを1号機(ベース機)と称し、吸収式冷凍機100Bを2号機と称し、吸収式冷凍機100Cを3号機と称し、吸収式冷凍機100Dを4号機と称し、吸収式冷凍機100Eを5号機と称し、これら吸収式冷凍機100A〜100Eが運転される優先順位は、吸収式冷凍機100A、吸収式冷凍機100B、吸収式冷凍機100C、吸収式冷凍機100D、吸収式冷凍機100Eの順になっているものとして説明するが、この優先順位は、号機番号に関わらず、各吸収式冷凍機100A〜100Eの冷凍能力順に決められたものとしてもよく、或いは、例えば外部熱源からの排熱回収を行える吸収式冷凍機を優先するものとしもよい。   In the present embodiment, the absorption refrigerator 100A is referred to as No. 1 (base machine), the absorption refrigerator 100B is referred to as No. 2, the absorption refrigerator 100C is referred to as No. 3, and the absorption refrigerator 100D. Is referred to as No. 4, absorption refrigeration machine 100E is referred to as No. 5, and the priorities in which these absorption refrigeration machines 100A to 100E are operated are absorption refrigeration machine 100A, absorption refrigeration machine 100B, absorption refrigeration machine 100C. The absorption refrigeration machine 100D and the absorption refrigeration machine 100E will be described in this order, but this priority is determined in the order of the refrigeration capacity of the absorption refrigeration machines 100A to 100E regardless of the unit number. Alternatively, for example, an absorption refrigerator that can recover exhaust heat from an external heat source may be given priority.

集中制御装置70では、受信したこのデータの一括管理を行い、各吸収式冷凍機100A〜100Eへ対して、運転停止の指示や、運転能力の指示が行われている。
そして、集中制御装置70の盤面に設けられた運転スイッチ(不図示)の操作により、運転が指示されると、集中制御装置70は、吸収式システム200の負荷(吸収式システム負荷)に応じて、吸収式冷凍機100A〜100Eの運転台数を制御する台数制御を開始する。
The centralized control device 70 performs collective management of the received data, and instructs the absorption chillers 100A to 100E to stop operation or to operate.
And when operation is instruct | indicated by operation of the operation switch (not shown) provided in the panel surface of the centralized control apparatus 70, the centralized control apparatus 70 will respond according to the load (absorption type system load) of the absorption system 200. Then, unit control for controlling the number of operating absorption chillers 100A to 100E is started.

吸収式システム200の起動時は負荷があっても能力が出ず、正確な負荷の判断ができないため、集中制御装置70は、吸収式システム200の起動開始から所定時間to(例えば、30分)待機する。所定時間to経過すると、集中制御装置70は、運転中の吸収式冷凍機100の負荷(吸収式冷凍機負荷)を機器負荷割合Lchiとして算出する。各吸収式冷凍機100の機器負荷割合Lchiは、当該吸収式冷凍機100の冷温水入口温度センサ51が検出する冷温水入口温度、冷温水出口温度センサ52が検出する冷温水出口温度、冷温水流量計55が検出する冷温水流量fを用いて、下記の算出式(1)によって求められる。
機器負荷割合Lchi=ΔT(冷温水入口温度と冷温水出口温度の温度差)×冷温水流量f・・・(1)
When the absorption system 200 is activated, even if there is a load, the capacity is not obtained, and an accurate load cannot be determined. Therefore, the centralized control device 70 has a predetermined time to (for example, 30 minutes) from the activation start of the absorption system 200. stand by. When the predetermined time to elapses, the central control device 70 calculates the load of the absorption chiller 100 during operation (absorption chiller load) as the equipment load ratio Lchi. The equipment load ratio Lchi of each absorption chiller 100 is the cold / hot water inlet temperature detected by the cold / hot water inlet temperature sensor 51 of the absorption refrigerator 100, the cold / hot water outlet temperature detected by the cold / hot water outlet temperature sensor 52, and the cold / hot water. Using the cold / hot water flow rate f detected by the flow meter 55, the flow rate is obtained by the following calculation formula (1).
Equipment load ratio Lchi = ΔT (temperature difference between cold / hot water inlet temperature and cold / hot water outlet temperature) × cold / hot water flow rate f (1)

集中制御装置70は、運転中の吸収式冷凍機100の機器負荷割合Lchiから当該吸収式冷凍機100の容量設定を加味して、吸収式システム200の負荷を負荷割合Lchとして算出する。
例えば、容量設定がそれぞれ40冷凍トンである3台の吸収式冷凍機100A〜100Cが運転中であって、吸収式冷凍機100A〜100Cの機器負荷割合Lchiが80%、60%、40%とすると、吸収式システム200の負荷割合Lchは、40/(40+40+40)×0.8+40/(40+40+40)×0.6+40/(40+40+40)×0.6=0.6(60%)となる。
一方、容量設定がそれぞれ80冷凍トン、60冷凍トン、40冷凍トンである3台の吸収式冷凍機100A〜100Cが運転中であって、吸収式冷凍機100A〜100Cの機器負荷割合Lchiが80%、60%、40%とすると、吸収式システム200の負荷割合Lchは、80/(80+60+40)×0.8+60/(80+60+40)×0.6+40/(80+60+40)×0.4=0.644(64.4%)となる。
集中制御装置70は、図3に示す運転台数制御テーブルTBに基づき、上記のように算出した負荷割合Lchに応じて運転台数を制御する。運転台数制御テーブルTBは、集中制御装置70が備える記憶部(不図示)に記憶されている。
The central control device 70 calculates the load of the absorption system 200 as the load ratio Lch by taking into account the capacity setting of the absorption refrigerator 100 from the equipment load ratio Lchi of the operating absorption refrigerator 100.
For example, three absorption chillers 100A to 100C each having a capacity setting of 40 refrigeration tons are in operation, and the equipment load ratio Lchi of the absorption chillers 100A to 100C is 80%, 60%, and 40%. Then, the load ratio Lch of the absorption system 200 is 40 / (40 + 40 + 40) × 0.8 + 40 / (40 + 40 + 40) × 0.6 + 40 / (40 + 40 + 40) × 0.6 = 0.6 (60%).
On the other hand, three absorption refrigeration machines 100A to 100C having capacity settings of 80 refrigeration tons, 60 refrigeration tons, and 40 refrigeration tons are operating, and the equipment load ratio Lchi of the absorption refrigeration machines 100A to 100C is 80. %, 60%, and 40%, the load ratio Lch of the absorption system 200 is 80 / (80 + 60 + 40) × 0.8 + 60 / (80 + 60 + 40) × 0.6 + 40 / (80 + 60 + 40) × 0.4 = 0.644 ( 64.4%).
The centralized control device 70 controls the number of operating units according to the load ratio Lch calculated as described above based on the operating number control table TB shown in FIG. The operating number control table TB is stored in a storage unit (not shown) provided in the central control device 70.

条件1に示すように、負荷割合Lchが所定負荷α×能力割合E%以下の場合には、集中制御装置70は、吸収式冷凍機100の運転台数を優先順位の低い方から1台減少し、その後所定時間t1(例えば、30分)待機する。ここで、負荷αは100%負荷時の冷凍能力を示す値(例えば、90%)であり、能力割合Eは100%負荷時の冷凍能力に対する能力割合を示す値(例えば、0.95)である。このように、能力割合Eを加味することで、経年劣化等によって吸収式冷凍機100の能力が低下した場合でも、運転台数を適正に制御できる。
また、条件2に示すように、負荷割合Lchが所定負荷β%(例えば、45%)以下の場合には、集中制御装置70は、吸収式冷凍機100をベース機(1号機)以外停止する。
As shown in Condition 1, when the load ratio Lch is equal to or less than the predetermined load α × capacity ratio E%, the central control device 70 decreases the number of operating absorption chillers 100 by one from the lowest priority order. Then, it waits for a predetermined time t1 (for example, 30 minutes). Here, the load α is a value (for example, 90%) indicating the refrigeration capacity at 100% load, and the capacity ratio E is a value (for example, 0.95) indicating the capacity ratio relative to the refrigeration capacity at the 100% load. is there. In this way, by adding the capacity ratio E, the number of operating units can be appropriately controlled even when the capacity of the absorption chiller 100 is reduced due to deterioration over time.
Further, as shown in Condition 2, when the load ratio Lch is equal to or less than a predetermined load β% (for example, 45%), the central control device 70 stops the absorption chiller 100 other than the base machine (No. 1 machine). .

一方、条件3に示すように、負荷割合Lchが所定負荷α%(例えば、90%)以上で所定時間t2(例えば、5分)以上継続する場合、あるいは、高温再生器温度Thが所定温度Th1(例えば、150℃)以上で所定時間t3(例えば、5分)継続した場合には、集中制御装置70は、吸収式冷凍機100の運転台数を優先順位の高い方から1台増加し、その後所定時間t4(例えば、5分)待機する。ここで、高温再生器温度Thは、運転中の吸収式冷凍機100から受信した高温再生器温度から当該吸収式冷凍機100の容量設定を加味して算出した平均値である。   On the other hand, as shown in condition 3, when the load ratio Lch is greater than or equal to a predetermined load α% (for example, 90%) and continues for a predetermined time t2 (for example, 5 minutes), or the high temperature regenerator temperature Th is the predetermined temperature Th1. When the predetermined time t3 (for example, 5 minutes) is continued at (for example, 150 ° C.) or more, the centralized control device 70 increases the number of operating absorption chillers 100 by one from the highest priority, and then Wait for a predetermined time t4 (for example, 5 minutes). Here, the high temperature regenerator temperature Th is an average value calculated by taking into account the capacity setting of the absorption refrigerating machine 100 from the high temperature regenerator temperature received from the operating absorption refrigerating machine 100.

また、条件4に示すように、条件3に関わらず、冷房時には冷温水出口温度Toutが所定温度Tout1(例えば、9℃)以上、暖房時には冷温水出口温度Toutが所定温度Tout2(例えば、53℃)以下で所定時間t5(例えば、10分)継続した場合、には、集中制御装置70は、吸収式冷凍機100の運転台数を優先順位の高い方から1台増加し、その後所定時間t5(例えば、30分)待機する。ここで、冷温水出口温度Toutは、運転中の吸収式冷凍機100から受信した冷温水出口温度から当該吸収式冷凍機100の容量設定を加味して算出した平均値である。   As shown in condition 4, regardless of condition 3, the chilled / hot water outlet temperature Tout is equal to or higher than a predetermined temperature Tout1 (eg, 9 ° C.) during cooling, and the chilled / hot water outlet temperature Tout is set to a predetermined temperature Tout2 (eg, 53 ° C.) during heating. ) When a predetermined time t5 (for example, 10 minutes) is continued in the following, the central control device 70 increases the number of operating absorption refrigeration machines 100 by one from the highest priority, and then the predetermined time t5 ( (For example, 30 minutes) Wait. Here, the cold / hot water outlet temperature Tout is an average value calculated from the cold / hot water outlet temperature received from the operating absorption refrigerator 100 in consideration of the capacity setting of the absorption refrigerator 100.

なお、所定負荷α,β、能力割合E、所定時間t1〜t5、所定温度Th1,Tout1,Tout2は、集中制御装置70の盤面に設けてある操作スイッチにより可変可能である。また、所定負荷α,β、能力割合E、所定時間t1〜t5、所定温度Th1は、冷房運転と暖房運転で値を変えてもよい。さらに、所定温度Tout1,Tout2は、冷温水出口温度の設定温度(冷房時7℃、暖房時55℃)からの温度差を設定することで、設定されてもよい。所定負荷α,β、能力割合E、所定時間t1〜t5、所定温度Th1,Tout1,Tout2(或いは、冷温水出口温度の設定温度)は、集中制御装置70が備える上記記憶部に記憶される。   Note that the predetermined loads α and β, the capacity ratio E, the predetermined times t1 to t5, and the predetermined temperatures Th1, Tout1, and Tout2 can be changed by operation switches provided on the panel surface of the central control device 70. In addition, the values of the predetermined loads α and β, the capacity ratio E, the predetermined times t1 to t5, and the predetermined temperature Th1 may be changed between the cooling operation and the heating operation. Further, the predetermined temperatures Tout1 and Tout2 may be set by setting a temperature difference from a set temperature of the cold / hot water outlet temperature (7 ° C. during cooling, 55 ° C. during heating). The predetermined loads α and β, the capacity ratio E, the predetermined times t1 to t5, and the predetermined temperatures Th1, Tout1, and Tout2 (or the set temperature of the cold / hot water outlet temperature) are stored in the storage unit provided in the central control device 70.

図4は、吸収式システム200の台数制御の一例を示す説明図である。
図4の例では、はじめに吸収式冷凍機100が全数(5台)運転されている。負荷割合Lchが所定負荷α×能力割合E%以下になると(点P1)、集中制御装置70は、最も優先順位の低い吸収式冷凍機100(5号機(吸収式冷凍機100E))を停止する。所定時間t1経過しても、負荷割合Lchが所定負荷α×能力割合E%以下の場合には(点P2)、集中制御装置70は、次に優先順位の低い吸収式冷凍機100(4号機(吸収式冷凍機100D))を停止する。所定時間t1経過しても、負荷割合Lchが所定負荷α×能力割合E%以下の場合には(点P3)、集中制御装置70は、次に優先順位の低い吸収式冷凍機100(3号機(吸収式冷凍機100C))を停止する。
負荷割合Lchが所定負荷β%以下になると(点P4)、集中制御装置70は、吸収式冷凍機100のベース機(1号機(吸収式冷凍機100A))以外を停止する。
FIG. 4 is an explanatory diagram showing an example of the number control of the absorption system 200.
In the example of FIG. 4, all the absorption chillers 100 are first operated (five units). When the load ratio Lch becomes equal to or less than the predetermined load α × capacity ratio E% (point P1), the central control device 70 stops the absorption chiller 100 having the lowest priority (No. 5 machine (absorption chiller 100E)). . When the load ratio Lch is equal to or less than the predetermined load α × capacity ratio E% even after the predetermined time t1 has elapsed (point P2), the central control device 70 has the absorption refrigeration machine 100 (No. 4) having the next lowest priority. (Absorption refrigerator 100D)) is stopped. When the load ratio Lch is equal to or less than the predetermined load α × capacity ratio E% even after the predetermined time t1 has elapsed (point P3), the central control device 70 has the absorption refrigeration machine 100 (No. 3) having the next lowest priority. (Absorption refrigerator 100C)) is stopped.
When the load ratio Lch becomes equal to or less than the predetermined load β% (point P4), the centralized control device 70 stops the units other than the base unit of the absorption chiller 100 (No. 1 machine (absorption chiller 100A)).

負荷割合Lchが所定負荷α%以上で所定時間t2以上継続すると(点P5)、集中制御装置70は、停止中の吸収式冷凍機100のうち最も優先順位の高い吸収式冷凍機100(2号機(吸収式冷凍機100B))を運転する。所定時間t4経過しても、負荷割合Lchが所定負荷α%以上で所定時間t2以上継続する場合(点P6)、集中制御装置70は、次に優先順位の高い吸収式冷凍機100(3号機(吸収式冷凍機100C))を運転する。   When the load ratio Lch is equal to or greater than the predetermined load α% and continues for the predetermined time t2 (point P5), the centralized control device 70 has the absorption chiller 100 (No. 2) having the highest priority among the absorption chillers 100 being stopped. (Absorption refrigerator 100B)) is operated. When the load ratio Lch is equal to or higher than the predetermined load α% and continues for the predetermined time t2 or more even after the predetermined time t4 has elapsed (point P6), the central control device 70 has the absorption refrigeration machine 100 (No. 3) having the next highest priority. (Absorption type refrigerator 100C)) is operated.

負荷割合Lchが所定負荷α×能力割合E%以下になると(点P7)、集中制御装置70は、運転中の吸収式冷凍機100のうち最も優先順位の低い吸収式冷凍機100(3号機(吸収式冷凍機100C))を停止する。所定時間t1経過しても、負荷割合Lchが所定負荷α×能力割合E%以下の場合には(点P8)、集中制御装置70は、次に優先順位の低い吸収式冷凍機100(2号機(吸収式冷凍機100B))を停止する。   When the load ratio Lch becomes equal to or less than the predetermined load α × capacity ratio E% (point P7), the central control device 70 has the absorption refrigerator 100 (No. 3 (lowest priority) among the absorption refrigerators 100 in operation). Absorption refrigerator 100C)) is stopped. When the load ratio Lch is equal to or less than the predetermined load α × capacity ratio E% even after the predetermined time t1 has elapsed (point P8), the central control device 70 has the absorption refrigeration machine 100 (No. 2) having the next lowest priority. (Absorption refrigerator 100B)) is stopped.

図5は、吸収式システム200の台数制御の他の例を示す説明図である。なお、図5において、点P1〜点P4の制御は、図4に示す制御と同一であるため、同一の符号を付して説明を省略する。
高温再生器温度Thが所定温度Th1以上で所定時間t3時間継続すると(点P9)、集中制御装置70は、停止中の吸収式冷凍機100のうち最も優先順位の高い吸収式冷凍機100(2号機(吸収式冷凍機100B))を運転する。所定時間t4経過しても、高温再生器温度Thが所定温度Th1以上で所定時間t3時間継続する場合(点P10)、集中制御装置70は、次に優先順位の高い吸収式冷凍機100(3号機(吸収式冷凍機100C))を運転する。
FIG. 5 is an explanatory diagram showing another example of the number control of the absorption system 200. In FIG. 5, the control of points P1 to P4 is the same as the control shown in FIG.
When the high-temperature regenerator temperature Th is equal to or higher than the predetermined temperature Th1 and continues for the predetermined time t3 (point P9), the central control device 70 takes the absorption refrigerator 100 (2) having the highest priority among the absorption refrigerators 100 being stopped. Unit (absorption refrigerator 100B)) is operated. When the high temperature regenerator temperature Th is equal to or higher than the predetermined temperature Th1 and continues for the predetermined time t3 even after the predetermined time t4 has elapsed (point P10), the central control device 70 determines that the absorption refrigerator 100 (3 Unit No. (absorption refrigerator 100C)) is operated.

負荷割合Lchが所定負荷α×能力割合E%以下になると(点P11)、集中制御装置70は、運転中の吸収式冷凍機100のうち最も優先順位の低い吸収式冷凍機100(3号機(吸収式冷凍機100C))を停止する。所定時間t1経過しても、負荷割合Lchが所定負荷α×能力割合E%以下の場合には(点P12)、集中制御装置70は、次に優先順位の低い吸収式冷凍機100(2号機(吸収式冷凍機100B))を停止する。   When the load ratio Lch becomes equal to or less than the predetermined load α × capacity ratio E% (point P11), the central control device 70 has the absorption chiller 100 (No. 3 (lowest priority) among the absorption chillers 100 in operation). Absorption refrigerator 100C)) is stopped. When the load ratio Lch is equal to or less than the predetermined load α × capacity ratio E% even after the predetermined time t1 has elapsed (point P12), the central control device 70 has the absorption refrigeration machine 100 (No. 2) having the next lowest priority. (Absorption refrigerator 100B)) is stopped.

以上説明したように、本実施の形態によれば、集中制御装置70は、吸収式冷凍機負荷を運転中の吸収式冷凍機100が備える蒸発器4の冷温水入口温度と冷温水出口温度の差、及び、当該冷温水の流量から算出し、この吸収式冷凍機負荷から吸収式システム負荷を算出し、この吸収式システム負荷に応じて吸収式冷凍機100の運転台数を制御する構成とした。この構成により、各吸収式冷凍機100において、冷温水入口温度が一定に保たれる冷温水変流量制御が行われている場合であっても、台数制御を行うことができるため、さらなる省エネルギー化を実現できる。   As described above, according to the present embodiment, the centralized control device 70 determines the temperature of the cold / hot water outlet temperature and the temperature of the cold / hot water outlet of the evaporator 4 included in the absorption refrigerator 100 operating the absorption refrigerator load. It calculates from the difference and the flow rate of the cold / hot water, calculates the absorption system load from this absorption refrigerator load, and controls the number of operating absorption refrigerators 100 according to this absorption system load. . With this configuration, each absorption chiller 100 can control the number of units even when cold / hot water variable flow control is performed in which the cold / hot water inlet temperature is kept constant, thereby further saving energy. Can be realized.

また、本実施の形態によれば、集中制御装置70は、100%負荷時の冷凍能力の割合に応じて吸収式冷凍機100の運転台数を制御するため、経年劣化等によって吸収式冷凍機100の能力が低下した場合でも、運転台数を適正に制御できる。   In addition, according to the present embodiment, the centralized control device 70 controls the number of operating absorption chillers 100 according to the ratio of the refrigeration capacity at 100% load. Even if the capacity of the system drops, the number of operating units can be controlled appropriately.

また、本実施の形態によれば、集中制御装置70は、吸収式システム負荷が所定時間所定負荷以上になった場合に、吸収式冷凍機100の運転台数を増加させる構成とする。この構成により、吸収式冷凍機100の運転/停止の切り替えが頻繁に起こることを防止でき、ひいては省エネルギー化を実現できる。   Further, according to the present embodiment, the central control device 70 is configured to increase the number of operating absorption chillers 100 when the absorption system load becomes equal to or higher than the predetermined load for a predetermined time. With this configuration, it is possible to prevent frequent switching of operation / stop of the absorption chiller 100, thereby realizing energy saving.

また、本実施の形態によれば、各吸収式冷凍機100は、再生器として高温再生器1及び低温再生器2を備え、集中制御装置70は、吸収式システム負荷が所定時間所定負荷以上になった場合に、或いは、吸収式冷凍機100の高温再生器温度が所定時間以上所定温度になった場合に、吸収式冷凍機100の運転台数を増加させる構成とする。この構成により、吸収式システム負荷に応じて吸収式冷凍機100の運転台数を増加させつつ、高温再生器温度が高い状態で吸収式冷凍機100が運転されることが防止できるので、吸収式冷凍機100を長寿命化できる。   In addition, according to the present embodiment, each absorption refrigerator 100 includes the high-temperature regenerator 1 and the low-temperature regenerator 2 as regenerators, and the central control device 70 is configured such that the absorption system load exceeds a predetermined load for a predetermined time. In such a case, or when the high-temperature regenerator temperature of the absorption chiller 100 reaches a predetermined temperature for a predetermined time or more, the number of operating absorption chillers 100 is increased. With this configuration, it is possible to prevent the absorption refrigerator 100 from being operated in a state where the high-temperature regenerator temperature is high while increasing the number of operating absorption refrigerators 100 according to the absorption system load. The life of the machine 100 can be extended.

但し、上記実施の形態は本発明の一態様であり、本発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。
例えば、上記実施の形態では、条件3において、負荷割合又は高温再生器温度の両方を判定し、いずれかの条件を満たす場合に台数制御を行ったが、負荷割合だけを判定してもよいし、高温再生器温度だけを判定してもよい。さらに、負荷割合又は高温再生器温度を判定する場合、負荷割合だけを判定する場合、高温再生器温度だけを判定する場合の設定を、集中制御装置の盤面に設けてある操作スイッチにより切り替え可能としてもよい。
However, the above embodiment is an aspect of the present invention, and it is needless to say that the embodiment can be appropriately changed without departing from the gist of the present invention.
For example, in the above embodiment, both the load ratio and the high temperature regenerator temperature are determined in Condition 3, and the number control is performed when either condition is satisfied. However, only the load ratio may be determined. Only the high temperature regenerator temperature may be determined. Furthermore, when determining the load ratio or the high temperature regenerator temperature, the setting for determining only the load ratio or only the high temperature regenerator temperature can be switched by the operation switch provided on the panel surface of the central control device. Also good.

また、上記実施の形態では、冷温水の流量を冷温水流量計で検出していたが、これに限定されず、例えば圧力計で計測してもよい。また、冷温水ポンプが所定の定格周波数(例えば、60Hz)で運転されたときの冷温水の流量を定格流量とし、定格流量とそのインバータから冷温水ポンプへと出力される運転周波数との比から、冷温水の流量を算出して求めてもよい。
また、上記実施の形態では、吸収式冷凍機の優先順位は固定されていたが、集中制御装置の盤面に設けてある操作スイッチにより入れ替え可能としてもよい。
Moreover, in the said embodiment, although the flow rate of cold / hot water was detected with the cold / hot water flowmeter, it is not limited to this, For example, you may measure with a pressure gauge. Further, the flow rate of the cold / hot water when the cold / hot water pump is operated at a predetermined rated frequency (for example, 60 Hz) is defined as the rated flow rate, and the ratio between the rated flow rate and the operation frequency output from the inverter to the cold / hot water pump. Alternatively, the flow rate of cold / hot water may be calculated.
Moreover, in the said embodiment, although the priority order of the absorption refrigerator was fixed, it is good also as replacement | exchange possible with the operation switch provided in the panel surface of the centralized control apparatus.

1 高温再生器(再生器)
2 低温再生器(再生器)
3 凝縮器
4 蒸発器
5 吸収器
51 冷温水入口温度センサ
52 冷温水出口温度センサ
54 高温再生器温度センサ
55 冷温水流量計
70 集中制御装置
100,100A〜100E 吸収式冷凍機
200 吸収式システム
1 High temperature regenerator (regenerator)
2 Low temperature regenerator (regenerator)
DESCRIPTION OF SYMBOLS 3 Condenser 4 Evaporator 5 Absorber 51 Chilled / hot water inlet temperature sensor 52 Chilled / hot water outlet temperature sensor 54 High temperature regenerator temperature sensor 55 Chilled / hot water flow meter 70 Centralized control device 100, 100A-100E Absorption type refrigerator 200 Absorption type system

Claims (5)

再生器、凝縮器、蒸発器及び吸収器を備えた複数の吸収式冷凍機と、これら複数の吸収式冷凍機を集中制御する集中制御装置とを備えた吸収式システムにおいて、
各吸収式冷凍機は、
周波数可変に制御されて当該吸収式冷凍機が備える蒸発器の冷温水の流量を制御する冷温水ポンプと、
前記冷温水の冷温水入口温度が一定となるように、前記冷温水ポンプの周波数を制御する制御装置とを備え、
前記集中制御装置は、運転中の前記吸収式冷凍機の吸収式冷凍機負荷を運転中の前記吸収式冷凍機が備える蒸発器の冷温水入口温度と冷温水出口温度の差、及び、当該冷温水の流量から算出し、この吸収式冷凍機負荷から吸収式システム負荷を算出し、この吸収式システム負荷に応じて前記吸収式冷凍機の運転台数を増減し、前記吸収式システム負荷に応じた前記吸収式冷凍機の運転台数の増減に関わらず、冷房時には運転中の前記吸収式冷凍機の冷温水出口温度が所定温度以上で所定時間継続した場合、暖房時には運転中の前記吸収式冷凍機の冷温水出口温度が所定温度以下で所定時間継続した場合には、前記吸収式冷凍機の運転台数を増加させることを特徴とする吸収式システム。
In an absorption system including a plurality of absorption chillers including a regenerator, a condenser, an evaporator, and an absorber, and a centralized control device that centrally controls the plurality of absorption chillers,
Each absorption refrigerator is
A cold / hot water pump that is controlled to be variable in frequency and controls the flow rate of the cold / hot water in the evaporator provided in the absorption refrigerator,
A controller for controlling the frequency of the cold / hot water pump so that the cold / hot water inlet temperature of the cold / hot water is constant,
The central control device includes a difference between a cold / hot water outlet temperature of an evaporator and a cold / hot water outlet temperature of an evaporator included in the absorption refrigerator that is operating the absorption refrigerator load of the absorption refrigerator that is operating, and the cold temperature calculated from the flow rate of water, to calculate the absorption system load from the absorption chiller load, the number of operating the absorption refrigerating machine is increased or decreased in response to the absorption system load, corresponding to the absorption system load Regardless of the increase or decrease in the number of operating absorption chillers, if the cold / hot water outlet temperature of the absorption chiller during operation continues for a predetermined time at a predetermined temperature or higher during cooling, the absorption chiller during operation during heating When the temperature of the hot / cold water outlet is below a predetermined temperature and continues for a predetermined time, the absorption system is characterized in that the number of operating absorption refrigerators is increased.
前記集中制御装置は、100%負荷時の冷凍能力の割合に応じて前記吸収式冷凍機の運転台数を制御することを特徴とする請求項1に記載の吸収式システム。   The absorption system according to claim 1, wherein the central control device controls the number of operating absorption chillers according to the ratio of the refrigeration capacity at 100% load. 前記集中制御装置は、前記吸収式システム負荷が所定時間所定負荷以上になった場合に、前記吸収式冷凍機の運転台数を増加させることを特徴とする請求項1又は2に記載の吸収式システム。   The absorption system according to claim 1 or 2, wherein the central control device increases the number of operating absorption chillers when the absorption system load exceeds a predetermined load for a predetermined time. . 各吸収式冷凍機は、前記再生器として高温再生器及び低温再生器を備え、
前記集中制御装置は、前記吸収式冷凍機の高温再生器温度が所定時間以上所定温度になった場合に、前記吸収式冷凍機の運転台数を増加させることを特徴とする請求項1又は2に記載の吸収式システム。
Each absorption refrigerator includes a high temperature regenerator and a low temperature regenerator as the regenerator,
The centralized control device increases the number of operating absorption chillers when the high-temperature regenerator temperature of the absorption chiller reaches a predetermined temperature for a predetermined time or longer. Absorption system as described.
各吸収式冷凍機は、再生器として高温再生器及び低温再生器を備え、
前記集中制御装置は、前記吸収式システム負荷が所定時間所定負荷以上になった場合に、或いは、前記吸収式冷凍機の高温再生器温度が所定時間以上所定温度になった場合に、前記吸収式冷凍機の運転台数を増加させることを特徴とする請求項1又は2に記載の吸収式システム。
Each absorption refrigerator has a high temperature regenerator and a low temperature regenerator as regenerators,
When the absorption system load becomes a predetermined load or more for a predetermined time, or when the high-temperature regenerator temperature of the absorption chiller becomes a predetermined temperature for a predetermined time or more, the centralized control device The absorption system according to claim 1 or 2, wherein the number of operating refrigerators is increased.
JP2011260291A 2011-11-29 2011-11-29 Absorption system Active JP6078898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011260291A JP6078898B2 (en) 2011-11-29 2011-11-29 Absorption system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011260291A JP6078898B2 (en) 2011-11-29 2011-11-29 Absorption system

Publications (2)

Publication Number Publication Date
JP2013113497A JP2013113497A (en) 2013-06-10
JP6078898B2 true JP6078898B2 (en) 2017-02-15

Family

ID=48709195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260291A Active JP6078898B2 (en) 2011-11-29 2011-11-29 Absorption system

Country Status (1)

Country Link
JP (1) JP6078898B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225532A (en) * 1985-03-29 1986-10-07 Tokyo Gas Co Ltd Method of controlling number of cool and hot water apparatuses to be started
JPS63140236A (en) * 1986-12-01 1988-06-11 Hitachi Ltd Control system for the number of heat source machines
JP3205094B2 (en) * 1992-11-09 2001-09-04 川重冷熱工業株式会社 How to control the number of absorption chillers and water heaters
JP3253189B2 (en) * 1993-09-27 2002-02-04 大阪瓦斯株式会社 Diagnosis system for damper opening of absorption chiller / heater
JP3184034B2 (en) * 1993-12-16 2001-07-09 株式会社荏原製作所 Control method of absorption chiller / heater
JP3306612B2 (en) * 1995-03-24 2002-07-24 株式会社山武 How to control the number of operating heat source units
JP2003075012A (en) * 2001-09-05 2003-03-12 Sanyo Electric Co Ltd Absorption refrigerating system
JP4288662B2 (en) * 2003-05-26 2009-07-01 矢崎総業株式会社 Centralized controller for absorption chiller / heater

Also Published As

Publication number Publication date
JP2013113497A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
KR102074912B1 (en) Refrigerator for controlling pump inverter depending on loading amount
KR100732228B1 (en) Hybrid absorption chiller
JP6434730B2 (en) Absorption heat source machine
JP4901655B2 (en) Absorption chiller / heater
JP6078898B2 (en) Absorption system
KR101171596B1 (en) Absorption refrigeration system
JP2017161159A (en) Outdoor uni of air conditioner
WO2018056024A1 (en) Absorption refrigerator
CN104075480A (en) Absorption-type heat source device
JP6789846B2 (en) Absorption chiller
JP2002349987A (en) Absorption refrigeration unit
JP2010078298A (en) Absorption refrigerator
JP3443100B2 (en) Absorption refrigerator and method of operating the same
JP5449862B2 (en) Absorption refrigeration system
JP2010276244A (en) Absorption type water chiller/heater
JP5484784B2 (en) Absorption refrigerator
CN104422194B (en) Absorption Refrigerator
JP2011094910A (en) Absorption refrigerating machine
KR20180085363A (en) Low load control system for 2-stage low temperature hot water absorption chiller
JP5342759B2 (en) Absorption chiller / heater
JP6789847B2 (en) Absorption chiller
CN101688704A (en) Be used to expand the method and system of the adjusting ratio of absorption chiller
JP3660493B2 (en) Absorption refrigeration system controller
KR100869274B1 (en) Absorption type refrigerating machine
JPH11257782A (en) Absorption cold heat generator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161228

R151 Written notification of patent or utility model registration

Ref document number: 6078898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151